Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-161-AC1, 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.

HESSD

Interactive comment

Interactive comment on "Estimation of evapotranspiration through an improved daily global solar radiation in SEBAL model: a case study of the middle Heihe River Basin" by Jingqiu Yin et al.

Jingqiu Yin et al.

autumn4001@126.com

Received and published: 31 January 2021

Dear Nadja den Besten, Thank you for all your feedbacks and comments about our work. All the questions you mentioned have been answered and have been revised. In addition, Dr. Liu's thesis can be downloaded from CNKI. You may not be able to download it, but I can upload it. At the same time, I checked the literature related to him and added it to the article.

1. L. 11 Response: I have deleted it. 2. L. 41-45 Response: I have revised in line

Discussion paper

39-47. 3. L. 76 Response:100 m×100 m 4. L.99 Response:Please look at line 219-224 5.L.101-104 Response: I have revised, and added this content in line 106-110 6.L.110-111 Response: I have revised. We got the data from the old website, but they've changed now. The land cover data on the Internet can't meet our requirements. It was made by Dr. Li, one of the authors, who also used it in his article. 7.L.144 No. b is right. 8.L.193 Response: Yes, surface albedo is moderate sensitive to ET, but the LST and daily GSR are more sensitive than it(Liu ,2008, Zheng et al.,2016, Xia,et al.,2013). âŚă In the study period, except for the amount of cloud, other weather conditions are the same, and there is no rainfall. âSaWe also find that the surface albedo and NDVI are almost unchanged, in several consecutive days. âŚćwe also find that the surface albedo of MODIS from 21 to 24 is almost unchanged. âŚčlf the study period is discontinuous and the interval is long, the surface albedo can not be used. The third strategy is suitable for continuous multi day periodãAC 9.L.210 Response:Please look at line219-224 10.L.231 Response: I have revised. 11.L.249-250 Response: I have deleted it. 12.L.255 Response: I have revised. 13.L.272 Response: Yes, the result is expected. I have revised, and added the tables. 14.L.282 Response: Heihe River is an inland river in arid and semi-arid region. In the middle reaches, all farmland irrigation water comes from of Heihe River, which is agricultural production water mentioned in the introduction of the article. 15.L.283-285 Response: I have revised in line 293-294. 16.L.305 Response: I have revised. 17.L.288-289 Response: I have revised. 18.L.337 Response: Yes, in this region, the water source of crop growth in the middle reaches of Heihe River is irrigated by Heihe River. So irrigated farmland show high ET rates. 19.349-453 Response: I have deleted it. 20.Maybe a flowchart will help to describe the methodology. Response: I have added it.

HESSD

Interactive comment

Printer-friendly version

Interactive comment on Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-161, 2020.

Interactive comment

Fig.1. Flow chart of this study

Printer-friendly version

Discussion paper

Fig. 1.

Interactive

comment

Table 2	
ET of three combination schemes on 24 June, 2009(Unit: m	m)

Classification		farmland			wetland	
	measured	original	improved	measured	original	improved
	EI	scheme	scheme	EI	scheine	scheme
TM strategy	4.8	6.3	5.0	2.2	4.7	3.5
MODIS strategy	4.8	6.3	4.2	2.2	4	2.6
TM/MODIS Hybrid strategy	4.8	7.0	4.8	2.2	4.7	3.1

Printer-friendly version

Discussion paper

Interactive comment

Table 3					
Errors of ETs of t	three combination	strategies on	24 June	2009(Unit: n	m)

	al annual and a se	farn	nland	wetland		
strategy	scheme	MABE	MABRE (%)	MABE	MABRE (%)	
	original scheme	1.5	31	2.5	114	
1 M strategy	improved scheme	0.2	4	1.3	59	
MODIS	original scheme	1.5	31	1.8	82	
strategy	improved scheme	0.6	13	0.4	18	
TM/MODIS	original scheme	2.2	46	2.5	114	
strategy	improved scheme	0	0	0.9	41	

Printer-friendly version

	\sim
DISCUSSION DAI	Dei
Dioodoolon pa	50.

Tal	ble 4						
	Delles DT of set dat	TT-11- D1	n n	L	2.4	2000 (61	D (TT-les -

Date	Measure	simula	ted ET	MA	BE	MARBE	9 E (%)
	ET	improved	original	improved	original	improved	original
6.21	4.9	3.8	6.6	1.1	1.7	22	35
6.22	5.1	3.9	6.5	1.2	1.4	24	27
6.23	4.5	4.4	6.6	0.1	2.1	2	47
6.24	4.8	4.8	7	0	2.2	0	46
Mean	4.8	4.2	6.7	0.6	1.85	12	39

b. Daily ET of middle Heihe River Basin on June 21-24, 2009 (wetland) (Unit: mm)

Date	Measure	simulated ET		MABE		aulated ET MABE MARBE (%)		Ξ(%)
	ET	improved	original	improved	original	improved	original	
6.21	2.1	2.4	4.1	0.3	2	14	95	
6.22	1.9	1.2	2.2	0.7	0.3	37	16	
6.23	2.1	1.7	2.7	0.4	0.6	19	29	
6.24	2.2	3.1	4.7	0.9	2.5	41	114	
Mean	2.1	2.1	3.4	0.6	1.4	28	64	

Interactive comment

Printer-friendly version

Discussion paper

