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Response to Anonymous Referee #1 
 

The manuscript is overall well-written but needs to be checked for English thoroughly to increase 
readability. The reference list is appropriate and includes recent works on the topic. However, some 
improvements in the structure of the manuscript are needed, since some descriptions of the methodology 
are found in the discussion section. About the content of the manuscript, the analysis rely on just 2 stations 
in Korea, and only considers one covariate (daily dew point temperature), consequently the whole reads 
like a technical report rather than a scientific contribution to HESS. The interesting aspect is the model 
evaluation that is not based on model fit but on the uncertainties on rainfall quantiles using a Bayesian 
framework. Overall the “reference DPT” concept used in the paper is interesting but not well defined and 
deserves a better explanation in the method section and discussion since it has practical interest for non-
stationary analyses. I would recommend adding more stations (obviously there are enough stations in Korea 
for such an analysis = https://doi.org/10.1002/joc.2068) and more importantly compare different covariates 
commonly used in non-stationary frequency analysis of extreme rainfall in the context of Korea (see my 
comment below about the lack of description on how the covariate is selected and used). These two 
recommendations would increase the representativeness of the results but also provide regional insights for 
Korea. At the current state of the manuscript, the reader cannot know if these results are only valid for 
these two stations and with this covariate. 

Your detailed comments were very helpful in making a better manuscript. The authors would like to express great 
gratitude for this. First, let me tell you that some of the content in the discussion section has been moved to the 
methodology section. You can see this in the methodology section of the revised manuscript. Data from 11 sites, 
which began to be observed in 1961, were further analyzed. That is, a total of 13 sites were used in this study, 
including 2 sites that were previously applied. As a covariate, analysis was performed by adding surface air 
temperature in addition to the dew point temperature. The results of applying the added sites and an added 
covariate were prepared in the form of Supplementary Material and included in the revised manuscript. Also, as 
a figure showing the final result, Figure 7 of the revised manuscript was newly added. This further analysis may 
dispel concerns about whether the method proposed in this study applies only to two sites or is not valid only for 
dew point temperature. In addition, further analysis results will increase the representativeness of the results 
derived from this study and provide local insights into Korea. As you mentioned, because of the high level of 
practical interest in non-stationary frequency analysis, the concept of “reference covariate” has been described in 
more detail in the methodology and discussion sections. You can find out about this in the Methodology section 
and the Discussion section. More specific details of how and where the manuscript has been revised are described 
in response to the comments presented below. 

Figure 7(a) shows the values of the negative log likelihood function of the stationary model and the non-
stationary models at 13 sites. The stationary model, the SAT-based non-stationary model, and the DAT-based non-
stationary model were found to have no significant difference in the fit performance with the observed POT 
excesses. Figure 7(b) shows the h-factor of rainfall quantile corresponding to the return level of 100-year. When 
all the values of covariate observed on the day of POT excesses are considered ("DPT" and "SAT" in Figure 7(b)), 
at all sites except Mokpo site, the non-stationary h-factor is greater than the stationary h-factor. However, when 
the reference covariate is applied, the non-stationary h-factor is smaller than the stationary h-factor. Results from 
13 sites and most of the non-stationary models using SAT or DPT as a covariate indicate that how to determine 
the appropriate value of the covariate corresponding to the rainfall quantile plays an important role in securing the 
reliability of the non-stationary frequency analysis. 
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(a) negative log likelihood                     (b) h factor 

Figure 7. Performance of stationary and non-stationary frequency analysis models. At Site ID, 1: Ghangreung, 2: 
Seoul, 3: Incheon, 4: Chupungryeong, 5: Pohang, 6: Daegu, 7: Jeonju, 8: Ulsan, 9: Ghwangju, 10: Busan, 11: 
Mokpo, 12: Yeosu and 13: Jeju site. 

 

 

My first comment is about the title, quite long and not very informative of the main scientific results of the 
paper. Something like this title might be better: Uncertainty of non-stationary frequency analysis applied 
to extreme rainfall in Korea. 

The title of the paper was changed to "Uncertainty in non-stationary frequency analysis of Korea's daily rainfall 
POT excesses associated with covariates" with reference to the opinion of the Referee. This is a result of the 
authors' opinion that the title is appropriate, including keywords such as POT, coviariate, and non-stationary. 

 

 

Abstract, line 28, this sentence it not clear, maybe too general: “However, since the parameters of the 
estimated probability distribution contain a lot of uncertainty”. Abstract, line 40-42, this whole section 
below is quite trivial. Of course when a wrong covariate is selected in the POT model there is a stronger 
uncertainty. I don’t see a major finding here. Overall the abstract needs a major upgrading to better 
present the main findings of the study. 

In order to avoid describing general contents and to better express the main results of the study, the abstract has 
been greatly upgraded as follows: 

Several methods have been proposed to analyze the frequency of non-stationary anomalies. The applicability of 
the non-stationary frequency analysis has been mainly evaluated based on the agreement between the time series 
data and the applied probability distribution. However, since the uncertainty in the parameter estimate of the 
probability distribution is the main source of uncertainty in frequency analysis, the uncertainty in the 
correspondence between samples and probability distribution is inevitably large. In this study, an extreme rainfall 
frequency analysis is performed that fits the Peak-over-threshold series to the covariate-based non-stationary 
Generalized Pareto distribution. By quantitatively evaluating the uncertainty of daily rainfall quantile estimates at 
13 sites of the Korea Meteorological Administration using the Bayesian approach, we tried to evaluate the 
applicability of the non-stationary frequency analysis with a focus on uncertainty. The results indicated that the 
inclusion of dew-point temperature (DPT) or surface air temperature (SAT) generally improved the goodness of 
fit of the model for the observed samples. The uncertainty of the estimated rainfall quantiles was evaluated by the 
confidence interval of the ensemble generated by the Markov chain Monte Carlo. The results showed that the 
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width of the confidence interval of quantiles could be greatly amplified due to extreme values of the covariate. In 
order to compensate for the weakness of the non-stationary model exposed by uncertainty, a method of specifying 
a reference value of a covariate corresponding to a non-exceedance probability has been proposed. The results of 
the study revealed that the reference co-variate plays an important role in the reliability of the non-stationary 
model. In addition, when the reference co-variate was given, it was confirmed that the uncertainty reduction of 
quantile estimates for the increase in the sample size was more pronounced in the non-stationary model. Finally, 
it was discussed how information on global temperature rise could be integrated with DPT or SAT-based non-
stationary frequency analysis. It has been formulated how to quantify the uncertainty of the rate of change in 
future quantile due to global warming using rainfall quantile ensembles obtained in the uncertainty analysis 
process. 

 

 

Page 3, line 74 : change “in many documents” by “by many authors” 

In response to your comments, we changed “in many documents” to “by many authors” as shown below: 

However, natural environmental changes, such as global warming, have a serious impact on the assumptions of 
the stationarity of the observations. Non-stationarity is an important issue that can never be ignored in areas related 
to drainage system design, as it can alter the design flood volume obtained using the stationary frequency analysis 
of observed rainfall extremes. The probability of occurrence of extreme rainfall events is expected to change due 
to global warming (Lee et al., 2016), and this change is called non-stationarity by many authors (Alexander et al., 
2006; Gregersen et al., 2013). 

 

 

Page 3, lines 99-102: these sentences are not very clear. 

The sentences have been revised as follows to clearly describe the sentences. 

Efforts to develop and apply a non-stationary model for frequency analysis to reflect changing environmental 
conditions can be frustrated by the additional uncertainty associated with the model's complexity, working with 
sampling uncertainty. In other words, the reliability of rainfall quantiles estimated by a complex non-stationary 
model may not be substantially improved, or when various environmental conditions are reflected, insufficient 
model reliability can easily lead to physically inconsistent results (Serinaldi and Kilsby, 2015). From this point of 
view, investigating which model has less uncertainty in rainfall quantile as a result of frequency analysis can be 
an important determinant in selecting an optimal model. This is because a model with a relatively smaller 
uncertainty in the estimated rainfall quantile can be regarded as a more reliable model. 

 

 

Page 4, line 111, Why the authors are considering dew point temperature as a covariate for daily rainfall 
extremes for their stations in Korea ? Do previous works justify this choice ? No justification is given. 

Considering the dew point temperature as a covariate for daily rainfall extremes has been suggested in previous 
studies. We would like to establish the justification for selecting DPT or SAT as a covariate for rainfall extremes 
by briefly introducing two representative prior studies as follows: 

In this study, a non-stationary frequency analysis using dew point temperature (DPT) or surface air temperature 
(SAT) as a covariate is performed. As can be seen from Leopore et al. (2014), there is a strong scaling relationship 
between rainfall extreme and DPT or rainfall extreme and SAT. In addition, changes in DPT and SAT can directly 
affect the atmospheric moisture retention governed by the Clausius-Clapeyron equation, and in warmer climates, 
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the moisture content of the atmosphere increases and the intensity of precipitation increases at a similar rate 
(Trenberth et. al., 2003; Giorgi et al., 2019). That is, according to the Clausius-Clapeyron relationship, the amount 
of moisture in the atmosphere increases exponentially as the temperature increases, and the amount of moisture 
in the atmosphere represents an increase rate of 6 - 7 %/K when other atmospheric conditions are kept constant. 
To obtain a necessary understanding of the relationship between daily rainfall and DPT and daily rainfall and SAT 
in Korea, two prior studies have been conducted (Sim et al., 2019; Lee et al., 2020). Sim et al. (2019) analyzed 
the effects of DPT and SAT on daily rainfall extremes. Their results indicated that even if there was some cooling 
effect in the event of summer rainfall (Ali and Mishra, 2017), daily rainfall extremes in Korea were very sensitive 
to DPT and SAT. Lee et al. (2020) presented a procedure for performing non-stationary frequency analysis using 
DPT or SAT as a covariate. They revealed that non-stationary frequency analysis using future DPT or SAT could 
yield more reasonable and persuasive projections of future rainfall extremes. The purpose of this study is to focus 
on the uncertainty of covariate-based non-stationary frequency analysis using DPT or SAT.  

(Additional references) 

Ali, H. and Mishra, V. (2017) Contrasting response of rainfall extremes to increase in surface air and dewpoint 
temperatures at urban locations in India. Scientific Report, 7, 1228, DOI:10.1038/s41598-017-01306-1. 

Giorgi, F., Raffaele, F. and Coppola, E. (2019) The response of precipitation characteristics to global warming 
from climate projections. Earth System Dynamics, 10, pp. 73-89. 

Lepore, C., Veneziano, D. and Molini, A. (2014) Temperature and CAPE dependence of rainfall extremes in the 
eastern United States, Geophysical Research Letters, 42, pp. 74–83. 

Trenberth, K., Dai, A., Rasmussen, R. and Parsons, D. (2003) The changing character of precipitation. Bulletin of 
the American Meteorological Society, 84, pp. 1205-1218. 

 

 

Page 5: line 130, “Daily rainfall depth of 0.1 mm or more was applied to the analysis,” is not very clear. 
Does this mean you consider daily rainfall lower to 0.1 mm =0 ? Is this related to rain gauges uncertainties ? 
How the results can be impacted by this choice? 

The Korea Meteorological Administration considers precipitation as more than 0.1 mm per day to be considered 
an official precipitation day. This is related to rainfall measurement equipment of the applied sites. In fact, 
including records with daily precipitation of 0.1 mm or less has no significant effect on results. A description of 
this has been added to the revised manuscript as follows: 

Since the Korea Meteorological Administration only recognizes precipitation recorded at 0.1 mm or more per day 
as official precipitation, daily rainfall depth of 0.1 mm or more was applied to the analysis in this study. An 
example of this wet threshold can also be found in Chan et al. (2016) and Roderick et al. (2020). In fact, the 
application of a wet threshold does not significantly affect the results of quantile regression. 

(Additional references) 

Chan, S., Kendon, E., Roberts, N., Fowler, H. and Blenkinsop, S. (2016) Downturn in scaling of UK extreme 
rainfall with temperature for future hottest days. Nature Geoscience, 9, pp. 24–28, DOI: 10.1038/ngeo2596. 

Roderick, T., Wasko, C. and Sharma, A. (2020) An improved covariate for projecting future rainfall extremes?. 
Water Resources Research, 56, e2019WR026924. https://doi.org/10.1029/2019WR026924 
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Page 7, line 170: I guess you mean here instead the “scale” parameter. 

Your comment is correct. The scale parameter is correct. Thank you for fixing it right away. You can see the 
correction as below: 

Although studies considering the non-stationarity of the threshold of the POT series have been conducted 
(Tramblay et al., 2012), in this study, the non-stationarity was given only to the scale parameters of the GP 
distribution as follows (Um et al., 2017): 

 

 

There is no indication on how the covariate is included in the model; is it the Dew point temperature the 
same day of the extreme rainfall event? at the starting day of a rainfall event or its peak ? On the opposite, 
is it computed for the week, or the months before the event ? No information is provided here. 

Covariate is defined as the daily average DPT or SAT on the day POT excesses occur. This information was 
included in the revised manuscript and described in the lower part of equation (4) as follows: 

Eq. (4) tells how the covariate DPT or SAT is included in the model. The daily averaged DPT or SAT observed 
on the day of occurrence of each POT excess is included in the scale parameter of the GP distribution as shown 
in Eq. (4) to construct the non-stationary GP distribution. That is, when 𝛼𝛼2 > 0, the larger the DPT or SAT, the 
larger the scale parameter. 

 

 

Page 12, line 327, “However, under the condition that DPT is not given in advance” not clear to me. Do you 
mean you draw randomly DPT values instead of the values corresponding to the days with extreme rainfall? 

In “under the condition that DPT is not given in advance,” our intention was to refer to the condition of extracting 
samples of the scale parameter α using all DPTs observed on the day the POT excess occurred. The manuscript 
has been revised as follows to convey clear meaning. 

The h-factor of rainfall quantile corresponding to the return level of 100-year was calculated in two ways. First, 
under the condition that the reference DPT is given (i.e., when the reference value of DPT is applied), the h-factor 
of the non-stationary model is reduced by 37 % (at Busan site) and 28 % (at Seoul site) than that of the stationary 
model. However, under the condition that all observed DPTs corresponding to POT excesses are applied, the 
uncertainty from parameter estimation and the effects from extreme values of the covariate overlap, and the h-
factor of the non-stationary model exceeds the h-factor of the stationary model. That is, if samples of the scale 
parameter (i.e., α) is made by combining all samples of the coefficients of the scale parameter (i.e., 𝛼𝛼1 and 𝛼𝛼2) 
and samples of all observed DPTs corresponding to each POT excess, the uncertainty of rainfall quantiles in the 
non-stationary model is greater than the uncertainty of rainfall quantiles in the stationary model. The amplification 
of the uncertainty in the non-stationary model is because, as can be seen from Eq. (4), samples of some extreme 
DPTs significantly dissipate the samples of the scale parameter of the non-stationary GP distribution. This can 
also be confirmed through the lower right figure of Figure 4(a) and (b). The width of the 95PPU of the scale 
parameter of the non-stationary model corresponding to the value of the individual DPT is not significantly 
different from the width of the scale parameter of the stationary model. However, when all observed DPTs 
corresponding to the POT excesses are involved in sampling of the scale parameter, it can be recognized that the 
range of the 995 PPU of the scale parameter of the non-stationary model is very wide. 
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(a) 

 

(b) 

Figure 4. Changes in uncertainty for co-variate at (a) Busan and (b) Seoul sites. The upper left figures in Figure 
4(a) and (b) show the POT series (blank line), and the ensemble average of stationary (blue line) and non-
stationary (red line) rainfall quantile corresponding to the return level of 100-year. In the upper right figures, the 
ensemble average (blue line for stationary model, and red line for non-stationary model), and 95PPU of the 
stationary (blue dotted line) and non-stationary (red dotted line) rainfall quantile for the return level of 100-year 
are shown. The lower left figures show the h-factor of the stationary (blue line) and non-stationary (black line) 
rainfall quantile corresponding to the return level of 100-year. Red lines mean the average of black line. The lower 
right figures show the ensemble average (blue line for stationary model, and red line for non-stationary model), 
and 95PPU of the stationary (blue dotted line) and non-stationary (red dotted line) scale parameter. 
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Page 13: the whole page/paragraph is quite long and not very clear to me, it could be shortened to the main 
findings. 

This section has been rewritten as follows, short and clearly centered on the main results. 

We want to note here the condition in which the value of the covariate is given. In the upper left figure of Figure 
4(a) and (b), the stationary quantile has a single value, while the ensemble average of the non-stationary quantile 
shows various values depending on the value of DPT. In addition, the 95 PPU of the stationary quantile has a 
constant range regardless of the value of the covariate, whereas the 95 PPU of the non-stationary quantile has a 
relatively wider range depending on the value of the covariate (see upper right figure in Figure 4(a) and (b)). This 
is due to the covariate dependence inherent in the scale parameter of the non-stationary GP distribution, as 
mentioned before. That is, since the range of the ensemble of the non-stationary rainfall quantile is a result of 
additionally reflecting the extreme values of the covariate in addition to the parameter uncertainty, it is more likely 
to be formed relatively wider than the range of the ensemble of the stationary rainfall quantile. It should be noted, 
however, that the width of the non-stationary 95PPU for a particular covariate value is less than the width of the 
stationary 95PPU. 

In fact, since the covariate corresponding to each POT excess is a known value, the h-factor of the rainfall quantile 
corresponding to each POT excess can be obtained (see lower left figure in Figure 4(a) and (b)). Given the value 
of covariate, it can be recognized that the non-stationary h-factor is smaller than the stationary h-factor. That is, if 
the value of the covariate of the non-stationary model can be determined, there is a room to say that the non-
stationary frequency analysis is better in terms of reliability than the stationary frequency analysis. 
 

 

Page 14, line 366, this equation should be in the Method section. 

The given equation and its description have been moved to the methodology section. It can be confirmed from the 
part where Eq. (5) of the revised manuscript is located. 

 

 

The beginning of section 4.1 is obviously not a discussion and should be in the results section 

The beginning of section 4.1 has been moved to the results section. You can see the shifted content after Figure 4 
of the revised manuscript. 

 

 

Page 14, lines 386-390, this information should be in the method section, we should not discover in the 
discussion section how the covariate was implemented in the model. see my comment above. 

The section you mentioned has moved to the Methodology section. How the covariate was implemented in our 
model is described in the description of Eq. (4) of the revised manuscript. Specific modifications are already 
included in the answers to previous queries. 

 

 

The issue of setting a reference covariate to a given return level is an interesting aspect. I believe it is 
necessary to first analyze the response of extreme rainfall to different values taken by the covariate, and as 
mentioned here it is difficult to identify a single value of the covariate related to a high risk of extreme 
rainfall. Yet this aspect needs more discussion, I don’t see an added value of randomly selecting a covariate 
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from a pre-defined distribution (of the covariate). 
 

We also believe that the uncertainty analysis of randomly selecting a covariate from a predefined distribution of 
covariate is not feasible. The method of randomly selecting the covariate is implemented under the condition that 
all observed covariate samples corresponding to POT excesses are applied in this study. Therefore, this study 
investigated the response of covariate and rainfall quantile, and introduced the concept of reference covariate as 
an alternative. The first half of Section 4.1 of the revised manuscript was amended as follows: 

As described above, when performing the uncertainty analysis of the non-stationary frequency analysis, an 
undesired disturbance in which the ensemble of rainfall quantile is excessively dispersed due to some extreme 
covariate values appears. Since the value of the covariate is the data observed on the day that the POT excess 
occurred (i.e., a deterministic variable), analyzing the uncertainty in rainfall quantile by randomly sampling the 
value of DPT or SAT from a predefined probability distribution of covariate is likely to result in overestimating 
uncertainty. We thought that the uncertainty analysis of randomly sampling the values of covariate from a 
predefined distribution of covariate was not feasible. The method of randomly sampling the value of the covariate 
in this study is implemented under the condition that all observed covariate samples corresponding to POT 
excesses are applied. Therefore, this study investigated the relationship between the value of covariate and rainfall 
quantile. 

From Eq. (5), the DPT value (i.e., reference DPT) of the non-stationary GP distribution that returns the rainfall 
quantile equal to the stationary GP distribution can be calculated (reference SAT can be calculated in the same 
way). Figure 6 shows an example of determining a reference DPT. The results of calculating the reference DPT 
at Busan and Seoul sites indicate that the reference DPT increases as the return level increases. The right figure 
in Figure 6(a) and (b) shows the histogram of DPT corresponding to POT excesses. The distribution of DPT is 
slightly distorted to the left. It can be found that the reference DPT corresponding to various return levels at Busan 
and Seoul sites is similar to the location of the mode of the DPT distribution. This fact reveals that covariate values 
that deviate significantly from the reference covariate (i.e., some extreme values of the covariate) amplify the 
uncertainty of rainfall quantile from the non-stationary frequency analysis. From the results of regression analysis 
of rainfall quantile for various return levels and the corresponding reference DPT, the relationship of DPT = 
18.8589RL^0.01555 (where RL is the return level in year and the unit of DPT is °C) was obtained at Busan site. 
At Seoul site, a relationship of DPT = 19.8540RL^0.01728 was obtained. The coefficient of determination of the 
regression analysis was 0.99 or higher at Busan and Seoul sites. From these results, the reference DPT 
corresponding to the return level of 100-year at Busan site could be applied to 20.2567 °C and Seoul site to 
21.4958 °C. As shown in Figure 6 and Figures S3 and S4 of Supplementary Material, the value of the reference 
covariate is almost completely dependent on the return level. It should be noted that the return level and the 
reference covariate are proportional to each other at some sites, and are inversely proportional to other sites. This 
means that it is not easy to identify a single covariate value corresponding to a rainfall quantile. In this study, we 
tried to overcome the problem of random sampling of covariates by introducing the concept of reference covariate 
when estimating rainfall quantile estimation and its uncertainty from non-stationary frequency analysis based on 
covariate. From a practical point of view, how to set the value of the reference covariate may be an important 
research topic in the covariate-based non-stationary frequency analysis. 
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(a) Busan                                   (b) Seoul 

Figure 6. Selection of reference dew-point temperature for estimating rainfall quantiles at (a) Busan and (b) Seoul 
sites. In this figure, 'RF' refers to the empirical relative frequency of DPT on the day of POT excess. 

 

 

Page 16, line 423; is this not totally expected? 

A more detailed description has been added to the revised manuscript as below: 

The data period required to achieve a certain level of h-factor can play an important role in optimal model selection. 
As in other regions, the observed data period in Korea varies widely from site to site. If the data period is short 
and there is no significant difference in performance (both in terms of goodness of fit and uncertainty) between 
the stationary model and the non-stationary model, it can be said that it is better to apply a stationary model with 
a relatively well-established methodology. However, in terms of uncertainty, if the value of the reference covariate 
can be well defined, the results in Figure 8 show that the non-stationary model can estimate rainfall quantile with 
the same level of uncertainty even with relatively shorter data periods. That is, when frequency analysis is 
performed using samples of the same data period at a site, if the appropriate covariate is applied and the reference 
value of the covariate is appropriately determined, it can be said that the rainfall quantile estimated from the non-
stationary model is more reliable than the rainfall quantile estimated from the stationary model. 

 

 

Conclusions, lines 498-501, these sentences are elements of context and should not appear here but rather 
in the introduction. 

In the revised manuscript, the sentences were moved to the beginning of the introduction. 

 

 

Table 2: units? 

The numbers in Table 2 refer to m-factor and h-factor defined in Eqs. (9) and (10), respectively. The units of m-
factor and h-factor are dimensionless. It was mentioned that it was dimensionless in the introduction of Eqs. (9) 
and (10). Also, what the numbers in Table 2 mean was more clearly described in the text referring to Table 2. 

In this study, the following dimensionless quantitation factors were defined to quantify the uncertainty between 
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the stationary and non-stationary models: 

Table 2 shows the results at Busan and Seoul sites. For reference, the results of applying DPT or SAT as a covariate 
at other sites are shown in Table S2 of the supplementary material. 
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Response to Anonymous Referee #2 
 

The current manuscript presents the nonstationary frequency analysis based on the POT 
precipitation data. The presented manuscript sounds interesting and contains the novelty. 
However, the assumption they made was not clearly explained and its still further explanation 
must be included. Therefore, I recommend that the current manuscript needs major revisions 
before publication. Detailed comments are attached. 

Your detailed comments were very helpful in making a better manuscript. The authors would like to express great 
gratitude for this. The main additions are as follows. First, data from 11 sites, which began to be observed in 1961, 
were further analyzed. That is, a total of 13 sites were used in this study, including 2 sites that were previously 
applied. As a covariate, analysis was performed by adding surface air temperature in addition to the dew point 
temperature. The results of applying the added sites and an added covariate were prepared in the form of 
Supplementary Material and included in the revised manuscript. Also, as a figure showing the final result, Figure 
7 of the revised manuscript was newly added. This further analysis may dispel concerns about whether the method 
proposed in this study applies only to two sites or is not valid only for dew point temperature. In addition, further 
analysis results will increase the representativeness of the results derived from this study and provide local insights 
into Korea. More specific details of how and where the manuscript has been revised are described in response to 
the comments presented below. 

Figure 7(a) shows the values of the negative log likelihood function of the stationary model and the non-stationary 
models at 13 sites. The stationary model, the SAT-based non-stationary model, and the DAT-based non-stationary 
model were found to have no significant difference in the fit performance with the observed POT excesses. Figure 
7(b) shows the h-factor of rainfall quantile corresponding to the return level of 100-year. When all the values of 
covariate observed on the day of POT excesses are considered ("DPT" and "SAT" in Figure 7(b)), at all sites 
except Mokpo site, the non-stationary h-factor is greater than the stationary h-factor. However, when the reference 
covariate is applied, the non-stationary h-factor is smaller than the stationary h-factor. Results from 13 sites and 
most of the non-stationary models using SAT or DPT as a covariate indicate that how to determine the appropriate 
value of the covariate corresponding to the rainfall quantile plays an important role in securing the reliability of 
the non-stationary frequency analysis. 

 

(a) negative log likelihood                     (b) h factor 

Figure 7. Performance of stationary and non-stationary frequency analysis models. At Site ID, 1: Ghangreung, 2: 
Seoul, 3: Incheon, 4: Chupungryeong, 5: Pohang, 6: Daegu, 7: Jeonju, 8: Ulsan, 9: Ghwangju, 10: Busan, 11: 
Mokpo, 12: Yeosu and 13: Jeju site. 
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[L111] Specific information and references must be added to support the selection of DPF as a 
covariate. Physical relation must be also included between dpt and extreme rainfall. 

We will add information and related references that support DPT or SAT as the covariate to the revised manuscript 
below. We also included a description of the physical relationship between DPT or SAT and rainfall extreme. 

In this study, a non-stationary frequency analysis using dew point temperature (DPT) or surface air temperature 
(SAT) as a covariate is performed. As can be seen from Leopore et al. (2014), there is a strong scaling relationship 
between rainfall extreme and DPT or rainfall extreme and SAT. In addition, changes in DPT and SAT can directly 
affect the atmospheric moisture retention governed by the Clausius-Clapeyron equation, and in warmer climates, 
the moisture content of the atmosphere increases and the intensity of precipitation increases at a similar rate 
(Trenberth et. al., 2003; Giorgi et al., 2019). That is, according to the Clausius-Clapeyron relationship, the amount 
of moisture in the atmosphere increases exponentially as the temperature increases, and the amount of moisture 
in the atmosphere represents an increase rate of 6 - 7 %/K when other atmospheric conditions are kept constant. 
To obtain a necessary understanding of the relationship between daily rainfall and DPT and daily rainfall and SAT 
in Korea, two prior studies have been conducted (Sim et al., 2019; Lee et al., 2020). Sim et al. (2019) analyzed 
the effects of DPT and SAT on daily rainfall extremes. Their results indicated that even if there was some cooling 
effect in the event of summer rainfall (Ali and Mishra, 2017), daily rainfall extremes in Korea were very sensitive 
to DPT and SAT. Lee et al. (2020) presented a procedure for performing non-stationary frequency analysis using 
DPT or SAT as a covariate. They revealed that non-stationary frequency analysis using future DPT or SAT could 
yield more reasonable and persuasive projections of future rainfall extremes. The purpose of this study is to focus 
on the uncertainty of covariate-based non-stationary frequency analysis using DPT or SAT.  

(Additional references) 

Ali, H. and Mishra, V. (2017) Contrasting response of rainfall extremes to increase in surface air and dewpoint 
temperatures at urban locations in India. Scientific Report, 7, 1228, DOI:10.1038/s41598-017-01306-1. 

Giorgi, F., Raffaele, F. and Coppola, E. (2019) The response of precipitation characteristics to global warming 
from climate projections. Earth System Dynamics, 10, pp. 73-89. 

Lepore, C., Veneziano, D. and Molini, A. (2014) Temperature and CAPE dependence of rainfall extremes in the 
eastern United States, Geophysical Research Letters, 42, pp. 74–83. 

Trenberth, K., Dai, A., Rasmussen, R. and Parsons, D. (2003) The changing character of precipitation. Bulletin of 
the American Meteorological Society, 84, pp. 1205-1218. 

 

 

[L158-162] please make it italic and also for x throughout the paper. All the symbols must be italic 
unless matrix or vector. 

We will modify all the formulas in the text in italics. 

 

 

[L172] This one paragraph is not sufficient to set nonstationary model only for shape parameter. 
Detailed description must be included with more references. 

There is a typo. The parameter mentioned here is the scale parameter. We will accept the opinions of the referee 
and add the following explanation to the revised manuscript. 
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In non-stationary frequency analysis, temporally changing parameters are applied to the probability distribution 
function (PDF). Various types of functions are applied to the parameters that change over time. In general, the 
shape parameter is often set to constant (Lopez and Frances, 2013), but location or scale parameters are often 
considered functions of time or covariate. Ali and Mishra (2017) applied covariate to the location parameter of 
GEV, and Agilan and Umamahesh (2017) applied covariate to location and scale parameters of GEV. Non-
stationary features in GP distribution are generally implemented by the scale parameter (Coles, 2001; Khaliq et 
al., 2006). Although non-stationarity can be expressed using the shape parameter, it is not a common practice since 
it is difficult to estimate the shape parameter, especially when considering covariates (Renard et al., 2006; Pujol 
et al., 2007). Although studies considering the non-stationarity of the threshold of the POT series have been 
conducted (Tramblay et al., 2012), in this study, the non-stationarity was given only to the scale parameters of the 
GP distribution as follows (Um et al., 2017): 

(Additional references) 

Khaliq, M., Ouarda, T., Ondo, J., Gachon, P. and Bobee, B. (2006) Frequency analysis of a sequence of dependent 
and/or non-stationary hydro-meteorological observations: A review. Journal of Hydrology, 329, pp. 534–552. 

Pujol, N., Neppel, L. and Sabatier, R. (2007) Regional tests for trend detection in maximum precipitation series 
in the French Mediterranean region. Hydrological Sciences Journal, 52, pp. 956–973. 

Renard, B., Lang, M. and Bois, P. (2006) Statistical analysis of extreme events in a nonstationary context via a 
Bayesian framework. Case study with peak-over-threshold data. Stochastic Environmental Research and Risk 
Assessment, 21, pp. 97–112. 

 

 

[L194] detailed description and references must be added to validate that these factors are 
meaningful. 

It seems to be related to L294. We will explain the meaning of m-factor and h-factor in more detail, and add 
necessary references to the revised manuscript as follows: 

In fact, m-factor and h-factor can be seen as quantification of confidence intervals of ensembles simulated by 
MCMC. That is, the m-factor and h-factor of the estimated value indicate how accurate the estimate is or how 
much uncertainty is (Odura et al., 2020). The greater the uncertainty of the parameter or rainfall quantile, the 
greater the value of 95 PPU. That is, the quantitation factors of uncertainty expressed by m-factor and h-factor 
reflect the diffusion or lack of precision of the ensemble sampled from the posterior distribution (Motavita et al., 
2019). 

(Additional reference) 

Motavita, D, Chow, R., Guthkea, A. and Nowaka, W. (2019) The comprehensive differential split-sample test: A 
stress-test for hydrological model robustness under climate variability. Journal of Hydrology, 573, pp. 501–515. 

 

 

[L331-334] The sentence must be improved. 

We will revise the relevant sentences as follows: 

The above results indicate that although the non-stationary model is better in fitting performance for the observed 
samples, it is difficult to admit that the non-stationary model is more reliable than the stationary model due to the 
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influence of extreme values of the covariate when estimating rainfall quantile. Ouarda et al (2020) also produced 
similar results using the annual maximum rainfall series and the non-stationary GEV distribution. 

 

 

L804 The range for (a) and (c) must be changed as shorter than 0-100. It seems that scale 
parameter has very accurate and small variance. However, in reality it is not. 

The horizontal axis range in Figure 3 was set to visually indicate the range of prior-distribution. In fact, comparing 
the ensembles of scale and shape parameters, we can see that the scale parameters are relatively more accurate 
and show less coefficient of variation. For further explanation of this fact, we will add a description of the part 
corresponding to the revised manuscript as follows: 

Table 1 shows the final estimated parameters at Busan and Seoul sites. The parameter estimation value of the MH 
algorithm was defined as the ensemble average of samples extracted by MCMC from the posterior distribution as 
mentioned in Eq. (7). The parentheses of the parameter estimation values by the MH algorithm in Table 1 are the 
coefficient of variation of the parameter. It can be found that the PWM and MH algorithms give similar parameter 
values for both scale and shape parameters. The negative logarithm likelihood (nllh) was also calculated similarly. 
From the above results, it can be recognized that when the POT series is to be fit to the GP distribution, parameter 
estimation by the MH algorithm is applicable, and information about the uncertainty of the estimated parameters 
is also obtainable. It can also be found that the coefficient of variation of the ensemble of scale parameters sampled 
by MCMC is less than 10 %, while the coefficient of variation of the ensemble of shape parameters is around 
40 %. This means that the uncertainty of the shape parameters is relatively higher. Results for other sites tend to 
be similar to those obtained at Busan and Seoul sites. Results for other sites are shown in Table S1 of Supplemental 
Material. 

 

 

[L829] is y-axis ’realtive frequency’ or pdf? ’realtive frequency’=ni/N whil pdf =ni/(N*dx). Check 
it. 

As a result of checking, the PDF is correct. We will replace the vertical axis label of Figure 5 with PDF. 

 

(a)                                        (b) 

Figure 5. Rainfall quantile estimates at (a) Busan, and (b) Seoul sites for return level of 100-year using observed 
dew-point temperature and global warming scenarios. The stationary rainfall quantile is indicated as a blue vertical 
line since it is a single value. The non-stationary rainfall quantiles were calculated using the average of the 
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parameter ensemble sampled by MCMC and the DPT observed on the day of POT excesses (red dotted line). In 
this figures, ‘NS (3 ℃ up)’ is an empirical distribution of rainfall quantile derived using DPTs that add 3 ℃ to 
DPTs observed on the day of POT excesses. Likewise, 'NS (5 ℃ up)' is an empirical distribution of rainfall 
quantile under the scenario condition where DPT has risen 5 ℃ due to global warming. 

 

 

[L840] circle black line and blue line are not explained properly. F(DPT) does not seem to be 
empirical cumulative probabilities (see blue and red lines). It is just cumulative distribution 
function. 

As in the reviewer's opinion, the F(PDF) of the original manuscript is correct. However, we will revise Figure 6 
as shown below: 

The formula for rainfall quantile 𝑋𝑋𝑇𝑇  corresponding to the return level of T -year in the non-stationary GP 
distribution using covariate is as follows: 

 𝑋𝑋𝑇𝑇 =  𝑥𝑥𝑜𝑜 +  1
𝑘𝑘
𝑒𝑒𝛼𝛼1+𝛼𝛼2𝑍𝑍 �1 − � 1

𝜆𝜆𝑇𝑇
�
𝑘𝑘
�.      (5) 

From Eq. (5), rainfall quantile 𝑋𝑋𝑇𝑇 appears as a function of covariate 𝑍𝑍. That is, Eq. (5) shows that various rainfall 
quantiles are calculated depending on the value of the covariate even at the same return level. Therefore, one of 
the problems to be solved in the non-stationary frequency analysis using a covariate is how to set the value of the 
covariate corresponding to a specific quantile. Since it is often required to have a single design rainfall depth in 
practice, it is very cumbersome to give a result of calculating rainfall quantiles of various values depending on a 
change in a covariate.  

From Eq. (5), the DPT value (i.e., reference DPT) of the non-stationary GP distribution that returns the rainfall 
quantile equal to the stationary GP distribution can be calculated (reference SAT can be calculated in the same 
way). Figure 6 shows an example of determining a reference DPT. The results of calculating the reference DPT 
at Busan and Seoul sites indicate that the reference DPT increases as the return level increases. The right figure 
in Figure 6(a) and (b) shows the histogram of DPT corresponding to POT excesses. The distribution of DPT is 
slightly distorted to the left. It can be found that the reference DPT corresponding to various return levels at Busan 
and Seoul sites is similar to the location of the mode of the DPT distribution. This fact reveals that covariate values 
that deviate significantly from the reference covariate (i.e., some extreme values of the covariate) amplify the 
uncertainty of rainfall quantile from the non-stationary frequency analysis. From the results of regression analysis 
of rainfall quantile for various return levels and the corresponding reference DPT, the relationship of DPT = 
18.8589RL^0.01555 (where RL is the return level in year and the unit of DPT is °C) was obtained at Busan site. 
At Seoul site, a relationship of DPT = 19.8540RL^0.01728 was obtained. The coefficient of determination of the 
regression analysis was 0.99 or higher at Busan and Seoul sites. From these results, the reference DPT 
corresponding to the return level of 100-year at Busan site could be applied to 20.2567 °C and Seoul site to 
21.4958 °C. As shown in Figure 6 and Figures S3 and S4 of Supplementary Material, the value of the reference 
covariate is almost completely dependent on the return level. It should be noted that the return level and the 
reference covariate are proportional to each other at some sites, and are inversely proportional to other sites. This 
means that it is not easy to identify a single covariate value corresponding to a rainfall quantile. In this study, we 
tried to overcome the problem of random sampling of covariates by introducing the concept of reference covariate 
when estimating rainfall quantile estimation and its uncertainty from non-stationary frequency analysis based on 
covariate. From a practical point of view, how to set the value of the reference covariate may be an important 
research topic in the covariate-based non-stationary frequency analysis. 
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(a) Busan                                   (b) Seoul 

Figure 6. Selection of reference dew-point temperature for estimating rainfall quantiles at (a) Busan and (b) Seoul 
sites. In this figure, 'RF' refers to the empirical relative frequency of DPT on the day of POT excess. 
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Response to Anonymous Referee #3 
 

 

The manuscript models the POT based extreme rainfall at Busan and Seoul sites of Korea using 
the Generalized Pareto distribution fitted under stationary and non-stationary settings. The 
authors compare the stationary GPD and non-stationary GPD based on the parameter 
uncertainty estimated using the Metropolis-Hastings (MH) algorithm. The manuscript can be 
published after addressing the following comments: 

Your detailed comments were very helpful in making a better manuscript. The authors would like to express great 
gratitude for this. The main additions are as follows. First, data from 11 sites, which began to be observed in 1961, 
were further analyzed. That is, a total of 13 sites were used in this study, including 2 sites that were previously 
applied. As a covariate, analysis was performed by adding surface air temperature (SAT) in addition to the dew 
point temperature. The results of applying the added sites and an added covariate were prepared in the form of 
Supplementary Material and included in the revised manuscript. Also, as a figure showing the final result, Figure 
7 of the revised manuscript was newly added. This further analysis may dispel concerns about whether the method 
proposed in this study applies only to two sites or is not valid only for dew point temperature. In addition, further 
analysis results will increase the representativeness of the results derived from this study and provide local insights 
into Korea. More specific details of how and where the manuscript has been revised are described in response to 
the comments presented below. 

Figure 7(a) shows the values of the negative log likelihood function of the stationary model and the non-stationary 
models at 13 sites. The stationary model, the SAT-based non-stationary model, and the DAT-based non-stationary 
model were found to have no significant difference in the fit performance with the observed POT excesses. Figure 
7(b) shows the h-factor of rainfall quantile corresponding to the return level of 100-year. When all the values of 
covariate observed on the day of POT excesses are considered ("DPT" and "SAT" in Figure 7(b)), at all sites 
except Mokpo site, the non-stationary h-factor is greater than the stationary h-factor. However, when the reference 
covariate is applied, the non-stationary h-factor is smaller than the stationary h-factor. Results from 13 sites and 
most of the non-stationary models using SAT or DPT as a covariate indicate that how to determine the appropriate 
value of the covariate corresponding to the rainfall quantile plays an important role in securing the reliability of 
the non-stationary frequency analysis. 

 

 (a) negative log likelihood                     (b) h factor 

Figure 7. Performance of stationary and non-stationary frequency analysis models. At Site ID, 1: Ghangreung, 2: 
Seoul, 3: Incheon, 4: Chupungryeong, 5: Pohang, 6: Daegu, 7: Jeonju, 8: Ulsan, 9: Ghwangju, 10: Busan, 11: 
Mokpo, 12: Yeosu and 13: Jeju site. 
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For constructing non-stationary GPD, the authors use DPT as the covariate. The reason for 
selecting DPT as a covariate is not clearly mentioned in the manuscript. Further, the authors 
should include a number of other covariates that affect the rainfall of the study area in the non-
stationary setting. 

In addition to using DPT as a covariate, SAT was added. Based on a study by Sim et al. (2019), this study selected 
DPT or SAT as the covariate on the day of POT excesses. However, in the previous study (Lee et al., 2020), DPT 
or SAT prior to t-day was selected as well as the day when POT excesses occurred. This study aimed to address 
how to explain the amplification of uncertainty that occurs when covariates are included in non-stationary 
frequency analysis, rather than the issue of deciding what covariates are suitable for POT excesses in Korea. The 
reason why we used DPT or SAT as a covariate to construct the non-stationary GPD is described below in the 
revised manuscript. We also included a description of the physical relationship between DPT or SAT and rainfall 
extreme to further support this. 

In this study, a non-stationary frequency analysis using dew point temperature (DPT) or surface air temperature 
(SAT) as a covariate is performed. As can be seen from Leopore et al. (2014), there is a strong scaling relationship 
between rainfall extreme and DPT or rainfall extreme and SAT. In addition, changes in DPT and SAT can directly 
affect the atmospheric moisture retention governed by the Clausius-Clapeyron equation, and in warmer climates, 
the moisture content of the atmosphere increases and the intensity of precipitation increases at a similar rate 
(Trenberth et. al., 2003; Giorgi et al., 2019). That is, according to the Clausius-Clapeyron relationship, the amount 
of moisture in the atmosphere increases exponentially as the temperature increases, and the amount of moisture 
in the atmosphere represents an increase rate of 6 - 7 %/K when other atmospheric conditions are kept constant. 
To obtain a necessary understanding of the relationship between daily rainfall and DPT and daily rainfall and SAT 
in Korea, two prior studies have been conducted (Sim et al., 2019; Lee et al., 2020). Sim et al. (2019) analyzed 
the effects of DPT and SAT on daily rainfall extremes. Their results indicated that even if there was some cooling 
effect in the event of summer rainfall (Ali and Mishra, 2017), daily rainfall extremes in Korea were very sensitive 
to DPT and SAT. Lee et al. (2020) presented a procedure for performing non-stationary frequency analysis using 
DPT or SAT as a covariate. They revealed that non-stationary frequency analysis using future DPT or SAT could 
yield more reasonable and persuasive projections of future rainfall extremes. The purpose of this study is to focus 
on the uncertainty of covariate-based non-stationary frequency analysis using DPT or SAT. 

(Additional references) 

Ali, H. and Mishra, V. (2017) Contrasting response of rainfall extremes to increase in surface air and dewpoint 
temperatures at urban locations in India. Scientific Report, 7, 1228, DOI:10.1038/s41598-017-01306-1. 

Giorgi, F., Raffaele, F. and Coppola, E. (2019) The response of precipitation characteristics to global warming 
from climate projections. Earth System Dynamics, 10, pp. 73-89. 

Lepore, C., Veneziano, D. and Molini, A. (2014) Temperature and CAPE dependence of rainfall extremes in the 
eastern United States, Geophysical Research Letters, 42, pp. 74–83. 

Trenberth, K., Dai, A., Rasmussen, R. and Parsons, D. (2003) The changing character of precipitation. Bulletin of 
the American Meteorological Society, 84, pp. 1205-1218. 

 

 

The reason estimating the parameters using the probability weighted moments (PWM) over the 
other state-of-the-art methods such as the maximum likelihood or L-moments should be 
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mentioned in the manuscript. 

In this study, we will add the reason for estimating the parameter using PWM to the modified 
manuscript as follows: 

The parameters of the GP distribution were estimated using the method of probability weighted moments (PWM) 
and MH algorithm, respectively. Although maximum likelihood estimation is an efficient method, it does not 
clearly show efficiency even in samples larger than 500 (Smith, 1985). The method of moments is generally 
known to be reliable except when the shape parameter is less than -0.2. When the likelihood that the shape 
parameter is less than 0 is high, PWM estimation is recommended (Hosking and Wallis, 1987). Figure 3 shows 
the result of PWM parameter estimation and the posterior distribution of parameters by the MH algorithm at Busan 
and Seoul sites. 

(Additional reference) 

Smith, R. (1985) Maximum Likelihood Estimation in a Class of Nonregular Cases, Biometrika, 72, pp. 67-90.  

 

 

The language of the manuscript is not adequate for an international journal. There are many 
vague/substandard sentences throughout the manuscript. For example, Line # 44-48, 75-79, etc. 
Further, the title of the manuscript is not clear and wordy. Include rainfall or precipitation in the 
title. 

We will check for ambiguous or non-standard sentences so that the language of the manuscript is suitable for 
international journals. First of all, we will modify the abstract and line #75-79 as below. The title of the paper was 
changed to "Uncertainty in non-stationary frequency analysis of Korea's daily rainfall POT excesses associated 
with covariates" with reference to the opinion of the Referee. This is a result of the authors' opinion that the title 
is appropriate, including keywords such as POT, coviariate, and non-stationary. 

(Abstract including Line #44-48) 

Several methods have been proposed to analyze the frequency of non-stationary anomalies. The applicability of 
the non-stationary frequency analysis has been mainly evaluated based on the agreement between the time series 
data and the applied probability distribution. However, since the uncertainty in the parameter estimate of the 
probability distribution is the main source of uncertainty in frequency analysis, the uncertainty in the 
correspondence between samples and probability distribution is inevitably large. In this study, an extreme rainfall 
frequency analysis is performed that fits the Peak-over-threshold series to the covariate-based non-stationary 
Generalized Pareto distribution. By quantitatively evaluating the uncertainty of daily rainfall quantile estimates at 
13 sites of the Korea Meteorological Administration using the Bayesian approach, we tried to evaluate the 
applicability of the non-stationary frequency analysis with a focus on uncertainty. The results indicated that the 
inclusion of dew-point temperature (DPT) or surface air temperature (SAT) generally improved the goodness of 
fit of the model for the observed samples. The uncertainty of the estimated rainfall quantiles was evaluated by the 
confidence interval of the ensemble generated by the Markov chain Monte Carlo. The results showed that the 
width of the confidence interval of quantiles could be greatly amplified due to extreme values of the covariate. In 
order to compensate for the weakness of the non-stationary model exposed by uncertainty, a method of specifying 
a reference value of a covariate corresponding to a non-exceedance probability has been proposed. The results of 
the study revealed that the reference co-variate plays an important role in the reliability of the non-stationary 
model. In addition, when the reference co-variate was given, it was confirmed that the uncertainty reduction of 
quantile estimates for the increase in the sample size was more pronounced in the non-stationary model. Finally, 
it was discussed how information on global temperature rise could be integrated with DPT or SAT-based non-
stationary frequency analysis. It has been formulated how to quantify the uncertainty of the rate of change in 
future quantile due to global warming using rainfall quantile ensembles obtained in the uncertainty analysis 
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process. 

(Line #75-79) 

Several methods have been proposed to address non-stationarities in the time series (Cunha et al., 2011; Yilmaz 
et al., 2013; Jang et al., 2015, Moon et al., 2016), and many studies have been conducted to examine changes in 
design rainfall depth or return levels under non-stationary conditions (Salvadori and DeMichele, 2010; Graler et 
al., 2013; Hassanzadeh et al., 2013; Salas and Obeysekera, 2013; Shin et al., 2014; Choi et al ., 2019). 

(Title) 

Uncertainty in non-stationary frequency analysis of Korea’s daily rainfall POT excesses associated with covariates 

 

 

Fig. 2: Add legend or explain different lines in the figure caption. 

I will add the following description to the caption in Figure 2. 

Figure 2. Mean residual life plot at (a) Busan and (b) Seoul sites. The solid line is the mean of the excesses of the 
threshold, and the dotted line is approximated 95% confidence intervals. 

 

 

Fig. 3: Why the PDF of the non-stationary model is shown for the DPT values of 20.2576 (Busan 
site) and 21.4962 (Seoul site)? Expand S and NS in the legend.  

The scale parameter in this study is a function of the covariate. Therefore, the posterior distribution of scale 
parameters depends on the covariate. The dependence of scale parameters on covariates is the most important part 
of this study. Since the uncertainty of the non-stationary model is excessively amplified when the dependence of 
the covariate is reflected in the uncertainty, this study attempted to prevent excessive amplification of the 
uncertainty of the non-stationary model by introducing the concept of a reference covariate. Through this, it was 
possible to secure the reliability of the non-stationary model. The ‘S’ and ‘NS’ in the legend in Figure 3 will be 
modified to 'Stationary' and 'Non-stationary', respectively. The revised manuscript is presented below: 

(L 327) 

The h-factor of rainfall quantile corresponding to the return level of 100-year was calculated in two ways. First, 
under the condition that the reference DPT is given (i.e., when the reference value of DPT is applied), the h-factor 
of the non-stationary model is reduced by 37 % (at Busan site) and 28 % (at Seoul site) than that of the stationary 
model. However, under the condition that all observed DPTs corresponding to POT excesses are applied, the 
uncertainty from parameter estimation and the effects from extreme values of the covariate overlap, and the h-
factor of the non-stationary model exceeds the h-factor of the stationary model. That is, if samples of the scale 
parameter (i.e., α) is made by combining all samples of the coefficients of the scale parameter (i.e., 𝛼𝛼1 and 𝛼𝛼2) 
and samples of all observed DPTs corresponding to each POT excess, the uncertainty of rainfall quantiles in the 
non-stationary model is greater than the uncertainty of rainfall quantiles in the stationary model. The amplification 
of the uncertainty in the non-stationary model is because, as can be seen from Eq. (4), samples of some extreme 
DPTs significantly dissipate the samples of the scale parameter of the non-stationary GP distribution. This can 
also be confirmed through the lower right figure of Figure 4(a) and (b). The width of the 95PPU of the scale 
parameter of the non-stationary model corresponding to the value of the individual DPT is not significantly 
different from the width of the scale parameter of the stationary model. However, when all observed DPTs 
corresponding to the POT excesses are involved in sampling of the scale parameter, it can be recognized that the 
range of the 995 PPU of the scale parameter of the non-stationary model is very wide. 
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(Page 13) 

We want to note here the condition in which the value of the covariate is given. In the upper left figure of Figure 
4(a) and (b), the stationary quantile has a single value, while the ensemble average of the non-stationary quantile 
shows various values depending on the value of DPT. In addition, the 95 PPU of the stationary quantile has a 
constant range regardless of the value of the covariate, whereas the 95 PPU of the non-stationary quantile has a 
relatively wider range depending on the value of the covariate (see upper right figure in Figure 4(a) and (b)). This 
is due to the covariate dependence inherent in the scale parameter of the non-stationary GP distribution, as 
mentioned before. That is, since the range of the ensemble of the non-stationary rainfall quantile is a result of 
additionally reflecting the extreme values of the covariate in addition to the parameter uncertainty, it is more likely 
to be formed relatively wider than the range of the ensemble of the stationary rainfall quantile. It should be noted, 
however, that the width of the non-stationary 95PPU for a particular covariate value is less than the width of the 
stationary 95PPU. 

In fact, since the covariate corresponding to each POT excess is a known value, the h-factor of the rainfall quantile 
corresponding to each POT excess can be obtained (see lower left figure in Figure 4(a) and (b)). Given the value 
of covariate, it can be recognized that the non-stationary h-factor is smaller than the stationary h-factor. That is, if 
the value of the covariate of the non-stationary model can be determined, there is a room to say that the non-
stationary frequency analysis is better in terms of reliability than the stationary frequency analysis. 

(The first half of Section 4.1) 

As described above, when performing the uncertainty analysis of the non-stationary frequency analysis, an 
undesired disturbance in which the ensemble of rainfall quantile is excessively dispersed due to some extreme 
covariate values appears. Since the value of the covariate is the data observed on the day that the POT excess 
occurred (i.e., a deterministic variable), analyzing the uncertainty in rainfall quantile by randomly sampling the 
value of DPT or SAT from a predefined probability distribution of covariate is likely to result in overestimating 
uncertainty. We thought that the uncertainty analysis of randomly sampling the values of covariate from a 
predefined distribution of covariate was not feasible. The method of randomly sampling the value of the covariate 
in this study is implemented under the condition that all observed covariate samples corresponding to POT 
excesses are applied. Therefore, this study investigated the relationship between the value of covariate and rainfall 
quantile. 

From Eq. (10), the DPT value (i.e., reference DPT) of the non-stationary GP distribution that returns the rainfall 
quantile equal to the stationary GP distribution can be calculated (reference SAT can be calculated in the same 
way). Figure 6 shows an example of determining a reference DPT. The results of calculating the reference DPT 
at Busan and Seoul sites indicate that the reference DPT increases as the return level increases. The right figure 
in Figure 6(a) and (b) shows the histogram of DPT corresponding to POT excesses. The distribution of DPT is 
slightly distorted to the left. It can be found that the reference DPT corresponding to various return levels at Busan 
and Seoul sites is similar to the location of the mode of the DPT distribution. This fact reveals that covariate values 
that deviate significantly from the reference covariate (i.e., some extreme values of the covariate) amplify the 
uncertainty of rainfall quantile from the non-stationary frequency analysis. From the results of regression analysis 
of rainfall quantile for various return levels and the corresponding reference DPT, the relationship of DPT = 
18.8589RL^0.01555 (where RL is the return level in year and the unit of DPT is °C) was obtained at Busan site. 
At Seoul site, a relationship of DPT = 19.8540RL^0.01728 was obtained. The coefficient of determination of the 
regression analysis was 0.99 or higher at Busan and Seoul sites. From these results, the reference DPT 
corresponding to the return level of 100-year at Busan site could be applied to 20.2567 °C and Seoul site to 
21.4958 °C. As shown in Figure 6 and Figures S3 and S4 of supplementary material, the value of the reference 
covariate is almost completely dependent on the return level. It should be noted that the return level and the 
reference covariate are proportional to each other at some sites, and are inversely proportional to other sites. This 
means that it is not easy to identify a single covariate value corresponding to a rainfall quantile. In this study, we 
tried to overcome the problem of random sampling of covariates by introducing the concept of reference covariate 
when estimating rainfall quantile estimation and its uncertainty from non-stationary frequency analysis based on 
covariate. From a practical point of view, how to set the value of the reference covariate may be an important 
research topic in the covariate-based non-stationary frequency analysis. 
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(a) 

 

(b) 

Figure 4. Changes in uncertainty for co-variate at (a) Busan and (b) Seoul sites. The upper left figures in Figure 
4(a) and (b) show the POT series (blank line), and the ensemble average of stationary (blue line) and non-
stationary (red line) rainfall quantile corresponding to the return level of 100-year. In the upper right figures, the 
ensemble average (blue line for stationary model, and red line for non-stationary model), and 95PPU of the 
stationary (blue dotted line) and non-stationary (red dotted line) rainfall quantile for the return level of 100-year 
are shown. The lower left figures show the h-factor of the stationary (blue line) and non-stationary (black line) 
rainfall quantile corresponding to the return level of 100-year. Red lines mean the average of black line. The lower 
right figures show the ensemble average (blue line for stationary model, and red line for non-stationary model), 
and 95PPU of the stationary (blue dotted line) and non-stationary (red dotted line) scale parameter. 
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(a) Busan                                   (b) Seoul 

Figure 6. Selection of reference dew-point temperature for estimating rainfall quantiles at (a) Busan and (b) Seoul 
sites. In this figure, 'RF' refers to the empirical relative frequency of DPT on the day of POT excess. 
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Abstract 

 

Several methods have been proposed to analyze the frequency of non-stationary anomalies. The 
applicability of the non-stationary frequency analysis has been mainly evaluated based on the agreement 
between the time series data and the applied probability distribution. However, since the uncertainty in 
the parameter estimate of the probability distribution is the main source of uncertainty in frequency 
analysis, the uncertainty in the correspondence between samples and probability distribution is 
inevitably large. In this study, an extreme rainfall frequency analysis is performed that fits the Peak-
over-threshold series to the covariate-based non-stationary Generalized Pareto distribution. By 
quantitatively evaluating the uncertainty of daily rainfall quantile estimates at 13 sites of the Korea 
Meteorological Administration using the Bayesian approach, we tried to evaluate the applicability of 
the non-stationary frequency analysis with a focus on uncertainty. The results indicated that the 
inclusion of dew-point temperature (DPT) or surface air temperature (SAT) generally improved the 
goodness of fit of the model for the observed samples. The uncertainty of the estimated rainfall quantiles 
was evaluated by the confidence interval of the ensemble generated by the Markov chain Monte Carlo. 
The results showed that the width of the confidence interval of quantiles could be greatly amplified due 
to extreme values of the covariate. In order to compensate for the weakness of the non-stationary model 
exposed by uncertainty, a method of specifying a reference value of a covariate corresponding to a non-
exceedance probability has been proposed. The results of the study revealed that the reference co-variate 
plays an important role in the reliability of the non-stationary model. In addition, when the reference 
co-variate was given, it was confirmed that the uncertainty reduction of quantile estimates for the 
increase in the sample size was more pronounced in the non-stationary model. Finally, it was discussed 
how information on global temperature rise could be integrated with DPT or SAT-based non-stationary 
frequency analysis. It has been formulated how to quantify the uncertainty of the rate of change in future 
quantile due to global warming using rainfall quantile ensembles obtained in the uncertainty analysis 
process. 

Keywords: Co-variate, Generalized Pareto distribution, Non-stationary frequency analysis, 

Peak-over-threshold time series, Uncertainty 
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1. Introduction 

Human activity in the last century has caused global surface air temperature to rise (Karl et 
al., 2009; Min et al., 2011). When the temperature rises by 1 ℃, the moisture retention capacity 
in the atmosphere increases by about 7 %, which directly affects precipitation (Trenberth, 2011; 
Sim et al., 2019). The higher the water vapor in the atmosphere, the more likely it is to increase 
precipitation (Berg et al., 2013), and increasing surface air temperature and increasing 
atmospheric moisture content can increase probable maximum precipitations or rainfall 
extremes (Kunkel et al., 2013; Lee and Kim, 2018). As a result, global warming damages the 
performance of drainage system infrastructure such as embankments, sewers and dams (Das et 
al., 2011; Jongman et al., 2014), increasing the risk of climate extremes (Emori and Brown, 
2005; Hao et al., 2013). In fact, looking at ground observations around the world shows that 
rainfall extremes have increased significantly over the past century (Karl and Knight, 1998; 
DeGaetano, 2009). Global studies have shown that precipitation has increased in northern 
Australia, Central Africa, Central America, and Southwest Asia (Groisman et al., 2012). 

The current infrastructure design concept for dealing with rainfall extremes is based on the 
estimation of design rainfall depth using frequency analysis of annual maximum series for 
various durations in a region (Madsen et al., 2002; Hosking and Wallis, 2005; Sugahara et al ., 
2009; Haddad et al., 2011; Willems, 2013; Kim et al., 2020). Current design rainfall depth is 
based on the concept of stationarity in time, which assumes that the probability of occurrence 
of extreme rainfall events is not expected to change significantly over time. However, natural 
environmental changes, such as global warming, have a serious impact on the assumptions of 
the stationarity of the observations. Non-stationarity is an important issue that can never be 
ignored in areas related to drainage system design, as it can alter the design flood volume 
obtained using the stationary frequency analysis of observed rainfall extremes. The probability 
of occurrence of extreme rainfall events is expected to change due to global warming (Lee et 
al., 2016), and this change is called non-stationarity by many authors (Alexander et al., 2006; 
Gregersen et al., 2013). 

Several methods have been proposed to address non-stationarities in the time series (Cunha 
et al., 2011; Yilmaz et al., 2013; Jang et al., 2015, Moon et al., 2016), and many studies have 
been conducted to examine changes in design rainfall depth or return levels under non-
stationary conditions (Salvadori and DeMichele, 2010; Graler et al., 2013; Hassanzadeh et al., 
2013; Salas and Obeysekera, 2013; Shin et al., 2014; Choi et al ., 2019). Looking at the 
probability distributions and parameters applied to the above studies, most of the non-stationary 
frequency analysis is performed by expressing specific parameters of the Gumbel or 
Generalized Extreme Value (GEV) distribution as a function of covariate including time (Kim 
et al., 2017). In extreme rainfall series, non-stationarity may be explicitly expressed as a 
function of time, but may also be related to climate variables in the same or preceding time 
periods where rainfall extremes occurred (Zhang et al., 2010). Several studies have reported 
that it is reasonable to use climate variables rather than time for covariates to represent non-
stationarities in the non-stationary frequency analysis (Agilan and Umamahesh, 2016; Sen et 
al., 2020). Recently, studies have been performed that analyze the non-stationary frequency 
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using climate variables for annual maximum rainfall series (Villarini et al., 2012; Agilan and 
Umamahesh, 2017; Lee et al., 2018; Ouarda et al., 2019). In addition, studies have been 
conducted to analyze the non-stationary frequency using Peak-over-threshold (POT) series for 
the purpose of reducing the uncertainty occurring in the sample size (Tramblay et al., 2013; 
Jung et al., 2018; Lee et al., 2020). 

In this research trend, what is of interest in this study is how to examine the relative 
superiority of the stationary and non-stationary models. Most studies use Akaike Information 
Criterion (AIC) and similar indicators, which evaluates how well the time series and probability 
distribution match, to select the optimal model from various candidate non-stationary model, 
including the stationary model (Akaike, 1974; Ganguli and Coulibaly, 2017; Iliopoulou et al., 
2018; Lee et al., 2020). However, the results of selecting the optimal model by these methods 
are highly likely to vary depending on the sample size. Efforts to develop and apply a non-
stationary model for frequency analysis to reflect changing environmental conditions can be 
frustrated by the additional uncertainty associated with the model's complexity, working with 
sampling uncertainty. In other words, the reliability of rainfall quantiles estimated by a complex 
non-stationary model may not be substantially improved, or when various environmental 
conditions are reflected, insufficient model reliability can easily lead to physically inconsistent 
results (Serinaldi and Kilsby, 2015). From this point of view, investigating which model has 
less uncertainty in rainfall quantile as a result of frequency analysis can be an important 
determinant in selecting an optimal model. This is because a model with a relatively smaller 
uncertainty in the estimated rainfall quantile can be regarded as a more reliable model. 

Whether or not the non-stationary model provides more reliable rainfall quantile estimates 
than the stationary model raises a lot of controversy. Serinaldi and Kilsby (2015) warned that 
uncertainty in non-stationary models might be greater since non-stationary models were more 
complex than stationary models. Agilan and Umamahesh (2018) investigated the effect of 
covariate selection on uncertainty in the covariate-based non-stationary analysis using annual 
maximum series. Ouarda et al. (2020) indicated that uncertainty is likely to work as a major 
weakness in the applicability of the non-stationary model through the analysis of UAE annual 
maximum rainfall series. 

In this study, a non-stationary frequency analysis using dew point temperature (DPT) or 
surface air temperature (SAT) as a covariate is performed. As can be seen from Leopore et al. 
(2014), there is a strong scaling relationship between rainfall extreme and DPT or rainfall 
extreme and SAT. In addition, changes in DPT and SAT can directly affect the atmospheric 
moisture retention governed by the Clausius-Clapeyron equation, and in warmer climates, the 
moisture content of the atmosphere increases and the intensity of precipitation increases at a 
similar rate (Trenberth et. al., 2003; Giorgi et al., 2019). That is, according to the Clausius-
Clapeyron relationship, the amount of moisture in the atmosphere increases exponentially as 
the temperature increases, and the amount of moisture in the atmosphere represents an increase 
rate of 6 - 7 %/K when other atmospheric conditions are kept constant. To obtain a necessary 
understanding of the relationship between daily rainfall and DPT and daily rainfall and SAT in 
Korea, two prior studies have been conducted (Sim et al., 2019; Lee et al., 2020). Sim et al. 
(2019) analyzed the effects of DPT and SAT on daily rainfall extremes. Their results indicated 
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that even if there was some cooling effect in the event of summer rainfall (Ali and Mishra, 
2017), daily rainfall extremes in Korea were very sensitive to DPT and SAT. Lee et al. (2020) 
presented a procedure for performing non-stationary frequency analysis using DPT or SAT as 
a covariate. They revealed that non-stationary frequency analysis using future DPT or SAT 
could yield more reasonable and persuasive projections of future rainfall extremes. The purpose 
of this study is to focus on the uncertainty of covariate-based non-stationary frequency analysis 
using DPT or SAT. The uncertainty in analyzing the non-stationary frequency of rainfall 
extremes using the annual maximum series inevitably includes the uncertainty due to the 
limitation of the sample size. In this study, the POT series is extracted from daily rainfall data 
with the aim of reducing the uncertainty that comes from sample size as much as 
possible. Using the Bayesian approach, the parameters of the stationary and non-stationary 
Generalized Pareto (GP) distributions for the POT excesses are sampled from the posterior 
distribution. Using this, the performance of the stationary and non-stationary frequency 
analysis is investigated in terms of uncertainty. We will also examine how uncertainty in the 
non-stationary frequency analysis can be reduced by determining the appropriate covariate 
value (i.e., DPT value) corresponding to the rainfall quantile. Finally, the rate of change in 
rainfall quantile estimates for various DPT rise scenarios considering global warming will be 
analyzed based on uncertainty analysis. 

 

2. Methods 

2.1 Peak-over-threshold series and Generalized Pareto distribution 

 

In this study, daily precipitation, daily DPT, and daily SAT data were used from 1961 to 
2017 at 13 sites, including Busan and Seoul sites of the Korea Meteorological Administration 
(see Figure S1 of Supplementary Material). Figure 1 shows the results of quantile regression 
using daily precipitation data and DPT data on the day of precipitation observed at Busan and 
Seoul sites. Since the Korea Meteorological Administration only recognizes precipitation 
recorded at 0.1 mm or more per day as official precipitation, daily rainfall depth of 0.1 mm or 
more was applied to the analysis in this study. An example of this wet threshold can also be 
found in Chan et al. (2016) and Roderick et al. (2020). In fact, the application of a wet threshold 
does not significantly affect the results of quantile regression. A regression slope of 95 % 
extreme daily rainfall depth corresponding to DPT was estimated. For reference, the quantile 
regression equation for the quantile 𝜏𝜏  (0.95 in Figure 1) given in the quantile regression 
analysis is as follows: 

 𝑙𝑙𝑙𝑙 𝑅𝑅𝜏𝜏 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏,        (1) 

where 𝑅𝑅𝜏𝜏  is the daily rainfall depth, and 𝑏𝑏  is the DPT of the day when the daily rainfall 
occurred. The following Eq. (2) was constructed using Eq. (1) to see how much the daily 
rainfall increases or decreases when DPT increases by 1 ℃: 

 d𝑅𝑅𝜏𝜏/K =  100(𝑒𝑒𝑏𝑏 − 1).       (2) 
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From Figure 1, it can be found that when DPT increases by 1 ℃, daily rainfall increases by 7 
to 8 %. 

 

[Figure 1. Sensitivity of 95 % daily rainfall depth to dew-point temperature at (a) Busan and 
(b) Seoul sites.] 

 

In general, rainfall frequency analysis is performed using the annual maximum series or 
POT series. In the annual maximum series approach, the annual maximum rainfall series is 
generally assumed to follow the GEV distribution, and various studies have been conducted 
(Cheng et al., 2014). However, as the annual maximum series approach only considers one 
sample per year, the information contained in other data is completely ignored, so the POT 
approach to select the maximum number of samples for frequency analysis is being studied as 
an alternative (Hosseinzadehtalaei et al., 2017). In other words, since the POT approach uses 
more samples to enable accurate parameter estimation of the distribution, several studies 
recommend using the POT series instead of the annual maximum series (Yilmaz et al., 
2014). The POT series is generally assumed to follow the GP distribution (Coles et al., 2001). 

The cumulative probability distribution function of the stationary GP distribution for the 
POT series is as follows (Hosking and Wallis, 1987): 

 𝐹𝐹(𝑥𝑥) = 1 −  �1 − 𝑘𝑘 𝑥𝑥−𝑥𝑥𝑜𝑜
𝛼𝛼
�
1/𝑘𝑘

,      (3) 

where the range of 𝑥𝑥 is 𝑥𝑥𝑜𝑜 < 𝑥𝑥 < ∞, α is the scale parameter, and 𝑘𝑘 is the shape parameter 
(𝑘𝑘 < 0). The threshold 𝑥𝑥𝑜𝑜 should be determined in advance. The random variable 𝑥𝑥 has a 
value greater than 𝑥𝑥𝑜𝑜 , and it is assumed that the occurrence of 𝑥𝑥  follows the Poisson 
distribution described by the annual incidence 𝜆𝜆. The annual incidence 𝜆𝜆 can be defined as 
the number of selected POT excesses divided by the observation year. 

To ensure the independence of POT excesses, data larger than 𝑥𝑥𝑜𝑜 should be set so that 
they are not continuously selected. To ensure this, many studies have performed various 
clustering processes based on the time interval between extreme events (Gregersen et al., 
2017). In this study, individual rainfall events were first separated from the daily rainfall 
series. The applied Inter-Event Time Definition (IETD) is 1-day (Kim and Han, 2010). Then, 
in a rainfall event, it was set to select only one value at most as a POT series. For reference, in 
this study, the threshold 𝑥𝑥𝑜𝑜 for extracting POT excesses was assumed to be constant. 

In non-stationary frequency analysis, temporally changing parameters are applied to the 
probability distribution function (PDF). Various types of functions are applied to the parameters 
that change over time. In general, the shape parameter is often set to constant (Lopez and 
Frances, 2013), but location or scale parameters are often considered functions of time or 
covariate. Ali and Mishra (2017) applied covariate to the location parameter of GEV, and 
Agilan and Umamahesh (2017) applied covariate to location and scale parameters of GEV. 
Non-stationary features in GP distribution are generally implemented by the scale parameter 
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(Coles, 2001; Khaliq et al., 2006). Although non-stationarity can be expressed using the shape 
parameter, it is not a common practice since it is difficult to estimate the shape parameter, 
especially when considering covariates (Renard et al., 2006; Pujol et al., 2007). Although 
studies considering the non-stationarity of the threshold of the POT series have been conducted 
(Tramblay et al., 2012), in this study, the non-stationarity was given only to the scale parameters 
of the GP distribution as follows (Um et al., 2017): 

 𝛼𝛼𝑖𝑖 =  𝑒𝑒𝛼𝛼1+𝛼𝛼2𝑍𝑍𝑖𝑖,        (4) 

where 𝑖𝑖 is the order of occurrence of POT excesses (1 to 𝑙𝑙), and covariate 𝑍𝑍𝑖𝑖 is the climate 
variable corresponding to POT excesses (DPT on the day of POT excesses in this study). Eq. 
(4) tells how the covariate DPT or SAT is included in the model. The daily averaged DPT or 
SAT observed on the day of occurrence of each POT excess is included in the scale parameter 
of the GP distribution as shown in Eq. (4) to construct the non-stationary GP distribution. That 
is, when 𝛼𝛼2 > 0, the larger the DPT or SAT, the larger the scale parameter. Therefore, the 
parameters of the stationary GP distribution to be estimated are α and 𝑘𝑘, and the parameters 
of the non-stationary GP distribution are 𝛼𝛼1, 𝛼𝛼2, and 𝑘𝑘. 

The formula for rainfall quantile 𝑋𝑋𝑇𝑇 corresponding to the return level of T-year in the 
non-stationary GP distribution using covariate is as follows: 

 𝑋𝑋𝑇𝑇 =  𝑥𝑥𝑜𝑜 +  1
𝑘𝑘
𝑒𝑒𝛼𝛼1+𝛼𝛼2𝑍𝑍 �1 − � 1

𝜆𝜆𝑇𝑇
�
𝑘𝑘
�.      (5) 

From Eq. (5), rainfall quantile 𝑋𝑋𝑇𝑇 appears as a function of covariate 𝑍𝑍. That is, Eq. (5) shows 
that various rainfall quantiles are calculated depending on the value of the covariate even at the 
same return level. Therefore, one of the problems to be solved in the non-stationary frequency 
analysis using a covariate is how to set the value of the covariate corresponding to a specific 
quantile. Since it is often required to have a single design rainfall depth in practice, it is very 
cumbersome to give a result of calculating rainfall quantiles of various values depending on a 
change in a covariate.  

 

2.2 Metropolis-Hastings algorithm 

The parameters of the GP distribution were estimated using the Metropolis-Hastings (MH) 
algorithm to account for uncertainty. This algorithm is one of the algorithms for the Markov 
Chain Monte Carlo (MCMC) sampling, which takes a sample from the posterior distribution 
of the parameter θ  given the observation data Y . The MH algorithm starts with the initial 
parameter value 𝜃𝜃𝑜𝑜 . Then, 𝑁𝑁 + 𝑀𝑀  sequences of the parameter 𝜃𝜃𝑖𝑖  (𝑖𝑖 = 1,⋯ ,𝑁𝑁 + 𝑀𝑀 ) are 
generated through the following procedure: 

1) The candidate parameter 𝜃𝜃∗ is generated from the proposal distribution 𝑞𝑞(𝜃𝜃∗|𝜃𝜃𝑖𝑖−1). 

At this time, the proposal distribution was applied to the truncated normal distribution 

with mean 𝜃𝜃𝑖𝑖−1  and variance Σ  in this study. The upper and lower limits of the 
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truncated normal distirubtion corresponding to the upper and lower limits of the 

parameters were determined in advance. 

2) Calculation of the reference value 𝑏𝑏 for adoption as follows: 

𝑏𝑏 =  𝜋𝜋(𝑌𝑌|𝜃𝜃∗)𝑞𝑞(𝜃𝜃𝑖𝑖−1|𝜃𝜃∗)
𝜋𝜋(𝑌𝑌|𝜃𝜃𝑖𝑖−1)𝑞𝑞(𝜃𝜃∗|𝜃𝜃𝑖𝑖−1),        (6) 

where 𝜋𝜋(𝑌𝑌|𝜃𝜃∗) and 𝜋𝜋(𝑌𝑌|𝜃𝜃𝑖𝑖−1) are the likelihood values in the parameters 𝜃𝜃∗ and 

𝜃𝜃𝑖𝑖−1, respectively, and are defined as follows: 

𝜋𝜋(𝑌𝑌|𝜃𝜃) ~ ∏ 𝑓𝑓(𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=1 ,       (7) 

where 𝑓𝑓() is the probability density function of the GP distribution. 

3) If min(1,𝑏𝑏) > 𝑢𝑢 is satisfied for a uniform random number 𝑢𝑢 between 0 and 1, 𝜃𝜃𝑖𝑖 =

 𝜃𝜃∗, otherwise 𝜃𝜃𝑖𝑖 =  𝜃𝜃𝑖𝑖−1. 

The Markov chain, constructed through the initial 𝑁𝑁  iterations, converges to a chain that 
randomly samples parameters from the posterior distribution of parameters. At this time, the 
parameter sampled before the initial 𝑁𝑁 iterations should be discarded. 

Before using the MH algorithm, it is necessary to determine the initial parameter 𝜃𝜃𝑜𝑜, the 
proposal distribution 𝑞𝑞(𝜃𝜃∗|𝜃𝜃𝑖𝑖−1) , the initial iterative sampling number 𝑁𝑁 , and the total 
iterative sampling number 𝑁𝑁 + 𝑀𝑀. The choice of the initial parameter value 𝜃𝜃𝑜𝑜 is generally 
not sensitive to the results, while the choice of the proposal distribution 𝑞𝑞(𝜃𝜃∗|𝜃𝜃𝑖𝑖−1)  is 
important. The general method is to use a normal distribution with mean 𝜃𝜃𝑖𝑖−1 and a constant 
covariance matrix Σ. It is recommended to select Σ so that the adoption rate of min(1,𝑏𝑏) >
𝑢𝑢 is 20 to 70 %. The number of iterations to be discarded, 𝑁𝑁, is known to be sufficient if more 
than 10 % of 𝑀𝑀 is applied, and the number of samples, 𝑀𝑀, should be secured enough to track 
the progress of the chain and converge the average values of the parameter posterior 
distribution. 

The characteristics of the posterior distribution of parameters from the generated samples 
can be quantified. In general, the final estimated parameter �̅�𝜃 is calculated as follows: 

 �̅�𝜃 =  1
𝑀𝑀
∑ 𝜃𝜃𝑖𝑖𝑁𝑁+𝑀𝑀
𝑖𝑖=𝑁𝑁+1 .        (8) 

In addition, the variance of the estimated parameters can be calculated from the generated 
samples. 

 

3. Results 
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3.1 Selection of POT threshold 

Since frequency analysis using POT excesses requires independent rainfall data greater 
than the threshold 𝑥𝑥𝑜𝑜, it is necessary to set 𝑥𝑥𝑜𝑜. One of the most commonly used methods of 
setting the appropriate 𝑥𝑥𝑜𝑜  is the mean residual life plot (Coles, 2001), and the results of 
applying it to the daily precipitation data at Busan and Seoul sites are shown in Figure 2. In 
general, a nonlinear curve appears in a section where a small 𝑥𝑥𝑜𝑜  is selected, and an 
approximate straight line appears as 𝑥𝑥𝑜𝑜 increases. It is recommended to set 𝑥𝑥𝑜𝑜 in this straight 
section. From Figure 2, it can be found that the appropriate range of 𝑥𝑥𝑜𝑜 is in the range of 30 
to 150 mm / day for both Busan and Seoul sites. In this study, 𝑥𝑥𝑜𝑜 = 50 mm / day was set as a 
threshold for the POT series in both Busan and Seoul sites. Mean residual life plots for all 
applied sites are shown in Figure S2 of Supplementary Material. In general, it can be 
recognized that it is feasible to set 𝑥𝑥𝑜𝑜 = 50 mm/day as the threshold for the POT time series 
at all sites. 

 

[Figure 2. Mean residual life plot at (a) Busan and (b) Seoul sites. The solid line is the mean of 
the excesses of the threshold, and the dotted line is approximated 95% confidence intervals.] 

 

3.2 Stationary frequency analysis 

The parameters of the GP distribution were estimated using the method of probability 
weighted moments (PWM) and MH algorithm, respectively. Although maximum likelihood 
estimation is an efficient method, it does not clearly show efficiency even in samples larger 
than 500 (Smith, 1985). The method of moments is generally known to be reliable except when 
the shape parameter is less than -0.2. When the likelihood that the shape parameter is less than 
0 is high, PWM estimation is recommended (Hosking and Wallis, 1987). Figure 3 shows the 
result of PWM parameter estimation and the posterior distribution of parameters by the MH 
algorithm at Busan and Seoul sites. Since the MH algorithm does not return a single-valued 
parameter, but estimates the posterior distribution of the parameter, information about the 
uncertainty of the estimated parameter can be obtained. It can be recognized that the posterior 
distribution of the scale parameter converged to an appropriate range even though a relatively 
wide range of uniform distribution was assumed as the prior-distribution (the whole section of 
the horizontal axis in Figure 3). However, in the case of the shape parameter, it can be found 
that the uncertainty is formed relatively higher. That is, it can be seen that the uncertainty 
included when fitting the POT series of Busan and Seoul sites to the GP distribution is mainly 
due to the estimation of the shape parameter. 

 

[Figure 3. Posterior distribution of parameters of stationary and non-stationary GP distribution. 
(a) Scale and (b) shape parameters at Busan site, and (c) scale and (d) shape parameters at Seoul 
site. The black vertical lines are a parameter calculated by PWM, which is expressed as a single 
value. The posterior distribution of parameters for the stationary GP distribution sampled using 
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the MH algorithm is indicated by red lines. The posterior distribution of parameters for the 
non-stationary GP distribution is indicated by blue lines. The scale parameter of the non-
stationary GP distribution using covariate is defined as a function of DPT. Therefore, the 
posterior distribution of the scale parameters were derived on the assumption that DPT was 
given at 20.2567 ℃ (Busan site) and 21.4958 ℃ (Seoul site), respectively.] 

 

Table 1 shows the final estimated parameters at Busan and Seoul sites. The parameter 
estimation value of the MH algorithm was defined as the ensemble average of samples 
extracted by MCMC from the posterior distribution as mentioned in Eq. (7). The parentheses 
of the parameter estimation values by the MH algorithm in Table 1 are the coefficient of 
variation of the parameter. It can be found that the PWM and MH algorithms give similar 
parameter values for both scale and shape parameters. The negative logarithm likelihood (nllh) 
was also calculated similarly. From the above results, it can be recognized that when the POT 
series is to be fit to the GP distribution, parameter estimation by the MH algorithm is applicable, 
and information about the uncertainty of the estimated parameters is also obtainable. It can also 
be found that the coefficient of variation of the ensemble of scale parameters sampled by 
MCMC is less than 10 %, while the coefficient of variation of the ensemble of shape parameters 
is around 40 %. This means that the uncertainty of the shape parameters is relatively higher. 
Results for other sites tend to be similar to those obtained at Busan and Seoul sites. Results for 
other sites are shown in Table S1 of Supplemental Material. 

 

[Table 1. Parameter estimation of stationary GP distribution at Busan and Seoul sites] 

 

3.3 Non-stationary frequency analysis 

For analyzing the non-stationary frequency of POT excesses, the non-stationary GP 
distribution, in which the scale parameter was defined as a function of DPT or SAT on the day 
when the POT excesses occurred, was set as in Eq. (4). The parameters of the non-stationary 
GP distribution were estimated using the MH algorithm, and Figure 3 shows the posterior 
distribution of the parameters by the MH algorithm. Similar to the stationary GP distribution, 
the posterior distribution of the scale parameter converged to an appropriate range, although a 
relatively wide range of prior-distributions was assumed. However, it can be recognized that 
the uncertainty is still high in the case of the shape parameter. 

The scale parameter finally estimated at Busan site using Eq. (8) is 𝛼𝛼 = 𝑒𝑒𝑥𝑥𝑒𝑒[2.2149 +
0.071078 ∙ 𝑍𝑍] (where 𝑍𝑍 is DPT), and the shape parameter is 𝑘𝑘 = -0.1123. The coefficient of 
variation of the scale parameter was 7.66 % when the DPT was given at 20.2567 ℃, and the 
coefficient of variation of the shape parameter was 44.02 %. Therefore, when compared with 
the coefficient of variation of the parameters of the stationary GP distribution in Table 1, it can 
be recognized that the uncertainty in both the scale parameter and the shape parameter slightly 
decreased in the non-stationary GP distribution. However, in the scale parameter, these 
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coefficients of variation are obtained under the assumption of a specific DPT, so if the range of 
the observed DPT is reflected, the coefficient of variation of the scale parameter of the non-
stationary GP distribution will have a larger value. The AIC of the stationary model was AIC 
= 3264.84, and the AIC of the non-stationary model was calculated as AIC = 3247.61. From 
the viewpoint that the AIC of the non-stationary model is slightly smaller, it can be said that 
the non-stationary model has better performance in expressing the frequency of the POT 
excesses than the stationary model. The parameter estimation results of other sites also showed 
a similar trend to those of Busan site. In other words, under certain DPT or SAT conditions, the 
uncertainty of the scale and shape parameters of the non-stationary model was slightly reduced 
than that of the stationary model, and the AIC of the non-stationary model was calculated to be 
smaller than the AIC of the stationary model. 

 

3.4 Uncertainty analysis 

The final goal of frequency analysis is estimation of rainfall quantile, but the parameters of 
probability distribution required for estimation of quantile as well as quantile are inevitably 
uncertain since they are estimated from limited samples. Therefore, looking at the parameters 
of the probability distribution applied and the uncertainty of the quantile derived as a result of 
frequency analysis gives important information to determine whether the model is 
applicable. In this study, the following dimensionless quantitation factors were defined to 
quantify the uncertainty between the stationary and non-stationary models: 

 𝑚𝑚 − 𝑓𝑓𝑎𝑎𝑓𝑓𝑡𝑡𝑜𝑜𝑜𝑜 =  𝑊𝑊𝑖𝑖𝑊𝑊𝑊𝑊ℎ 𝑜𝑜𝑜𝑜 95 𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜𝑓𝑓 𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑊𝑊𝑝𝑝𝑓𝑓
𝑝𝑝𝑒𝑒𝑊𝑊𝑖𝑖𝑝𝑝𝑝𝑝𝑊𝑊𝑝𝑝𝑊𝑊 𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑊𝑊𝑝𝑝𝑓𝑓 𝑣𝑣𝑝𝑝𝑣𝑣𝑣𝑣𝑝𝑝

, and    (9) 

 ℎ − 𝑓𝑓𝑎𝑎𝑓𝑓𝑡𝑡𝑜𝑜𝑜𝑜 =  𝑊𝑊𝑖𝑖𝑊𝑊𝑊𝑊ℎ 𝑜𝑜𝑜𝑜 95 𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜𝑓𝑓 𝑓𝑓𝑖𝑖𝑝𝑝𝑛𝑛𝑜𝑜𝑝𝑝𝑣𝑣𝑣𝑣 𝑞𝑞𝑣𝑣𝑝𝑝𝑛𝑛𝑊𝑊𝑖𝑖𝑣𝑣𝑝𝑝 𝑝𝑝𝑛𝑛𝑒𝑒𝑝𝑝𝑝𝑝𝑏𝑏𝑣𝑣𝑝𝑝
𝑓𝑓𝑝𝑝𝑖𝑖𝑛𝑛𝑜𝑜𝑝𝑝𝑣𝑣𝑣𝑣 𝑞𝑞𝑣𝑣𝑝𝑝𝑛𝑛𝑊𝑊𝑖𝑖𝑣𝑣𝑝𝑝 𝑝𝑝𝑒𝑒𝑊𝑊𝑖𝑖𝑝𝑝𝑝𝑝𝑊𝑊𝑝𝑝

,  (10) 

where 95 PPU means 95 % predicted uncertainty of the corresponding variable (Abbaspour et 
al., 2007). In fact, m-factor and h-factor can be seen as quantification of confidence intervals 
of ensembles simulated by MCMC. That is, the m-factor and h-factor of the estimated value 
indicate how accurate the estimate is or how much uncertainty is (Odura et al., 2020). The 
greater the uncertainty of the parameter or rainfall quantile, the greater the value of 95 PPU. 
That is, the quantitation factors of uncertainty expressed by m-factor and h-factor reflect the 
diffusion or lack of precision of the ensemble sampled from the posterior distribution (Motavita 
et al., 2019). 

A total of 6,000 parameter values were sampled from the posterior distribution of 
parameters for each of the stationary and non-stationary models, and 6,000 rainfall quantile 
ensemble corresponding to a return level of 100-year were generated. Eqs. (9) and (10) were 
used to quantify the uncertainty for parameters and the uncertainty for rainfall quantile. Table 
2 shows the results at Busan and Seoul sites. For reference, the results of applying DPT or SAT 
as a covariate at other sites are shown in Table S2 of Supplementary Material. The parameters 
of the stationary GP distribution are α and 𝑘𝑘, whereas the parameters of the non-stationary 
GP distribution are 𝛼𝛼1, 𝛼𝛼2, and 𝑘𝑘, so for direct comparison, m-factor derived by converting 
𝛼𝛼1 and 𝛼𝛼2 of the non-stationary GP distribution to 𝛼𝛼 = 𝑒𝑒𝑥𝑥𝑒𝑒[𝛼𝛼1 + 𝛼𝛼2𝐷𝐷𝐷𝐷𝑏𝑏𝑓𝑓] were expressed 
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together. Here, 𝐷𝐷𝐷𝐷𝑏𝑏𝑓𝑓 is a reference DPT, and 20.2567 ℃ for Busan site and 21.4958 ℃ for 
Seoul site, respectively. The reference DPT will be discussed in detail in the discussion section. 

 

[Table 2. Uncertainty of stationary and non-stationary frequency analysis at Busan and Seoul 
sites] 

 

The uncertainty of the parameters was first investigated for the m-factor of Eq. (9). It can 
be found that the uncertainty of the scale parameter of the non-stationary model is less than the 
uncertainty of the scale parameter of the stationary model under the condition given the 
reference DPT (10.9 % at Busan site, and 1.7 % at Seoul site). In the case of the shape parameter, 
Busan and Seoul sites showed different results. The uncertainty of the non-stationary model 
decreased at Busan site (10.2%), but increased at Seoul site (9.9%). This suggests that even if 
a non-stationary model is introduced, it is difficult to expect that the uncertainty resulting from 
parameter estimation of the GP distribution would be reduced. The fact that the uncertainty in 
the scale parameter has been shown to be reduced is the result from the condition under which 
a specific DPT is given, so it would be also difficult to argue that the uncertainty in the scale 
parameter has been reduced if changes in DPT are reflected. 

The h-factor of rainfall quantile corresponding to the return level of 100-year was 
calculated in two ways. First, under the condition that the reference DPT is given (i.e., when 
the reference value of DPT is applied), the h-factor of the non-stationary model is reduced by 
37 % (at Busan site) and 28 % (at Seoul site) than that of the stationary model. However, under 
the condition that all observed DPTs corresponding to POT excesses are applied, the 
uncertainty from parameter estimation and the effects from extreme values of the covariate 
overlap, and the h-factor of the non-stationary model exceeds the h-factor of the stationary 
model. That is, if samples of the scale parameter (i.e., α) is made by combining all samples of 
the coefficients of the scale parameter (i.e., 𝛼𝛼1 and 𝛼𝛼2) and samples of all observed DPTs 
corresponding to each POT excess, the uncertainty of rainfall quantiles in the non-stationary 
model is greater than the uncertainty of rainfall quantiles in the stationary model. The 
amplification of the uncertainty in the non-stationary model is because, as can be seen from Eq. 
(4), samples of some extreme DPTs significantly dissipate the samples of the scale parameter 
of the non-stationary GP distribution. This can also be confirmed through the lower right figure 
of Figure 4(a) and (b). The width of the 95 PPU of the scale parameter of the non-stationary 
model corresponding to the value of the individual DPT is not significantly different from the 
width of the scale parameter of the stationary model. However, when all observed DPTs 
corresponding to the POT excesses are involved in sampling of the scale parameter, it can be 
recognized that the range of the 995 PPU of the scale parameter of the non-stationary model is 
very wide. 

 

[Figure 4. Changes in uncertainty for co-variate at (a) Busan and (b) Seoul sites. The upper left 
figures in Figure 4(a) and (b) show the POT series (blank line), and the ensemble average of 
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stationary (blue line) and non-stationary (red line) rainfall quantile corresponding to the return 
level of 100-year. In the upper right figures, the ensemble average (blue line for stationary 
model, and red line for non-stationary model), and 95PPU of the stationary (blue dotted line) 
and non-stationary (red dotted line) rainfall quantile for the return level of 100-year are shown. 
The lower left figures show the h-factor of the stationary (blue line) and non-stationary (black 
line) rainfall quantile corresponding to the return level of 100-year. Red lines mean the average 
of black line. The lower right figures show the ensemble average (blue line for stationary model, 
and red line for non-stationary model), and 95 PPU of the stationary (blue dotted line) and non-
stationary (red dotted line) scale parameter.] 

 

The above results indicate that although the non-stationary model is better in fitting 
performance for the observed samples, it is difficult to admit that the non-stationary model is 
more reliable than the stationary model due to the influence of extreme values of the covariate 
when estimating rainfall quantile. Ouarda et al (2020) also produced similar results using the 
annual maximum rainfall series and the non-stationary GEV distribution. 

We want to note here the condition in which the value of the covariate is given. In the upper 
left figure of Figure 4(a) and (b), the stationary quantile has a single value, while the ensemble 
average of the non-stationary quantile shows various values depending on the value of DPT. In 
addition, the 95 PPU of the stationary quantile has a constant range regardless of the value of 
the covariate, whereas the 95 PPU of the non-stationary quantile has a relatively wider range 
depending on the value of the covariate (see upper right figure in Figure 4(a) and (b)). This is 
due to the covariate dependence inherent in the scale parameter of the non-stationary GP 
distribution, as mentioned before. That is, since the range of the ensemble of the non-stationary 
rainfall quantile is a result of additionally reflecting the extreme values of the covariate in 
addition to the parameter uncertainty, it is more likely to be formed relatively wider than the 
range of the ensemble of the stationary rainfall quantile. It should be noted, however, that the 
width of the non-stationary 95 PPU for a particular covariate value is less than the width of the 
stationary 95 PPU. 

In fact, since the covariate corresponding to each POT excess is a known value, the h-factor 
of the rainfall quantile corresponding to each POT excess can be obtained (see lower left figure 
in Figure 4(a) and (b)). Given the value of covariate, it can be recognized that the non-stationary 
h-factor is smaller than the stationary h-factor. That is, if the value of the covariate of the non-
stationary model can be determined, there is a room to say that the non-stationary frequency 
analysis is better in terms of reliability than the stationary frequency analysis. 

Figure 5 shows the empirical distribution of rainfall quantile corresponding to the return 
level of 100-year using DPT observed at Busan and Seoul sites. Note that the non-stationary 
GP distribution using the covariate returns rainfall quantile of various values depending on the 
DPT corresponding to the POT excess. As can be seen in Figure 5, the non-stationary frequency 
analysis can provide an empirical distribution of rainfall quantile in the present condition of 
DPT and in the future condition of elevated DPT due to global warming. Therefore, the change 
in rainfall quantile considering global warming can be expressed explicitly. While rainfall 
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extremes derived from climate models have significant bias and uncertainty, DPT can yield 
relatively reliable climate model outputs (O'Gorman, 2012; Lenderink and Attema, 2015; 
Farnham et al., 2018). Therefore, it can be said that the non-stationary frequency analysis using 
DPT or SAT has an advantageous structure for examining the effect of global warming on 
rainfall quantile (Wasko and Sharma, 2017; Lee et al., 2020). 

 

[Figure 5. Rainfall quantile estimates at (a) Busan and (b) Seoul sites for return level of 100-
year using observed dew-point temperature and global warming scenarios. The stationary 
rainfall quantile is indicated as a blue vertical line since it is a single value. The non-stationary 
rainfall quantiles were calculated using the average of the parameter ensemble sampled by 
MCMC and the DPT observed on the day of POT excesses (red dotted line). In this figures, 
‘NS (3 ℃ up)’ is an empirical distribution of rainfall quantile derived using DPTs that add 3 ℃ 
to DPTs observed on the day of POT excesses. Likewise, 'NS (5 ℃ up)' is an empirical 
distribution of rainfall quantile under the scenario condition where DPT has risen 5 ℃ due to 
global warming.] 

 

4. Discussion 

4.1 Reference covariate 

As described above, when performing the uncertainty analysis of the non-stationary 
frequency analysis, an undesired disturbance in which the ensemble of rainfall quantile is 
excessively dispersed due to some extreme covariate values appears. Since the value of the 
covariate is the data observed on the day that the POT excess occurred (i.e., a deterministic 
variable), analyzing the uncertainty in rainfall quantile by randomly sampling the value of DPT 
or SAT from a predefined probability distribution of covariate is likely to result in 
overestimating uncertainty. We thought that the uncertainty analysis of randomly sampling the 
values of covariate from a predefined distribution of covariate was not feasible. The method of 
randomly sampling the value of the covariate in this study is implemented under the condition 
that all observed covariate samples corresponding to POT excesses are applied. Therefore, this 
study investigated the relationship between the value of covariate and rainfall quantile. 

From Eq. (5), the DPT value (i.e., reference DPT) of the non-stationary GP distribution that 
returns the rainfall quantile equal to the stationary GP distribution can be calculated (reference 
SAT can be calculated in the same way). Figure 6 shows an example of determining a reference 
DPT. The results of calculating the reference DPT at Busan and Seoul sites indicate that the 
reference DPT increases as the return level increases. The right figure in Figure 6(a) and (b) 
shows the histogram of DPT corresponding to POT excesses. The distribution of DPT is 
slightly distorted to the left. It can be found that the reference DPT corresponding to various 
return levels at Busan and Seoul sites is similar to the location of the mode of the DPT 
distribution. This fact reveals that covariate values that deviate significantly from the reference 
covariate (i.e., some extreme values of the covariate) amplify the uncertainty of rainfall 
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quantile from the non-stationary frequency analysis. From the results of regression analysis of 
rainfall quantile for various return levels and the corresponding reference DPT, the relationship 
of DPT = 18.8589RL^0.01555 (where RL is the return level in year and the unit of DPT is °C) 
was obtained at Busan site. At Seoul site, a relationship of DPT = 19.8540RL^0.01728 was 
obtained. The coefficient of determination of the regression analysis was 0.99 or higher at 
Busan and Seoul sites. From these results, the reference DPT corresponding to the return level 
of 100-year at Busan site could be applied to 20.2567 °C and Seoul site to 21.4958 °C. As 
shown in Figure 6 and Figures S3 and S4 of Supplementary Material, the value of the reference 
covariate is almost completely dependent on the return level. It should be noted that the return 
level and the reference covariate are proportional to each other at some sites, and are inversely 
proportional to other sites. This means that it is not easy to identify a single covariate value 
corresponding to a rainfall quantile. In this study, we tried to overcome the problem of random 
sampling of covariates by introducing the concept of reference covariate when estimating 
rainfall quantile estimation and its uncertainty from non-stationary frequency analysis based 
on covariate. From a practical point of view, how to set the value of the reference covariate 
may be an important research topic in the covariate-based non-stationary frequency analysis. 

 

[Figure 6. Selection of reference dew-point temperature for estimating rainfall quantiles at (a) 
Busan and (b) Seoul sites. In this figure, 'RF' refers to the empirical relative frequency of DPT 
on the day of POT excess.] 

 

Figure 7(a) shows the values of the negative log likelihood function of the stationary model 
and the non-stationary models at 13 sites. The stationary model, the SAT-based non-stationary 
model, and the DAT-based non-stationary model were found to have no significant difference 
in the fit performance with the observed POT excesses. Figure 7(b) shows the h-factor of 
rainfall quantile corresponding to the return level of 100-year. When all the values of covariate 
observed on the day of POT excesses are considered ("DPT" and "SAT" in Figure 7(b)), at all 
sites except Mokpo site, the non-stationary h-factor is greater than the stationary h-factor. 
However, when the reference covariate is applied, the non-stationary h-factor is smaller than 
the stationary h-factor. Results from 13 sites and most of the non-stationary models using SAT 
or DPT as a covariate indicate that how to determine the appropriate value of the covariate 
corresponding to the rainfall quantile plays an important role in securing the reliability of the 
non-stationary frequency analysis. 

 

[Figure 7. Performance of stationary and non-stationary frequency analysis models. At Site ID, 
1: Ghangreung, 2: Seoul, 3: Incheon, 4: Chupungryeong, 5: Pohang, 6: Daegu, 7: Jeonju, 8: 
Ulsan, 9: Ghwangju, 10: Busan, 11: Mokpo, 12: Yeosu and 13: Jeju site.] 

 

The uncertainty of the non-stationary frequency analysis for various sample size changes 
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was analyzed using a reference DPT corresponding to the return level of 100-year. In the first 
case, POT and covariate series of the last 10 years from 2008 to 2017 were applied, and 
frequency analysis was performed by extending the data period in the past direction for 5 
years. Figure 8 shows the uncertainty of rainfall quantile under the condition that the reference 
DPT is given. Generally, the h-factor of the non-stationary frequency analysis is smaller than 
the stationary frequency analysis. It can be found that for the h-factor to be less than 0.5, the 
non-stationary frequency analysis requires a data period of about 40 years (at Busan site) and 
75 years (at Seoul site), while the stationary frequency analysis requires more than 100 years. 
The data period required to achieve a certain level of h-factor can play an important role in 
optimal model selection. As in other regions, the observed data period in Korea varies widely 
from site to site. If the data period is short and there is no significant difference in performance 
(both in terms of goodness of fit and uncertainty) between the stationary model and the non-
stationary model, it can be said that it is better to apply a stationary model with a relatively 
well-established methodology. However, in terms of uncertainty, if the value of the reference 
covariate can be well defined, the results in Figure 8 show that the non-stationary model can 
estimate rainfall quantile with the same level of uncertainty even with relatively shorter data 
periods. That is, when frequency analysis is performed using samples of the same data period 
at a site, if the appropriate covariate is applied and the reference value of the covariate is 
appropriately determined, it can be said that the rainfall quantile estimated from the non-
stationary model is more reliable than the rainfall quantile estimated from the stationary model. 

 

[Figure 8. Effect of the number of samples on the uncertainty of rainfall quantile using 
reference dew-point temperature.] 

 

4.2 Uncertainty of rate of change 

Through Figure 5, we have seen that the non-stationary frequency analysis using DPT has 
an advantageous structure for examining the effect of global warming on rainfall quantile. In 
this section, we extend the concept of Figure 5 a little further to investigate the uncertainty 
about the rate of change in rainfall quantile for global warming. Here, the rate of change is 
defined as [future rainfall quantile - present rainfall quantile] / [present rainfall quantile]. That 
is, a rate of change of 0.2 means that the future rainfall quantile will increase by 20 % from the 
present rainfall quantile. In most global warming scenarios, the state of DPT increases, so the 
case where the change rate is less than 0 is not considered in this study. In fact, it is not difficult 
to consider. 

Let us assume that rainfall quantile for the return level of T-year in the present DPT state 
is 𝑋𝑋𝑝𝑝𝑇𝑇 , and rainfall quantile in the future DPT state is 𝑋𝑋𝑜𝑜𝑇𝑇 . At this time, 𝑋𝑋𝑝𝑝𝑇𝑇  and 𝑋𝑋𝑜𝑜𝑇𝑇  are 
composed of ensemble sampled by MCMC under the conditions given the present and future 
reference DPT, respectively. The probability that the rainfall quantile 𝑋𝑋𝑜𝑜𝑇𝑇 in the future DPT 
state increases more than 𝛼𝛼 ×100 (%) than the rainfall quantile 𝑋𝑋𝑝𝑝𝑇𝑇  in the present DPT 
condition, that is, the probability 𝐷𝐷𝛼𝛼𝑇𝑇 that the rate of change becomes more than α can be 
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defined as follows: 

 𝐷𝐷𝛼𝛼𝑇𝑇 = 𝐷𝐷�𝑋𝑋𝑜𝑜𝑇𝑇 ≥ (1 + 𝛼𝛼)𝑋𝑋𝑝𝑝𝑇𝑇� = 1 −  ∫ 𝐹𝐹𝑜𝑜𝑇𝑇�(1 + 𝛼𝛼)𝑋𝑋𝑝𝑝𝑇𝑇� ∙ 𝑓𝑓𝑝𝑝𝑇𝑇�𝑋𝑋𝑝𝑝𝑇𝑇�
∞
0 𝑑𝑑𝑋𝑋𝑝𝑝𝑇𝑇,  

 (11) 

where 𝐹𝐹𝑜𝑜𝑇𝑇[] is the cumulative probability distribution function of 𝑋𝑋𝑜𝑜𝑇𝑇 in the future DPT state, 
and will behave depending on the DPT rise in the future global warming scenario. The 
probability distribution of 𝑋𝑋𝑝𝑝𝑇𝑇 in the present DPT state was expressed as 𝑓𝑓𝑝𝑝𝑇𝑇[]. From Eq. (11), 
it can be recognized that 𝐷𝐷𝛼𝛼𝑇𝑇 increases as the future DPT increase increases, and decreases as 
the rate of change increases. 

When frequency analysis using the Bayesian approach is performed, a large number of 
samples for 𝑋𝑋𝑝𝑝𝑇𝑇 and 𝑋𝑋𝑜𝑜𝑇𝑇 can be obtained through MCMC simulation, so instead of calculating 
𝐷𝐷𝛼𝛼𝑇𝑇  using Eq. (11), it is possible to numerically calculate 𝐷𝐷𝛼𝛼𝑇𝑇  from the generated 
samples. Figure 9 shows the probability that the rainfall quantile for the return level of 100-
year will exceed a certain rate of change under various conditions (∆DPT) in a global warming 
scenario expressed as a rise in DPT. That is, the probability that the rainfall quantile for the 
return level of 100-year increases by 20 % or more in a scenario condition in which the state 
of DPT increases by 6 ℃ at Busan site is about 80 %. 

 

[Figure 9. Likelihood of increase over change rate of rainfall quantile for return level of 100-
year.] 

 

When Figure 9 is substituted for a specific DPT rise scenario, the reliability of the rate of 
change in rainfall quantile can be obtained as explained below. Figure 10 describes the 
procedure for analyzing the rate of change in rainfall quantile for the return level of 100-year 
under the DPT 4 ℃ rise scenario. The upper left figures in Figure 10(a) and (b) show the 
probability distribution of rainfall quantile ensemble at Busan and Seoul sites, 
respectively. One can see that the probability distribution of 𝑋𝑋𝑜𝑜𝑇𝑇 is shifted to the right. Using 
the concept of Eq. (11), likelihood of increase over change rate (LoI), 𝐷𝐷𝛼𝛼𝑇𝑇, can be drawn from 
the information on these probability distributions as shown in the upper right. Since LoI is the 
probability that the rate of change of rainfall quantile for a specific return level is greater than 
or equal to α in a specific DPT rising condition, the probability that the rate of change will be 
less than or equal to α is 1 − 𝐷𝐷𝛼𝛼𝑇𝑇. That is, the cumulative probability distribution of rate of 
change becomes 1 − 𝐷𝐷𝛼𝛼𝑇𝑇, which is shown in the lower right. The probability distribution of 
rate of change can be obtained numerically from the cumulative probability distribution of rate 
of change, and it is shown in the lower left. The ensemble average of the rate of change of 
rainfall quantile for the return level of 100-year at Busan site was 0.3138 (0.3742 at Seoul site) 
and the standard deviation of the ensemble was 0.2734 (0.3298 at Seoul site). 

 

[Figure 10. Procedure for analyzing uncertainty in rate of change. In upper left figures, the blue 
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line is the probability distribution of 𝑋𝑋𝑝𝑝𝑇𝑇  in the present condition, and the red line is the 
probability distribution of 𝑋𝑋𝑜𝑜𝑇𝑇 in the DPT 4 ℃ rising condition. In the lower left figures, the 
section of the standard deviation was colored in pink.] 

 

The uncertainty of the parameters estimated in the frequency analysis will influence the 
estimation of the rate of change in future climate change scenarios. An ensemble of rainfall 
quantile can be obtained from various parameter combinations sampled by MCMC, and an 
ensemble of future rainfall quantile can also be obtained by applying climate change scenarios 
to covariates. A simple comparison of the ensemble average of rainfall quantile derived from 
present and future DPT states using a reference DPT makes it possible to obtain an average 
rate of change, but it is impossible to determine how reliable the rate of change is. Through the 
procedure presented in Figure 10, one can recognize that it is possible to quantify the 
uncertainty inherent in the rate of change. It should be noted, however, that this uncertainty 
analysis of rate of change only considered the uncertainty that comes from parameter 
estimation. When analyzing the uncertainty of the rate of change, the uncertainty arising from 
the selection of probability distributions for frequency analysis and the uncertainty resulting 
from the choice of covariates should also be addressed. In addition, the uncertainty arising from 
various climate change scenarios should be treated as important. 

 

5. Conclusion 

In this study, stationary and non-stationary frequency analysis was performed using daily 
precipitation data from 13 major sites in Korea. Daily precipitation data for frequency analysis 
was extracted based on the POT approach. As a threshold for extracting the POT series, it was 
confirmed that a value between 30 and 150 mm / day was appropriate from the results of 
plotting the Mean residual life plot. Both Busan and Seoul site have finally set 50 mm / day as 
the threshold of the POT excesses. The POT series was adapted to the GP distribution, and as 
a result of estimating the parameters using the PWM and MH algorithms, it was confirmed that 
the parameter estimation of the GP distribution by the MH algorithm is 
applicable. Confirmation of applicability to the MH algorithm means that information on the 
empirical probability distribution of the estimated GP distribution parameters can be obtained. 

The non-stationarity of the POT series was implemented by expressing the scale parameter 
of the GP distribution as a function of the DPT or SAT observed on the day of the POT excess. 
The AIC of the non-stationary GP distribution using the covariate was calculated to be slightly 
smaller than the AIC of the stationary GP distribution. However, since the difference was 
thought to be likely to change in any way during the parameter estimation process, it was 
recognized that the performance in terms of data fitness of the stationary and non-stationary 
GP distributions was almost similar. On the other hand, since the non-stationary frequency 
analysis using covariate can separately provide the empirical distribution of rainfall quantile at 
the current covariate level and the empirical distribution of rainfall quantile at the covariate 
level changed due to global warming, changes in rainfall quantile considering climate change 
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can be expressed explicitly. 

In this study, rainfall quantile for various parameter combinations was simulated using 
MCMC sampling from the posterior distribution of parameters derived by the MH 
algorithm. Under the condition considering all observed ranges of covariate, it was found that 
the uncertainty of the non-stationary model was calculated to be greater than the uncertainty of 
the stationary model since the effects of extreme values of covariate were added to the 
uncertainty resulting from parameter estimation. In other words, although the performance in 
terms of goodness of fit was better for the non-stationary model, it was difficult to say that the 
results of the non-stationary model were more reliable than the results of the stationary model 
because of the non-stationarity from the variation of the covariate when estimating rainfall 
quantile. However, in this study, the concept of reference covariate was introduced to prevent 
excessive dispersion of rainfall quantile ensemble due to extreme values of covariate. That is, 
it was suggested that the reliability of the non-stationary frequency analysis could be superior 
to the reliability of the stationary frequency analysis under the condition that an appropriate 
reference covariate is given. For reference, it was found that it was necessary to change the 
reference covariate in response to the return level of the rainfall quantile. 

The main focus of this study was on how to examine the relative superiority of the 
stationary and non-stationary models when performing frequency analysis. When considering 
the uncertainty of the parameter of probability distribution, which is mainly caused by the 
limited sample size, it was thought be insufficient to evaluate the relative goodness of the 
stationary and non-stationary models only by evaluating the fitness of the sample using the 
estimated parameter. This study was promoted from the viewpoint that a model with smaller 
uncertainty inherent in rainfall quantile, which is the result of frequency analysis, was better. 
From this point of view, it was found that the covariate-based non-stationary frequency analysis 
could be a better model than the stationary frequency analysis if the reference covariate was 
properly given. In addition, it was recognized that the uncertainty of the rate of change of 
rainfall quantile in future covariate conditions could also be identified by using the rainfall 
quantile ensemble in present and future covariate conditions that can be obtained in the 
uncertainty analysis process. 
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Table captions: 

 

Table 1. Parameter estimation of stationary GP distribution at Busan and Seoul sites 

Table 2. Uncertainty of stationary and DPT-based non-stationary frequency analysis at 
Busan and Seoul sites 
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Table 1. Parameter estimation of stationary GP distribution at Busan and Seoul sites 

Site Parameter PWM MH 

Busan 
α 33.5972 33.966 (8.54 %) 
k -0.1423 -0.1477 (47.44 %) 

nllh 1630.38 1630.42 

Seoul 
α 34.9666 35.1785 (8.93 %) 
k -0.1633 -0.1772 (38.59 %) 

nllh 1340.82 1340.87 
 

Table 2. Uncertainty of stationary and DPT-based non-stationary frequency analysis at Busan 
and Seoul sites 

Site Factor Parameter Stationary Non-stationary 

Busan 

m − factor 

𝛼𝛼1  

 

0.3278 

0.5463 

𝛼𝛼2 0.8700 

α 0.2920 

k 1.7507 1.5717 

h − factor 100-yr 0.7595 0.4771 
(1.0274) 

Seoul 

m − factor 

𝛼𝛼1  

 

0.3407 

0.7127 

𝛼𝛼2 0.8588 

α 0.3349 

k 1.4204 1.5613 

h − factor 100-yr 0.7421 0.5331 
(1.0273) 
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Figure captions: 

Figure 1. Sensitivity of 95 % daily rainfall depth to dew-point temperature at (a) Busan 
and (b) Seoul sites. 

Figure 2. Mean residual life plot at (a) Busan and (b) Seoul sites. The solid line is the mean 
of the excesses of the threshold, and the dotted line is approximated 95% confidence 
intervals. 

Figure 3. Posterior distribution of parameters of stationary and non-stationary GP 
distribution. (a) Scale and (b) shape parameters at Busan site, and (c) scale and (d) shape 
parameters at Seoul site. The black vertical lines are a parameter calculated by PWM, 
which is expressed as a single value. The posterior distribution of parameters for the 
stationary GP distribution sampled using the MH algorithm is indicated by red lines. The 
posterior distribution of parameters for the non-stationary GP distribution is indicated 
by blue lines. The scale parameter of the non-stationary GP distribution using covariate 
is defined as a function of DPT. Therefore, the posterior distribution of the scale 
parameters were derived on the assumption that DPT was given at 20.2567 ℃ (Busan site) 
and 21.4958 ℃ (Seoul site), respectively. 

Figure 4. Changes in uncertainty for co-variate at (a) Busan and (b) Seoul sites. The upper 
left figures in Figure 4(a) and (b) show the POT series (blank line), and the ensemble 
average of stationary (blue line) and non-stationary (red line) rainfall quantile 
corresponding to the return level of 100-year. In the upper right figures, the ensemble 
average (blue line for stationary model, and red line for non-stationary model), and 
95PPU of the stationary (blue dotted line) and non-stationary (red dotted line) rainfall 
quantile for the return level of 100-year are shown. The lower left figures show the h-
factor of the stationary (blue line) and non-stationary (black line) rainfall quantile 
corresponding to the return level of 100-year. Red lines mean the average of black line. 
The lower right figures show the ensemble average (blue line for stationary model, and 
red line for non-stationary model), and 95 PPU of the stationary (blue dotted line) and 
non-stationary (red dotted line) scale parameter. 

 

Figure 5. Rainfall quantile estimates at (a) Busan, and (b) Seoul sites for return level of 
100-year using observed dew-point temperature and global warming scenarios. The 
stationary rainfall quantile is indicated as a blue vertical line since it is a single value. The 
non-stationary rainfall quantiles were calculated using the average of the parameter 
ensemble sampled by MCMC and the DPT observed on the day of POT excesses (red 
dotted line). In this figures, ‘NS (3 ℃ up)’ is an empirical distribution of rainfall quantile 
derived using DPTs that add 3 ℃ to DPTs observed on the day of POT excesses. Likewise, 
'NS (5 ℃ up)' is an empirical distribution of rainfall quantile under the scenario condition 
where DPT has risen 5 ℃ due to global warming. 

Figure 6. Selection of reference dew-point temperature for estimating rainfall quantiles 
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at (a) Busan and (b) Seoul sites. In this figure, 'RF' refers to the empirical relative 
frequency of DPT on the day of POT excess. 

Figure 7. Performance of stationary and non-stationary frequency analysis models. At 
Site ID, 1: Ghangreung, 2: Seoul, 3: Incheon, 4: Chupungryeong, 5: Pohang, 6: Daegu, 7: 
Jeonju, 8: Ulsan, 9: Ghwangju, 10: Busan, 11: Mokpo, 12: Yeosu and 13: Jeju site. 

Figure 8. Effect of the number of samples on the uncertainty of rainfall quantile using 
reference dew-point temperature. 

Figure 9. Likelihood of increase over change rate of rainfall quantile for return level of 
100-year. 

Figure 10. Procedure for analyzing uncertainty in rate of change. In upper left figures, 
the blue line is the probability distribution of 𝑿𝑿𝒑𝒑𝑻𝑻 in the present condition, and the red 
line is the probability distribution of 𝑿𝑿𝒇𝒇𝑻𝑻 in the DPT 4 ℃ rising condition. In the lower 
left figures, the section of the standard deviation was colored in pink. 
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(a)                                        (b) 

Figure 1. Sensitivity of 95 % daily rainfall depth to dew-point temperature at (a) Busan and (b) 
Seoul sites. 

 

 

(a)                                        (b) 

Figure 2. Mean residual life plot at (a) Busan and (b) Seoul sites. The solid line is the mean of 
the excesses of the threshold, and the dotted line is approximated 95% confidence intervals. 
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(a)                                        (b) 

 

(c)                                        (d) 

Figure 3. Posterior distribution of parameters of stationary and non-stationary GP distribution. 
(a) Scale and (b) shape parameters at Busan site, and (c) scale and (d) shape parameters at Seoul 
site. The black vertical lines are a parameter calculated by PWM, which is expressed as a single 
value. The posterior distribution of parameters for the stationary GP distribution sampled using 
the MH algorithm is indicated by red lines. The posterior distribution of parameters for the 
non-stationary GP distribution is indicated by blue lines. The scale parameter of the non-
stationary GP distribution using covariate is defined as a function of DPT. Therefore, the 
posterior distribution of the scale parameters were derived on the assumption that DPT was 
given at 20.2567 ℃ (Busan site) and 21.4958 ℃ (Seoul site), respectively. 
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(a) 

 

(b) 

Figure 4. Changes in uncertainty for co-variate at (a) Busan and (b) Seoul sites. The upper left 
figures in Figure 4(a) and (b) show the POT series (blank line), and the ensemble average of 
stationary (blue line) and non-stationary (red line) rainfall quantile corresponding to the return 
level of 100-year. In the upper right figures, the ensemble average (blue line for stationary 
model, and red line for non-stationary model), and 95PPU of the stationary (blue dotted line) 
and non-stationary (red dotted line) rainfall quantile for the return level of 100-year are shown. 
The lower left figures show the h-factor of the stationary (blue line) and non-stationary (black 
line) rainfall quantile corresponding to the return level of 100-year. Red lines mean the average 
of black line. The lower right figures show the ensemble average (blue line for stationary model, 
and red line for non-stationary model), and 95 PPU of the stationary (blue dotted line) and non-
stationary (red dotted line) scale parameter. 
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(a)                                   (b) 

Figure 5. Rainfall quantile estimates at (a) Busan, and (b) Seoul sites for return level of 100-
year using observed dew-point temperature and global warming scenarios. The stationary 
rainfall quantile is indicated as a blue vertical line since it is a single value. The non-stationary 
rainfall quantiles were calculated using the average of the parameter ensemble sampled by 
MCMC and the DPT observed on the day of POT excesses (red dotted line). In this figures, 
‘NS (3 ℃ up)’ is an empirical distribution of rainfall quantile derived using DPTs that add 3 ℃ 
to DPTs observed on the day of POT excesses. Likewise, 'NS (5 ℃ up)' is an empirical 
distribution of rainfall quantile under the scenario condition where DPT has risen 5 ℃ due to 
global warming. 

 

 

(a) Busan                                (b) Seoul 

Figure 6. Selection of reference dew-point temperature for estimating rainfall quantiles at (a) 
Busan and (b) Seoul sites. In this figure, 'RF' refers to the empirical relative frequency of DPT 
on the day of POT excess. 
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(a) negative log likelihood                     (b) h factor 

Figure 7. Performance of stationary and non-stationary frequency analysis models. At Site ID, 
1: Ghangreung, 2: Seoul, 3: Incheon, 4: Chupungryeong, 5: Pohang, 6: Daegu, 7: Jeonju, 8: 
Ulsan, 9: Ghwangju, 10: Busan, 11: Mokpo, 12: Yeosu and 13: Jeju site. 
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(a) Busan                           (b) Seoul 

Figure 8. Effect of the number of samples on the uncertainty of rainfall quantile using reference 
dew-point temperature. 

 

 

(a) Busan                            (b) Seoul 

Figure 9. Likelihood of increase over change rate of rainfall quantile for return level of 100-
year. 
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(a) Busan                                   (b) Seoul 

Figure 10. Procedure for analyzing uncertainty in rate of change. In upper left figures, the blue 
line is the probability distribution of 𝑋𝑋𝑝𝑝𝑇𝑇  in the present condition, and the red line is the 
probability distribution of 𝑋𝑋𝑜𝑜𝑇𝑇 in the DPT 4 ℃ rising condition. In the lower left figures, the 
section of the standard deviation was colored in pink. 

 

 

 


