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Abstract. 1Snow depthsSnow heights2 have been manually observed for many years, sometimes decades, at various places

around the globe. These records are often of good quality. In addition, more and more data from automatic stations and remote

sensing are available. On the other hand, records of snow water equivalent (SWE )SWE – synonymous for snow load or mass

– are sparse, although it might be the most important snowpack feature in fields like hydrology, climatology, agriculture, natural

hazards research, etc. SWE very often has to be modeled, and respectivethose models either depend on meteorological forcing5

or are not intended to simulate individual SWE values, like the substantial seasonal “peak SWE”.

The ∆SNOW.MODEL is presented as a new method to simulate local-scale SWE . It solely needs a regular time series of snow

depths as input.snow depths as input, though a gapless record thereof. Temporal resolution of the data series is no restriction

per se. The ∆SNOW.MODEL is a semi-empirical multi-layer model and freely available as R-package. Snow compaction is

modeled following the rules of Newtonian viscosity. The model considers measurement errors, treats overburden loads due to10

newfresh3 snow as additional unsteady compaction, and melted mass is stepwise distributed top-down in the snowpack.

Seven model parameters are subject to calibration. Snow observations of 67 winters from 14 stations, well-distributed over

different altitudes and climatic regions of the Alps, are used to find an optimal parameter setting. Data from another 71 indepen-

dent winters from 15 stations is used for validation., which was performed using 71 winters from 14 stations, well-distributed

over different altitudes and climatic regions of the Alps. Another 73 rather independent winters act as validation data. Results15

are very promising: Median bias and root mean squaresquared4 error for SWE are only −3.0 kg m−2 and 30.8 kg m−2, and

+0.3 kg m−2 and 36.3 kg m−2−4.0 kg m−2 and 23.9 kg m−2, and +2.3 kg m−2 and 23.1 kg m−2 for peak SWE , respectively.

This is a major advance compared to snow models relying on empirical regressions and even sophisticated thermodynamic

snow models do, but also much more sophisticated thermodynamic snow models not necessarily perform better.

Not least, this study outlines the need for comprehensive comparison studies on SWE measurement and modeling at the20

point and local scale.

1Changes based on specific and general reviewer comments are marked in blue and orange, respectively.
2Snow “height” was changed to snow “depth” throughout the paper and also in the title. The respective symbol H was changed to HS , and h was changed

to hs .
3“Fresh” snow was changed to “new” snow throughout the paper.
4Root mean “squared” error was changed to root mean “square” error throughout the paper.
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1 Introduction

Depth (HS )Total H and bulk density (ρb) are fundamental characteristics of a seasonal snowpack (e.g., Goodison et al., 1981;

Fierz et al., 2009). Equation (1) links them to the areal density [kg m−2] of the snowpack, which – in hydrological applications

– is usually referred to as snow water equivalent (SWE ), as it resembles “the depth of water that would result if the mass of25

snow melted completely” (Fierz et al., 2009).

SWE = HS · ρb

[1 kg m−2 ≡ 1 mm water equivalent (w.e.)]
(1)

1.1 Measurements of HS and SWE

Measuring HS is relatively easy (e.g., Sturm and Holmgren, 1998): Manual measurements at a certain point only require a rod

or ruler (e.g., Kinar and Pomeroy, 2015), and decades-long series of daily HS measurements exist in many regions – in lowlands30

as well as in alpine areas (e.g., Haberkorn, 2019). In modern times more and more HS data from automated measurements

(mostly sonic or laser distance ranging) become available, typically in sub-hourly resolution (McCreight and Small, 2014). In

addition, remote sensing techniques currently increase the number of HS data significantly, having the advantage of an areal

picture instead of point information but at the cost of accuracy and in most cases also– in most cases – temporal resolution

and regularity (Cf., e.g., Dietz et al. (2012) for a general review of methods, and Deems et al. (2013) for a review on lidar35

measurements. Painter et al. (2016) provide a thorough overview. Garvelmann et al. (2013) and Parajka et al. (2012), e.g.,

illustrate the potential of timelapse photography.)

In contrast, measurements of SWE (or ρb) are more difficult (e.g., Sturm et al., 2010): Manual measurements require some

basic equipment like snow tubes or snow sampling cylinders, a bit of dexterity, and are time consuming. In case snow depth

exceeds the sampling tool’s size a pit has to be dug to consider the layered structure of the snowpackare time consuming40

(especially if a snow pit is dug), require some basic equipment like snow tubes or snow sampling cylinders and – not least

– some dexterity (e.g., Kinar and Pomeroy, 2015). As a consequence, SWE measurements are carried out at much fewer

locations than HS measurements (e.g., Mizukami and Perica, 2008; Sturm et al., 2010), their accuracy is lower, and series

are shorter. Only in very rare cases consecutive, decades-long measurement series are available (e.g., in Switzerland; cf. Jonas

et al., 2009). Often they are only carried out at irregular time intervals (“snow courses”) and even if regularly measured,45

temporal resolution is hardly ever higher than two weeks. ABesides these restrictions concerning manual measurements, also

automatic measurements of SWE are not at all comparable in quality and quantity with automated HS measurements. They

are quite expensive, often inaccurate, still at a developmental stage, and/or suffer from significant problems if not intensively

maintained throughout the snowy season. Methods involve weighing techniques (snow scales; e.g., Smith et al., 2017; Johnson

et al., 2015), pressure measurements (snow pillows; e.g., Goodison et al., 1981), upward-looking ground penetrating radar50

(GPR; e.g., Heilig et al., 2009), passive gamma radiation (e.g., Smith et al., 2017), cosmic ray neutron sensing (CRNS; e.g.,

Schattan et al., 2019), L-band Global Navigation Satellite Signals (GNSS; e.g., Koch et al., 2019), etc. Presumably, the biggest
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and best serviced network of automated SWE measurements is SNOTEL with about 800 sites in Western North America

(Avanzi et al., 2015).

SWE data from remote sensing are not operationally available for the local and point scaleFurthermore, there is no way to55

directly monitor SWE by remote sensing techniques (Schaffhauser et al.,2008), and deriving this snow property from satellite

products at sub-kilometer resolutionthe local scale (< 1km) is still not possible (Smyth et al., 2019). On top of that, there is the

issue of longterm availability: automated measurements and (at least rough) remote sensing of SWE have not been available

for more than some twenty years at their best (e.g., SNOTEL, operated since the late 1990s), a fairly short timespan compared

to decades-long daily HS data (e.g., Kinar and Pomeroy, 2015).60

Regardless of these problematic circumstances accompanying SWE measurements, many hydrological, agricultural, and

otherhydrological and agricultural applications depend on good estimates of SWE (e.g., Goodison et al., 1981; Sturm and

Holmgren, 1998). Ultimately,Very often, in the end the mass of water stored in the snowpacks matters very often and, therefore,

, and that’s why the majority of those fields is especially interested in seasonal SWE maxima, i.e. “peak SWE” (SWE pk).

SWE pk are also the main focus of different kinds of extreme value and climatic analyses, both of which additionally very65

much rely on longterm or even “historical” data. Not least, snow load standards (e.g., International Organization for Standard-

ization, 2013) rely on extreme value analyses of longterm snow load records (or SWE records, as snow load is defined as the

product of SWE and the gravitational acceleration., respectively; snow load SL = SWE · g, with gravitational acceleration

g = 9.8 m s−2). These points reveal the great discrepancy between the good data situation in terms of HS on the one hand, and

the insufficient availability of SWE data on the other.70

1.2 Modeling SWE

Modern snow models like Crocus (e.g., Vionnet et al., 2012), SNOWPACK (e.g., Lehning et al., 2002), SNTHERM (Jordan,

1991), or the dual-layer model SNOBAL (Marks et al., 1998) resolve mass and energy exchanges within the ground-snow-

atmosphere regime in a detailed way by depicting the layered structure of seasonal snowpacks. (Echoing Langlois et al. (2009),

these models will be termed “thermodynamic snow models” in the following.) All of them need atmospheric variables as input,75

primarily precipitation, temperature, humidity, wind speed, and radiative fluxes. Also relatively simple thermodynamic models

at least require temperature and/or precipitation (e.g., De Michele et al., 2013) or climatological means thereof (Hill et al.,

2019). Avanzi et al. (2015) provide a good review. Estimations of absolute model errors for SWE are rather scarce. However,

it might be at the order of 10 to 15 kg m−2 (Langlois et al., 2009), but probably sometimes significantly more (Vionnet et

al., 2012). See Sect. 3.1 and Table 4 for more details.5 All thermodynamic snow models need meteorological input data like80

temperature or radiation. Unfortunately, many valuable longterm HS series – which are so valuable for a variety of applications

(see above) – do not involvecome along with these data, and parameterizing or downscaling them from other sources in turn is

susceptible to errorsisn’t straightforward either. Even markedly simpler models at least require temperature and precipitation

measurements as inputs (e.g., De Michele et al. (2013) or – in a very recent work by Hill et al. (2019) – climatological means

thereof. Thermodynamic snow models are notConsequently, no thermodynamic snow model is applicable to derive SWE85

5Moved to Discussion and Outlook section (Sect. 4.) NICHT VERGESSEN
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exclusively from HS . (Avanzi et al. (2015) provide a good review and also introduce models including “statistical descriptions”

which, in turn, need SWE measurements as input and, therefore, are not further addressed here. In this study these are counted

as “thermodynamic snow models” as well.)

On the other side of the SWE modeling spectrum there are those models which – aside HS – only depend on date d (Pis-

tocchi, 2016), d and altitude z (Gruber, 2014, see statistical approach therein), d and regional parameters (e.g., Mizukami and90

Perica, 2008; Guyennon et al., 2019) or d, z and regional parameters (e.g., Jonas et al., 2009)(e.g., Jonas et al. (2009); and

applications thereof e.g., by Achleitner and Schöber (2017), who fitted the parameters to Austrian data). Again, Avanzi et al.

(2015) provide a thorough listing of those models, which will be termed “empirical regression models” (ERMs)abbreviated

as ERMs (for “empirical regression models”) in the following. ERMs very much rely on the strong, near-linear dependence

between HS and SWE (cf., e.g., Jonas et al., 2009). According to Gruber (2014) and Valt et al. (2018) HS describes 81% and95

85% of SWE variance, respectivelymore than 80% of SWE variance (81% and 85%, respectively). This behavior bases on

the narrow range within which the majority of bulk snow densities is found, and it leads to the well-known characteristic of

HS–SWE–ρb datasets: log-normally distributed HS and SWE as well as normally distributed ρb (e.g., Sturm et al., 2010).

Unfortunately, ERMs cannot adequately model (unchanged) SWE during periods with snow densification only due to meta-

morphism and deformationdeformation strain6 (Jordan et al., 2010) but without (significant) mass loss. Sturm and Holmgren100

(1998) already state that HS and “load” (or SWE , respectively) play a more limited role in determining the compaction

behavior in seasonal snow than “grain and bond characteristics” and temperature.

Interestingly, in most ERMs absolute, single-day HS observations are the only snow characteristics used. Depending on

calibration focus they either adequately model mean-SWE or SWE pk, mid winter or spring, etc. This is an inherent fact due

to their model architecture. Those calibrated for good estimates of mean-SWE (necessarily) fail to model SWE pk sufficiently105

well, those designed for SWE pk often give bad SWE results during phases with shallow snowpacks. Typically, they simulate

unrealistic mass losses during phases with compaction only by metamorphism and deformation, and the timing of SWE pk as

well as the duration of high snow loads cannot be modeled well. As it is honestly stated by Jonas et al. (2009) – the authors of

one of the most influential ERMs – those models cannot be used to “convert time series of HS into SWE at daily resolution

or higher” because they may “feature an incorrect fine structure in the temporal course of SWE”. Therefore, ERMs are not110

suitable to calculate SWE for individual days.(Still, well made for means.)

McCreight and Small (2014) go an interesting step further and not only use single-day HS values for their regression model,

but also the “evolution” of daily HS . They make use of the negative correlation of HS and ρb at short timescales (10 days)

and their positive/negative correlation at longer timescales (3 months) during accumulation/ablation phases. This promising

step of development is limited by the fact that the model parameters can only be estimated through regressions relying on at115

least three training datasets of HS and ρb (or SWE ) from nearby stations. (McCreight and Small (2014) used ultrasonic HS

measurements in conjunction with SWE pillow measurements.) Unfortunately, this disqualifies the model of McCreight and

Small (2014) for assigning SWE to longterm and historical HS series as consecutive SWE measurements are not available

for those.
6“Deformation strain”, literally termed as such by Jordan et al. (2010), is called “deformation” throughout the revised manuscript.
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An alternative approach that links HS and SWE throughout a snowy season without the need of further meteorological120

input is provided by Martinec (1977) and revisited by Martinec and Rango (1991). In some respect their semi-empirical model

Searching for alternative approaches that link HS and SWE throughout a snowy season without the need of meteorological

input like temperature one might find Martinec and Rango(1991)’s work which provides a semi-empirical model that – in

some respect – bridges the gap between thermodynamic models (needing lots of meteorological input) and ERMs (being

“overregulated” by snow depth). They use a method already developed by Martinec (1956) “to compute the water equivalent125

from daily total depths of the seasonal snow cover”. Snow compaction is expressed as a time-dependent power function, and

they end up with the following equation for each . Each layer’s snow density ρn after n days is given by ρn = ρ0 · (n+ 1)0.3,7

where ρ0 is the initial density of the snow layer. A fixed exponent of 0.3 is used, without going into detail. Martinec and Rango

(1991) set ρ0 to 100 kg m−3, Martinec (1977) varied it from 80 to 120 kg m−3. This computation is meant to give good results

for the seasonal maximum snow water equivalent (SWEpk). It is shown, the older the snow the less important is the correct130

choice of the crucial parameter ρ0 (Martinec, 1977; Martinec and Rango, 1991).Martinec and Rango (1991) use a constant

ρ0 of 100 kg m−3 and a fixed exponent of 0.3, without going into detail how these values were found. They show that the

error made by a bad choice of ρ0 is rapidly decreasing with n and therefore the power function gives robust results at least for

old(er) snow layers. They claim (without further explanation) that snow “luckily” does not settle according to an exponential

curve, and show that in that case the error of ρ0 would be independent from n and would not diminish while the snow layers135

are aging. Their model interprets “each increase of total snow depth [. . . ] as snow fall” and if ““[if] the total snow depth

remains higher than the settling by [the power function][Eq. (2) of the article in hand], this is also interpreted as new snow. If

the snow depth drops lower than the value of the superimposed settling curve of the respective snow layers, it is interpreted

as snowmelt, and a corresponding water equivalent is subtracted. In this way the water equivalent of the snow cover can be

continuously simulated [. . . ]” (Martinec and Rango, 1991). Rohrer and Braun (1994) improved this model particularly for the140

ablation season by further increasing density whenever melt conditions are modelled and by introducing a maximum possible

snow density of 450 kg m−3.Martinec and Rango (1991) get promising results using this simple but robust snow compaction

law. They only need daily snow depths as input and end up with a modeled SWE record at daily resolution.

Table 1 summarizes the classification of SWE models with respect to their essential input.8

1.3 Motivation for a New Approach145

The question evolves, whether thosesuch a semi-empirical, layer-resolving snow models like the rather old one of Martinec and

Rango (1991) can be improved and modernized, in order to provide an up-to-date snow model standard somewhere between

sophisticated, thermodynamic models and modest, purely-statistical HS–SWE–ρb models, like ERMs. Looking at the ease of

Martinec (1977)’s and Rohrer and Braun (1994)’s approaches requiring only regular HS as input (see Table 1)Martinec and

Rango (1991)’s approach, thinking about modern computational possibilities, and given the introductorily described strong150

need for an implementable method“something handy”, it seems interesting that there are no recent publications on this topic.

7Equation 2 of the submitted manuscript is not numbered in the revised manuscript.
8Table 1 was added during the revision. It was not part of the primarily submitted manuscript.
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This leads to a possible null hypothesis of the paper-in-hand: “It is not possible to better model snow water equivalents than

empirical regression models do, by exclusively using snow depths and their temporal changes as input.” This statement can be

rejected after the following presentation of a new way to assign SWE values to the huge number of longterm, historical, and

high-quality HS records of daily resolution. It follows Martinec and Rango (1991)’s key feature of considering daily change155

of snow depth as a proxy for the various processes altering bulk snow density ρb and snow water equivalent SWE , but further

In the following, an advancement of semi-empirical SWE models is presented, which maintains their key feature of consid-

ering daily change of snow depth as a proxy for the various processes altering bulk snow density and snow water equivalent,

but further

– bases its (dry) snow densification function on Newtonian viscosity,160

– provides a way to deal with small discrepancies between model and observation (in the order of HS measurement errors),

– takes into account unsteady compaction of underlying, older snow layers due to overburden snow loads, and

– densifies snow layers from top to bottom during melting phases without automatically modeling mass loss due to runoff.

,9

The ideas for the latter three features were already developed by Gruber (2014), but not suitably realized. TheThis new165

modeling approach is named ∆SNOW.MODEL and an easy-to-use R-package is available through https://cran.r-project.org/

package=nixmass. The package is called nixmass, and it not only involves the ∆SNOW.MODEL, but also other models that use

snow depth (nix. . . Latin for “snow”) to simulate SWE (i.e., snow mass).

The way how physical processes are coded in the ∆SNOW.MODEL is thoroughly described in theThe ∆SNOW.MODEL neither

gives any new crucial insights in snow physics nor involves substantially new approaches. Still, the ∆SNOW.MODEL “rearranges”170

existing components in a physically consistent way and – as a whole – represents a new method. That is why it is described

in the following Method section of this publication (Sect. 2). The calibration is outlined in Sect. 2 as well. Results, like best

parameter choices and validation of the model output when compared to measurements, are given in Sect. 3. Section 4 provides

an application of the ∆SNOW.MODEL for spatially modeling extreme snow loads in Austria. Sections 5 and 6 discuss possible

future developments and provide concluding remarks.10In Sect. 4 model sensitivity, open questions, and possible future devel-175

opments are discussed and Sect. 5 provides concluding remarks.

2 Method

As a successor of Martinec and Rango(1991)’s model the ∆SNOW.MODEL also builds on a semi-empirical approach and,

therefore, can be regarded as standing between thermodynamic and empirical regression models. Its basic version was already

presented by (Gruber, 2014, chapter 4) and a revision was presented by Gruber et al. (2018), but the ∆SNOW.MODEL described180

9The last point, addressing the possible implementation of rain-on-snow, was omitted during the revision.
10Section 4 was moved to the appendix. In the revised paper the Discussion and Outlook section is numbered 4, Sect. 5 is the Conclusions section.
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in the present article experienced a significant updating and recoding. It is designed for seasonal snowpacks and not intended

for (multiannual) firn. The ∆SNOW.MODEL does not need any further input but a gapless snow depth record. It uses changes

in observed snow depth to simulate a record of SWE . A scheme of the ∆SNOW.MODEL’s principle is shown in Fig. 1.

Snow compacts over time due to various processes. Jordan et al. (2010) categorize them in snow drift, dry and wet meta-

morphism, and deformation. The ∆SNOW.MODEL cannot deal with snow drift, however, it differentiates between the latter185

processes:two processes. Dry metamorphism is mainly processed in the Dry Compaction module11of the ∆SNOW.MODEL,

in case of a significant increase in snow depth also in the Overburden submodule of the New Snow module. Wet meta-

morphism is treated in the Drenching module.and the Metamorphism and deformation are processed in the three modules

Dry Metamorphism (2.1), New Snow (2.2.1), and Drenching (2.2.3). The fourth module of the ∆SNOW.MODEL, the Scaling

module, Scaling (2.2.2), accounts for small discrepancies between model and observations. Table 212 correlates Jordan et al.190

(2010)’s compaction processes with the ∆SNOW.MODEL modules and outlines the processes that are ignored. The specific

modules are described in Sects. 2.1 and 2.2, a scheme of the model principle is shown in Fig. 1.

2.0.1 Preliminary: The First Snow Layer

For non-zero snow depth observations (HS obs > 0) after a snow-free period the ∆SNOW.MODEL assigns the following features

to the model snowpack: There is one snow layer (layer counter ly = 1) and the age of this layer is set to age = 1. Thickness195

Snow height13 of this model layer (hs) and total model snow depth (HS ) are equal, and set to observed snow depth: hs =

HS := HS obs. Analogously, the layer’s snow water equivalent equals total snow water equivalent: swe = SWE := ρ0 ·HS obs,

with new snow density ρ0 being an important parameter of the ∆SNOW.MODEL (cf. Sect. 3). The treatment of the first snow

event is illustrated at t= 2 in Fig. 1; it is processed within the New Snow Module (Sect. 2.2.1).

2.1 Dry Compaction moduleMetamorphism200

As it was mentioned in the Introduction, Martinec and Rango (1991) used a power function (Eq. (2)) to describe densification

of aging snow, because this way errors in initial density ρ0 get less relevant over time. For the ∆SNOW.MODEL this kind of

high error tolerance of ρ0 is a rather feeble argument to use a power law, since it only holds for old snow and deep snow-

packs, but with the ∆SNOW.MODEL also SWE of ephemeral snowpacks (e.g., at low elevation sites) should be modeled as

good as possible. Furthermore, as the ∆SNOW.MODEL considers overburden load in a particular way (Sect. 2.2.1), it is not205

expedient to have a direct dependence between density and age of a layer. Aside from that drawbacks of aMartinec and Rango

(1991)’s power law compaction (and in contrast to Martinec and Rango (1991)’stheir unproven claim “snow would [not] settle

[. . . ] according to an exponential curve”), most modern snow models very well simulate snow compaction by way of New-

tonian viscosity with associated exponential densification over time (e.g., Jordan et al., 2010). In the ∆SNOW.MODEL’s Dry

11The Dry Metamorphism module was renamed to Dry Compaction module during the revision.
12Table 2 was added during the revision. It was not part of the primarily submitted manuscript.
13Changed throughout the paper according to Fierz et al. (2009) as a consequence of changing snow “height” to snow “depth” (see above). The respective

symbol h was changed to hs .
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Compaction module the densifying effects of dry metamorphism and deformation are combinedThe ∆SNOW.MODEL’s Dry210

Metamorphism Module combines the effects of dry metamorphism and deformation, by applying the following adaption of

Sturm and Holmgren (1998)’s relation, with the help of De Michele et al. (2013). (For wet metamorphism – as defined by

Jordan et al. (2010) – see Drenching module in Sect. 2.2.3.)

hs(i, t− 1)

hs(i, t)
= 1 + ∆t · σ̂(i, t)

η(i, t)

with σ̂(i, t) = g ·
ly(t)∑
î=i

swe (̂i, t)

and η(i, t) = η0 · ek·ρ(i,t).

(2)

Model timestep ∆t in general is arbitrary, but usually it is one day. If so, t can be explained as “today” and t−1 as “yesterday”215

here. Accordingly, hs(i, t) is today’s modeled thickness of the i-th snow layer. Snow layers are counted from bottom to top;

layer i= 1 is the lowest and oldest layer. Today’s depth of the total snowpack is HS (t) =
∑
i hs(i, t).

The individual snow water equivalents of the layers are given by swe(i, t), and their sum represents total mass of the

snowpack SWE (t) =
∑
i swe(i, t). The vertical stress at the bottom of layer i is given by σ̂(i, t) (De Michele et al., 2013). It is

constituted by the sum of loads overlying layer i (including layer i’s own load), with ly(t) being today’s total number of snow220

layers or – in other words – ly(t) is the index i of today’s uppermost (i.e., “surface”) layer.

The Newtonian viscosity of snow η is made density-dependent in the framework of the ∆SNOW.MODEL (following Kojima,

1967), but dependencies on temperature, grain characteristics etc. are very consciously ignored – due to the lack of information

on it when dealing with pure snow depth data. Today’s density of layer i is ρ(i, t); it equals swe(i,t)
hs(i,t) . k and η0 are tuning

parameters of the Dry Compaction moduleDry Metamorphism Module (see Sect. 3).225

To avoid excessive compaction a crucial parameter is introduced in the ∆SNOW.MODEL, as it was already done by Rohrer

and Braun (1994): ρmax. It defines the maximal possible density of a snow layer and, (consequently,) also the maximum bulk

snow density. Rohrer and Braun (1994) set ρmax to 450kg m−3; finding its optimal value for the ∆SNOW.MODEL Finding its

optimal value is subject to calibration (Sect. 2.3). ρmax figures the density a snow layer (or the whole snowpack) can reach at

most, unless it looses mass by melting. ρmax, of course, is a model parameter and cannot be observed in real snowpacks. In230

case the Dry Compaction moduleDry Metamorphism Module increases the density of one or more layers beyond ρmax, ρ(i, t)

of the respective layer(s) is set equal to ρmax.

According to Eq. (2) the rate of densification of a certain snow layer is linearly depending on the overlying snow load σ̂(i, t)

and exponentially depending on the layer’s density ρ(i, t). Sturm and Holmgren (1998) conclude that this difference is one

reason why “snow load plays a more limited role in determining the compaction behavior than grain and bond characteristics235

and temperature”. Nonetheless, higher overloads result in stronger compaction. Denser and older layers, respectively, compact

less than newer layers with lower densities. This links the densification rate to the layer age, but indirectly by the use of density,

and not directly. Therefore, ∆SNOW.MODEL’s compaction is not directly depending on layer age as it was the case withif using

8



Martinec and Rango (1991)’s power law approach. The usage of an exponential function for compaction is one major difference

between the ∆SNOW.MODEL and Gruber (2014), who uses a power law approach similar to Martinec and Rango (1991).240

The Dry Compaction moduleDry Metamorphism Module of the ∆SNOW.MODEL is illustrated by the light blue arrows in

Fig. 1. This module is applied at every point in time (except if there is no snow; see t= 1 in Fig. 1). The Dry Compaction

moduleDry Metamorphism Module is the core “highest-ranking” module because based on its result the ∆SNOW.MODEL

decides between three different processes, realized by the other three modules:

2.2 Process Decisions245

At every point in time, after the Dry Compaction module was run, The ∆SNOW.MODEL simulates the layers’ thicknesses

for the next point in time hs(i, t) using Eq. (2) (Dry Metamorphism Module). As one time step typically equals one day,

figuratively spoken the Dry Metamorphism Module acts “over night”, from “yesterday” to “today”. “Today” observed HS obs(t)

and modeled HS (t) are compared. The ∆SNOW.MODEL’s process decision algorithm now takes the result of the difference

∆HS (t) = HS obs(t)−HS (t) and confronts it with τ [m]. τ is another tuning parameter of the ∆SNOW.MODEL (see Sect. 2.3).250

Its value is in the order of a few centimeters (see Sect. 3) since τ could also be regarded as a measure for observational error.

Technically, τ is a threshold deviation and defines a limit of ∆HS (t) whose overshooting, adherence, and undershooting heads

for one out of the modules described in the following Sects. 2.2.1 to 2.2.3. Table 2 links them to snow physics.three branches,

which – together with the Dry Metamorphism Module – build the four modules of the ∆SNOW.MODEL:

– New Snow (2.2.1): In case observed snow depth is significantly higher than modeled snow depth (∆HS (t)>+τ),255

a snowfall event is assumed. This means mass gain as well as enhanced compaction of underlying layers due to the

overburden load.

– Scaling (2.2.2): In case there is no significant difference between observed and modeled snow depth (−τ ≤∆HS (t)≤+τ),

neither mass gain nor loss is modeled. However, modeled snowpack is “scaled”, i.e. compressed or stretched, to fulfill

the condition HS (t) = HS obs(t).260

– Drenching (2.2.3): In case observed snow depth is significantly lower than modeled snow depth (∆HS (t)<−τ), it is

interpreted as wet snow metamorphism. In the snowpack this “drenching” happens from top to bottom, resulting in the

associated (strong) decline of snow depth. The drenching can either be caused by melt (mass loss) or rain (mass gain),

whereas treating the latter is optional, not finalized in the current version of the ∆SNOW.MODEL, and not further detailed

here.265

2.2.1 New Snow module

In case ∆HS (t)>+τ , meaning observed snow depth is significantly higher than modeled snow depth, a new snow event

is supposed and a new top snow layer is modeled by the ∆SNOW.MODEL (see at t= 2 and t= 7 in Fig. 1 for a schematic

illustration). This is a consequential step and nothing innovative at all. Other models have implemented this mechanism as
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well (e.g., Martinec and Rango, 1991; Lehning et al., 1999; Sturm et al., 2010)(e.g., Martinec and Rango, 1991; Sturm et al.,270

2010. However, the ∆SNOW.MODEL goes beyond and introduces another feature: It explicitly models the peculiar effect of

overburden load on underlying layers, defined as their enhanced densification due to (sudden )stress, which is put on by the

weight of new snow (or rain-on-snow). Grain bonds get broken, grains slide, partially melt, and warp (Jordan et al., 2010), and

the layers densify comparatively rapidly and strongly. The ∆SNOW.MODEL interprets overburden load as an “unsteady and

discontinuous” stress on the snowpack, under which snow presumably does not react as a viscous Newtonian fluid. (As long275

as ∆t – the time between two consecutive observations ∆t – is in the order of at least some hours, discontinuity is an intrinsic

feature of the process. Mostly daily snow depths are available, a new snow event is always an unsteady case then.) The part of

Jordan et al. (2010)’s "deformation strain", that is created by the individual layer loads, is interpreted as a “continuous” effect

and is processed by the Dry Metamorphism Module; see σ̂ in Eq. (2).

The New Snow module realizes the effect of overburden load through the Overburden submodule by reducing each layer’s280

thickness hs(i, t) with the help of the dimensionless “overburden strain” ε(i, t), defined as

ε(i, t) = cov ·σ0 · e−kov
ρ(i,t)

ρmax−ρ(i,t)

with σ0 = ∆HS (t) · ρ0 · g.
(3)

cov [Pa−1] is another tuning parameter of the model (see Sect. 2.3) and. It controls the importance of the unsteady sudden,

enhanced compaction due to overburden load. According to Sturm and Holmgren (1998) and in consistency with Eq. (2) snow

load has a linear effect on the bulk density. Therefore, ε(i, t) is made linearly depending on the load, which the overlying new285

snow is putting on the underlying layers. This load (or stress or pressure) is well approximated by σ0 [Pa]; the bigger the

overburden load, the stronger the compaction. (The overburden load does not fully equal σ0, since ∆HS (t) is not the depth

of the new snow, but the difference between modeled depth – “before” knowing about the new snow event – and observed

depth “after” the new snow event. An iterative calculation would be more precise, however, Eq. (3) proved to be an adequate

compromise between simplicity and accuracy.) In order to avoid ε(i, t)> 1, cov is restricted (at least) to the range of values290

between 0 and the minimum value of the data record for 1
σ0

. As σ0 hardly ever exceeds 1000 Pa, 1
σ0

normally is larger than

1× 10−3 Pa−1. This value, thus, marks a good upper bound for cov (Sect. 2.3). Dimensionless kov controls the role of a certain

snow layer’s density (i.e., age, respectively) on ε(i, t), and has to be specified by calibration (see Sect. 2.3). The density-

dependence of ε(i, t) was chosen to be exponential, and using ρmax in the denominator of Eq. (3)’s exponent secures that

overburden loads cannot make snow layers denser than ρmax. The closer a snow layer’s density is to the maximum density ρmax,295

the less it will be compacted by additional load. Relatively new and, therefore, – therefore – not very dense layers, are exposed

to greater densification, which is exactly what is observed in reality. As it will be shown in sections 2.2.2 and 2.2.3 ρmax also

governs mass loss and melt in the model. Not least, ρmax illustrates the possible maximum density of a wet seasonal snowpack

in the ∆SNOW.MODEL- world and – as it can be seen in Sect. 3 – it is possible to assign a reasonable value to it (cf. Sect. 3).

(Sturm et al. (2010), who revisited Sturm and Holmgred (1998), already introduced a maximum density for seasonal snow.300

10



They used it very prominently in their formula for modeling bulk density and defined five (snow) climate classes with different

values of ρmax ranging from 217 to 598 kg m−3.)

The “overburden strain” ε(i, t) theoretically lies between 0 and 1 and compresses all (old) snow layers of the model in case

of a new snow event. Practically, ε(i, t) is often close to zero (in this study 90% of all computed ε are smaller than 0.09) and

extremely rarely higher than 0.3 (in this study only 9 out of 10000).305

The following intermediate (asterisked) variables are defined due to the overburden load. The compressed layer’s masses,

swe(i, t), remain unaffected during this process.

ε(i, t) =
hs(i, t)− hs∗(i, t)

hs(i, t)
leading to hs∗(i, t) = (1− ε(i, t)) · hs(i, t)

HS∗(t) =
∑
i

hs∗(i, t)

ρ∗(i, t) =
swe(i, t)

hs∗(i, t)

(4)

A new snow event, identified by the condition ∆HS (t)>+τ , of course not only impacts the older snow and compacts it

more strongly, but it also adds a new snow layer and mass to the snowpack (pink arrow at t= 2 and t= 7 in Fig. 1). The310

number of layers is increased by one and the following attributes are given to the new layer:

age(ly , t) = 1

hs(ly , t) = HS obs(t)−HS∗(t)

swe(ly , t) = hs(ly , t) · ρ0

(5)

The total snow water equivalent is risen: SWE (i, t) = SWE (i, t− 1) + swe(ly , t), and the intermediate variables of Eq. (4)

overwrite their originals: hs(i, t) = hs∗(i, t), HS (t) = HS∗(t) + hs(ly , t), and ρ(i, t) = ρ∗(i, t). The model- snowpack with

this new properties now again compacts according to Eq. (2), time t is risen by one increment, and at the next point in315

time“tomorrow” the process again starts with the decision described in Sect. 2.2. The Overburden submodule treatment of

overburden snow loads as triggers for enhanced compaction of the underlying snow is illustrated with a purple arrow at t= 7

in Fig. 1. Although the overburden strain ε in most cases hardly deviates from zero (see above), the value of this feature for the

performance of the ∆SNOW.MODEL is supposed to be rather high, at least it should be worth the effort (cf. Sect. 4).14

2.2.2 Scaling module320

EOf course, equations (2) and (3) are highly simplified representations of the complex viscoelastic behavior of snow and make

no claims of being particularly precise. Still, also snow depth observations typically only show an accuracy of a few centimeters.

The ∆SNOW.MODEL accepts these inherent inaccuracies and apparent discrepancies between model and measurements and

14The discussion of this issue is provided in the Discussion and Outlook section of the revised manuscript. NICHT VERGESSEN!
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copes with them by not applying too strict criteria in the process decisions described in Sect. 2.2. The threshold deviation

uncertainty measure τ (introduced above) acts as a buffer to avoid too frequent gain or loss of mass in the model world: In325

case |∆HS | ≤ |τ | neither the snowpack looses mass nor gains mass, but mass is kept constant. In order to benefit from having

a new measurement at every point in time, HS (t) is intentionally set to HS obs(t) by the Scaling module.

The Scaling module forces a partial revaluationreversal of the previous compaction, which was modeled by the Dry Com-

paction moduleDry Metamorphism Module between t−1 and t. The best-fitted parameter setting for η0 is temporarily rejected

and substituted by η∗0 . It would be straight forward to use one adjusted η∗0(t) for all layers. However, this leads to a ratio-330

nal function with multiple solutions for η∗0(t), . Consequently, this approach shows a clear non-physical behavior making it

necessary to calculate different η∗0(i, t) for each layer i. See Appendix B for details on that.

η∗0(i, t) is then used instead of η0 in Eq. (2) to recalculate the compaction of individual layers. HS (t) now equals HS obs(t).

In most cases all layers get “slightly more” or “slightly less” compacted by the Scaling module than by the Dry Compaction

moduleDry Metamorphism Module. Only at rare occasions the scaling does not compact, but a small “stretching” of the335

snowpack is necessary. This only happens if there was a small increase in observed snow depth and very little modeled dry

metamorphic compaction; the condition HS (t)+τ >HS obs(t)>HS obs(t−1) has to be fulfilled. Of course, such “stretching”

does not occur in reality, but also in the ∆SNOW.MODEL it is an infrequent case that only acts at a small scale. In: in any case

the “stretching” is smaller than τ . The issue is accepted as a model artifact, not least, because the “stretching” enables the very

valuable adjustment to HS obs at every point in time – without forcing mass gains for any insignificant HS raises that are within340

the measurement accuracy.

In case the density of an individual layer exceeds ρmax by the scaling process, the excess mass is distributed layerwise from

top to bottom. SWE remains constant during scaling, unless it would be necessary to compact all layers beyond ρmax. In

this case the appropriate excess mass is taken from the model- snowpack and interpreted as runoff, SWE is reduced and all

layer thicknesses are cut accordingly (see Runoff submodule in Sect. 2.2.3 for details). As τ turns out to be – reasonably and345

preferably – chosen in the order of a few centimeters (Sect. 3), the resulting reduction of SWE within the Scaling module is

always quite small: (e.g., with τ = 2 cm and maximum density chosenis 450 kg m−3 (like Rohrer and Braun, 1994) the mass

loss due to runoff, i.e. runoff, is only 9 kg m−2).

The Scaling module is illustrated as black arrows in Fig. 1. Note, again that the scaling is nothing “physical”, but also nothing

“substantial” in terms of SWE , yet it is a smart way to utilize the advantage of having a measured snow depth at every point350

in time.

2.2.3 Drenching module

The Drenching module, finally, defines compaction due to liquid water percolating from top to bottom through the snow-

pack, loosening grain bonds and leading to densification (wet snow metamorphism). In case observed snow depth at a certain

point in time is significantly lower than modeled snow depth (∆HS (t)<−τ), the Drenching module is activated. Drenching355

compaction is the ∆SNOW.MODEL’s synonym of wet snow metamorphism.
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The drenching can either be caused by melt or rain and the ∆SNOW.MODEL can principally deal with both processes, which

are (often) contradictory in terms of mass change (melt: mass loss or invariant; rain: mass gain or – only if combined with

runoff – invariant or mass loss). However, distinguishing between them is indeed extremely difficult (if not impossible) if only

snow depths are available. For the time beingT the ∆SNOW.MODEL ignores rain on snow since it concentrates on modeling360

SWE for pure snow depth records without having any further information on e.g.e.g precipitation, temperature, snowfall level,

etc.. . . Possibilities how rain could be addressed inat future developments are outlined in Sect. 4 MACHEN, VIELLEICHT

MITHILFE DER GESTRICHENEN SÄTZE. This drawback seems disappointing, however, given the relative success of the

∆SNOW.MODEL “without rain” (see Sect. 3) one should not expect too much improvement when incorporating rain in one or

another – potentially elaborate – way.365

To cope with the model-observation-model/observation discrepancy ∆HS (t)<−τ the Drenching module densifies the

model layers until ρmax is reached, – starting from the uppermost one. Figuratively spoken, it wettens or drenches a certain

layer gets drenched until saturation and meltwater is further distributed until it is “saturated” and further distributes the melt

water to the underlying layer. This process is repeated until (transient, therefore asterisked) HS∗ equals HS obs(t). One or more

(upper) layers might reach ρmax. In case ∆HS (t) is so negative that all model snow layers (from top to bottom) are compacted370

and densified to ρmax, but still HS∗ >HS obs(t) the Runoff submodule is activated and runoff R(t) is defined as, the product of

the remaining depth difference and the maximum density constitutes mass loss, i.e. runoff R(t):

R(t) = (HS∗−HS obs(t)) · ρmax. (6)

All layer thicknesses are “cut” by a respective portion: (HS∗−HS obs) · hs∗i
HS∗ . This mechanism does not reduce total number

of layers, but layers potentially get very thin. During the melt season, where most of the runoff is produced, the Runoff375

submoduleDrenching module is more or less continuously active until it is snow-free HS obs(t) = 0 and all the snow has been

converted to runoff. For aone distinct snowpack – from the first snow fall (t1) until getting snow-free again (t2) – one has∑t2
t1
R(t) = SWE pk.

In Fig. 1 the Drenching module is shown by the brown arrow (as long as there is no mass loss) and its Runoff submodule by

the green arrowscyan arrow (in case runoff is modeled).380

2.3 Calibration

The ∆SNOW.MODEL has seven parameters that can be used for calibration: ρ0, ρmax, η0, k, τ , cov, and kov (cf. Tab. 3). For the

first four parameters one finds suggestions and ranges in the literature:

Sturm and Holmgren (1998) do not address the criticality for the choice of new snow density, however, they use constant

ρ0 = 75 kg m−3. It is a well known characteristic of newfreshly fallen snow to show large variations in densities. Helfricht385

et al. (2018) reviewed many studies and give a general range of 10− 350kg m−3, narrowing it down to “mean values” be-

tween 70− 110kg m−3. Note, that this is daily densities. Sub-daily means of new snow densities are lower. Helfricht et al.
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(2018), for example, come up with an average of 68 kg m−3 for hourly time intervals. During the calibration process for the

∆SNOW.MODEL ρ0 was varied from 50 to 200 kg m−3.

The second density-related calibration parameter is ρmax, the maximum possible density within the model framework. As390

mentioned, Rohrer and Braun (1994)Sturm et al. (2010) already setdefined such a maximum at 450 kg m−3. Also Sturm et al.

(2010) defined it for five different climate classes, ranging. They range from 217 to 598 kg m−3. Glaciologists set the “critical

density” before snow turns into firn (which is wetted snow that has survived one summer) to 400 to 800 kg m−3 (e.g., Paterson,

1998). Still, manual density measurements of seasonal snow used in previous studies hardly ever exceeded ρb =500 kg m−3

(e.g., Jonas et al., 2009; Guyennon et al., 2019). Armstrong and Brun (2010) limit it to approximately 400 to 500 kg m−3 too.395

In order to find the fittest value for ρmax used in the ∆SNOW.MODEL, it was varied from 300 to 600 kg m−3.

Equation (2) needs η0, the “viscosity at [which] ρ equals zero” (Sturm and Holmgren, 1998). It is found to be in the order

of 8.5× 106 Pa s (Sturm and Holmgren, 1998), 6× 106 Pa s (Jordan et al., 2010), and 7.62237× 106 Pa s (Vionnet et al.,

2012). During the calibration process for the ∆SNOW.MODEL η0 was varied from 1 to 20× 106 Pa s. Parameter k, the second

necessary parameter in Eq. (2), was varied from 0.011 to 0.08 m3 kg−1 by Sturm and Holmgren (1998) depending on climate400

region and respective different types of snow. However, they cite Keeler (1969) in their Table 2 with values for k for “Alpine-

new” snow of up to 0.185 m3 kg−1. In more complex snow models k is set to 0.023m3 kg−1 (see Crocus: bη in Vionnet et al.

(2012)’s Equation (7); and also in Equation (2.11) of Jordan et al., 2010) or 0.021m3 kg−1 (see SNTHERM: Equation (29) in

Jordan, 1991). Its range for the ∆SNOW.MODEL calibration was set from 0.01 to 0.2 m3 kg−1, which is quite generous.

There are no references for the latter three parameters. Threshold deviation τ , as mentioned, might be interpreted as a405

measure of observation error, is regarded to be in the order of a few centimeters, and was modified from 1 cm to 20 cm for

calibration. The last two parameters, cov and kov, determine the role of overburden strain and are newly introducted in kind of

a specialty of the ∆SNOW.MODEL: cov and kov. At least the limits of cov could be defined (Sect. 2.2.1) as cov ∈
[
0,min( 1

σ0
)
]
.

kov is only known to be a dimensionless,(dimensionless) real, positive number. For calibrating the ∆SNOW.MODEL cov and kov

were restrained by [0,10−3 Pa−1] and [0.01,10], respectively.410

As mentioned, timestep ∆t principally can be chosen arbitrarily. Mostly it might be one day, because many (longterm) snow

depth measurements are on a daily basis. The calibration performed in this study is based on ∆t= 1 day. Still, longer ∆t

(e.g., three days) as well as shorter ∆t (e.g., one hour) are conceivable and could be handled by the ∆SNOW.MODEL. Note,

however, at least some(at least some) calibration parameters will change significantly when changing ∆t. This gets obvious

when thinking about new snow density ρ0, which of course is different if defined for one hour or for a three day timestep. The415

usage of this publication’s calibration parameters can, therefore, only be suggested for daily snow depth records.

2.3.1 Calibration Data and Method

The calibration process needs SWE data, but SWE measurements are quite rare (see Sect. 1)data – either from observations

or from a much more sophisticated snow model, whose simulated SWE s are sufficiently reliable. As it was outlined in the

Introduction, SWE measurements are quite rare. FurthermoreHowever, for calibration not only SWE observations are needed,420

but also regular snow depthgapless snow depths records from the same places, at least at daily resolution. Gruber (2014) col-
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lected 1415 years of weekly SWE data from six stations in the Eastern Alps, measured by the observers of the Hydrographic

Service of Tyrol (Austria) between winters 1998/99 and 2011/122012/13. The measurements of snow depth and water equiva-

lent were made manually in snow pits with rulers and snow sampling cylinders (500 cm3), respectively. The sites range from

590m to 1650m altitude and are situated in relatively dry, inneralpine regions as well as in the Northern and Southern Alps,425

which are more humid due to orographic enhancement of precipitation (see Gruber, 2014, for details). The sites in the Southern

Alps even show a moderate maritime influence due to their vicinity to the Mediterranean Sea, the most important source of

moisture for this region (e.g., Seibert et al., 2007). These 6× 14 = 846× 15 = 90 winter seasons cover 1166 measured HS–

SWE pairs. Besides these SWE measurements manual HS measurements are available for every day at the respective stations.

Figure A1 and Table A1 provide a map and a list, respectively.15430

The second source for SWE measurements used for calibration is Marty (2017). The Swiss SLF freely provides biweekly

SWE and daily HS data from 11 stations in Switzerland (mostly in the Northern Alps, some inneralpine) spanning an altitude

range from 1200m to 2540m. The biweekly HS measurements, accompanying (corresponding to the biweekly SWE mea-

surements,) were compared with the contemporary value of the daily HS records. Only those sites and years were used for

calibration where the respective values of the daily HS record match the values of the biweekly measurements. If this condition435

is fulfilled, it is supposed that SWE and HS measurements fit together sufficiently well, although they unfortunately cannot

always be taken exactly at the same place, which introduces uncertainty (e.g., López-Moreno et al., 2020). Consequently, 9

stations were used, most of them in the Northern Alps, some inneralpine, spanning an altitude range from 1200m to 1780m

This was the case for 9 stations, with all in all 56 winters and 388363 pairs of HS and SWE measurements. Details are

given in Fig. A1 and Table A1. (Other stations and years suffer from discrepancies caused by too far distances between the440

measurements etc.)

In order to ensure an unperturbed validation, the observation data sets from Austria and Switzerland (15541529 SWE −HS

pairs) were split in two almost equally big parts, one for model calibration (SWE cal) and one for validation (SWE val).into even

years for model calibration (SWE cal) and odd years for validation (SWE val).16 The two data sources (Gruber, 2014; Marty,

2017) do not address the accuracy of the manual SWE observations. Mostly, SWE measurements made with snow sampling445

cylinders are used as references in comparison studies, without addressing their accuracy (e.g., Sturm et al., 2010; Dixon and

Boon, 2012; Kinar and Pomeroy, 2015; Leppänen et al., 2018). López-Moreno et al. (2020) provide a reported range of 3-13%,

and condense the results of their own, very thorough and valuable experiments to an error range of 10-15% for bulk snow

density. The majority of SWE cal and SWE val comes from the Hydrographic Service of Tyrol, Austria, where snow sampling

cylinders (500 cm3) are used (Sect. 2.3.1). The repeatability of this kind of measurement is estimated at ±4% for glacier450

mass balance studies (R. Prinz, Univ. of Innsbruck, Austria; pers. comm.). Roughly interpreting these density measurement

“variabilities” as relative observation errors for SWE , the results for absolute accuracy would typically spread across the wide

range of about 2 to 50 kg m−2.

15Figure A1 and Table A1 were added during the revision. They were not part of the primarily submitted manuscript.
16The following remarks on SWE observation accuracy were placed at the beginning of the Validation and Illustration section of the initially submitted

manuscript and moved to this place during revision.
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Model calibration was performed with the statistical software R (R Core Team, 2019) and the R package optimx (Nash,

2014). Results were obtained with optimization methods L-BFGS-B (Byrd et al., 1995) followed by bobyqa (Powell, 2009),455

which both are able to handle lower and upper bounds constraints. The function to be minimized was the root mean square

error (RMSE) of SWE s from the ∆SNOW.MODEL and observed SWE s, using the calibration data set SWE cal.

3 Results

The following evaluates the ability of the ∆SNOW.MODEL to calculate snow water equivalents exclusively from snow depths,

and its practicability.17 See sections 3.2 and 4 for more. Before that, however, the model parameters have to be optimized during460

the calibration process (which was described in Sect. 2.3). The results thereof – the best-fitted parameters – are important model

results per se, since they show insights how well model world and real world fit together.

3.1 Optimized Parameters and Sensitivities

Table 3 gives an overview of all parameters and summarizes the optimal setting for the ∆SNOW.MODEL. A discussion of the

best-fitted values and of the model sensitivity to parameter changes can be found in Sect. 4.465

The minimal RMSE between all SWE observations used for calibration (SWE cal) and the respective modeled values

is 30.1 kg m−2. It is reached for new snow density ρ0 = 81 kg m−3, maximum density ρmax = 401 kg m−3, “viscosity pa-

rameters” η0 = 8.5× 106 Pa s and k = 0.030 m3 kg−1, threshold deviation τ = 2.4 cm, and “overburden parameters” cov =

5.1× 10−4 Pa−1 and kov = 0.38.18 A graphical analysis of the model sensitivity to parameter changes is shown in Fig. 2.

SWE pk was chosen to indicate sensitivity, since it is probably the most important quantity for snow-hydrology and other fields470

where snow mass is a key variable (see Introduction).

3.1.1 New Snow Density ρ0

Being aware of both – the huge possible variations of new snow density ρ0 depending on meteorological conditions during

snowfalls and the possible cruciality of this parameter for SWE simulation by the ∆SNOW.MODEL – ρ0 was chosen to be a

constant in the framework of the model. For ρ0 = 81 kg m−3 the minimal root mean square differences/errors (RMSE) between475

all SWE observations used for calibration (SWE cal) and the respective modeled values was reached. This value clearly lies

within the broader frame of possible new snow densities and quite closely to Sturm and Holmgren (1998)’s 75 kg m−3 (The

∆SNOW.MODEL could be seen as an extended combination of the Sturm and Holmgren (1998) and Martinec and Rango (1991)

approaches.), but it is found in the lower part for “typical” new snow densities (e.g., Helfricht, 2018). A possible explanation

could be that the SWE measurement records used for the calibration tend to underrepresent late winter and spring conditions.480

Regular (weekly, biweekly) observations capture the short melt seasons worse than the (much) longer accumulation phases.

17Most content of subsections 3.1.1 to 3.1.5 of the submitted manuscript was transferred to the Discussion section during revision. The segmentation

3.1.1-3.1.5 was omitted.
18All the optimized values (except ρmax) where rounded to two significant figures for the revised manuscript.
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Therefore, SWE records might be biased towards early and mid winter new snow densities, which are lower (e.g., Jonas et al.,

2009). Still, there are also some indications that using e.g., 100 kg m−3 as constant new snow density when modeling SWE

results in an overestimation of precipitation (up to 30% according to Mair et al., 2016). The calibrated value for ρ0 can be

regarded as a reasonable result, even more when only considering it as a model parameter but not as a physical constant.485

The sensitivity analysis illustrated in Fig. 2 confirms the importance of a good choice of ρ0. Increasing ρ0 quite fast leads

to a decrease of the relative bias of seasonal SWE maxima (SWE pk). (Note the definition of the relative bias in Fig. 2’s

caption.) In absolute values: too small ρ0 cause too small SWE pk, using higher values leads to an overestimation of SWE pk.

This behavior supports above-mentioned tendency to overestimate precipitation when choosing 100 kg m−3 as new snow

density. As expected, the new snow density is the most crucial parameter of the ∆SNOW.MODEL (cf. Tab 3). The median490

relative bias of SWE pk changes by -0.46% per +1 kg m−3, if the whole calibration range of ρ0 is considered to calculate the

sensitivity (50− 200 kg m−3). This means a median change in SWE pk of +0.37 kg m−2 when ρ0 is risen by +1 kg m−3. If

the limits are chosen tighter around the optimal value, the gradient is even steeper: -0.62% and +0.50 kg m−2 per +1 kg m−3,

respectively, when the gradient is approximated for the range 70− 90 kg m−3. Widely-used ρ0 = 100 kg m−3, consequently,

causes a median overestimation of SWE pk of about 12% in the ∆SNOW.MODEL (same for daily SWE ). Users should be495

aware of this. The suggestion clearly is to either use the best-fitted parameters of this study or recalibrate all parameters (with

appropriate SWE data), but not adjusting only single parameters. As the calibration data of this study are spread across various

climates and altitudes, users can be quite confident to get good results if using ρ0 = 81 kg m−3. This value seems to be a good

compromise – at least at alpine areas. However, for (very) maritime, very dry, polar or tundra regions the optimized ρ0 should

be used with caution; if possible, recalibration is recommended.500

3.1.2 Maximum Density ρmax

Of course, the maximum bulk snow density of a snowpack changes from year to year and site to site. For the ∆SNOW.MODEL simplicity

and independence from meteorological variables outweigh precision. Even more so, when there are good arguments for the

existence of a “typical” maximum bulk density ρmax. Put simply, not too old seasonal and also ephemeral snowpacks melt

away when they get water saturated. Before that, there is limited time for dry densification; dry winter snow’s bulk density505

is widely described as staying below about 350 kg m−3 (e.g., Paterson, 1998; Sandells et al., 2012). Accounting for the fact

that volumetric liquid water content of about 10% marks the funicular mode of liquid distribution in old, coarse-grained

snow (Denoth, 1982; Mitterer et al., 2011), this leads to the rough estimate of a typical maximum bulk density of about
9
10 · 350 + 1

10 · 1000 = 415kg m−3. Convincingly, the fittest value for ρmax in the ∆SNOW.MODEL turns out to be 401 kg m−3,

which is close to that value and well situated within the range given in the literature (Table 3). Moreover this is virtually the510

same value like the median maximum seasonal density of the SWE val data records (400 kg m−3, see box plot in Fig. 3) –

another indication why ρmax could be regarded as a typical seasonal maximum of ρb.

Figure 2 illustrates the similarity between ρ0 and ρmax regarding their influence on SWE simulations. Keeping the other six

∆SNOW.MODEL parameters constant but increasing ρmax leads to increased SWE pk and vice versa. This is not surprising,

however reasonable. The ∆SNOW.MODEL is not as sensitive to changes in ρmax than to changes in ρ0: Raising ρmax by515
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+1 kg m−3 leads to a mean decrease of the relative bias of SWE pk of -0.06%, which corresponds to an increase in absolute

SWE pk of +0.24 kg m−2 per +1 kg m−3. The same argumentation like for ρ0 in Sect. 3.1.1 lets users of the ∆SNOW.MODEL be

quite sure when taking ρmax = 401 kg m−3, the best-fitted value according to this study’s calibration. Be aware that solely

changing parameter ρmax for an application of the ∆SNOW.MODEL elsewhere, without proper recalibration of the other parameters,

might lead to significant changes in the results for SWE . For the data set of this study, e.g., using ρmax = 500 kg m−3 (instead520

of 401 kg m−3) would lead to a median overestimation of SWE pk of about 24 kg m−2.

3.1.3 Viscosity Parameters η0 and k

Equation (2) represents the settlement and densification function of the ∆SNOW.MODEL. Viscosity of layer i at time t is defined

as η(i, t) = η0 · ek·ρ(i,t). Two parameters η0 and k act as adjustment screws and have to be calibrated. Literature places η0 in

the order of some 106 Pa s, k is supposed to be in the range of 0.01 to 0.2 m3 kg−1 (Table 3). The latter was varied over the525

mentioned range during the calibration process and – satisfactorily – it’s optimized value is k = 0.030 m3 kg−1, which is very

close to the ones used in widely accepted, sophisticated, thermodynamic models (Jordan et al. (2010), Vionnet et al. (2012);

see also Sect. 2.3). The range over which η0 was varied during the calibration was 1 to 20× 106 Pa s. Best-fitted value is

8.5× 106 Pa s, pretty close to other studies’ values (Table 3).

As far as the ∆SNOW.MODEL’s sensitivity to changes in the “viscosity parameters” η0 and k is concerned, Fig. 2 shows that530

an isolated rise of the model snow viscosity – either by enhancing η0 or k – increases the relative bias of SWE pk, which means

a decrease in absolute values of SWE pk. This behavior is consistent, since higher viscosity reduces the densification rate and

the model snowpack tendentially stays deeper. Consequently, increases in observed snow depth tend to bring less new snow in

the ∆SNOW.MODEL (New Snow Module). Finally, simulated SWE pk is reduced when η0 or k are increased and vice versa.

3.1.4 Discrepancy Parameter τ535

The ∆SNOW.MODEL’s parameter to cope with uncertainties in snow depth is τ . It is supposed to be in the order of a few

centimeters (at maximum). In particular, it should avoid excessive production of snow mass in the model through too frequent

simulation of new snow events (see Sect. 2.2). τ is kind of a peculiarity of the ∆SNOW.MODEL and therefore no bounds can

be found in literature. It was generously accepted to range between 1 and 20 cm for calibration and turned out to be optimal

at τ = 2.4 cm (Table 3). Given the wide range of possible values, this is very close to what it would be expected to be as a540

measure for HS obs accuracy.

Model sensitivity to changes in τ turns out to be quite low for values in the order of a few centimeters, but the influence

on simulated SWE pk is strongly increasing if τ is chosen greater than about 5 cm (Fig. 2). This result makes a lot of sense, if

τ is seen as a measure of observation accuracy, because this is very likely to be better than 5 cm. Like changes in η0 and k,

changes in τ are indirect proportional to changes in SWE pk – for a closely related reason: The bigger τ the more often (small)545

new snow events are not counted as such because the Scaling module is more frequently activated at the cost of the New Snow

Module (see Sect. 2.2). Mass gains are tendentially modeled less frequently and, as a consequence, snow water equivalents

stay smaller.

18



3.1.5 Overburden Parameters cov and kov

Aside τ , there are two more parameters that are peculiar to the ∆SNOW.MODEL. They are needed to simulate unsteady550

compaction by overburden load of new snow (Eq. (3)). Because of their (presumed) uniqueness in the snow model spectrum

there is no information available on how to choose them (see Sect. 2.3 for more). However, the calibration produces cov = 5.10× 10−4 Pa−1

and kov = 0.379 as fittest values (Table 3).

As outlined in Sect. 2.2.1, the implementation of overburden strain in the ∆SNOW.MODEL is supposed to be an important

aspect of the model. Still, the sensitivity of modeled SWE pk to changes in either cov or kov – without changing the respective555

other – are quite minor. (See Fig. 2) for cov. kov is not shown, because it is comparable, but with opposite sign.) The reason

for this relative insensitivity of the model to changes in cov and kov could be the contradicting effects of these two “overburden

parameters”: Higher cov push overburden strain ε towards 1.0 (Eq. (3)), which increases the role of overburden snow. hs∗ and

HS∗ of Eq. (4 are reduced and, consequently, the new layer thickness (and mass) is increased (Eq. (5)). Higher cov, therefore,

lead to higher SWE and SWE pk. For kov it is the opposite, higher values of kov cause lower SWE .560

3.1 Validation and Comparison to other modelsIllustration

19As pointed out, the observations of snow water equivalent where divided in two sets, one for calibration (SWE cal) and one

for validation (SWE val). The question arises, how accurate the manual SWE observations are. The two data sources do not

address this point (Gruber, 2014; Marty,2017). In general, this is not easy to be answered since SWE measurements made with

snow sampling cylinders mostly are used as references in comparison studies, without addressing their accuracy (e.g., Sturm565

et al., 2010; Dixon and Boon, 2012; Kinar and Pomeroy, 2015; Leppänen et al., 2018a). The majority of SWE cal and SWE val

comes from the Hydrographic Service of Tyrol, Austria, where snow sampling cylinders (500 cm3) are used (Sect. 2.3.1). The

repeatability of this kind of measurement is estimated at ±4% for glacier mass balance studies, with filling height having the

largest influence on accuracy (R. Prinz, Univ. of Innsbruck, Austria; pers. comm.). According to Leppaenen et al. (2018b), who

compared various density samplers, the “variability among the replications of each sampler and variability among the samplers570

[is] both less than 10% [. . . ] However, the uncertainty introduced by using different samplers was higher than the uncertainty

caused by observer error”. Roughly interpreting these density(!) measurement “variabilities” as relative observation errors for

SWE , the results for absolute accuracy would typically spread across the wide range of about 2 to 50 kg m−2.
20Table 4 provides an overview of model uncertainties for SWE . Vionnet et al. (2012) find a root mean square error and bias

of 39.7 kg m−2 and −17.3 kg m−2, respectively, comparing 1722 manual samplings at Col de Porte (Chartreuse Mountains,575

France) and Crocus. These seem to be quite pessimistic values, since root mean square differences found by Langlois et al.

(2009) are significantly lower. (However, they base on much fewer data.) Roughly summarized, SWE observations as well

as “first-class” snow models’ SWE simulations are associated with comparable uncertainties; RMSEs might be favorably

approximated in the order of 10 to 20 kg m−2.

19The remarks on SWE observation accuracy were moved from the beginning of the Validation and Illustration section of the initially submitted manuscript

to the Methods section of the revised manuscript. Content-related changes of this paragraph are minor.
20The paragraph about SWE accuracy of thermodynamic snow models was moved to Sect. 4.7 during the revision.
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In this study no quantitative comparison with thermodynamic snow models was performed, since they need further meteo-580

rological data and the focus was on data records constrained to snow depths. However, the ∆SNOW.MODEL was thoroughly

evaluated against ERMs. Figure 2 and Table 4 show the results. Even though ERMs do not need meteorological data, it is not

straight forward to calibrate them for new sites and applications. From the vast number of ERMs (cf. Avanzi et al., 2015) the

ones of Pistocchi (2016) and Guyennon et al. (2019) were chosen to be fitted to SWE cal(standard: Pi16, Gu19; calibrated:

Pi16cal, Gu19cal). These models are (quite) new and easy to calibrate. Additionally, an approach simply using a constant bulk585

snow density at every point in time was calibrated to fit this study’s data. Interestingly, 278 kg m−3 turned out to be the optimal

value minimizing root mean square errors of all SWE calSWE values (ρ278). Moreover, Jonas et al. (2009) and Sturm et al.

(2010) were used for comparison (Jo09, St10). Unfortunately, calibration of these powerful models would have needed much

more data than the 780 SWE -HS -pairs of the SWE cal data set, because this would have needed much more data these powerful

models could not be calibrated with SWE cal, because this would have needed much more SWE -HS -pairs than those about590

1500 having been processed in this study. Therefore, Jonas et al. (2009) and Sturm et al. (2010) were used with their standard

parameters, but for Jonas et al. (2009) it was distinguished between regions (see Fig. 2’s caption): Region 6 (Jo09R6) having

the highest and Region 7 (Jo09R7) having the lowest “region-specific offset”, respectively. Other contemporary approaches

had to be ignored, mostly because of the problematic transferability of regional parameters (e.g., McCreight and Small, 2014,

or Mizukami and Perica, 2008).595

Figure 4’s upper left panel indicates the decent performance of the ERMs at the mean when applied to the validation-half

of the data set. The bias of modeled SWE (lower left panel in Fig. 2) is quite low and tendentially positive, meaning SWE

is often slightly overestimated by the ERMs. (Distinct values are given in Table 4.) The ∆SNOW.MODEL – on the contrary

– slightly underestimates SWE on average, the median bias is −3.0 kg m−2−4.0 kg m−2. The overall good results for the

ERMs is not particularly surprising, since they are dedicated to perform well on average. The specially calibrated versions of600

Pistocchi (2016) and Guyennon et al. (2019) show a significantly smaller bias than their originals. The model of Jonas et al.

(2009) has the smallest (actually a negative) bias for their “Region 7”, encompassing the dry, inneralpine Engadin as well as

parts of the Southern Alps and the very East of Switzerland (Samnaun), which is partly influenced by orographic precipitation

from Northwesterly flows. In terms of heterogeneity in precipitation climate “Region 7” is comparable to the region where

the SWE data of this study comes from. Sturm et al. (2010) assess the bias for their model (with their “alpine” data set) at605

+29 kg m−2 with a standard deviation of 57 kg m−2, and they outline that “in a test against extensive Canadian data, 90% of

the computed SWE values fell within ±80 kg m−2 of measured values”. This is a much more conservative estimation than the

results for this study would suggest.

The other three indicators illustrated in Fig. 2 and summarized in Table 4 – bias of seasonal snow mass maximum SWE pk

(upper right panel) and the root mean square errors of individual SWE (lower left panel) as well as of SWE pk (lower right610

panel) – signify the better performance of the ∆SNOW.MODEL compared to ERMs:21 The latterERMs are intrinsically tied

to snow depth (see Sect. 1.2) and are systematically forced to overestimate SWE pk. Developers of ERMs are well aware of

this, nevertheless, this is a pity since SWE pk is probably the most-wanted snowpack feature in hydrology, climatology, and

21The line break of the discussion paper was omitted in the revised manuscript.
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extreme value analysis. The ∆SNOW.MODEL proofs to perform much better here. Note, the maximal SWE of a winter season

not necessarily equals the highest measured SWE , because measurements are only taken weekly or biweekly. In the vast615

majority of the SWE records used for this study, the highest seasonal observation is followed by at least one lower SWE

reading. Sometimes real SWE might be higher after the highest measurement of a winter season was taken, but a thorough

data check revealed, this is of minor importance here. It is sufficiently precise to assume that measured seasonal maximum

SWE equals SWE pk. The ∆SNOW.MODEL’s bias of SWE pk is very minor, only +0.3 kg m−2+2.3 kg m−2 at median. ERMs

typically suffer from (far) too high SWE pk simulations. The reasoning was given in the Introduction: “ERMs calibrated for620

good estimates of mean-SWE (necessarily) fail to model SWE pk sufficiently well”, since they are “overregulated” by the snow

depth. Moreover, the ∆SNOW.MODEL works better for the timing of SWE pk (not shown in Fig. 2 and Table 4)does not only

work well for the bias in SWE and SWE pk, but also for the bias in the timing of SWE pk (not shown in Fig. 2, but in the last

column of Table 4). ERMs tend to model SWE pk some days too early, because – the date of modeled SWE pk is shiftedpulled

towards the date of highest HS (cf. Fig. 4). The ∆SNOW.MODEL virtually reduces this bias to zero.625

Another satisfactory validation result for the ∆SNOW.MODEL is shown in Fig. 2’s upperlower panels. RMSEs for all SWE

values are constantly lower than if modeled with ERMs: a RMSEa median error of 30.8 kg m−223.9 kg m−2 (∆SNOW.MODEL)

contrasts RMSEsfaces median errors between 39.1 and 50.9 kg m−2 (ERMs). Calibrating the models of Pistocchi (2016) and

Guyennon et al. (2019) results in some improvement, at least they perform much better than the “constant density approach”

ρ278 approach after the calibration. The model of Jonas et al. (2009) does a decent job also without recalibration, which is630

remarkable. Sturm et al. (2010)’s method isprobably suffers from the handicap of being calibrated with data from the Rocky

Mountains. For this comparison the “alpine” parameters of Sturm et al. (2010) were taken, however, conditions might differ

(too) much from the European Alps. Absolute errors in SWE increase with increasing SWE . For snowpacks lighter than

75 kg m−2 ∆SNOW.MODEL RMSE is 17 kg m−2, between 75 kg m−2 and 150 kg m−2 it is 26 kg m−2, and for snowpacks

heavier than 150 kg m−2 it increases to 43 kg m−2.635

Not least as a consequence of the mentioned drawbacks of the ERMs when dealing with distinct values, the advantages

of the ∆SNOW.MODEL get most obvious when modeling SWE pk (Fig. 4, lower right; Table 2, last three columns). The

∆SNOW.MODEL also hasmanages to have a small RMSErange of RMSEs, with a median of 36.3 kg m−223.1 kg m−2 when

modeling SWE pk (Fig. 2, upper right; Table 4, last column) and 75% of the errors staying below 34.4 kg m−2. Also the

SWE pk-RMSEs for the different SWE classesThese values for SWE pk are very close to those for (daily) SWE , which em-640

phasizes the ∆SNOW.MODEL’s ability to model all individual SWE s comparablyequally well. The evaluated ERMs have much

higher, mostly at least doubleddoubled to tripled errors in simulated SWE pkand rather big spreads. Remarkably, the simple

ρ278 approach is performing relatively well. In case the Jonas et al. (2009) model is suitably adjusted to regional specialties, it

performs better than the other ERMs, but still significantly worse than the ∆SNOW.MODEL.The Jonas et al. (2009) model – if

suitable adjusted to regional specialties – performs best, still, well beaten by the ∆SNOW.MODEL.645

The ∆SNOW.MODEL root mean square errors – slightly lower than 25 kg m−2, also for certain values like SWE pk – are

higher than the errors of the thermodynamic snow models (roughly estimated at 10 to 20 kg m−2), which is not surprising given

the latter’s demands on input data and computational power. However, the ∆SNOW.MODEL outperforms empirical regression

21



models. This can be argued on base of this studythe study in hand (especially Fig. 2), but even more when looking at the

ERM studies themselves: Jonas et al. (2009) provide RMSEs between 50.9 and 53.2 kg m−2 for their standard model, which650

are quite high values compared to the findings of the study in hand (39.4 kg m−2 for their Region 7ca. 30 kg m−2 for SWE ,

see Table 4). One explanation could be that Jonas et al. (2009), as well as other ERM studies, rely on a huge amount of,

but still diverse measurements in terms of record length, observations per season etc.very diverse measurements (Still, lots of

them!). The ∆SNOW.MODEL-study∆SNOW.MODEL study only consists of data from selected stations with long and regular

SWE readings, where also ERMs seem to work better. Guyennon et al. (2019) summarize their and other studies’ validation655

results using MAE, the mean absolute error, and Sturm et al. (2019) publish values for SWE -BIAS. Sturm et al. (2010) assess

the bias for their “alpine” model at +29 kg m−2 with a standard deviation of 57 kg m−2, and they outline that “in a test against

extensive Canadian data, 90% of the computed SWE values fell within ±80 kg m−2 of measured values”. Table 4 provides an

overview and showsthe overview, and again it gets obvious, that ERMs generally perform better with this study’s data, than

with their originalGuyennon et al. (2019)’s data.660

3.2 Illustration

22Figure 1 schematically shows the functioning of the ∆SNOW.MODEL. A practical example is now provided in Fig. 3, based

on the optimal calibration parameters found during this study and using the same colors as in Fig. 1. Kössen, the station shown,

is situated in the Northern Alps at 590m above sea level (cf. Fig. A1). Although it is a low-lying place it is known to be snowy,

which is, firstly, due to intense orographic enhancement of precipitation associated with Northwesterly to Northeasterly flows665

in the respective region (Wastl, 2008) and, secondly, comparably frequent inflow of cold continental air masses from Northeast.

Showing Kössen – rather than a high altitude station – should emphasize the versatile usability of the ∆SNOW.MODEL:. It is not

only designed for high areas with deep, long-lasting snowpacks, but also for, e.g., valleys with shallow, ephemeral snowpacks.

Winter 2008/09 was chosen because the ∆SNOW.MODEL shows a rather typical performance in terms of RMSE and BIAS

RMSEs etc. in Kössen then (see Table 4, values in brackets) and because some important, model-intrinsic features can be670

addressed and discussed:

Late November 2008 brought the first, however transient snowpack of the season (Fig. 3). The ∆SNOW.MODEL identifies two

days with snow fall (purple markings) and models two respective snow layers, which can be distinguished by the thin black line

in Fig. 3. After about a week the snowpack starts to melt, the snow layers reach ρmax very fast (the blue shading gets dark), and

finally all the snow was converted to runoff (green markings). In the second half of December there were three days with new675

snow, followed by a strong decline in snow depth. In the frame of the ∆SNOW.MODEL this HS decrease is only possible, if the

layers “get wet” and – the Drenching module is activated (marked in brown). The layers get denser, starting at the top. However,

the decrease was “manageable” by only increasing the two uppermost layer densities to ρmax and making the third layer just a

bit denser. Not all layers got to ρmax (“saturated”) and no runoff was modeled. The ∆SNOW.MODEL conserves the two dense

layers until the end of the winter, which can clearly be seen in Fig. 3. (One could interpret the layers as consisting of melt forms680

or a refrozen crust. However, interpretations like that require caution, because modeling such detailed layer features is not the

22The Illustration subsection was newly introduced during the revision.
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intention of the ∆SNOW.MODEL!) During January Fig. 3 shows a phase where mnothing special happens. Modeled values and

observations agree to a high extent and only the Scaling module 8id=general]is activated formakes small adjustments (white

markings). Small “stretching events” can be recognized, e.g. on January 2nd and 3rd, where model snow layers are set less dense

in order to avoid too frequent mass gains. (This model behavior was thoroughly described in Sect. 2.2.2.) During continuous685

snowfalls in February the successive darkening of the blue layer shadings illustrates a phase of consequent compaction, which

actually lasts until March, when strong decreases in HS obs (and, thus, in HS ) already start to activate the Drenching module.

Still, runoff is not yet produced. Only in the second half of March the whole model- snowpack reaches ρmax (“saturation”). The

ablation phase is clearly distinguishable and lets the snowpack vanish quite fast until about April 10th, 2009.

The snow depth record of Kössen from 2008/09 was also used to compare different ERMs and the ∆SNOW.MODEL to SWE690

observations (Fig. 4). These measurements (light blue circles) are part of the SWE val sample and were manually made with

snow sampling cylinders; one after the December 2008 snowfall, and another nine on a nearly weekly base between late January

and late March 2009. Figure 4 also provides various model results and some respective key values are given in Table 4. Not

surprisingly, thus evidently, the ERMs’ SWE curves “follow” the snow depth curve (black dashed line). The ∆SNOW.MODEL

(red line) does not get the first four measurements decently correct, the ERMs perform better in this illustrative case. (By the695

way, the “jumpy behavior” of the model of Jonas et al. (2009), criticized by Pistocchi (2016), does not play a role.) But, after

the stronger snowfalls of February, the picture changes indisputably in favor of the ∆SNOW.MODEL. This is a typical pattern,

nothing special for Kössen 2008/09, (albeit it is quite pronounced in this illustrative example): The ERMs are too strongly tied

to snow depth and, therefore, mostly (1) overestimate SWE pk, (2) model its occurrence too early, and (3) – most importantly –

force modeled SWE to reduce during pure compaction phases after snowfalls. All these points were discussed in detail earlier,700

Fig. 4 visualizes them. At the same time, the ∆SNOW.MODEL does a good job in modeling mean and maximum SWE , not

only in Kössen 2008/09 but also on average (cf. Fig. 2 and Table 4). Evidently, the ability of the ∆SNOW.MODEL to “conserve”

mass during the phases with dry metamorphism is its strongest point, not only in Kössen 2008/09 but also on average (cf. Fig.

2 and Table 4).

4 Discussion and Outlook705

Model results clearly depend on the parameters. Their optimal values are subject toof calibration. The choice of the best-fitted

values is rated and discussed in the following Sects. 4.1 to 4.5. Sections 4.6 to 4.8 cover possible future developments, accuracy

issues, and the ∆SNOW.MODEL’s applicability in remote sensing.23

4.1 New Snow Density ρ0

Being aware of both – the huge possible variations of new snow density depending on meteorological conditions during710

snowfalls and the possible cruciality of this parameter for SWE simulation by the ∆SNOW.MODEL – ρ0 was chosen to be a

constant in the framework of the model. ρ0 = 81 kg m−3 turned out to be the best choice after calibration with SWE cal. This
23Sects. 4.1 to 4.5 basically mirror Sects. 3.1.1 to 3.1.5 of the initially submitted manuscript. Only minor changes were made during the revision.
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value clearly lies within the broader frame of possible new snow densities (Table 3) and quite closely to Sturm and Holmgren

(1998)’s 75 kg m−3, but it is found in the lower part for “typical” new snow densities (e.g., Helfricht et al., 2018). A possible

explanation could be that the SWE measurement records used for the calibration tend to underrepresent late winter and spring715

conditions. Regular (weekly, biweekly) observations capture the short melt seasons worse than the longer accumulation phases.

Therefore, SWE records might be biased towards early and mid winter new snow densities, which are lower (e.g., Jonas et al.,

2009). Still, there are also some indications that using, e.g., 100 kg m−3 as constant new snow density when modeling SWE

results in an overestimation of precipitation (up to 30% according to Mair et al., 2016). The calibrated value for ρ0 can be

regarded as a reasonable result, even more when only considering it as a model parameter but not as a physical constant.720

The sensitivity analysis illustrated in Fig. 5 confirms the importance of a good choice of ρ0. Increasing ρ0 quite fast leads to

a decrease of the relative bias of seasonal SWE maxima (SWE pk). Note the definition of the relative bias in Fig. 5’s caption.

In absolute values: too small ρ0 cause too small SWE pk, using higher values leads to an overestimation of SWE pk. This

behavior supports above-mentioned tendency to overestimate precipitation when choosing constant 100 kg m−3 as new snow

density. As expected, the new snow density is the most crucial parameter of the ∆SNOW.MODEL (cf. Table 3). The median725

relative bias of SWE pk changes by -0.46% per +1 kg m−3, if the whole calibration range of ρ0 is considered to calculate the

sensitivity (50− 200 kg m−3). This means a median change in SWE pk of +0.37 kg m−2 when ρ0 is risen by +1 kg m−3. If

the limits are chosen tighter around the optimal value, the gradient is even steeper: -0.62% and +0.50 kg m−2 per +1 kg m−3,

respectively, when the gradient is approximated for the range 70− 90 kg m−3. Widely-used ρ0 = 100 kg m−3, consequently,

causes a median overestimation of SWE pk of about 12% in the ∆SNOW.MODEL. Daily SWE show the same behavior (not730

shown). Users should be aware of this. The suggestion clearly is to either use the best-fitted parameters of this study or

recalibrate all parameters with appropriate SWE data, but not adjusting only single parameters. As the calibration data of this

study are spread across various climates and altitudes, users can be quite confident to get good results if using ρ0 = 81 kg m−3.

This value seems to be a good compromise, at least at alpine areas. However, for very maritime, very dry, polar or tundra

regions the optimized ρ0 should be used with caution; if possible, recalibration is recommended.735

4.2 Maximum Density ρmax

Of course, the maximum bulk snow density of a snowpack changes from year to year and site to site. For the ∆SNOW.MODEL

simplicity and independence from meteorological variables outweigh precision. Even more so, when there are good arguments

for the existence of a “typical” maximum bulk density ρmax. Put simply, (not too old) seasonal and also ephemeral snowpacks

melt away when they get water saturated. Before that, there is limited time for dry densification; dry winter snow’s bulk740

density is widely described as staying below about 350 kg m−3 (e.g., Paterson, 1998; Sandells et al., 2012). Accounting for

the fact that volumetric liquid water content of about 10% marks the funicular mode of liquid distribution in old, coarse-

grained snow (Denoth, 1982; Mitterer et al., 2011), this leads to the rough estimate of a typical maximum bulk density of about
9
10 · 350 + 1

10 · 1000 = 415kg m−3. Convincingly, the fittest value for ρmax in the ∆SNOW.MODEL turns out to be 401 kg m−3,

which is close to that value and well situated within the range given in the literature (Table 3). Moreover, this is virtually745
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the same value like the median maximum seasonal density of the SWE val data records (400 kg m−3, see box plot in Fig. 6),

another indication why ρmax could be regarded as a typical seasonal maximum of ρb.24

Figure 5 illustrates the similarity between ρ0 and ρmax regarding their influence on SWE simulations. Keeping the other

six ∆SNOW.MODEL parameters constant but increasing ρmax leads to increased SWE pk and vice versa – just like ρ0. This

is not surprising, however reasonable. The ∆SNOW.MODEL is not as sensitive to changes in ρmax than to changes in ρ0:750

Raising ρmax by +1 kg m−3 leads to a mean decrease of the relative bias of SWE pk of -0.06%, which corresponds to an

increase in absolute SWE pk of +0.24 kg m−2 per +1 kg m−3. The same argumentation like for ρ0 in Sect. 4.1 lets users of the

∆SNOW.MODEL be quite sure when taking ρmax = 401 kg m−3, the best-fitted value according to this study’s calibration. Be

aware that solely changing parameter ρmax for an application of the ∆SNOW.MODEL elsewhere, without proper recalibration

of the other parameters, might lead to significant changes in the results for SWE .755

4.3 Viscosity Parameters η0 and k

Equation (2) represents the settlement and densification function of the ∆SNOW.MODEL. Two parameters η0 and k act as

adjustment screws and have to be calibrated. In this study best-fittet η0 is 8.5× 106 Pa s and the optimized value for k is

0.030 m3 kg−1. Both values are close to other studies’ results and suggestions (Table 3).

As far as the ∆SNOW.MODEL’s sensitivity to changes in the “viscosity parameters” η0 and k is concerned, Fig. 5 shows that760

an isolated rise of the model snow viscosity – either by enhancing η0 or k – increases the relative bias of SWE pk, which means

a decrease in absolute values of SWE pk. This behavior is consistent, since higher viscosity reduces the densification rate and

the model-snowpack tendentially stays deeper. Consequently, increases in observed snow depth tend to bring less new snow

while the New Snow module is run (Sect. 2.2.1). Finally, simulated SWE pk is reduced when η0 or k are increased and vice

versa.765

4.4 Threshold Deviation τ

The ∆SNOW.MODEL’s parameter to cope with uncertainties in snow depth is τ . It is supposed to be not bigger than a few

centimeters. In particular, it should avoid excessive production of snow mass in the model through too frequent simulation of

new snow events (see Sect. 2.2). τ is kind of a peculiarity of the ∆SNOW.MODEL and therefore no bounds can be found in

literature. It was generously accepted to range between 1 and 20 cm for calibration and turned out to be optimal at τ = 2.4 cm770

(Table 3). Given the wide range of possible values, this is very close to what it would be expected to be as a measure for HS obs

accuracy.

Model sensitivity to changes in τ turns out to be quite low for values in the order of a few centimeters, but the influence on

simulated SWE pk is strongly increasing if τ is chosen greater than about 5 cm (Fig. 5). This result makes a lot of sense, if τ is

seen as a measure of observation accuracy, because this is very likely to be better than 5 cm. Like changes in η0 and k, changes775

in τ are indirect proportional to changes in SWE pk, for a closely related reason: The bigger τ the more often small new snow

events are not counted as such because the Scaling module (Sect. 2.2.2) is more frequently activated at the cost of the New
24Figure 3 of the initially submitted manuscript is Fig. 6 of the revised version.
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Snow module (Sect. 2.2.1). Mass gains are tendentially modeled less frequently and, as a consequence, snow water equivalents

get smaller.

4.5 Overburden Parameters cov and kov780

Aside τ , there are two more parameters that are peculiar to the ∆SNOW.MODEL. They are needed to simulate unsteady com-

paction by overburden load of new snow. Because of their presumed uniqueness in the snow model spectrum there is no

information available on how to choose them (see Sect. 2.3). However, the calibration produces cov = 5.1× 10−4 Pa−1 and

kov = 0.38 as fittest values (Table 3).

As outlined in Sect. 2.2.1, the implementation of overburden strain in the ∆SNOW.MODEL is supposed to be an important785

aspect of the model. Still, the sensitivity of modeled SWE pk to changes in either cov or kov are quite minor. (See Fig. 5 for cov.

kov is not shown, because it is comparable, but with different sign.) The reason for this relative insensitivity of the model to

changes in cov and kov could be the contradicting effects of these two “overburden parameters”: Higher cov push overburden

strain ε towards 1.0 (cf. Eq. (3)), which increases the role of overburden snow. hs∗ and HS∗ of Eq. (4) are reduced and,

consequently, the new layer thickness and mass are increased (Eq. (5)). Higher cov, therefore, lead to higher SWE and SWE pk.790

For kov it is the opposite, higher values of kov cause lower SWE .

4.6 Incorporating Rain-on-Snow and other possible improvements

In principle, the ∆SNOW.MODEL could deal with rain-on-snow events.Some questions remain. The treatment of rain-on-snow

events surely is one of them. The ∆SNOW.MODEL can – in principle – deal with it. Unsteady compaction due to overburden

load, for example, is not restricted to new snow. It could also be triggered by the mass of rain water – in nature, but also in795

the framework of the ∆SNOW.MODEL. Still, the respective feature is not implementedcoding is not finalized at the moment,

because identifying criteria for rain-on-snow events based on pure snow depth records is very problematica problem, and its

resolving (if at all possible) is beyond the scope of this paper. In case some meta information on, e.g., rain climate (maybe for

a stochastic “rain generator”) or on precipitation type and amount(no matter if liquid or solid) combined with information on

the snowfall line is available, it could quite easily be incorporated in the ∆SNOW.MODEL. Given the relative success of the800

∆SNOW.MODEL in its current version – especially the reduction of the RMSE of SWE pk by 50-70% compared to ERMs and

maybe even down to the SWE error range of thermodynamic models – the probably very costly, but potentially often only very

minor improvements when including rain-on-snow should be considered.

Another discussion point and eventual future development is the refinement of the density parameters ρ0 and ρmax since,

firstly, the ∆SNOW.MODEL reacts quite sensitive on their changes and, secondly, some relations are well known, e.g., ρ0’s805

dependence on the climatic aridness or ρmax’s tendentious increase for aging(very) old snow. Setting ρmax to a fixed value at

about 400 kg m−3 actually disqualifies the ∆SNOW.MODEL for snow older than estimated 200 days. Additional calibrations

could be performed for very maritime, very dry, polar, or tundra regions as well as for very long-lasting snowpacks. Note,

however, all of these adaptions introduce more parameters to the ∆SNOW.MODEL and reduce its generality. Benefits should

be evaluated critically, and probably this evaluation should start with. Probably against the overburden load treatment of the810
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∆SNOW.MODEL. I, since it is possible that refining the density parameters is more valuable than the special treatment of

unsteady compaction due to overburden loads∆SNOW.MODEL.. . .

4.7 SWE Accuracy

Table 4 provides an overview of model uncertainties for SWE , also for thermodynamic models:. Vionnet et al. (2012) find a

root mean square error and bias of 39.7 kg m−2 and −17.3 kg m−2, respectively, comparing 1722 manual samplings at Col de815

Porte (Chartreuse Mountains, France) and Crocus. Wever et al. (2015) and Sandells et al. (2012) come up with RMSEs of about

39.5 kg m−2 (SNOWPACK) and 30− 49 kg m−2 (SNOBAL), respectively. Langlois et al. (2009) find more optimistic values,

however, based on much fewer data. On the contrary, Egli et al. (2009) give reason to expect higher RMSEs, but their study

exclusively bases on data from snowy, high altitude station Weissfluhjoch (Switzerland), which intrinsically promotes higher

absolute errors. Essery et al. (2013)’s comprehensive simulation experiment results in a RMSE-range of 23− 77 kg m−2. These820

seem to be quite pessimistic values, since root mean square differences found by Langlois et al. (2009) are significantly lower.

(However, they base on much fewer data.) Roughly summarized, SWE observations as well as “first-class” snow models’

SWE simulations are associated with comparable uncertainties; RMSEs might be favorably approximated in the order of

10 to 20 kg m−2.

As a synopsis of the study in hand, absolute SWE accuracies could be estimated as follows: (1) 2 to 50 kg m−2 for manual825

measurements, which are widely used as reference, (2) 30 to 40 kg m−2 for thermodynamic models, and (3) 40 to 50 kg m−2

for empirical regression models. In this respect, it is striking to find the ∆SNOW.MODEL’s RMSE at 30.8 kg m−2. “Maybe”

is emphasized in the last paragraph because it leads to another discussion and outlook point: An intensive, multi-year model

comparison should be performed; at some benchmark sites with fully equipped snow stations and – very important – different

methods of SWE measurements, including regular manual observations (with sampling cylinders etc.). Some of those data sets830

do already exist, however, a comprehensive comparison of techniques and methods to measure and, in particular, model SWE is

lacking. Often the “target variable” is bulk density (not SWE ), and relative (not absolute) numbers are the only information on

observation accuracy one can get, although recently efforts are undertaken (e.g., in the framework of the ESSEM COST Action

ES1404; Leppänen et al., 2018; López-Moreno et al., 2020,. . . ) – at least concerning measurements. Shouldn’t there be more

studies, that also comprehensively quantify the abilities of various, especially thermodynamic snow models to simulate SWE?835

A top-quality comparison between the ∆SNOW.MODEL and thermodynamic snow models is actually difficult to achieve since

hardly any numbers for SWE accuracy of thermodynamic models are available. Maybe they perform worse than the generously

estimated RMSEs of 10 to 20 kg m−2 of this study?

4.8 Application to Remote Sensing Data

LLast but not least, looking at current developments in deriving SWE from snow depths, that are monitored with lidar and pho-840

togrammetry, the ∆SNOW.MODEL should be considered as one of the “potential [. . . ] other snow density models” (Smyth et al.,

2019) that should be included in respective future research. – following Smyth et al. (2019) – one of the “potentially [applicable]

other snow density models”. Lidar and photogrammetry have errors in the order of 10 cm (Smyth et al., 2019), typically cor-
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responding to SWE errors of 20 to 40 kg m−2. This is in the order or somewhat more than the error of the ∆SNOW.MODEL

errors. Remote sensing derived snow depth data are discontinuous through time. The ∆SNOW.MODEL would have to be adapted845

to that, but for the benefit of upgrading the ∆SNOW.MODEL from a point model to a computationally fast distributed model.

(which might not be a big issue), though, for the big benefit of being independent from meteorological data and models – and

their errors.

5 Conclusions

A new method to simulate snow water equivalents (SWE s) is presented. It exclusively needs snow depths and their temporal850

changes as input, which is its major advantage compared to many other snow models. It is shown that basic snow physics,

smartly implemented in a layer model, suffice to better calculate SWE than snow models relying on empirical regressions.

Consequently, the study’s null hypothesis (Sect. 1.3) is rejected.

RegularGapless snow depth records are used to stepwise model the evolution of seasonal snowpacks, focusing on their mass

(i.e. SWE ) and respective load. Snow compaction is assumed to follow Newtonian viscosity, unsteady stress for underlying855

snow layers by the overburden load of new snow is regarded separately, melted mass is distributed from upper to lower layers,

and – eponymous for the model – the measured change in snow depth between two observations is used as a precious corrective,

though by accounting for measurement uncertainties. The model steps are rather simple, however tricky in details, and all is

frankly revealed in this article.

The ∆SNOW.MODEL mainly bases on Martinec and Rango (1991) and Sturm and Holmgren (1998), and transforms them860

to a modern R-code, which is available through https://cran.r-project.org/package=nixmass (nixmass package). Aside snow

depth, meteorological Other meteorological (aside HS ) and also geographical input is consequently avoided in the framework

of the ∆SNOW.MODEL. Still, calibration of seven parameters is needed. To provide an optimal setting and utmost applicability,

data from 14 climatologically different places in the Swiss and Austrian Alps are utilized. This is challenging, since calibra-

tion needs multi-year SWE observations as well as consecutive (e.g. daily) snow depth readings from the same places. The865

∆SNOW.MODEL is calibrated with 67 the help of 71 winters. The validation data set consists of another 7173 independent win-

ters. Whereas calibration is rather complex, the application of the ∆SNOW.MODEL is cheap in terms of computational effort:

Deriving a one-year SWE record from 365 snow depth values, e.g., only takes a few seconds with today’s standard desktop

CPUs and can certainly be speeded up significantly.

In this study itIt is argued that the ∆SNOW.MODEL is situated between sophisticated “thermodynamic snow models”, ne-870

cessitating lots of meteorological and other input, and modest “empirical regression models” (ERMs), relying on statistical

relations between SWE and snow depth, date, altitude, and region. These key qualities of the ∆SNOW.MODEL are:

– This “interposition” is true in terms of model low complexity: The ∆SNOW.MODEL is a semi-empirical multi-layer

model with seven parameters. It only needs regular HS records as input. In some respect it is even less demanding than

ERMs, because no information on date, altitude, or region is required.but only needs one input variable, which is HS .875
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– Still, the ∆SNOW.MODEL is even less demanding than ERMs: It exclusively needs HS records, though gapless ones. No

information on date, altitude, or region is required.

– In terms of high universality: The ∆SNOW.MODEL simulates individual SWE values – like the important seasonal max-

imum SWE pk – comparably well as SWE averages., this shifts the ∆SNOW.MODEL close to thermodynamic models,

and because the ∆SNOW.MODEL simulates individual SWE values – like the important seasonal maximum SWE pk –880

as good as SWE averages, it can compete with thermodynamic models at the, e.g., daily level as well (which is not

reasonable for ERMs).

– high accuracy: TNot least, the ∆SNOW.MODEL’s performance in modeling SWE and SWE pk is comparable to ther-

modynamic models and superior to ERMs.lies between thermodynamic models and ERMs, albeit close to the very

sophisticated ones: Root mean square errors for SWE pk are 36.3 kg m−2 for the ∆SNOW.MODEL and about 70 to > 100 kg m−2885

for ERMs. (cf. Table 4) are at ca. 23 kg m−2 (∆SNOW.MODEL), at about 60 to 90 kg m−2 (ERMs), and somewhere

between 10 and 40 kg m−2 (thermodynamic models).

Given these promising results, the ∆SNOW.MODEL’s ancestors Sturm and Holmgren (1998)’s argument, whereby “snow load

plays a more limited role in determining the compaction behavior in seasonal snow than grain and bond characteristics and

temperature”, might be disproved.890

The development of the ∆SNOW.MODEL is application-driven. It is therefore not surprising that this study provides no signif-

icant new findings in snow physics. Still, the ∆SNOW.MODEL seems to be the first model (since long) that takes well known ba-

sic snow principles and arranges them in a physically consistent way, while consequently ignoring all potential information ex-

cept snow depth. Not particularly innovative, but remarkably successful. Nevertheless, the synopsis of the ∆SNOW.MODEL and

measured data gives significant hints on two important snowpack features (at least for the Alps): Typical mean density for new895

snow (24 h) seems to be clearly below often assumed 100 kg m−3 and a characteristic average maximum bulk density for

seasonal snow (also including ephemeral snowpacks from low-lying places) can rather be found around 400 kg m−3 than at

often cited 500 to 600 kg m−3, which might be biased by “too alpine” snowpacks for many applications. The ∆SNOW.MODEL

is widely usable, but first of all it can attribute snow water equivalents to all longterm and historic snow depth records, which

are so valuable for climatological studies and extreme value analysis for risk assessment of natural hazards .900

Code availability. R-code of the ∆SNOW.MODEL and some empirical regression models: https://cran.r-project.org/package=nixmass. (Phyton-

code of the ∆SNOW.MODEL, ported by M. Theurl (Univ. of Graz, Austria): https://bitbucket.org/atraxoo/snow_to_swe.)https://cran.r-project.org/package=nixmass

(nixmass package)
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Appendix A

A map with the stations used for calibration and validation of the ∆SNOW.MODEL is shown in Fig. A1. Table A1 provides905

details on the stations and the data.

Appendix B

The Scaling module (Sect. 2.2.2) recalculates the “viscosity parameter” η0. This temporary η∗0(i, t) does not only depend on

the point in time t (whenever the Scaling module is activated), but is also different for each layer i. The reason is described in

the following.910

The Scaling module aims for the condition, that today’s model snow depth HS (t) equals today’s observed snow depth

HS obs(t).

HS (t) =

ly(t)∑
i=1

hs(i, t)
!
= HS obs(t)

It follows from Eq. (2) and substituting x(i, t) = ∆t · σ̂(i, t) · e−k·ρ(i,t):

ly(t)∑
i=1

hs(i, t) =

ly(t)∑
i=1

η∗0(t) · hs(i, t− 1)

η∗0(t) +x(i, t)

!
= HS obs(t), (B1)

which is a rational function f of the form

f(η) =

N∑
i=1

η ·hi
η+xi

Because f(η) has poles at −x1, . . . ,−xN , the equation f(η) = HS obs has multiple solutions. Consequently, this approach915

– with η∗0(t) being independent from layer i – shows a clear non-physical behavior making it necessary to calculate different

η∗0(i, t) for each layer i based on Eq. (B1):

η∗0(i, t) =
x(i, t) · hs(i, t)

hs(i, t− 1)− hs(i, t)

The solution of this issue in the Scaling module of the ∆SNOW.MODEL bases on the assumption, that observed compaction

between t− 1 and t can be approximated linearly for each layer:

hs(i, t)

hs(i, t− 1)

!
≈ HS obs(t)

HS obs(t− 1)

The layer-individual viscosities can be calculated as920

η∗0(i, t) =
x(i, t) ·HS obs(t)

HS obs(t− 1)−HS obs(t)
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Substituting those values for η∗0 in Eq. (B1) fulfills its precondition, and the modeled equals the observed snow depth. The

newly calculated η∗0(i, t) are different for each layer – in contrast to the fixed η0 defined in Sect. 2.1, which is valid for the

whole snowpack (outside the Scaling module). Note, that these new viscosities are only used temporarily in the Scaling module.

They have no analog in reality and can also have negative values, but they are mathematically sound.

Appendix C: Example of Application – Snow Load Map of Austria925

In this section an example is given how the ∆SNOW.MODEL can be used to attain a map of snow loads in Austria; snow

load SL = SWE · g. European Standards (e.g., European Committee for Standardization, 2015) define the “characteristic snow

load” sk as the weight of snow on the ground with an annual probability of exceedance of 0.02, i.e. a snow load that – on average

– is exceeded only once within 50 years. Unfortunately, SWE is not measured on a regular basis at a reasonable number of

sites in Austria (and most other countries). The ∆SNOW.MODEL, however, can provide longterm Austrian SWE series from930

widely available HS series, which can in turn be used for a spatial extreme value model. No other snow model is capable of

this in a comparable manner, since either SWE pk is poorly modeled (ERMs) or more meteorological input would be needed

(thermodynamic models). Among several possibilities to spatially model snow depth extremes like max-stable processes (see

e.g. Blanchet and Davison, 2011), the smooth modeling approach of Blanchet and Lehning (2010) can be used when marginals

instead of spatial extremal dependence is in focus.935

C1 Smooth Modeling

Extremes following a generalized extreme value distribution (GEV; Coles, 2001) with parameters µ, σ and ξ can be modeled

in space by considering linear relations for the three parameters of the form

η(x) = α0 +

m∑
k=1

αkyk(x) (C1)

at location x, where η denotes one of the GEV parameters, y1, . . . ,ym are the considered covariates as smooth functions of940

the location, and α0, . . . ,αm ∈ R are the coefficients. Assuming spatially independent stations, the log-likelihood function then

reads as

l =

K∑
k=1

`k (µ(xk),σ(xk), ξ(xk)) , (C2)

where l only depends on the coefficients of the linear models for the GEV parameters. This approach was termed smooth

modeling by Blanchet and Lehning (2010). A smooth spatial model for extreme snow depths in Austria was already presented945

in Schellander and Hell (2018), using longitude, latitude, altitude, and mean snow depth at 421 stations. Considering the strong

correlation between snow depth and snow water equivalent, it would be natural to spatially model SWE extremes in the same

manner.
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C2 Fitting a Spatial Extreme Value Model

For this application 214 stations with regulargapless snow depth observations in and tightly around Austria of the National950

Weather Service (ZAMG) and the Hydrological Services are used. The dataset has undergone quality control by the maintaining

institutions and covers altitudes between 118 and 2290 m.118 and 2290 m a.s.l. The records have lengths of 43 years and cover

winters from 1970/71 to 2011/2012.

In a first step the ∆SNOW.MODEL was applied to these snow depth series to achieve 214 data series of SWE across Austria.

(This indeed is the great strength of the ∆SNOW.MODEL and can hardly be done with other methods!) Then the linear models955

for the three GEV parameters according to Sect. C1 were defined via a model selection procedure. For that purpose a gener-

alized linear regression was performed between the parameters and the covariates longitude, latitude, altitude, and mean snow

depth, which were added in a stepwise manner. Using the Akaike information criterion (AIC; Akaike, 1974), the best linear

model between a given full model (µ∼ all covariates) and a null model (µ∼ 1) with the smallest AIC was selected. Using

these models and the covariates of the 214 stations, a smooth spatial model for the yearly maxima of the SWE values was960

fitted.

C3 Return Level Map of 50-year Snow Load in Austria

The spatial extreme value model developed in the previous section was applied to a grid provided by the SNOWGRID climate

analysis (Olefs et al., 2013). It offers the necessary covariates longitude, latitude, altitude, and with yearly mean snow depths

from 1961 to 2016. The grid features a horizontal resolution of 1× 1 km. Some minor SNOWGRID pixels have unrealistically965

large mean snow depth values, arising from a poor implementation of lateral snow redistribution at high altitudes (18 pixels,

i.e. 0.02% with values between 5 and 65 m). They are masked for the calculation of SWE return level maps. The return level

map for a return period of 50 years can be seen in Fig. A2.

As expected, due to the strong correlation of the SWE maxima with mean snow depth, the largest snow loads are lo-

cated in the mountainous areas of Austria. Although the unrealistic mean snow depth values of SNOWGRID are masked, the970

model produces a number of 59 (0.06%) unrealistic snow load values larger than 25 kN m−2 in an altitude range between

1500 and 3700 ma depth range between 1500 and 3700 m a.s.l.. For a model that would be seriously used e.g. in general risk

assessment or structural design, this problem could possibly be tackled with a non-linear relation between SWE maxima

and mean snow depth or altitude. This is, however, beyond the scope of this study. Note, that in the actual Austrian standard

(Austrian Standards Institute, 2018) there are no normative snow load values defined above 1500 m altitude.975

All but two locations of the Austrian SWE measurement series that were used for calibration and validation of the ∆SNOW.MODEL

(see Sect. 2.3.1) are included in the dataset used to fit the spatial model in Sect. C2. Those two stations, Holzgau and Fel-

bertauern with 14 years of SWE observations each, are used to qualitatively compare (1) the spatial model fitted in Sect.

C2, (2) SWE extremes modeled from daily snow depths with the ∆SNOW.MODEL, and (3) extremes computed “directly”

from (ca. weekly) observed SWE values. Figure A3 gives an idea of the model performance at stations Holzgau and Felber-980

tauern (see Figs. A1 and A2 for their locations)(see Fig. A2 for their locations). For the lower-lying station Holzgau (1100 m)
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(1100 m a.s.l.) all three variants overlap very well. The 50-year return level is 4.65 kN m−2 for the smooth spatial model,

4.72 kN m−2 for the ∆SNOW.MODEL, and 4.8 kN m−2 for the observations. Note, that the latter stem from weekly observa-

tions and, therefore, not necessarily reflect the true yearly maxima, which naturally must be equal or slightly higher. By the

way, the corresponding value of sk from the Austrian snow load standard for Holzgau is 6.3 kN m−2 (Austrian Standards985

Institute (2018); accessible online at eHORA (2006)).

For the higher station Felbertauern (1650 m)(1650 m a.s.l.) the agreement between SWE from the ∆SNOW.MODEL and

observed values is again very good. However, their GEV fits differ significantly. While the fit to the observations shows a

negative shape parameter of ξ =−0.1, the fit to the values modeled with the ∆SNOW.MODEL gives a positive shape parameter

of ξ = 0.1, leading to much larger return levels for higher recurrence times due to the Fréchet-like distribution. It should be990

pointed out that the GEV fits based on ∆SNOW.MODEL simulations and observations are unreliable, given the short data sample

of only 14 yearly maxima. Indeed, by using a sample size of 43 years and borrowing strength from neighboring stations, the

spatial model provides the best fit to observations as well as modeled SWE values. The 50-year snow load return values

are 6.4 kN m−2 for the spatial model, 6.8 kN m−2 for the ∆SNOW.MODEL, and 5.7 kN m−2 for the fit to the observations. No

normative value is defined for Felbertauern because it is situated higher than 1500 m1500 m a.s.l. (Austrian Standards Institute,995

2018).
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Figure 1. Schematic figure of the ∆SNOW.MODEL’s principles. See text for more details. At time t= 1 no snow is observed (black bullet at

HS obs(1) = 0) and – consequently – no snow is modeled. At t= 2 initially no snow is modeled. However, snow is observed (HS obs(2)> 0)

and, thus, model snow depth HS(2) is set to the observed value by the ∆SNOW.MODEL’s New Snow Module (pink arrow) and a certain

SWE (green boxes) is assigned to this new snow layer. For t= 3 densification by the Dry Metamorphism Module (Dry Met.) is modeled

(light blue arrow). Snow density (ρ, shown as bluish shades) is enhanced, but SWE stays constant. Still, the model and observation slightly

disagree (|∆HS |< |τ |). The Scaling Module solves this issue (black arrow): At t= 3 (and also at t= 4,5,6,8, and 9) modeled HS(t) is

scaled to equal HS obs(t) with respective consequences for the snow density, but not altering SWE . HS obs(7) is way higher than HS(7), the

New Snow Module builds up a new layer and raises SWE accordingly. The New Snow Module also treats the unsteady and strong compaction

of the underlying layer(s) due to overburden snow load (purple arrow). At t= 10 observed snow depth is significantly smaller than HS(10),

the Drenching Module (brown arrows) wettens the layers from top to bottom until ρmax is reached. Figuratively, the layers get water-saturated,

however, at t= 10 not all layers reach ρmax: No mass loss is requested by the model, and SWE stays constant. At t= 11 the Drenching

Module necessitates mass loss by runoff (cyan arrows) as all layer densities would have to exceed ρmax to fulfill HS(t) = HS obs(t), but this

is not possible in the ∆SNOW.MODEL. All layers are set to ρmax and they “get cut” by an appropriate amount of depth and mass, respectively,

depending on their thickness: Thick layers contribute more to the mass loss than thin ones. In the end, at t= 12, no snow is observed anymore

and final runoff is modeled.
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Figure 2. Root mean square errors (RMSE) and biases (BIAS) between the ∆SNOW.MODEL and different empirical regression models

and the SWE val observations.Validation results for the model biases and root mean square errors (RMSE). The plots show the results for

the models applied to the SWE val data. The ∆SNOW.MODEL, Pistocchi (2016)’s and Guyennon et al. (2019)’s models, as well asPistocchi

(2016), Guyennon et al. (2019), and the “constant density approach” were calibrated with SWE cal data (∆snow, Pi16cal, Gu19cal, ρ278;

upper panels, solid lines). Dashed lines indicate the Pistocchi (2016), the Guyennon et al. (2019), the Jonas et al. (2009), and the Sturm et al.

(2010) models with their standard parameters (Pi16, Gu19, Jo09R6, Jo09R7, and St10). Jo09R6 and Jo09R7 together illustrate the maximum

possible spread of the Jonas et al. (2009) model since Region 6 (R6) and Region 7 (R7) are characterized by the highest and lowest “region-

specific offset”, respectively. The upper left panel shows RMSEs for all SWE val values (short horizontal lines) as well as for three SWE

classes: SWE ≤ 75, SWE > 150, and intermediate. Analogously for SWE pk (upper right panel). The boxes for the biases (lower panels)

encompass 774761 values (left panels, SWE ) and 7173 values (right panels, SWE pk) and spread from the 25%- to the 75%-quantile, the

whiskers indicate 1.5 times the interquartile range.minima and maxima. The ∆SNOW.MODEL does not behave significantly better for the bias

of all SWE (upper left), however, its performance for seasonal maxima SWE pk (upper right) as well as for the mean errors (lower panels) is

very convincing. (Note the different y-axes scalings.) Units are kg m−2.
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Figure 3. Winter of 2008/09 in Kössen (Northern Alps, Austria) The winter of 2008/09 in Kössen, a low-lying but snowy station at the

Northern Alps, portrays density evolution (shades) as simulated by the ∆SNOW.MODEL. The regulargapless, daily snow depth record is used

as only model input. The New Snow module, the Scaling module and the Drenching module, as well as the Runoff submodule Three (out of

four) modules of the ∆SNOW.MODEL are depicted in colors at the bottom, whenever activated: Drenching, New Snow, and Scaling (The

Dry Compaction module is activated at every point in time.) Runoff is a subcategory of the Drenching module. Note, the ∆SNOW.MODEL is

not intended to simulate individual layers, but to calculate daily SWE , SWE pk, and mean daily bulk density as accurate as possible. This

figure illustrates what happens during the modeling. However, the aim of the ∆SNOW.MODEL is to get daily SWE and SWE pk right – i.e.

mean daily bulk density, not layer-individual densities. Descriptions and discussions of some features are given in the text.
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Figure 4. SWE simulations and observations (mostly weekly; SWE obs) for the winter 2008/09 in Kössen (cf. Fig. 3). Details and Model

abbreviations are given in the text (Sect. 3.2) and summarized in Fig. 2. See Table 4 for values, and consider the note in its caption. This

plot is an illustration of the ∆SNOW.MODEL performance during a distinct winter and outlines important features, which are addressed in the

text.
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Figure 5. Sensitivity of SWE pk to changes in model parameters. The “relative BIAS of SWE pk”relative bias of SWE pk is defined as the

difference between SWE pk with best-fitted values and SWE pk with changed parameters (while all others are kept unchanged), divided

by the best-fitted SWE pk. The boxes comprise SWE pk of all stations and all years of the validation data set SWE val (7173 values) and

display medians as well as 25% and 75% percentiles, the whiskers indicate 1.5 times the interquartile range.minimum and maximum biases.

(Parameter kov behaves unremarkably – similar to cov – and is not shown here.) Details and analysis see text.
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Figure 6. Scatter plot of all modeled bulk snow densities ρb versus all observed ρb from the validation data set. (SWE val, 767 data pairs.

Seven observations, which are higher than 600 kg m−3, were ignored due to implausibility.) Red cCircles reflect the 7173 observed yearly

maxima (ρobs
max), most of them occur when also modeled snowpack isall modeled snow layers are saturated at ρmax = 401 kg m−3. The box

plot shows the distribution of ρobs
max with median, 25% and 75% percentiles, and whiskers at 1.5 times the interquartile range.: The median

is at 400 kg m−3. (This round value is somewhat fortuitously and should not be taken too seriously.) The horizontal line compares it to the

∆SNOW.MODEL’s maximum density at ρmax.
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Table 1. Different types of SWE models, categorized by their essential input. TD, SE, and ERMs are abbreviations for thermodynamic,

semi-empirical, and empirical regression models, respectively.

essential input TD SE ERMs

HS (single values) x

HS (regular records) xa x

one or more

atmospheric variable(s) x

date (x)b x

location parametersc (x)b x

aor another precipitation input
bonly essential in some cases, e.g. for parameterizations
caltitude, regional climate, etc.
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Table 2. Summary of compaction processes and processes forcing mass changes that are integrated in the modules and submodules of the

∆SNOW.MODEL, and of processes that are ignored.

module process

New Snow significant rise of HS , enhanced compaction due to overburden load (Overburden submodule)

Dry Compaction significant decline of HS due to dry metamorphisma and/or deformationa

Drenching significant decline of HS due to wet metamorphisma, runoff through melt (Runoff submodule)

Scaling adjustments to small changes of HS within threshold deviation τ

ignored: snow drift compactiona and mass changes due to:

rain-on-snow, runoff during snowfalls, wind drift, small snowfalls, sublimation and deposition

aterminology follows Jordan et al. (2010)
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Table 3. The seven parameters of the ∆SNOW.MODEL. The last column depicts model sensitivity to changes in the density parameters. The

respective gradients are means over the whole calibration ranges. Detailed information is found in the text.

Parameter unit optimal calibration literature sensitivity

par value range range δSWEpk [kgm−2]

δpar

ρ0 kg m−3 81 50-200 75a, 10-350 (70-110)b +0.37 (+0.50†)

ρmax kg m−3 401 300-600 450c,217-598d, 400-800e +0.24

η0 106 Pa s 8.58.51 1-20 8.5a, 6f, 7.62237g not calc.

k m3 kg−1 0.0300.0299 0.01-0.2 0.011-0.08a, 0.185h, 0.023f,g, 0.021i not calc.

τ cm 2.42.36 1-20 - not calc.

cov 10−4 Pa−1 5.15.10 0-10 - not calc.

kov - 0.380.379 0.01-10 - not calc.

aSturm and Holmgren (1998), bHelfricht et al. (2018) with range for means in brackets, cRohrer and Braun (1994), dSturm et al. (2010), ePaterson

(1998), fJordan et al. (2010), gVionnet et al. (2012), hKeeler (1969), iJordan (1991). See Sect. 2.3 for more details. †The value in brackets is the

gradient taken from the smaller window between 70 and90 kgm−3 (cf. Sect. 4.1).
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Table 4. Overview on SWE accuracies of different modelsmethods and studies. The numbers of this study are the median values, which

are also depicted in Fig. 3. The numbers in brackets represent the results for the example portrayed in Figs. 3 and 4 from station Kössen in

2008/09. Note, the performance of the ∆SNOW.MODEL of the example is quite ordinary, while other models do better on average. Units are

kg m−2except last column, which is in days, TD is short for thermodynamic snow models. Model abbreviations see caption of Fig. 2.

source model SWE SWE SWE SWE pk SWE pk SWE pk

(version) BIAS RMSE MAE BIAS RMSE BIAS [d]

this study ∆SNOW.MODEL −3.0−4.0 30.823.9 (21) 21.919.5 0.32.3 (−3) 36.323.1 0

Gu19cal 4.84.0 39.131.3 (43) 27.624.4 63.067.3 (93) 85.670.8 −6

Pi16cal 5.65.3 39.432.9 (47) 28.125.6 70.371.0 (106) 80.872.2 −6

Jo09R7 −3.2−2.0 39.426.6 (41) 27.321.9 52.056.5 (74) 70.258.1 −2

St10 14.017.6 45.137.1 (57) 32.628.5 91.195.1 (154) 117.295.7 −11

ρ278 10.614.8 50.938.1 (51) 36.331.2 45.247.7 (77) 66.453.5 −16

Guyennon et al. (2019) Gu19 49.2

Pi16cal 50.6

Jo09cal 48.5

St10cal 51.0

Jonas et al. (2009) Jo09 50.9− 53.2

Sturm et al. (2010) St10 (“alpine”) 29± 57

Vionnet et al. (2012) Crocus −17.3 39.7

Langlois et al. (2009) Crocus −7.9 to − 5.4 10.8− 12.5

SNTHERM 9 to 18.1 18.3− 19.3

SNOWPACK −0.1 to 5.6 7.4− 14.5

Egli et al. (2009) SNOWPACK 56

Wever et al. (2015) SNOWPACK ca. 39.5

Sandells et al. (2012) SNOBAL 30− 49 17− 44a

Essery et al. (2013) various TDb 23− 77

aThis is not RMSE of SWE pk, but RMSE “from establishment of snowpack to SWE pk”. bSee Essery et al. (2013)’s Table 10: RMSE for up to 1700 uncalibrated and calibrated

simulations.
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Figure A1. Locations of the stations used for calibration and validation. Austrian stations are operated by the Hydrographic Service of Tyrol

(HD Tirol), the Swiss stations by the WSL Institute for Snow and Avalanche Research SLF. See Table A1 and text for more details.
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Figure A2. 50-year return levels of snow load in Austria. Two stations with SWE observations are outlined for a qualitative validation. This

map bases on 214 snow depth records, ∆SNOW.MODEL derived SWE , and smooth spatial modeling of their extremes. See text for details.
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Figure A3. Return levels of snow load at stations Holzgau (left) and Felbertauern. Return periods in years are shown on the logarithmic

x-axis. The blue line shows return levels obtained with the spatial extreme value model, pink bullets and lines depict yearly maxima and the

GEV fit of SWE values modeled from daily snow depths with the ∆SNOW.MODEL, and green colors represent yearly SWE maxima and

the corresponding GEV fit from (ca. weekly) observations.

51



Table A1. Overview of stations with daily snow depths record and about weekly/biweekly (Austria/Switzerland) manual SWE observations

which were used for calibration and validation. #SWE
cal and #SWE

val give the numbers of respective manual SWE observations. Stations #1

to #6 are located in the Austrian province of Tyrol, #5 and #6 are in the sub-province of Eastern Tyrol; all operated by the Hydrographic

Service of Tyrol. Swiss stations #7 to #15 are operated by the WSL Institute for Snow and Avalanche Research SLF. Compare Fig. A1. The

data sources are Gruber (2014) and Marty (2017).

# station name lon [◦] lat [◦] alt [m] #SWE
cal #SWE

val calibration seasonsa valibration seasonsa

1 Holzgau 10.333300 47.25000 1100 116 100 7 odd in 1999-2011 7 even in 1998-2010

2 Ladis 10.649200 47.09690 1350 83 66 7 odd in 1999-2011 67 even in 1998-2010b

3 Obernberg 11.429200 47.01940 1360 105 88 7 odd in 1999-2011 7 even in 1998-2010

4 Koessen 12.402800 47.67170 590 87 70 7 odd in 1999-2011 67 even in 1998-2010b

5 Felbertauern 12.505600 47.11810 1650 126 114 7 odd in 1999-2011 7 even in 1998-2010

6 Innervillgraten 12.375000 46.80830 1400 96 115 7 odd in 1999-2011 7 even in 1998-2010

7 Muerren 7.890193 46.55818 1650 37 27 2009,2012,2015,2017 2006,2011,2014,2016

8 Truebsee 8.395291 46.79121 1780 4 11 2016 2015,2017

9 Ulrichen 8.308283 46.50461 1350 24 23 2009,2013,2015,2017 2007,2011,2014,2016

10 Zermatt 7.751165 46.02340 1600 47 76 1961,1963 and 3 even 1960-1964,

7 even in 2004-2016 7 odd in 2005-2017

11 Davos Flueelastr. 9.848163 46.81255 1560 8 19 2012 2008,2017

12 Klosters KW 9.895973 46.86058 1200 120 2210 1999 1998,2017

13 San Bernardino 9.184634 46.46326 1640 11 1413 2007 2006,2014

14 Sta.Maria 10.419344 46.59981 1415 0 8 - 1969

15 Zuoz 9.962676 46.60433 1710 24 21 2011,2013,2015,2017 2006,2012,2014,2016∑
780 774 67 71

aIndicated years mark the start of respective winter seasons. b2006 is missing.
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