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Abstract. Snow heights have been manually observed for many years, sometimes decades, at various places. These records are

often of good quality. In addition, more and more data from automatic stations and remote sensing are available. On the other

hand, records of snow water equivalent SWE – synonymous for snow load or mass – are sparse, although it might be the most

important snowpack feature in fields like hydrology, climatology, agriculture, natural hazards research, etc. SWE very often

has to be modeled, and those models either depend on meteorological forcing or are not intended to simulate individual SWE5

values, like the substantial seasonal “peak SWE”.

The ∆SNOW.MODEL is presented as a new method to simulate local-scale SWE . It solely needs snow heights as input,

though a gapless record thereof. Temporal resolution of the data series is no restriction per se. The ∆SNOW.MODEL is a

semi-empirical multi-layer model and freely available as R-package. Snow compaction is modeled following the rules of New-

tonian viscosity. The model considers measurement errors, treats overburden loads due to fresh snow as additional unsteady10

compaction, and melted mass is stepwise distributed top-down in the snowpack.

Seven model parameters are subject to calibration, which was performed using 71 winters from 14 stations, well-distributed

over different altitudes and climatic regions of the Alps. Another 73 rather independent winters act as validation data. Re-

sults are very promising: Median bias and root mean squared error for SWE are only −4.0 kg m−2 and 23.9 kg m−2, and

+2.3 kg m−2 and 23.1 kg m−2 for peak SWE , respectively. This is a major advance compared to snow models relying on15

empirical regressions, but also much more sophisticated thermodynamic snow models not necessarily perform better.

Not least, this study outlines the need for comprehensive comparison studies on SWE measurement and modeling at the

point and local scale.

1 Introduction

Total height (H) and bulk density (ρb) are fundamental characteristics of a seasonal snowpack (e.g., Goodison et al., 1981;20

Fierz et al., 2009). Equation (1) links them to the areal density [kg m−2] of the snowpack, which – in hydrological applications
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– is usually referred to as snow water equivalent (SWE ), as it resembles “the depth of water that would result if the mass of

snow melted completely” (Fierz et al., 2009).

SWE =H · ρb [1 kg m−2 ≡ 1 mm water equivalent (w.e.)] (1)

1.1 Measurements ofH and SWE25

MeasuringH is relatively easy (e.g., Sturm and Holmgren, 1998): Manual measurements at a certain point only require a rod or

ruler (e.g., Kinar and Pomeroy, 2015), and decades-long series of dailyH measurements exist in many regions – in lowlands as

well as in alpine areas (e.g., Haberkorn, 2019). In modern times more and more H data from automated measurements (mostly

sonic or laser) become available, typically in sub-hourly resolution (McCreight and Small, 2014). In addition, remote sensing

techniques currently increase the number of H data significantly, having the advantage of an areal picture instead of point30

information but at the cost of accuracy and – in most cases – temporal resolution and regularity (Cf., e.g., Dietz et al. (2012)

for a general review of methods, and Deems et al. (2013) for a review on lidar measurements. Painter et al. (2016) provide a

thorough overview. Garvelmann et al. (2013) and Parajka et al. (2012), e.g., illustrate the potential of timelapse photography.)

In contrast, measurements of SWE (or ρb) are more difficult (e.g., Sturm et al., 2010): Manual measurements are time

consuming (especially if a snow pit is dug), require some basic equipment like snow tubes or snow sampling cylinders and –35

not least – some dexterity (e.g., Kinar and Pomeroy, 2015). As a consequence, SWE measurements are carried out at much

fewer locations than H measurements (e.g., Mizukami and Perica, 2008; Sturm et al., 2010), their accuracy is lower, and series

are shorter. Only in very rare cases consecutive, decades-long measurement series are available (e.g., in Switzerland; cf. Jonas

et al., 2009). Often they are only carried out at irregular intervals (“snow courses”) and even if regularly measured, temporal

resolution is hardly ever higher than two weeks. Besides these restrictions concerning manual measurements, also automatic40

measurements of SWE are not at all comparable in quality and quantity with automated H measurements. They are quite

expensive, often inaccurate, still at a developmental stage, and/or suffer from significant problems if not intensively maintained

throughout the snowy season. Methods involve weighing techniques (snow scales; e.g., Smith et al., 2017; Johnson et al.,

2015), pressure measurements (snow pillows; e.g., Goodison et al., 1981), upward-looking ground penetrating radar (GPR;

e.g., Heilig et al., 2009), passive gamma radiation (e.g., Smith et al., 2017), cosmic ray neutron sensing (CRNS; e.g., Schattan45

et al., 2019), L-band Global Navigation Satellite Signals (GNSS; e.g., Koch et al., 2019), etc. Presumably, the biggest and best

serviced network of automated SWE measurements is SNOTEL with about 800 sites in Western North America (Avanzi et al.,

2015).

Furthermore, there is no way to directly monitor SWE by remote sensing techniques (Schaffhauser et al., 2008), and deriving

this snow property from satellite products at the local scale (< 1km) is still not possible (Smyth et al., 2019). On top of that,50

there is the issue of longterm availability: automated measurements and (at least rough) remote sensing of SWE have not been

available for more than some twenty years at their best (e.g., SNOTEL, operated since the late 1990s), a fairly short timespan

compared to decades-long daily H data (e.g., Kinar and Pomeroy, 2015).
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Regardless of these problematic circumstances accompanying SWE measurements, many hydrological and agricultural

applications depend on good estimates of SWE (e.g., Goodison et al., 1981; Sturm and Holmgren, 1998). Very often, in the55

end the mass of water stored in the snowpacks matters, and that’s why the majority of those fields is especially interested

in seasonal SWE maxima, i.e. “peak SWE” (SWE pk). SWE pk are also the main focus of different kinds of extreme value

and climatic analyses, both of which additionally very much rely on longterm or even “historical” data. Not least, snow load

standards (e.g., International Organization for Standardization, 2013) rely on extreme value analyses of longterm snow load

records (or SWE records, respectively; snow load SL = SWE ·g, with gravitational acceleration g = 9.8 m s−2). These points60

reveal the great discrepancy between the good data situation in terms of H on the one hand, and the insufficient availability of

SWE data on the other.

1.2 Modeling SWE

Modern snow models like Crocus (e.g., Vionnet et al., 2012), SNOWPACK (e.g., Lehning et al., 2002), SNTHERM (Jor-

dan, 1991), or dual-layer model SNOBAL (Marks et al., 1998) resolve mass and energy exchanges within the ground-snow-65

atmosphere regime in a detailed way by depicting the layered structure of seasonal snowpacks. (Echoing Langlois et al. (2009),

these models will be termed “thermodynamic snow models” in the following.) Estimations of absolute model errors for SWE

are rather scarce. However, it might be at the order of 10 to 15 kg m−2 (Langlois et al., 2009), but probably sometimes sig-

nificantly more (Vionnet et al., 2012). See Sect. 3.2 and Table 2 for more details. All thermodynamic snow models need

meteorological input data like temperature or radiation. Unfortunately, many longterm H series – which are so valuable for a70

variety of applications (see above) – do not come along with these data, and parametrizing or downscaling them from other

sources in turn isn’t straightforward either. Even markedly simpler models at least require temperature and precipitation mea-

surements as inputs (e.g., De Michele et al., 2013) or – in a very recent work by Hill et al. (2019) – climatological means

thereof. Consequently, no thermodynamic snow model is applicable to derive SWE exclusively from H . (Avanzi et al. (2015)

provide a good review and also introduce models including “statistical descriptions” which, in turn, need SWE measurements75

as input and, therefore, are not further addressed here. In this study these are counted as “thermodynamic snow models” as

well.)

On the other side of the SWE modeling spectrum there are those models which – aside H – only depend on date d (Pis-

tocchi, 2016), d and altitude z (Gruber, 2014, see statistical approach therein), d and regional parameters (e.g., Mizukami and

Perica, 2008; Guyennon et al., 2019) or d, z and regional parameters (e.g., Jonas et al. (2009); and applications thereof e.g.,80

by Achleitner and Schöber (2017), who fitted the parameters to Austrian data). Again, Avanzi et al. (2015) provide a thorough

listing of those models, which will be abbreviated as ERMs (for “empirical regression models”) in the following. ERMs very

much rely on the strong, near-linear dependence between H and SWE (cf., e.g., Jonas et al., 2009). According to Gruber

(2014) and Valt et al. (2018) H describes more than 80% of SWE variance (81% and 85%, respectively). This behavior bases

on the narrow range within which the majority of bulk snow densities is found, and it leads to the well-known characteristic85

of H–SWE–ρb datasets: log-normally distributed H and SWE as well as normally distributed ρb (e.g., Sturm et al., 2010).

Unfortunately, ERMs cannot adequately model (unchanged) SWE during periods with snow densification only due to meta-
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morphism and deformation strain (Jordan et al., 2010) but without (significant) mass loss. Sturm and Holmgren (1998) already

state that H and “load” (or SWE , respectively) play a more limited role in determining the compaction behavior in seasonal

snow than “grain and bond characteristics” and temperature.90

Interestingly, in ERMs absolute, single-dayH observations are the only snow characteristics used. Depending on calibration

focus they either adequately model mean SWE or SWE pk, mid winter or spring, etc. This is an inherent fact due to their model

architecture. Those calibrated for good estimates of mean SWE (necessarily) fail to model SWE pk sufficiently well, those

designed for SWE pk often give bad SWE results during phases with shallow snowpacks. Typically, they simulate unrealistic

mass losses during phases with compaction only by metamorphism and deformation strain, and the timing of SWE pk as well95

as the duration of high snow loads cannot be modeled well. As it is honestly stated by Jonas et al. (2009) – the authors of one of

the most influential ERMs – those models cannot be used to “convert time series of H into SWE at daily resolution or higher”

because they may “feature an incorrect fine structure in the temporal course of SWE”. Therefore, ERMs are not suitable to

calculate SWE for individual days. (Still, well made for means.)

McCreight and Small (2014) go an interesting step further and not only use single-day H values for their regression model,100

but also the “evolution” of daily H . They make use of the negative correlation of H and ρb at short timescales (10 days) and

their positive/negative correlation at longer timescales (3 months) during accumulation/ablation phases. This promising step of

development is limited by the fact that the model parameters can only be estimated through regressions relying on at least three

training datasets of H and ρb (or SWE ) from nearby stations. (McCreight and Small (2014) used ultrasonic H measurements

in conjunction with SWE pillow measurements.) Unfortunately, this disqualifies the model of McCreight and Small (2014) for105

assigning SWE to longterm and historical H series as consecutive SWE measurements are not available for those.

Searching for alternative approaches that link H and SWE throughout a snowy season without the need of meteorological

input like temperature one might find Martinec and Rango (1991)’s work which provides a semi-empirical model that – in

some respect – bridges the gap between thermodynamic models (needing lots of meteorological input) and ERMs (being

“overregulated” by snow height). They use a method already developed by Martinec (1956) “to compute the water equivalent110

from daily total depths of the seasonal snow cover”. Snow compaction is expressed as a time-dependent power function, and

they end up with the following equation for each layer’s snow density ρn after n days

ρn = ρ0 · (n+ 1)0.3, (2)

where ρ0 is the initial density of the snow layer. Martinec and Rango (1991) use a constant ρ0 of 100 kg m−3 and a fixed

exponent of 0.3, without going into detail how these values were found. They show that the error made by a bad choice of115

ρ0 is rapidly decreasing with n and therefore the power function (Eq. (2)) gives robust results at least for old(er) snow layers.

They claim (without further explanation) that snow “luckily” does not settle according to an exponential curve, and show that

in that case the error of ρ0 would be independent from n and would not diminish while the snow layers are aging. Their model

interprets “each increase of total snow depth [. . . ] as snow fall” and “[if] the total snow depth remains higher than the settling

by [Eq. (2) of the article in hand], this is also interpreted as new snow. If the snow depth drops lower than the value of the120
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superimposed settling curve of the respective snow layers, it is interpreted as snowmelt, and a corresponding water equivalent

is subtracted. In this way the water equivalent of the snow cover can be continuously simulated [. . . ]”. Martinec and Rango

(1991) get promising results using this simple but robust snow compaction law. They only need daily snow heights as input

and end up with a modeled SWE record at daily resolution.

1.3 Motivation for a New Approach125

The question evolves, whether such a semi-empirical, layer-resolving snow model like the rather old one of Martinec and

Rango (1991) can be improved and modernized, in order to provide an up-to-date snow model standard somewhere between

sophisticated, thermodynamic and modest, purely-statistical H–SWE–ρb models, like ERMs. Looking at the ease of Martinec

and Rango (1991)’s approach, thinking about modern computational possibilities, and given the introductorily described strong

need for “something handy”, it seems interesting that there are no recent publications on this topic. This leads to a possible null130

hypothesis of the paper-in-hand: “It is not possible to better model snow water equivalents than empirical regression models

do, by exclusively using snow heights and their temporal changes as input.” This statement can be rejected after the following

presentation of a new way to assign SWE values to the huge number of longterm, historical, and high-quality H records of

daily resolution. It follows Martinec and Rango (1991)’s key feature of considering daily change of snow height as a proxy for

the various processes altering bulk snow density ρb and snow water equivalent SWE , but further135

– bases its (dry) snow densification function on Newtonian viscosity,

– provides a way to deal with small discrepancies between model and observation (in the order of H measurement errors),

– takes into account unsteady compaction of underlying, older snow layers due to overburden snow loads,

– densifies snow layers from top to bottom during melting phases without automatically modeling mass loss due to runoff,

– and offers a way to deal with rain on snow (as an optional step, which is not detailed yet).140

This new modeling approach is named ∆SNOW.MODEL and an easy-to-use R-package is available through https://r-forge.

r-project.org. The package is called nixmass, and it not only involves the ∆SNOW.MODEL, but also other models that use snow

height (nix. . . Latin for “snow”) to simulate SWE (i.e., snow mass).

The ∆SNOW.MODEL neither gives any new crucial insights in snow physics nor involves substantially new approaches. Still,

the ∆SNOW.MODEL “rearranges” existing components in a physically consistent way and – as a whole – represents a new145

method. That is why it is described in the following Method section of this publication (Sect. 2). The calibration is outlined

in Sect. 2 as well. Results, like best parameter choices and validation of the model output when compared to measurements,

are given in Sect. 3. Section 4 provides an application of the ∆SNOW.MODEL for spatially modeling extreme snow loads in

Austria. Sections 5 and 6 discuss possible future developments and provide concluding remarks.
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2 Method150

As a successor of Martinec and Rango (1991)’s model the ∆SNOW.MODEL also builds on a semi-empirical approach and,

therefore, can be regarded as standing between thermodynamic and empirical regression models. Its basic version was already

presented by (Gruber, 2014, chapter 4) and a revision was presented by Gruber et al. (2018), but the ∆SNOW.MODEL described

in the present article experienced a significant updating and recoding. It is designed for seasonal snowpacks and not intended

for (multiannual) firn. The ∆SNOW.MODEL does not need any further input but a gapless snow height record. It uses changes155

in observed snow height to simulate a record of SWE . A scheme of the ∆SNOW.MODEL’s principle is shown in Fig. 1.

Snow compacts over time due to various processes. Jordan et al. (2010) categorize them in snow drift, metamorphism,

and deformation strain. The ∆SNOW.MODEL cannot deal with snow drift, however, it differentiates between the latter two pro-

cesses. Metamorphism and deformation strain are processed in the three modules Dry Metamorphism (2.1), Fresh Snow (2.2.1),

and Drenching (2.2.3). The fourth module, Scaling (2.2.2), accounts for small discrepancies between model and observations.160

2.0.1 Preliminary: The First Snow Layer

For non-zero snow height observations (Hobs > 0) after a snow-free period the ∆SNOW.MODEL assigns the following features

to the model snowpack: There is one snow layer (layer counter ly = 1) and the age of this layer is set to age= 1. Snow

height of this model layer (h) and total model snow height (H) are equal, and set to observed snow height: h=H :=Hobs.

Analogously, the layer’s snow water equivalent equals total snow water equivalent: swe= SWE := ρ0 ·Hobs, with fresh snow165

density ρ0 being an important parameter of the ∆SNOW.MODEL (cf. Sect. 3). The treatment of the first snow event is illustrated

at t= 2 in Fig. 1; it is processed within the Fresh Snow Module (Sect. 2.2.1).

2.1 Dry Metamorphism

As it was mentioned in the Introduction, Martinec and Rango (1991) used a power function (Eq. (2)) to describe densification

of aging snow, because this way errors in initial density ρ0 get less relevant over time. For the ∆SNOW.MODEL this kind of170

high error tolerance of ρ0 is a rather feeble argument to use a power law, since it only holds for old snow and deep snowpacks,

but with the ∆SNOW.MODEL also SWE of ephemeral snowpacks (e.g., at low elevation sites) should be modeled as good as

possible. Furthermore, as the ∆SNOW.MODEL considers overburden load in a particular way (Sect. 2.2.1), it is not expedient

to have a direct dependence between density and age of a layer. Aside from that drawbacks of Martinec and Rango (1991)’s

power law compaction (and in contrast to their unproven claim “snow would [not] settle [. . . ] according to an exponential175

curve”), most snow models very well simulate snow compaction by way of Newtonian viscosity with associated exponential

densification over time (e.g., Jordan et al., 2010). The ∆SNOW.MODEL’s Dry Metamorphism Module combines the effects of

dry metamorphism and deformation strain, by applying the following adaption of Sturm and Holmgren (1998)’s relation, with
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the help of De Michele et al. (2013). (For wet metamorphism – as defined by Jordan et al. (2010) – see Drenching Module in

Sect. 2.2.3.)180

h(i, t− 1)
h(i, t)

= 1 + ∆t · σ̂(i, t)
η(i, t)

with σ̂(i, t) = g ·
ly(t)∑

î=i

swe(̂i, t)

and η(i, t) = η0 · ek·ρ(i,t).

(3)

Model timestep ∆t in general is arbitrary, but usually it is one day. If so, t can be explained as “today” and t−1 as “yesterday”

here. Accordingly, h(i, t) is today’s modeled height of the i-th snow layer. Snow layers are counted from bottom to top; layer

i= 1 is the lowest and oldest layer. Today’s height of the total snowpack is H(t) =
∑
ih(i, t).

The individual snow water equivalents of the layers are given by swe(i, t), and their sum represents total mass of the185

snowpack SWE (t) =
∑
i swe(i, t). The vertical stress at the bottom of layer i is given by σ̂(i, t) (De Michele et al., 2013). It is

constituted by the sum of loads overlying layer i (including layer i’s own load), with ly(t) being today’s total number of snow

layers or – in other words – ly(t) is the index i of today’s uppermost (i.e., “surface”) layer.

The Newtonian viscosity of snow η is made density-dependent in the framework of the ∆SNOW.MODEL (following Kojima,

1967), but dependencies on temperature, grain characteristics etc. are very consciously ignored – due to the lack of information190

on it when dealing with pure snow height data. Today’s density of layer i is ρ(i, t); it equals swe(i,t)
h(i,t) . k and η0 are tuning

parameters of the Dry Metamorphism Module (see Sect. 3).

To avoid excessive compaction a crucial parameter is introduced in the ∆SNOW.MODEL: ρmax. It defines the maximal pos-

sible density of a snow layer and (consequently) also the maximum bulk snow density. Finding its optimal value is subject to

calibration (Sect. 2.3). ρmax figures the density a snow layer (or the whole snowpack) can reach at most, unless it looses mass195

by melting. ρmax, of course, is a model parameter and cannot be observed in real snowpacks. In case the Dry Metamorphism

Module increases the density of one or more layers beyond ρmax, ρ(i, t) of the respective layer(s) is set equal to ρmax.

According to Eq. (3) the rate of densification of a certain snow layer is linearly depending on the overlying snow load σ̂(i, t)

and exponentially depending on the layer’s density ρ(i, t). Sturm and Holmgren (1998) conclude that this difference is one

reason why “snow load plays a more limited role in determining the compaction behavior than grain and bond characteristics200

and temperature”. Nonetheless, higher overloads result in stronger compaction. Denser and older layers, respectively, compact

less than newer layers with lower densities. This links the densification rate to the layer age, but indirectly by the use of density.

Therefore, ∆SNOW.MODEL’s compaction is not directly depending on layer age as it was the case if using Martinec and Rango

(1991)’s power law. The usage of an exponential function for compaction is one major difference between the ∆SNOW.MODEL

and Gruber (2014), who uses a power law approach similar to Martinec and Rango (1991).205

The Dry Metamorphism Module of the ∆SNOW.MODEL is illustrated by the light blue arrows in Fig. 1. This module is

applied at every point in time (except if there is no snow; see t= 1 in Fig. 1). The Dry Metamorphism Module is the “highest-
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ranking” module because based on its result the ∆SNOW.MODEL decides between three different processes, realized by the

other three modules:

2.2 Process Decisions210

The ∆SNOW.MODEL simulates the layers’ heights for the next point in time h(i, t) using Eq. (3) (Dry Metamorphism Mod-

ule). As one time step typically equals one day, figuratively spoken the Dry Metamorphism Module acts “over night”, from

“yesterday” to “today”. “Today” observed Hobs(t) and modeled H(t) are compared. The ∆SNOW.MODEL’s process decision

algorithm now takes the result of the difference ∆H(t) =Hobs(t)−H(t) and confronts it with τ [m]. τ is another tuning

parameter of the ∆SNOW.MODEL (see Sect. 2.3). Its value is in the order of a few centimeters (see Sect. 3) since τ could also215

be regarded as a measure for observational error. Technically, τ defines a limit of ∆H(t) whose overshooting, adherence, and

undershooting heads for one out of three branches, which – together with the Dry Metamorphism Module – build the four

modules of the ∆SNOW.MODEL:

– Fresh Snow (2.2.1): In case observed snow height is significantly higher than modeled snow height (∆H(t)>+τ),

a snowfall event is assumed. This means mass gain as well as enhanced compaction of underlying layers due to the220

overburden load.

– Scaling (2.2.2): In case there is no significant difference between observed and modeled snow height (−τ ≤∆H(t)≤
+τ), neither mass gain nor loss is modeled. However, modeled snowpack is “scaled”, i.e. compressed or stretched, to

fulfill the condition H(t) =Hobs(t).

– Drenching (2.2.3): In case observed snow height is significantly lower than modeled snow height (∆H(t)<−τ), it is225

interpreted as wet snow metamorphism. In the snowpack this “drenching” happens from top to bottom, resulting in the

associated (strong) decline of snow height. The drenching can either be caused by melt (mass loss) or rain (mass gain),

whereas treating the latter is optional, not finalized in the current version of the ∆SNOW.MODEL, and not further detailed

here.

2.2.1 Fresh Snow230

In case ∆H(t)>+τ , meaning observed snow height is significantly higher than modeled snow height, a fresh snow event

is supposed and a new top snow layer is modeled by the ∆SNOW.MODEL (see at t= 2 and t= 7 in Fig. 1 for a schematic

illustration). This is a consequential step and nothing innovative at all. Other models have implemented this mechanism as

well (e.g., Martinec and Rango, 1991; Sturm et al., 2010). However, the ∆SNOW.MODEL goes beyond and introduces another

feature: It explicitly models the peculiar effect of overburden load on underlying layers, defined as their enhanced densification235

due to (sudden) stress, which is put on by the weight of fresh snow (or rain-on-snow). Grain bonds get broken, grains slide,

partially melt, and warp (Jordan et al., 2010), and the layers densify comparatively rapidly and strongly. The ∆SNOW.MODEL

interprets overburden load as an “unsteady and discontinuous” stress on the snowpack, under which snow presumably does not
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react as a viscous Newtonian fluid. (As long as ∆t – the time between two consecutive observations – is in the order of at least

some hours, discontinuity is an intrinsic feature of the process. Mostly daily snow heights are available, a fresh snow event240

is always an unsteady case then.) The part of Jordan et al. (2010)’s deformation strain, that is created by the individual layer

loads, is interpreted as a “continuous” effect and is processed by the Dry Metamorphism Module; see σ̂ in Eq. (3). The Fresh

Snow Module realizes the effect of overburden load by reducing each layer’s height h(i, t) with the help of the dimensionless

“overburden strain” ε(i, t), defined as

ε(i, t) = cov ·σ0 · e−kov
ρ(i,t)

ρmax−ρ(i,t)

with σ0 = ∆H(t) · ρ0 · g.
(4)245

cov [Pa−1] is another tuning parameter of the model (see Sect. 2.3). It controls the importance of the sudden, enhanced

compaction due to overburden load. According to Sturm and Holmgren (1998) and in consistency with Eq. (3) snow load has

a linear effect on the bulk density. Therefore, ε(i, t) is made linearly depending on the load, which the overlying fresh snow is

putting on the underlying layers. This load (or stress or pressure) is well approximated by σ0 [Pa]; the bigger the overburden

load, the stronger the compaction. (The overburden load does not fully equal σ0, since ∆H(t) is not the height of the fresh250

snow, but the difference between modeled height – “before” knowing about the fresh snow event – and observed height “after”

the fresh snow event. An iterative calculation would be more precise, however, Eq. (4) proved to be an adequate compromise

between simplicity and accuracy.) In order to avoid ε(i, t)> 1, cov is restricted (at least) to the range of values between 0 and the

minimum value of the data record for 1
σ0

. As σ0 hardly ever exceeds 1000 Pa, 1
σ0

normally is larger than 1× 10−3 Pa−1. This

value, thus, marks a good upper bound for cov (Sect. 2.3). Dimensionless kov controls the role of a certain snow layer’s density255

(i.e., age, respectively) on ε(i, t), and has to be specified by calibration (see Sect. 2.3). The density-dependence of ε(i, t) was

chosen to be exponential, and using ρmax in the denominator of Eq. (4)’s exponent secures that overburden loads cannot make

snow layers denser than ρmax. The closer a snow layer’s density is to the maximum density ρmax, the less it will be compacted

by additional load. Relatively new and – therefore – not very dense layers, are exposed to greater densification, which is exactly

what is observed in reality. As it will be shown in sections 2.2.2 and 2.2.3 ρmax also governs mass loss and melt in the model.260

Not least, ρmax illustrates the possible maximum density of a wet seasonal snowpack in the ∆SNOW.MODEL world and – as it

can be seen in Sect. 3 – it is possible to assign a reasonable value to it. (Sturm et al. (2010), who revisited Sturm and Holmgren

(1998), already introduced a maximum density for seasonal snow. They used it very prominently in their formula for modeling

bulk density and defined five (snow) climate classes with different values of ρmax ranging from 217 to 598 kg m−3.)

The “overburden strain” ε(i, t) theoretically lies between 0 and 1 and compresses all (old) snow layers of the model in case265

of a fresh snow event. Practically, ε(i, t) is often close to zero (in this study 90% of all computed ε are smaller than 0.09) and

extremely rarely higher than 0.3 (in this study only 9 out of 10000).
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The following intermediate (asterisked) variables are defined due to the overburden load. The compressed layer’s masses,

swe(i, t), remain unaffected during this process.

ε(i, t) =
h(i, t)−h∗(i, t)

h(i, t)
leading to h∗(i, t) = (1− ε(i, t)) ·h(i, t)

H∗(t) =
∑

i

h∗(i, t)

ρ∗(i, t) =
swe(i, t)
h∗(i, t)

(5)270

A fresh snow event, identified by the condition ∆H(t)>+τ , of course not only impacts the older snow and compacts it

more strongly, but it also adds a new snow layer and mass to the snowpack (pink arrow at t= 2 and t= 7 in Fig. 1). The

number of layers is increased by one and the following attributes are given to the new layer:

age(ly, t) = 1

h(ly, t) =Hobs(t)−H∗(t)

swe(ly, t) = h(ly, t) · ρ0

(6)

The total snow water equivalent is risen: SWE (i, t) = SWE (i, t− 1) + swe(ly, t), and the intermediate variables of Eq. (5)275

overwrite their originals: h(i, t) = h∗(i, t), H(t) =H∗(t) +h(ly, t), and ρ(i, t) = ρ∗(i, t). The model snowpack with this new

properties now again compacts according to Eq. (3), time t is risen by one increment, and “tomorrow” the process again starts

with the decision described in Sect. 2.2.

The treatment of overburden snow loads as triggers for enhanced compaction of the underlying snow is illustrated with a

purple arrow at t= 7 in Fig. 1. Although the overburden strain ε in most cases hardly deviates from zero (see above), the value280

of this feature for the performance of the ∆SNOW.MODEL is supposed to be rather high, at least it should be worth the effort

(cf. Sect. 5).

2.2.2 Scaling

Of course, equations (3 and (4 are highly simplified representations of the complex viscoelastic behavior of snow and make no

claims of being particularly precise. Still, also snow height observations typically only show an accuracy of a few centimeters.285

The ∆SNOW.MODEL accepts these inherent inaccuracies and apparent discrepancies between model and measurements and

copes with them by not applying too strict criteria in the process decisions described in Sect. 2.2. The uncertainty measure τ

(introduced above) acts as a buffer to avoid too frequent gain or loss of mass in the model world: In case |∆H| ≤ |τ | neither

the snowpack looses mass nor gains mass, but mass is kept constant. In order to benefit from having a new measurement at

every point in time, H(t) is intentionally set to Hobs(t) by the Scaling Module.290

The Scaling Module forces a partial reversal of the previous compaction, which was modeled by the Dry Metamorphism

Module between t− 1 and t. The best-fitted parameter setting for η0 is temporarily rejected and substituted by η∗0 . It would be
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straight forward to use one adjusted η∗0(t) for all layers. However, this leads to a rational function with multiple solutions for

η∗0(t). Consequently, this approach shows a clear non-physical behavior making it necessary to calculate different η∗0(i, t) for

each layer i. See Appendix A for details on that.295

η∗0(i, t) is then used instead of η0 in Eq. (3) to recalculate the compaction of individual layers. H(t) now equals Hobs(t). In

most cases all layers get “slightly more” or “slightly less” compacted by the Scaling Module than by the Dry Metamorphism

Module. Only at rare occasions the scaling does not compact, but a small “stretching” of the snowpack is necessary. This

only happens if there was a small increase in observed snow height and very little modeled dry metamorphic compaction; the

condition H(t) + τ > Hobs(t)>Hobs(t− 1) has to be fulfilled. Of course, such “stretching” does not occur in reality, but also300

in the ∆SNOW.MODEL it is an infrequent case that only acts at a small scale: in any case the “stretching” is smaller than τ . The

issue is accepted as a model artifact, not least, because the “stretching” enables the very valuable adjustment to Hobs at every

point in time – without forcing mass gain for any insignificant H raises that are within the measurement accuracy.

In case the density of an individual layer exceeds ρmax by the scaling process, the excess mass is distributed layerwise from

top to bottom. SWE remains constant during scaling, unless it would be necessary to compact all layers beyond ρmax. In this305

case the appropriate excess mass is taken from the model snowpack and interpreted as runoff, SWE is reduced and all layer

heights are cut accordingly (see Sect. 2.2.3 for details). As τ turns out to be – reasonably and preferably – chosen in the order

of a few centimeters (Sect. 3), the resulting reduction of SWE within the Scaling Module is always quite small (e.g., with

τ = 2 cm and maximum density is 450 kg m−3 the mass loss, i.e. runoff, is only 9 kg m−2).

The Scaling Module is illustrated as black arrows in Fig. 1. Note again that the scaling is nothing “physical”, but also nothing310

“substantial” in terms of SWE , yet it is a smart way to utilize the advantage of having a measured snow height at every point

in time.

2.2.3 Drenching

The Drenching Module, finally, defines compaction due to liquid water percolating from top to bottom through the snowpack,

loosening grain bonds and leading to densification. In case observed snow height at a certain point in time is significantly lower315

than modeled snow height (∆H(t)<−τ), the Drenching Module is activated. Drenching compaction is the ∆SNOW.MODEL’s

synonym of wet snow metamorphism.

The drenching can either be caused by melt or rain and the ∆SNOW.MODEL can principally deal with both processes, which

are (often) contradictory in terms of mass change (melt: mass loss or invariant; rain: mass gain or – only if combined with runoff

– invariant or mass loss). However, distinguishing between them is indeed extremely difficult (if not impossible) if only snow320

heights are available. For the time being the ∆SNOW.MODEL ignores rain since it concentrates on modeling SWE for pure

snow height records without having any further information on e.g precipitation, temperature, snowfall level,. . . Possibilities

how rain could be addressed at future developments are outlined in Sect. 5. This drawback seems disappointing, however, given

the relative success of the ∆SNOW.MODEL “without rain” (see Sect. 3) one should not expect too much improvement when

incorporating rain in one or another – potentially elaborate – way.325
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To cope with the model/observation discrepancy ∆H(t)<−τ the Drenching Module densifies the model layers until ρmax

is reached – starting from the uppermost one. Figuratively spoken, it wettens or drenches a certain layer until it is “saturated”

and further distributes the melt water to the underlying layer. This process is repeated until (transient, therefore asterisked) H∗

equals Hobs(t). One or more (upper) layers might reach ρmax. In case ∆H(t) is so negative that all model snow layers (from

top to bottom) are compacted and densified to ρmax, but still H∗ >Hobs(t), the product of the remaining height difference and330

the maximum density constitutes mass loss, i.e. runoff R(t):

R(t) = (H∗−Hobs(t)) · ρmax. (7)

All layer heights are “cut” by a respective portion: (H∗−Hobs)· h
∗

H∗ . This mechanism does not reduce total number of layers,

but layers potentially get very thin. During the melt season, where most of the runoff is produced, the Drenching Module is

more or less continuously active until it is snow-free (Hobs(t) = 0) and all the snow has been converted to runoff. For one335

distinct snowpack – from the first snow fall (t1) until getting snow-free again (t2) – one has
∑t2
t1
R(t) = SWE pk.

In Fig. 1 the Drenching Module is shown by the brown arrow (as long as there is no mass loss) and by the cyan arrow (in

case runoff is modeled).

2.3 Calibration

The ∆SNOW.MODEL has seven parameters that can be used for calibration: ρ0, ρmax, η0, k, τ , cov, and kov (cf. Tab 1). For the340

first four parameters one finds suggestions and ranges in the literature:

Sturm and Holmgren (1998) do not address the criticality for the choice of fresh snow density, however, they use con-

stant ρ0 = 75 kg m−3. It is a well known characteristic of freshly fallen snow to show large variations in densities. Helfricht

et al. (2018) reviewed many studies and give a general range of 10− 350kg m−3, narrowing it down to “mean values” be-

tween 70− 110kg m−3. Note, that this is daily densities. Sub-daily means of fresh snow densities are lower. Helfricht et al.345

(2018), for example, come up with an average of 68 kg m−3 for hourly time intervals. During the calibration process for the

∆SNOW.MODEL ρ0 was varied from 50 to 200 kg m−3.

The second density-related calibration parameter is ρmax, the maximum possible density within the model framework.

As mentioned, Sturm et al. (2010) already defined such a maximum for five different climate classes. They range from

217 to 598 kg m−3. Glaciologists set the “critical density” before snow turns into firn (which is wetted snow that has sur-350

vived one summer) to 400 to 800 kg m−3 (e.g., Paterson, 1998). Still, manual density measurements of seasonal snow used in

previous studies hardly ever exceeded ρb = 500 kg m−3 (e.g., Jonas et al., 2009; Guyennon et al., 2019). Armstrong and Brun

(2010) limit it to approximately 400 to 500 kg m−3 too. In order to find the fittest value for ρmax used in the ∆SNOW.MODEL,

it was varied from 300 to 600 kg m−3.

Equation (3) needs η0, the “viscosity at ρ equals zero” (Sturm and Holmgren, 1998). It is found to be in the order of355

8.5× 106 Pa s (Sturm and Holmgren, 1998), 6× 106 Pa s (Jordan et al., 2010), and 7.62237× 106 Pa s (Vionnet et al., 2012).

During the calibration process for the ∆SNOW.MODEL η0 was varied from 1 to 20× 106 Pa s. Parameter k, the second neces-
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sary parameter in Eq. (3), was varied from 0.011 to 0.08 m3 kg−1 by Sturm and Holmgren (1998) depending on climate region

and respective different types of snow. However, they cite Keeler (1969) in their Table 2 with values for k for “Alpine-new”

snow of up to 0.185 m3 kg−1. In more complex snow models k is set to 0.023m3 kg−1 (see Crocus: bη in Vionnet et al. (2012)’s360

Equation (7); and also in Equation (2.11) of Jordan et al., 2010) or 0.021m3 kg−1 (see SNTHERM: Equation (29) in Jordan,

1991). Its range for the ∆SNOW.MODEL calibration was set from 0.01 to 0.2 m3 kg−1, which is quite generous.

There are no references for the latter three parameters. τ , as mentioned, might be interpreted as a measure of observation

error, is regarded to be in the order of a few centimeters, and was modified from 1 cm to 20 cm for calibration. The last two

parameters determine the role of overburden strain and are kind of a specialty of the ∆SNOW.MODEL: cov and kov. At least365

the limits of cov could be defined (Sect. 2.2.1) as cov ∈
[
0,min( 1

σ0
)
]
. kov is only known to be a (dimensionless) real, positive

number. For calibrating the ∆SNOW.MODEL cov and kov were restrained by [0,10−3 Pa−1] and [0.01,10].

As mentioned, timestep ∆t principally can be chosen arbitrarily. Mostly it might be one day, because many (longterm) snow

height measurements are on a daily basis. The calibration performed in this study is based on ∆t= 1 day. Still, longer ∆t

(e.g., three days) as well as shorter ∆t (e.g., one hour) are conceivable and could be handled by the ∆SNOW.MODEL. Note,370

however, (at least some) calibration parameters will change significantly when changing ∆t. This gets obvious when thinking

about fresh snow density ρ0, which of course is different if defined for one hour or for a three day timestep. The usage of this

publication’s calibration parameters can, therefore, only be suggested for daily snow height records.

2.3.1 Calibration Data and Method

The calibration process needs data – either from observations or from a much more sophisticated snow model, whose simulated375

SWE s are sufficiently reliable.

As it was outlined in the Introduction, SWE measurements are quite rare. However, for calibration not only SWE obser-

vations are needed, but also gapless snow heights records from the same places, at least at daily resolution. Gruber (2014)

collected 15 years of weekly SWE data from six stations in the Eastern Alps, measured by the observers of the Hydrographic

Service of Tyrol (Austria) between winters 1998/99 and 2012/13. The measurements of snow height and water equivalent were380

made manually in snow pits with rulers and snow sampling cylinders (500 cm3), respectively. The sites range from 590m to

1650m altitude and are situated in relatively dry, inneralpine regions as well as in the Northern and Southern Alps, which are

more humid due to orographic enhancement of precipitation (see Gruber, 2014, for details). The sites in the Southern Alps

even show a moderate maritime influence due to their vicinity to the Mediterranean Sea, the most important source of moisture

for this region (e.g., Seibert et al., 2007). These 6×15 = 90 winter seasons cover 1166 measuredH–SWE pairs. Besides these385

SWE measurements manual H measurements are available for every day at the respective stations.

The second source for SWE measurements used for calibration is Marty (2017). The Swiss SLF freely provides biweekly

SWE and daily H data from 11 stations in Switzerland (mostly in the Northern Alps, some inneralpine) spanning an altitude

range from 1200m to 2540m. The biweekly H measurements (corresponding to the SWE measurements) were compared

with the daily H records. Only those sites and years were used for calibration where the respective values of the daily H390

record match the values of the biweekly measurements. This was the case for 9 stations, with all in all 56 winters and 363 pairs
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of H and SWE measurements. (Other stations and years suffer from discrepancies caused by too far distances between the

measurements etc.)

In order to ensure an unperturbed validation, the observation data sets from Austria and Switzerland (1529 SWE −H pairs)

were split into even years for model calibration (SWE cal) and odd years for validation (SWE val).395

Model calibration was performed with the statistical software R (R Core Team, 2019) and the R package optimx (Nash, 2014).

Results were obtained with optimization methods L-BFGS-B followed by bobyqa which both are able to handle lower and upper

bounds constraints. The function to be minimized was the root mean squared error of SWE s from the ∆SNOW.MODEL and

observed SWE s, using the calibration data set SWE cal.

3 Results400

The following evaluates the ability of the ∆SNOW.MODEL to calculate snow water equivalents exclusively from snow heights

and its practicability. See sections 3.2 and 4 for more. Before that, however, the model parameters have to be optimized during

the calibration process (which was described in Sect. 2.3). The results thereof – the best-fitted parameters – are important

model results per se, since they show insights how well model world and real world fit together.

3.1 Optimized Parameters and Sensitivities405

Table 1 gives an overview of all parameters and summarizes the optimal setting for the ∆SNOW.MODEL. A graphical analysis

of the model sensitivity to parameter changes is shown in Fig. 2. SWE pk was chosen to indicate sensitivity, since it is probably

the most important quantity for snow-hydrology and other fields where snow mass is a key variable (see Introduction).

3.1.1 Fresh Snow Density ρ0

Being aware of both – the huge possible variations of fresh snow density ρ0 depending on meteorological conditions during410

snowfalls and the possible cruciality of this parameter for SWE simulation by the ∆SNOW.MODEL – ρ0 was chosen to be a

constant in the framework of the model. For ρ0 = 81 kg m−3 the minimal root mean square differences/errors (RMSE) between

all SWE observations used for calibration (SWE cal) and the respective modeled values was reached. This value clearly lies

within the broader frame of possible fresh snow densities and quite closely to Sturm and Holmgren (1998)’s 75 kg m−3 (The

∆SNOW.MODEL could be seen as an extended combination of the Sturm and Holmgren (1998) and Martinec and Rango415

(1991) approaches.), but it is found in the lower part for “typical” fresh snow densities (e.g., Helfricht et al., 2018). A possible

explanation could be that the SWE measurement records used for the calibration tend to underrepresent late winter and spring

conditions. Regular (weekly, biweekly) observations capture the short melt seasons worse than the (much) longer accumulation

phases. Therefore, SWE records might be biased towards early and mid winter fresh snow densities, which are lower (e.g.,

Jonas et al., 2009). Still, there are also some indications that using e.g., 100 kg m−3 as constant fresh snow density when420

modeling SWE results in an overestimation of precipitation (up to 30% according to Mair et al., 2016). The calibrated value
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for ρ0 can be regarded as a reasonable result, even more when only considering it as a model parameter but not as a physical

constant.

The sensitivity analysis illustrated in Fig. 2 confirms the importance of a good choice of ρ0. Increasing ρ0 quite fast leads

to a decrease of the relative bias of seasonal SWE maxima (SWE pk). (Note the definition of the relative bias in Fig. 2’s425

caption.) In absolute values: too small ρ0 cause too small SWE pk, using higher values leads to an overestimation of SWE pk.

This behavior supports above-mentioned tendency to overestimate precipitation when choosing constant 100 kg m−3 as fresh

snow density. As expected, the fresh snow density is the most crucial parameter of the ∆SNOW.MODEL (cf. Tab 1). The median

relative bias of SWE pk changes by -0.46% per +1 kg m−3, if the whole calibration range of ρ0 is considered to calculate the

sensitivity (50− 200 kg m−3). This means a median change in SWE pk of +0.37 kg m−2 when ρ0 is risen by +1 kg m−3. If430

the limits are chosen tighter around the optimal value, the gradient is even steeper: -0.62% and +0.50 kg m−2 per +1 kg m−3,

respectively, when the gradient is approximated for the range 70− 90 kg m−3. Widely-used ρ0 = 100 kg m−3, consequently,

causes a median overestimation of SWE pk of about 12% in the ∆SNOW.MODEL (same for daily SWE ). Users should be aware

of this. The suggestion clearly is to either use the best-fitted data of this study or recalibrate all parameters (with appropriate

SWE data), but not adjusting only single parameters. As the calibration data of this study are spread across various climates and435

altitudes, users can be quite confident to get good results if using ρ0 = 81 kg m−3. This value seems to be a good compromise

– at least at alpine areas. However, for (very) maritime, very dry, polar or tundra regions the optimized ρ0 should be used with

caution; if possible, recalibration is recommended.

3.1.2 Maximum Density ρmax

Of course, the maximum bulk snow density of a snowpack changes from year to year and site to site. For the ∆SNOW.MODEL440

simplicity and independence from meteorological variables outweigh precision. Even more so, when there are good arguments

for the existence of a “typical” maximum bulk density ρmax. Put simply, (not too old) seasonal and also ephemeral snowpacks

melt away when they get water saturated. Before that, there is limited time for dry densification; dry winter snow’s bulk

density is widely described as staying below about 350 kg m−3 (e.g., Paterson, 1998; Sandells et al., 2012). Accounting for

the fact that volumetric liquid water content of about 10% marks the funicular mode of liquid distribution in old, coarse-445

grained snow (Denoth, 1982; Mitterer et al., 2011), this leads to the rough estimate of a typical maximum bulk density of about
9
10 · 350 + 1

10 · 1000 = 415kg m−3. Convincingly, the fittest value for ρmax in the ∆SNOW.MODEL turns out to be 401 kg m−3,

which is close to that value and well situated within the range given in the literature (Table 1). Moreover this is virtually the

same value like the median maximum seasonal density of the SWE val data records (400 kg m−3, see box plot in Fig. 3) –

another indication why ρmax could be regarded as a typical seasonal maximum of ρb.450

Figure 2 illustrates the similarity between ρ0 and ρmax regarding their influence on SWE simulations. Keeping the other

six ∆SNOW.MODEL parameters constant but increasing ρmax leads to increased SWE pk and vice versa – just like ρ0. This is

not surprising, however reasonable. The ∆SNOW.MODEL is not as sensitive to changes in ρmax than to changes in ρ0: Raising

ρmax by +1 kg m−3 leads to a mean decrease of the relative bias of SWE pk of -0.06%, which corresponds to an increase

in absolute SWE pk of +0.24 kg m−2 per +1 kg m−3. The same argumentation like for ρ0 in Sect. 3.1.1 lets users of the455
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∆SNOW.MODEL be quite sure when taking ρmax = 401 kg m−3, the best-fitted value according to this study’s calibration. Be

aware that solely changing parameter ρmax for an application of the ∆SNOW.MODEL elsewhere, without proper recalibration

of the other parameters, might lead to significant changes in the results for SWE . For the data set of this study, e.g., using

ρmax = 500 kg m−3 (instead of 401 kg m−3) would lead to a median overestimation of SWE pk of about 24 kg m−2.

3.1.3 Viscosity Parameters η0 and k460

Equation (3) represents the settlement and densification function of the ∆SNOW.MODEL. Viscosity of layer i at time t is defined

as η(i, t) = η0 · ek·ρ(i,t). Two parameters η0 and k act as adjustment screws and have to be calibrated. Literature places η0 in

the order of some 106 Pa s, k is supposed to be in the range of 0.01 to 0.2 m3 kg−1 (Table 1). The latter was varied over the

mentioned range during the calibration process and – satisfactorily – it’s optimized value is k = 0.0299 m3 kg−1, which is

very close to the ones used in widely accepted, sophisticated, thermodynamic models (Jordan et al. (2010), Vionnet et al.465

(2012); see also Sect. 2.3). The range over which η0 was varied during the calibration was 1 to 20× 106 Pa s. Best-fitted value

is 8.52× 106 Pa s, pretty close to other studies’ values (Table 1).

As far as the ∆SNOW.MODEL’s sensitivity to changes in the “viscosity parameters” η0 and k is concerned, Fig. 2 shows that

an isolated rise of the model snow viscosity – either by enhancing η0 or k – increases the relative bias of SWE pk, which means

a decrease in absolute values of SWE pk. This behavior is consistent, since higher viscosity reduces the densification rate and470

the model snowpack tendentially stays deeper. Consequently, increases in observed snow height tend to bring less fresh snow

in the ∆SNOW.MODEL (Fresh Snow Module). Finally, simulated SWE pk is reduced when η0 or k are increased and vice versa.

3.1.4 Discrepancy Parameter τ

The ∆SNOW.MODEL’s parameter to cope with uncertainties in snow height is τ . It is supposed to be in the order of a few

centimeters (at maximum). In particular, it should avoid excessive production of snow mass in the model through too frequent475

simulation of fresh snow events (see Sect. 2.2). τ is kind of a peculiarity of the ∆SNOW.MODEL and therefore no bounds can

be found in literature. It was generously accepted to range between 1 and 20 cm for calibration and turned out to be optimal

at τ = 2.36 cm (Table 1). Given the wide range of possible values, this is very close to what it would be expected to be as a

measure for Hobs accuracy.

Model sensitivity to changes in τ turns out to be quite low for values in the order of a few centimeters, but the influence on480

simulated SWE pk is strongly increasing if τ is chosen greater than about 5 cm (Fig. 2). This result makes a lot of sense, if τ is

seen as a measure of observation accuracy, because this is very likely to be better than 5 cm. Like changes in η0 and k, changes

in τ are indirect proportional to changes in SWE pk – for a closely related reason: The bigger τ the more often (small) fresh

snow events are not counted as such because the Scaling Module is more frequently activated at the cost of the Fresh Snow

Module (see Sect. 2.2). Mass gains are tendentially modeled less frequently and, as a consequence, snow water equivalents get485

smaller.
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3.1.5 Overburden Parameters cov and kov

Aside τ , there are two more parameters that are peculiar to the ∆SNOW.MODEL. They are needed to simulate unsteady

compaction by overburden load of fresh snow (Eq. (4)). Because of their (presumed) uniqueness in the snow model spec-

trum there is no information available on how to choose them (see Sect. 2.3 for more). However, the calibration produces490

cov = 5.10× 10−4 Pa−1 and kov = 0.379 as fittest values (Table 1).

As outlined in Sect. 2.2.1, the implementation of overburden strain in the ∆SNOW.MODEL is supposed to be an important

aspect of the model. Still, the sensitivity of modeled SWE pk to changes in either cov or kov – without changing the respective

other – are quite minor. (See Fig. 2 for cov. kov is not shown, because it is comparable, but with different sign.) The reason for

this relative insensitivity of the model to changes in cov and kov could be the contradicting effects of these two “overburden495

parameters”: Higher cov push overburden strain ε towards 1.0 (Eq. (4)), which increases the role of overburden snow. h∗ and

H∗ of Eq. (5 are reduced and, consequently, the new layer thickness (and mass) is increased (Eq. (6)). Higher cov, therefore,

lead to higher SWE and SWE pk. For kov it is the opposite, higher values of kov cause lower SWE .

3.2 Validation and Illustration

As pointed out, the observations of snow water equivalent where divided in two sets, one for calibration (SWE cal) and one500

for validation (SWE val). The question arises, how accurate the manual SWE observations are. The two data sources do not

address this point (Gruber, 2014; Marty, 2017). In general, this is not easy to be answered since SWE measurements made with

snow sampling cylinders mostly are used as references in comparison studies, without addressing their accuracy (e.g., Sturm

et al., 2010; Dixon and Boon, 2012; Kinar and Pomeroy, 2015; Leppänen et al., 2018a). The majority of SWE cal and SWE val

comes from the Hydrographic Service of Tyrol, Austria, where snow sampling cylinders (500 cm3) are used (Sect. 2.3.1). The505

repeatability of this kind of measurement is estimated at ±4% for glacier mass balance studies, with filling height having the

largest influence on accuracy (R. Prinz, Univ. of Innsbruck, Austria; pers. comm.). According to Leppänen et al. (2018b), who

compared various density samplers, the “variability among the replications of each sampler and variability among the samplers

[is] both less than 10% [. . . ] However, the uncertainty introduced by using different samplers was higher than the uncertainty

caused by observer error”. Roughly interpreting these density(!) measurement “variabilities” as relative observation errors for510

SWE , the results for absolute accuracy would typically spread across the wide range of about 2 to 50 kg m−2.

Table 2 provides an overview of model uncertainties for SWE . Vionnet et al. (2012) find a root mean squared error and bias

of 39.7 kg m−2 and −17.3 kg m−2, respectively, comparing 1722 manual samplings at Col de Porte (Chartreuse Mountains,

France) and Crocus. These seem to be quite pessimistic values, since root mean squared differences found by Langlois et al.

(2009) are significantly lower. (However, they base on much fewer data.) Roughly summarized, SWE observations as well515

as “first-class” snow models’ SWE simulations are associated with comparable uncertainties; RMSEs might be favorably

approximated in the order of 10 to 20 kg m−2.

In this study no quantitative comparison with thermodynamic snow models was performed, since they need further meteo-

rological data and the focus was on data records constrained to snow heights. However, the ∆SNOW.MODEL was thoroughly
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evaluated against ERMs. Figure 4 and Table 2 show the results. Even though ERMs do not need meteorological data, it is not520

straight forward to calibrate them for new sites and applications. From the vast number of ERMs (cf. Avanzi et al., 2015) the

ones of Pistocchi (2016) and Guyennon et al. (2019) were chosen to be fitted to SWE cal (standard: Pi16, Gu19; calibrated:

Pi16cal, Gu19cal). These models are (quite) new and easy to calibrate. Additionally, an approach simply using a constant bulk

snow density at every point in time was calibrated to fit this study’s data. Interestingly, 278 kg m−3 turned out to be the optimal

value minimizing root mean squared errors of all SWE values (ρ278). Moreover, Jonas et al. (2009) and Sturm et al. (2010)525

were used for comparison (Jo09, St10). Unfortunately, these powerful models could not be calibrated with SWE cal, because

this would have needed much more SWE −H pairs than those about 1500 having been processed in this study. Therefore,

Jonas et al. (2009) and Sturm et al. (2010) were used with their standard parameters, but for Jonas et al. (2009) it was dis-

tinguished between regions: Region 6 (Jo09R6) having the highest and Region 7 (Jo09R7) having the lowest “region-specific

offset”, respectively. Other contemporary approaches had to be ignored, mostly because of the problematic transferability of530

regional parameters (e.g., McCreight and Small, 2014, or Mizukami and Perica, 2008).

Figure 4’s upper left panel indicates the decent performance of the ERMs at the mean when applied to the validation-half of

the data set. The bias of modeled SWE is quite low and tendentially positive, meaning SWE is often slightly overestimated

by the ERMs. (Distinct values are given in Table 2.) The ∆SNOW.MODEL – on the contrary – slightly underestimates SWE

on average, the median bias is −4.0 kg m−2. The overall good results for the ERMs is not particularly surprising, since they535

are dedicated to perform well on average. The specially calibrated versions of Pistocchi (2016) and Guyennon et al. (2019)

show a significantly smaller bias than their originals. The model of Jonas et al. (2009) has the smallest (actually a negative)

bias for their “Region 7”, encompassing the dry, inneralpine Engadin as well as parts of the Southern Alps and the very

East of Switzerland (Samnaun), which is partly influenced by orographic precipitation from Northwesterly flows. In terms of

heterogeneity in precipitation climate “Region 7” is comparable to the region where the SWE data of this study comes from.540

Sturm et al. (2010) assess the bias for their model (with their “alpine” data set) at +29 kg m−2 with a standard deviation of

57 kg m−2, and they outline that “in a test against extensive Canadian data, 90% of the computed SWE values fell within

±80 kg m−2 of measured values”. This is a much more conservative estimation than the results for this study would suggest.

The other three indicators illustrated in Fig. 4 and summarized in Table 2 – bias of seasonal snow mass maximum SWE pk

(upper right panel) and the root mean squared errors of individual SWE (lower left panel) as well as of SWE pk (lower right545

panel) – signify the better performance of the ∆SNOW.MODEL compared to ERMs:

ERMs are intrinsically tied to snow height (see Sect. 1.2) and are systematically forced to overestimate SWE pk. Devel-

opers of ERMs are well aware of this, nevertheless, this is a pity since SWE pk is probably the most-wanted snowpack fea-

ture in hydrology, climatology, and extreme value analysis. The ∆SNOW.MODEL proofs to perform much better here. The

∆SNOW.MODEL’s bias of SWE pk is very minor, only +2.3 kg m−2 at median. ERMs typically suffer from (far) too high550

SWE pk simulations. The reasoning was given in the Introduction: “ERMs calibrated for good estimates of mean SWE

(necessarily) fail to model SWE pk sufficiently well”, since they are “overregulated” by the snow height. Moreover, the

∆SNOW.MODEL does not only work well for the bias in SWE and SWE pk, but also for the bias in the timing of SWE pk
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(not shown in Fig. 4, but in the last column of Table 2). ERMs tend to model SWE pk some days too early – the date of modeled

SWE pk is pulled towards the date of highest H . The ∆SNOW.MODEL virtually reduces this bias to zero.555

Another satisfactory validation result for the ∆SNOW.MODEL is shown in Fig. 4’s lower panels. RMSEs for all SWE

values are constantly lower than if modeled with ERMs: a median error of 23.9 kg m−2 (∆SNOW.MODEL) faces median errors

between 26.6 and 38.1 kg m−2 (ERMs). Calibrating Pistocchi (2016) and Guyennon et al. (2019) results in some improvement,

at least they perform much better than the ρ278 approach after the calibration. The model of Jonas et al. (2009) does a decent

job also without recalibration, which is remarkable. Sturm et al. (2010)’s method probably suffers from the handicap of being560

calibrated with data from the Rocky Mountains. For this comparison the “alpine” parameters of Sturm et al. (2010) were taken,

however, conditions might differ (too) much from the European Alps.

Not least as a consequence of the mentioned drawbacks of the ERMs when dealing with distinct values, the advantages

of the ∆SNOW.MODEL get most obvious when modeling SWE pk (Fig. 4, lower right; Table 2, last three columns). The

∆SNOW.MODEL manages to have a small range of RMSEs, with a median of 23.1 kg m−2 and 75% of the errors staying be-565

low 34.4 kg m−2. These values for SWE pk are very close to those for (daily) SWE , which emphasizes the ∆SNOW.MODEL’s

ability to model all individual SWE s equally well. The evaluated ERMs have doubled to tripled errors in simulated SWE pk

and rather big spreads. Remarkably, the simple ρ278 approach is performing relatively well. The Jonas et al. (2009) model – if

suitable adjusted to regional specialties – performs best, still, well beaten by the ∆SNOW.MODEL.

The ∆SNOW.MODEL root mean squared errors – slightly lower than 25 kg m−2, also for certain values like SWE pk – are570

higher than the errors of the thermodynamic snow models (roughly estimated at 10 to 20 kg m−2), which is not surprising given

the latter’s demands on input data and computational power. However, the ∆SNOW.MODEL outperforms empirical regression

models. This can be argued on base of the study in hand (especially Fig. 4), but even more when looking at the ERM studies

themselves: Jonas et al. (2009) provide RMSEs between 50.9 and 53.2 kg m−2 for their standard model, which are quite high

values compared to the findings of the study in hand (ca. 30 kg m−2 for SWE , see Table 2). One explanation could be that575

Jonas et al. (2009), as well as other ERM studies, rely on very diverse measurements (Still, lots of them!). The ∆SNOW.MODEL

study only consists of data from selected stations with long and regular SWE readings, where also ERMs seem to work better.

Guyennon et al. (2019) summarize their and other studies’ validation results using MAE, the mean absolute error. Table 2

provides the overview, and again it gets obvious, that ERMs perform better with this study’s data, than with Guyennon et al.

(2019)’s data.580

Figure 1 schematically shows the functioning of the ∆SNOW.MODEL. A practical example is now provided in Fig. 5, based

on the optimal calibration parameters found during this study and using the same colors as in Fig. 1. Kössen, the station

shown, is situated in the Northern Alps at 590m above sea level. Although it is a low-lying place it is known to be snowy,

which is, firstly, due to intense orographic enhancement of precipitation associated with Northwesterly to Northeasterly flows

in the respective region (Wastl, 2008) and, secondly, comparably frequent inflow of cold continental air masses from Northeast.585

Showing Kössen – rather than a high altitude station – should emphasize the versatile usability of the ∆SNOW.MODEL. It is not

only designed for high areas with deep, long-lasting snowpacks, but also for, e.g., valleys with shallow, ephemeral snowpacks.
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Winter 2008/09 was chosen because the ∆SNOW.MODEL shows a typical performance in terms of RMSEs etc. in Kössen then

(see Table 2, values in brackets) and because some important, model-intrinsic features can be addressed and discussed:

Late November 2008 brought the first, however transient snowpack of the season (Fig. 5). The ∆SNOW.MODEL identifies590

two days with snow fall (purple markings) and models two respective snow layers, which can be distinguished by the thin black

line in Fig. 5. After about a week the snowpack starts to melt, the snow layers reach ρmax very fast (the blue shading gets dark),

and finally all the snow was converted to runoff (cyan markings). In the second half of December there were three days with

fresh snow, followed by a strong decline in snow height. In the frame of the ∆SNOW.MODEL this H decrease is only possible,

if the layers “get wet” – the Drenching Module is activated (marked in brown). The layers get denser, starting at the top.595

However, the decrease was “manageable” by only increasing the two uppermost layer densities to ρmax and making the third

layer just a bit denser. Not all layers got to ρmax (“saturated”) and no runoff was modeled. The ∆SNOW.MODEL conserves the

two dense layers until the end of the winter, which can clearly be seen in Fig. 5. (One could interpret the layers as consisting of

melt forms or a refrozen crust. However, interpretations like that require caution, because modeling such detailed layer features

is not the intention of the ∆SNOW.MODEL!) During January Fig. 5 shows a phase where nothing special happens. Modeled600

values and observations agree to a high extent and only the Scaling Module makes small adjustments (white markings). Small

“stretching events” can be recognized, e.g. on January 2nd and 3rd, where model snow layers are set less dense in order to

avoid too frequent mass gains. (This model behavior was thoroughly described in Sect. 2.2.2.) During continuous snowfalls in

February the successive darkening of the blue layer shadings illustrates a phase of consequent compaction, which actually lasts

until March, when strong decreases in Hobs (and, thus, in H) already start to activate the Drenching Module. Still, runoff is not605

yet produced. Only in the second half of March the whole model snowpack reaches ρmax (“saturation”). The ablation phase is

clearly distinguishable and lets the snowpack vanish quite fast until about April 10th, 2009.

The snow height record of Kössen from 2008/09 was also used to compare different ERMs and the ∆SNOW.MODEL to SWE

observations (Fig. 6). These measurements (light blue circles) are part of the SWE val sample and were manually made with

snow sampling cylinders; one after the December 2008 snowfall, and another nine on a nearly weekly base between late January610

and late March 2009. Figure 6 also provides various model results and some respective key values are given in Table 2. Not

surprisingly, thus evidently, the ERMs’ SWE curves “follow” the snow height curve (black dashed line). The ∆SNOW.MODEL

(red line) does not get the first four measurements decently correct, the ERMs perform better in this illustrative case. (By the

way, the “jumpy behavior” of the model of Jonas et al. (2009), criticized by Pistocchi (2016), does not play a role.) But, after

the stronger snowfalls of February, the picture changes indisputably in favor of the ∆SNOW.MODEL. This is a typical pattern,615

nothing special for Kössen 2008/09 (albeit it is quite pronounced in this illustrative example): The ERMs are too strongly tied

to snow height and, therefore, mostly (1) overestimate SWE pk, (2) model its occurrence too early, and (3) – most important –

force modeled SWE to reduce during pure compaction phases after snowfalls. All these points were discussed in detail earlier,

Fig. 6 visualizes them. At the same time, the ∆SNOW.MODEL does a good job in modeling mean and maximum SWE , not

only in Kössen 2008/09 but also on average (cf. Fig. 4 and Table 2). Evidently, the ability of the ∆SNOW.MODEL to “conserve”620

mass during the phases with dry metamorphism is its strongest point.
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4 Example of Application: Snow Load Map of Austria

In this section an example is given how the ∆SNOW.MODEL can be used to attain a map of snow loads in Austria; snow load

SL = SWE ·g. European Standards (e.g., European Committee for Standardization, 2015) define the “characteristic snow load”

sk as the weight of snow on the ground with an annual probability of exceedance of 0.02, i.e. a snow load that – on average625

– is exceeded only once within 50 years. Unfortunately, SWE is not measured on a regular basis at a reasonable number of

sites in Austria (and most other countries). The ∆SNOW.MODEL, however, can provide longterm Austrian SWE series from

widely available H series, which can in turn be used for a spatial extreme value model. No other snow model is capable of

this in a comparable manner, since either SWE pk is poorly modeled (ERMs) or more meteorological input would be needed

(thermodynamic models). Among several possibilities to spatially model snow height extremes like max-stable processes (see630

e.g. Blanchet and Davison, 2011), the smooth modeling approach of Blanchet and Lehning (2010) can be used when marginals

instead of spatial extremal dependence is in focus.

4.1 Smooth Modeling

Extremes following a generalized extreme value distribution (GEV; Coles, 2001) with parameters µ, σ and ξ can be modeled

in space by considering linear relations for the three parameters of the form635

η(x) = α0 +
m∑

k=1

αkyk(x) (8)

at location x, where η denotes one of the GEV parameters, y1, . . . ,ym are the considered covariates as smooth functions of

the location, and α0, . . . ,αm ∈ R are the coefficients. Assuming spatially independent stations, the log-likelihood function then

reads as

l =
K∑

k=1

`k (µ(xk),σ(xk), ξ(xk)) , (9)640

where l only depends on the coefficients of the linear models for the GEV parameters. This approach was termed smooth

modeling by Blanchet and Lehning (2010). A smooth spatial model for extreme snow heights in Austria was already presented

in Schellander and Hell (2018), using longitude, latitude, altitude, and mean snow height at 421 stations. Considering the strong

correlation between snow height and snow water equivalent, it would be natural to spatially model SWE extremes in the same

manner.645

4.2 Fitting a Spatial Extreme Value Model

For this application 214 stations with gapless snow height observations in and tightly around Austria of the National Weather

Service (ZAMG) and the Hydrological Services are used. The dataset has undergone quality control by the maintaining institu-
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tions and covers altitudes between 118 and 2290 m a.s.l. The records have lengths of 43 years and cover winters from 1970/71

to 2011/2012.650

In a first step the ∆SNOW.MODEL was applied to these snow height series to achieve 214 data series of SWE across

Austria. (This indeed is the great strength of the ∆SNOW.MODEL and can hardly be done with other methods!) Then the linear

models for the three GEV parameters according to Sect. 4.1 were defined via a model selection procedure. For that purpose a

generalized linear regression was performed between the parameters and the covariates longitude, latitude, altitude, and mean

snow height, which were added in a stepwise manner. Using the Akaike information criterion (AIC; Akaike, 1974), the best655

linear model between a given full model (µ∼ all covariates) and a null model (µ∼ 1) with the smallest AIC was selected.

Using these models and the covariates of the 214 stations, a smooth spatial model for the yearly maxima of the SWE values

was fitted.

4.3 Return Level Map of 50-year Snow Load in Austria

The spatial extreme value model developed in the previous section was applied to the SNOWGRID climate analysis (Olefs660

et al., 2013) with yearly mean snow heights from 1961 to 2016. The grid features a horizontal resolution of 1× 1 km. Some

minor SNOWGRID pixels have unrealistically large mean snow height values, arising from a poor implementation of lateral

snow redistribution at high altitudes (18 pixels, i.e. 0.02% with values between 5 and 65 m). They are masked for the calculation

of SWE return level maps. The return level map for a return period of 50 years can be seen in Fig. 7.

As expected, due to the strong correlation of the SWE maxima with mean snow height, the largest snow loads are located665

in the mountainous areas of Austria. Although the unrealistic mean snow height values of SNOWGRID are masked, the model

produces a number of 59 (0.06%) snow load values larger than 25 kN m−2 in a height range between 1500 and 3700 m a.s.l..

For a model that would be seriously used e.g. in general risk assessment or structural design, this problem could possibly be

tackled with a non-linear relation between SWE maxima and mean snow height or altitude. This is, however, beyond the scope

of this study. Note, that in the actual Austrian standard (Austrian Standards Institute, 2018) there are no normative snow load670

values defined above 1500 m altitude.

All but two locations of the Austrian SWE measurement series that were used for calibration and validation of the ∆SNOW.MODEL

(see Sect. 2.3.1) are included in the dataset used to fit the spatial model in Sect. 4.2. Those two stations, Holzgau and Felber-

tauern with 14 years of SWE observations each, are used to qualitatively compare (1) the spatial model fitted in Sect. 4.2,

(2) SWE extremes modeled from daily snow heights with the ∆SNOW.MODEL, and (3) extremes computed “directly” from675

(ca. weekly) observed SWE values. Figure 8 gives an idea of the model performance at stations Holzgau and Felbertauern

(see Fig. 7 for their locations). For the lower-lying station Holzgau (1100 m a.s.l.) all three variants overlap very well. The

50-year return level is 4.65 kN m−2 for the smooth spatial model, 4.72 kN m−2 for the ∆SNOW.MODEL, and 4.8 kN m−2 for

the observations. Note, that the latter stem from weekly observations and, therefore, not necessarily reflect the true yearly

maxima, which naturally must be equal or slightly higher. By the way, the corresponding value of sk from the Austrian snow680

load standard for Holzgau is 6.3 kN m−2 (Austrian Standards Institute (2018); accessible online at eHORA (2006)).
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For the higher station Felbertauern (1650 m a.s.l.) the agreement between SWE from the ∆SNOW.MODEL and observed

values is again very good. However, their GEV fits differ significantly. While the fit to the observations shows a negative shape

parameter of ξ =−0.1, the fit to the values modeled with the ∆SNOW.MODEL gives a positive shape parameter of ξ = 0.1,

leading to much larger return levels for higher recurrence times due to the Fréchet-like distribution. It should be pointed out685

that the GEV fits based on ∆SNOW.MODEL simulations and observations are unreliable, given the short data sample of only 14

yearly maxima. Indeed, by using a sample size of 43 years and borrowing strength from neighboring stations, the spatial model

provides the best fit to observations as well as modeled SWE values. The 50-year snow load return values are 6.4 kN m−2 for

the spatial model, 6.8 kN m−2 for the ∆SNOW.MODEL, and 5.7 kN m−2 for the fit to the observations. No normative value is

defined for Felbertauern because it is situated higher than 1500 m a.s.l. (Austrian Standards Institute, 2018).690

5 Discussion and Outlook

Some questions remain. The treatment of rain-on-snow events surely is one of them. The ∆SNOW.MODEL can – in principle

– deal with it. Unsteady compaction due to overburden load, for example, is not restricted to fresh snow. It could also be

triggered by the mass of rain water – in nature, but also in the framework of the ∆SNOW.MODEL. Still, the respective coding

is not finalized at the moment, because identifying criteria for rain-on-snow events based on pure snow height records is a695

problem, and its resolving (if at all possible) is beyond the scope of this paper. In case some meta information on, e.g., rain

climate (maybe for a stochastic “rain generator”) or on precipitation (no matter if liquid or solid) combined with information

on the snowfall line is available, it could quite easily be incorporated in the ∆SNOW.MODEL. Given the relative success of the

∆SNOW.MODEL in its current version – especially the reduction of the RMSE of SWE pk by 50-70% compared to ERMs and

maybe even down to the SWE error range of thermodynamic models – the probably very costly, but potentially often only very700

minor improvements when including rain-on-snow should be considered.

“Maybe” is emphasized in the last paragraph because it leads to another discussion and outlook point: An intensive, multi-

year model comparison should be performed; at some benchmark sites with fully equipped snow stations and – very important

– different methods of SWE measurements, including regular manual observations (with sampling cylinders etc.). Some of

those data sets do already exist, however, a comprehensive comparison of techniques and methods to measure and, in particular,705

model SWE is lacking. Often the “target variable” is bulk density (not SWE ), and relative (not absolute) numbers are the only

information on observation accuracy one can get, although recently efforts are undertaken (e.g., in the framework of the ESSEM

COST Action ES1404; Leppänen et al., 2018a; López-Moreno et al., submitted, . . . ) – at least concerning measurements.

Shouldn’t there be more studies, that also comprehensively quantify the abilities of various, especially thermodynamic snow

models to simulate SWE? A top-quality comparison between the ∆SNOW.MODEL and thermodynamic snow models is actually710

difficult to achieve since hardly any numbers for SWE accuracy of thermodynamic models are available. Maybe they perform

worse than the generously estimated RMSEs of 10 to 20 kg m−2 of this study?

Another discussion point and eventual future development is the refinement of the density parameters ρ0 and ρmax since,

firstly, the ∆SNOW.MODEL reacts quite sensitive on their changes and, secondly, some relations are well known, e.g., ρ0’s
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dependence on the climatic aridness or ρmax’s tendentious increase for (very) old snow. Additional calibrations could be per-715

formed for very maritime, very dry, polar, or tundra regions as well as for very long-lasting snowpacks. Note, however, all

of these adaptions introduce more parameters to the ∆SNOW.MODEL and reduce its generality. Benefits should be evaluated

critically. Probably against the overburden load treatment of the ∆SNOW.MODEL, since it is possible that refining the density

parameters is more valuable than the special treatment of unsteady compaction due to overburden loads. . .

Last but not least, looking at current developments in deriving SWE from snow heights, that are monitored with lidar and720

photogrammetry, the ∆SNOW.MODEL should be considered as – following Smyth et al. (2019) – one of the “potentially [appli-

cable] other snow density models”. Lidar and photogrammetry have errors in the order of 10 cm (Smyth et al., 2019), typically

corresponding to SWE errors of 20 to 40 kg m−2. This is in the order or somewhat more than the error of the ∆SNOW.MODEL.

Remote sensing derived snow height data are discontinuous through time. The ∆SNOW.MODEL would have to be adapted to

that (which might not be a big issue), though, for the big benefit of being independent from meteorological data and models –725

and their errors.

6 Conclusions

A new method to simulate snow water equivalents (SWE s) is presented. It exclusively needs snow heights and their temporal

changes as input, which is its major advantage compared to other snow models. It is shown that basic snow physics, smartly im-

plemented in a layer model, suffice to better calculate SWE than snow models relying on empirical regressions. Consequently,730

the study’s null hypothesis (Sect. 1.3) is rejected.

Gapless snow height records are used to stepwise model the evolution of seasonal snowpacks, focusing on their mass

(i.e. SWE ) and respective load. Snow compaction is assumed to follow Newtonian viscosity, unsteady stress for underly-

ing snow layers by the overburden load of fresh snow is regarded separately, melted mass is distributed from upper to lower

layers, and – eponymous for the model – the measured change in snow height between two observations is used as a precious735

corrective, though by accounting for measurement uncertainties. The model steps are rather simple, however tricky in details,

and all is frankly revealed in this article.

The ∆SNOW.MODEL mainly bases on Martinec and Rango (1991) and Sturm and Holmgren (1998), and transforms them

to a modern R-code, which is available through https://r-forge.r-project.org (nixmass package). Other meteorological (aside

H) and also geographical input is consequently avoided in the framework of the ∆SNOW.MODEL. Still, calibration of seven740

parameters is needed. To provide an optimal setting and utmost applicability, data from 14 climatologically different places

in the Swiss and Austrian Alps are utilized. This is challenging, since calibration needs multi-year SWE observations as well

as consecutive (e.g. daily) snow height readings from the same places. The ∆SNOW.MODEL is calibrated with the help of

71 winters. The validation data set consists of another 73 independent winters. Whereas calibration is rather complex, the

application of the ∆SNOW.MODEL is cheap in terms of computational effort: Deriving a one-year SWE record from 365 snow745

height values, e.g., only takes a few seconds with today’s standard desktop CPUs and can certainly be speeded up significantly.
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It is argued that the ∆SNOW.MODEL is situated between sophisticated “thermodynamic snow models”, necessitating lots

of meteorological and other input, and modest “empirical regression models” (ERMs), relying on statistical relations between

SWE and snow height, date, altitude, and region.

– This “interposition” is true in terms of model complexity: The ∆SNOW.MODEL is a semi-empirical multi-layer model750

but only needs one input variable, which is H .

– Still, the ∆SNOW.MODEL is even less demanding than ERMs: It exclusively needs H records, though gapless ones. No

information on date, altitude, or region is required.

– In terms of universality, this shifts the ∆SNOW.MODEL close to thermodynamic models, and because the ∆SNOW.MODEL

simulates individual SWE values – like the important seasonal maximum SWE pk – as good as SWE averages, it can755

compete with thermodynamic models at the, e.g., daily level as well (which is not reasonable for ERMs).

– Not least, the ∆SNOW.MODEL’s performance in modeling SWE lies between thermodynamic models and ERMs, al-

beit close to the very sophisticated ones: Root mean squared errors for SWE pk (cf. Table 2) are at ca. 23 kg m−2

(∆SNOW.MODEL), at about 60 to 90 kg m−2 (ERMs), and somewhere between 10 and 40 kg m−2 (thermodynamic mod-

els).760

Given these promising results, the ∆SNOW.MODEL’s ancestors Sturm and Holmgren (1998)’s argument, whereby “snow load

plays a more limited role in determining the compaction behavior in seasonal snow than grain and bond characteristics and

temperature”, might be disproved.

The development of the ∆SNOW.MODEL is application-driven. It is therefore not surprising that this study provides no sig-

nificant new findings in snow physics. Still, the ∆SNOW.MODEL seems to be the first model (since long) that takes well known765

basic snow principles and arranges them in a physically consistent way, while consequently ignoring all potential information

except snow height. Not particularly innovative, but remarkably successful. Nevertheless, the synopsis of the ∆SNOW.MODEL

and measured data gives significant hints on two important snowpack features (at least for the Alps): Typical mean density for

fresh snow (24 h) seems to be clearly below often assumed 100 kg m−3 and a characteristic average maximum bulk density

for seasonal snow (also including ephemeral snowpacks from low-lying places) can rather be found around 400 kg m−3 than at770

often cited 500 to 600 kg m−3, which might be biased by “too alpine” snowpacks for many applications. The ∆SNOW.MODEL

is widely usable, but first of all it can attribute snow water equivalents to all longterm and historic snow height records, which

are so valuable for climatological studies and extreme value analysis for risk assessment of natural hazards .

Code availability. https://r-forge.r-project.org (nixmass package)
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Appendix A775

The Scaling Module (Sect. 2.2.2) recalculates the viscosity parameter η0. This temporary η∗0(i, t) does not only depend on the

point in time t (whenever the Scaling Module is activated), but is also different for each layer i. The reason is described in the

following.

The Scaling Module aims for the condition, that today’s model snow height H(t) equals today’s observed snow height

Hobs(t).780

H(t) =
ly(t)∑

i=1

h(i, t) !=Hobs(t)

It follows from Eq. (3) and substituting x(i, t) = ∆t · σ̂(i, t) · e−k·ρ(i,t):

ly(t)∑

i=1

h(i, t) =
ly(t)∑

i=1

η∗0(t) ·h(i, t− 1)
η∗0(t) +x(i, t)

!=Hobs(t), (A1)

which is a rational function f of the form

f(η) =
N∑

i=1

η ·hi
η+xi

Because f(η) has poles at −x1, . . . ,−xN , the equation f(η) =Hobs has multiple solutions. Consequently, this approach –

with η∗0(t) being independent from layer i – shows a clear non-physical behavior making it necessary to calculate different

η∗0(i, t) for each layer i based on Eq. (A1):785

η∗0(i, t) =
x(i, t) ·h(i, t)

h(i, t− 1)−h(t)

The solution of this issue in the Scaling Module of the ∆SNOW.MODEL bases on the assumption, that observed compaction

between t− 1 and t can be approximated linearly for each layer:

h(i, t)
h(i, t− 1)

!≈ Hobs(t)
Hobs(t− 1)

The layer-individual viscosities can be calculated as

η∗0(i, t) =
x(i, t) ·Hobs(t)

Hobs(t− 1)−Hobs(t)

Substituting those values for η∗0 in Eq. (A1) fulfills its precondition, and the modeled equals the observed snow height. The

newly calculated η∗0(i, t) are different for each layer – in contrast to the fixed η0 defined in Sect. 2.1, which is valid for the whole790

snowpack (outside the Scaling Module). Note that these new viscosities are only used temporarily in the Scaling Module. They

have no analog in reality and can also have negative values, but they are mathematically sound.
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Figure 1. Schematic figure of the ∆SNOW.MODEL’s principles. See text for more details. At time t= 1 no snow is observed (black bullet at

Hobs(1) = 0) and – consequently – no snow is modeled. At t= 2 initially no snow is modeled. However, snow is observed (Hobs(2)> 0)

and, thus, model snow height H(2) is set to the observed value by the ∆SNOW.MODEL’s Fresh Snow Module (pink arrow) and a certain

SWE (green boxes) is assigned to this fresh snow layer. For t= 3 densification by the Dry Metamorphism Module (Dry Met.) is modeled

(light blue arrow). Snow density (ρ, shown as bluish shades) is enhanced, but SWE stays constant. Still, the model and observation slightly

disagree (|∆H|< |τ |). The Scaling Module solves this issue (black arrow): At t= 3 (and also at t= 4,5,6,8, and 9) modeledH(t) is scaled

to equalHobs(t) with respective consequences for the snow density, but not altering SWE .Hobs(7) is way higher thanH(7), the Fresh Snow

Module builds up a new layer and raises SWE accordingly. The Fresh Snow Module also treats the unsteady and strong compaction of the

underlying layer(s) due to overburden snow load (purple arrow). At t= 10 observed snow height is significantly smaller than H(10), the

Drenching Module (brown arrows) wettens the layers from top to bottom until ρmax is reached. Figuratively, the layers get water-saturated,

however, at t= 10 not all layers reach ρmax: No mass loss is requested by the model, and SWE stays constant. At t= 11 the Drenching

Module necessitates mass loss by runoff (cyan arrows) as all layer densities would have to exceed ρmax to fulfill H(t) =Hobs(t), but this is

not possible in the ∆SNOW.MODEL. All layers are set to ρmax and they “get cut” by an appropriate amount of height and mass, respectively,

depending on their thickness: Thick layers contribute more to the mass loss than thin ones. In the end, at t= 12, no snow is observed anymore

and final runoff is modeled.
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Figure 2. Sensitivity of SWE pk to changes in model parameters. The relative bias of SWE pk is defined as the difference between SWE pk

with best-fitted values and SWE pk with changed parameters (while all others are kept unchanged), divided by the best-fitted SWE pk. The

boxes comprise SWE pk of all stations and all years of the validation data set SWE val (73 values) and display medians as well as 25% and

75% percentiles, the whiskers indicate minimum and maximum biases. (Parameter kov behaves unremarkably – similar to cov – and is not

shown here.) Details and analysis see text.
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Figure 3. Scatter plot of all modeled bulk snow densities ρb versus all observed ρb from the validation data set. (SWE val, 761 data pairs.

Seven observations, which are higher than 600 kg m−3, were ignored due to implausibility.) Circles reflect the 73 observed yearly maxima

(ρobs
max), most of them occur when also all modeled snow layers are saturated at ρmax = 401 kg m−3. The box plot shows the distribution of

ρobs
max: The median is at 400 kg m−3. (This round value is somewhat fortuitously and should not be taken too seriously.) The horizontal line

compares it to the ∆SNOW.MODEL’s maximum density at ρmax.
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Figure 4. Validation results for the model biases and root mean squared errors (RMSE). The plots show the results for the models applied to

the SWE val data. The ∆SNOW.MODEL, Pistocchi (2016), Guyennon et al. (2019), and the “constant density approach” were calibrated with

SWE cal data (Pi16cal, Gu19cal, ρ278). Dashed lines indicate the Pistocchi (2016), the Guyennon et al. (2019), the Jonas et al. (2009), and the

Sturm et al. (2010) model with their standard parameters (Pi16, Gu19, Jo09R6, Jo09R7, and St10). Jo09R6 and Jo09R7 together illustrate

the maximum possible spread of the Jonas et al. (2009) model since Region 6 (R6) and Region 7 (R7) are characterized by the highest and

lowest “region-specific offset”, respectively. The boxes encompass 761 values (left panels, SWE ) and 73 values (right panels SWE pk) and

spread from the 25%- to the 75%-quantile, the whiskers indicate minima and maxima. The ∆SNOW.MODEL does not behave significantly

better for the bias of all SWE (upper left), however, its performance for seasonal maxima SWE pk (upper right) as well as for the mean errors

(lower panels) is very convincing. (Note the different y-axes scalings.)
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Figure 5. The winter of 2008/09 in Kössen, a low-lying but snowy station at the Northern Alps, portrays density evolution (shades) as

simulated by the ∆SNOW.MODEL. The gapless, daily snow height record is used as only model input. Three (out of four) modules of the

∆SNOW.MODEL are depicted in colors at the bottom, whenever activated: Drenching, Fresh Snow, and Scaling (The Dry Metamorphism

Module is activated at every point in time.) Runoff is a subcategory of the Drenching Module. Note, the ∆SNOW.MODEL is not intended to

simulate individual layers. This figure illustrates what happens during the modeling. However, the aim of the ∆SNOW.MODEL is to get daily

SWE and SWE pk right – i.e. mean daily bulk density, not layer-individual densities. Descriptions and discussions of some features are given

in the text.
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Figure 6. SWE simulations and observations (mostly weekly; SWE obs) for the winter 2008/09 in Kössen (cf. Fig. 5). Model abbreviations

are given in the text and summarized in Fig. 4. See Table 2 for values, and consider the note in its caption. This plot is an illustration of the

∆SNOW.MODEL performance during a distinct winter and outlines important features, which are addressed in the text.
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Figure 7. 50-year return levels of snow load in Austria. Two stations with SWE observations are outlined for a qualitative validation. This

map bases on 214 snow height records, ∆SNOW.MODEL derived SWE , and smooth spatial modeling of their extremes. See text for details.
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Figure 8. Return levels of snow load at stations Holzgau (left) and Felbertauern. Return periods in years are shown on the logarithmic x-axis.

The blue line shows return levels obtained with the spatial extreme value model, pink bullets and lines depict yearly maxima and the GEV

fit of SWE values modeled from daily snow heights with the ∆SNOW.MODEL, and green colors represent yearly SWE maxima and the

corresponding GEV fit from (ca. weekly) observations.
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Table 1. The seven parameters of the ∆SNOW.MODEL. The last column depicts model sensitivity to changes in the density parameters. The

respective gradients are means over the whole calibration ranges. Detailed information is found in the text.

Parameter unit optimal calibration literature sensitivity

par value range range δSWEpk [kg m−2]

δpar

ρ0 kg m−3 81 50-200 75a, 10-350 (70-110)b +0.37 (+0.50†)

ρmax kg m−3 401 300-600 217-598c, 400-800d +0.24

η0 106 Pa s 8.52 1-20 8.5a, 6e, 7.62237f not calc.

k m3 kg−1 0.0299 0.01-0.2 0.011-0.08a, 0.185g, 0.023e,f, 0.021h not calc.

τ cm 2.36 1-20 - not calc.

cov 10−4 Pa−1 5.10 0-10 - not calc.

kov - 0.379 0.01-10 - not calc.

aSturm and Holmgren (1998), bHelfricht et al. (2018) with range for means in brackets, cSturm et al. (2010), dPaterson (1998), eJordan et al.

(2010), fVionnet et al. (2012), gKeeler (1969), hJordan (1991). See Sect. 2.3 for more details. †The value in brackets is the gradient taken from

the smaller window between 70 and 90 kg m−3 (cf. Sect. 3.1.1).
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Table 2. Overview on SWE accuracies of different methods and studies. The numbers of this study are the median values, which are also

depicted in Fig. 4. The numbers in brackets represent the results for the example portrayed in Figs. 5 and 6 from station Kössen in 2008/09.

Note, the performance of the ∆SNOW.MODEL of the example is quite ordinary, while other models do better on average. Units are kg m−2

except last column, which is in days.

source model SWE SWE SWE SWE pk SWE pk SWE pk

(version) BIAS RMSE MAE BIAS RMSE BIAS [d]

this study ∆SNOW.MODEL −4.0 23.9 (21) 19.5 2.3 (−3) 23.1 0

Gu19cal 4.0 31.3 (43) 24.4 67.3 (93) 70.8 −6

Pi16cal 5.3 32.9 (47) 25.6 71.0 (106) 72.2 −6

Jo09R7 −2.0 26.6 (41) 21.9 56.5 (74) 58.1 −2

St10 17.6 37.1 (57) 28.5 95.1 (154) 95.7 −11

ρ278 14.8 38.1 (51) 31.2 47.7 (77) 53.5 −16

Guyennon et al. (2019) Gu19 49.2

Pi16cal 50.6

Jo09cal 48.5

St10cal 51.0

Jonas et al. (2009) Jo09 50.9− 53.2

Sturm et al. (2010) St10 (“alpine”) 29± 57

Vionnet et al. (2012) Crocus −17.3 39.7

Langlois et al. (2009) Crocus −7.9 to − 5.4 10.8− 12.5

SNTHERM 9 to 18.1 18.3− 19.3

SNOWPACK −0.1 to 5.6 7.4− 14.5

Sandells et al. (2012) SNOBAL 30− 49 17− 44a

aThis is not RMSE of SWE pk, but RMSE “from establishment of snowpack to SWE pk”.
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