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Abstract. This paper concerns the problem of optimal monitoring network layout using information-theoretical methods.

Numerous different objectives based on information measures have been proposed in recent literature, often focusing simul-

taneously on maximum information and minimum dependence between the chosen locations for data collection. We discuss

these objective functions and conclude that a single objective optimization of joint entropy suffices to maximize the collection

of information for a given number of sensors. Minimum dependence is a secondary objective that automatically follows from5

the first, but has no intrinsic justification. In fact, for two networks of equal joint entropy, one with a higher amount of redundant

information should be preferred for reasons of robustness against failure. In attaining the maximum joint entropy objective,

we investigate exhaustive optimization, a more computationally tractable greedy approach that adds one station at a time, and

we introduce the “greedy drop” approach, where the full set of sensors is reduced one at a time. We show that only exhaustive

optimization will give the true optimum. The arguments are illustrated by a comparative case study.10

1 Introduction

The objective of a hydrological monitoring network depends on its purpose, which can usually be framed as supporting deci-

sions. The decisions can be relating to management of water systems, as for example considered by Alfonso et al. (2010a) or

flood warning and evacuation decisions in uncontrolled systems. However, also purely scientific research can be formulated as

involving decisions to accept or reject certain hypotheses, focus research on certain aspects, or collect more data (Raso et al.,15

2018). In fact, choosing monitoring locations is also a decision, whose objective can be formulated as choosing monitoring

locations to optimally support subsequent decisions.

The decision problem of choosing an optimal monitoring network layout needs an explicit objective function to be opti-

mized. While this objective could be stated in terms of a utility function (Neumann and Morgenstern, 1953), this requires

knowledge of the decision problem(s) at hand and preferences of the decision maker. As a special case of utility, it is possible20

to state the objective of a monitoring network in terms of information (Bernardo, 1979). This can be done using the frame-

work of information theory, originally outlined by Shannon (1948), who introduced information entropy H(X) as a measure of

uncertainty or missing information in the probability distribution of random variable X, as well as many related measures.

Although ultimately the objective will be a more general utility, the focus of this paper is on information-theoretical methods

for monitoring network design. Because information and utility (value of information) are linked through a complex relation-25
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ship, this does not necessarily optimize decisions for all decision makers. Since we do not consider a specific decision problem,

the focus in the present paper is on methods for maximization of information retrieved from a sensor network.

1.1 Background

Over the last decade, a large number of papers on information theory based design of monitoring networks have been published.

These studies apply information theoretical measures on multiple of time series from a set of sensors, to identify optimal30

subsets. Jointly, these papers (Alfonso et al., 2010a, b; Li et al., 2012; Ridolfi et al., 2011; Samuel et al., 2013; Stosic et al.,

2017; Keum and Coulibaly, 2017; Banik et al., 2017; Wang et al., 2018; Huang et al., 2020; Khorshidi et al., 2020) have

proposed a wide variety of different optimization objectives. Some have suggested that either a multi-objective approach or an

single objective derived from multiple objectives is necessary to find an optimal monitoring network. These methods then were

often compared to other existing methods in case studies, used to demonstrate that one objective should be preferred over the35

other.

In this paper, the rationale behind posing these information theoretical objectives is discussed in detail. While measures from

information theory provides a strong foundation for mathematically and conceptually rigorous quantification of information

content, it is important to pay attention to the exact meaning of the measures used. This paper is intended to shed some light on

these meanings in the context of monitoring network optimization and provides new discussion motivated in part by recently40

published literature.

1.2 Motivation

We present three main arguments in this paper. Firstly, we argue that objective functions for optimizing monitoring networks

can, in principle, not be justified by case studies. Evaluating performance of a chosen monitoring network would require a

performance indicator which in itself is an objective function. Case studies could be helpful in assessing whether one objective45

function (the optimization objective) could be used as an approximation of another, underlying, objective function (the perfor-

mance indicator). However, from case studies we cannot draw any normative conclusions as to what objective function should

be preferred. In other words: the objective function is intended to assess the quality of the monitoring network, as opposed to

a practice where the resulting monitoring networks are used to assess the quality of the objective function.

Secondly, we argue that the joint entropy of all signals together is in principle sufficient to characterize information content50

and can therefore serve as single optimization objective. Notions of minimizing dependence between monitored signals through

incorporation of other information metrics in the objective function are not desirable.

Thirdly, multi-objective approaches that use some quantification of dependency or redundancy as a secondary objective, next

to joint entropy, could only be justified if redundancy is interpreted as beneficial for creating a robust network, and therefore an

objective to be maximized. Minimization of redundancy would mean that each sensor becomes more essential, and therefore55

the network as a whole more vulnerable to failures in delivering information.
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1.2.1 Scope

In monitoring network design, other objectives, not relating to information measures have been used. Examples are cost,

geographical spread, and squared error based metrics. Also some approaches use models describing spatial variability with

certain assumptions, e.g. kriging (Bayat et al., 2019). In the case of network expansion to new locations, models are always60

needed to describe what could be measured in those locations. This could vary from simple linear models to full hydrodynamic

transport models, such as for example done in (Aydin et al., 2019).

In this paper, our main focus is discussing the formulation of information-theoretical objective functions and previous liter-

ature on that topic. Therefore, we restrict our scope to those information-theory based objective functions, based on spatially

distributed observed data on one single variable. Keeping this limited scope allows us to discuss the interpretation of these65

objective functions, which formalize what we actually want from a network. Furthermore, we investigate whether the desired

optimum in the objective function can be found by greedy approaches, or whether exhaustive search is needed to prevent a loss

of optimality.

Only after it is agreed on what is wanted from a network and this is captured as an optimization problem, other issues such

as the solution or approximation of the solution to the problem become relevant. The numerical approach to this solution and70

calculation of information measures involved, warrants another, independent discussion, which is outside our current scope

and presented in a future paper.

Our discussion is numerically demonstrated by using data from the case study for Brazos River in Texas, as presented in Li

et al. (2012), to allow for comparisons. However, as we will argue, the case study can only serve as illustration, and not for

normative arguments for use of a particular objective function. Such an argument would be circular, as the performance metric75

will be one of the objective functions.

1.2.2 Manuscript organization

The manuscript is organized as follows. In the following methodology section, we introduce the methods used to investigate

and illustrate the role of objective functions. In section 3, we discuss the case study on the streamflow monitoring network

of Brazos River. Section 4 introduces the results for the various methods, and then discusses the need for multiple objectives,80

the interpretation of trade-offs, and the feasibility of greedy algorithms reaching the optimum. The article concludes with

summarizing the key messages and raising important questions about the calculation of the metrics, to be addressed in future

research.

2 Methodology

In this paper, since we are discussing the appropriate choice of objective function, there is no experimental setup that could85

be used to provide evidence for one objective version versus the other. This is because to define a "best" or "optimal" golden

standard network to aspire to, we need an objective function. Rather, we must make use of normative theoretical reasoning, and
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shining light on the interpretation of the objectives used. The practical case studies in this paper therefore serve as illustration,

but not as evidence for the conclusions advocated in this paper, which are arrived at through interpretation and argumentation

in the discussion section. This methodology section introduces the elementary information measures used in this paper and90

previous literature we compare with. After, we discuss visualization of these information measures, and finally, we discuss

the proposed and previously used objective functions for monitoring network design, which are composed of these elementary

information measures.

2.1 Information theory terms

The concept of entropy was introduced in thermodynamics as a measure of thermal disorder or randomness of a system.95

Shannon (1948) developed information theory (IT) based on entropy the concept that explains system’s uncertainty reduction

as a function of added information. To understand how, consider set of N events for which possible outcomes are categorized

into m classes, uncertainty is a measure of our knowledge about which outcome will occur. Once an event is observed, and

which of the m classes it belongs to is identified, our uncertainty about the outcome decreases to 0. Therefore, information can

be characterized as decrease an observer’s uncertainty about the outcome (Krstanovic and Singh, 1992; Mogheir et al., 2006;100

Samuel et al., 2013; Foroozand and Weijs, 2017; Foroozand et al., 2018). For monitoring networks, the information each sensor

provides through its observations (outcomes) is therefore linked to the uncertainty of those outcomes before measurement.

These are quantified through the probability distributions of the data.

In monitoring network design, IT has been applied in the literature to evaluate data collection networks that serve a variety

of purposes, including rainfall measurement, water quality monitoring, and streamflow monitoring. These evaluations are then105

used to optimize placement of sensors. The purpose of the network often governs which of information theory’s expressions

are considered. In the monitoring network optimization literature, four expressions from IT are often used in monitoring net-

work design: (1) entropy (H), to estimate the expected information content of observations of random variables; (2) Mutual

information, often called transinformation (T), to measure redundant information or dependency between two variables; (3)

total correlation (C), a multivariate analogue to mutual information, to measure the total nonlinear dependency among mul-110

tiple random variables. Objective functions are often composed from these basic expressions. Details of each expression are

presented below.

The Shannon entropy H (X) is a nonparametric measure, directly on the discrete probabilities, with no prior assumptions on

data distribution. It is also referred to as discrete marginal entropy, to distinguish it both from continuous entropy and from

conditional entropy. Discrete marginal entropy, defined as the average information content of observations of a random variable115

X, is given by:

H(X) =−
∑

x∈X
p(x) log2 p(x) (1)

where p(x) (06 p(x)6 1) is the probability of occurrence of outcome x of random variable X. Equation 1 gives the entropy

in the units of “bits” since it uses a logarithm of base 2. The choice of logarithm’s base for entropy calculation is determined

by the desired unit — other information units are “nats” and “Hartley” for the natural and base 10 logarithms, respectively. For120
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monitoring network design, logarithm of base 2 is common in the literature since it can be interpreted as the needed number of

answers to a series of binary questions.

Joint entropy measures the number of questions needed to determine the outcome of a multivariate system. For a bivariate

case (X1,X2), if two random variables are independent, then joint entropy, H(X1,X2), (Eq.2) is equal to the sum of marginal

entropies H(X1) + H(X2). Conditional entropy (Eq.3), which explains the amount of information one variable delivers that125

other variable can not explain, can have a range (Eq.4) between zero when both variables are completely dependent and

marginal entropy H(X1) when they are independent. Mutual information, in this field often referred to as transinformation

(Eq.5), explains the level of dependency and shared information between two variables by considering their joint distribution.

The metrics are defined as follows,

H(X1,X2) =−
∑

x1∈X1

∑

x2∈X2

p(x1,x2) log2 p(x1,x2) (2)130

H(X1|X2) =−
∑

x1∈X1

∑

x2∈X2

p(x1,x2) log2

p(x1,x2)
p(x2)

(3)

06 H(X1|X2)6 H(X1) (4)

135

T(X1;X2) =−
∑

x1∈X1

∑

x2∈X2

p(x1,x2) log2

p(x1,x2)
p(x1) ∗ p(x2)

(5)

, where p(x1) and p(x2) constitute the marginal probability distribution of random variable X1 and X2, respectively; and

p(x1,x2) form their joint probability distribution. The assessment of the dependencies beyond three variables can be estimated

by the concept of Total Correlation (Eq.6) (proposed by McGill (1954) and named by Watanabe (1960)). Total Correlation (C)

gives the amount of information shared between all variables by taking into account their nonlinear dependencies. C can only140

be non-negative since sum of all marginal entropies cannot be smaller than their multivariate joint entropy (Eq.7), though in

the special case of independent variables, C would become zero.

C(X1,X2, . . . ,Xn) =

[
n∑

i=1

H(Xi)

]
−H(X1,X2, . . . ,Xn) (6)

H(X1,X2, . . . ,Xn) =−
∑

x1∈X1

∑

x2∈X2

. . .
∑

xn∈Xn

p(x1,x2, . . . ,xn) log2 p(x1,x2, . . . ,xn) (7)145

2.2 Understanding and visualizing the measures

In this paper, we argue that due to the additive properties of information measures, the proposed objectives functions in the

literature are unnecessarily complicated, and a single-objective optimization of the joint entropy of all selected sensors will lead
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to a maximally informative sensor network. The additive relations between some of the information measures discussed in this

paper are illustrated in Figure 1. Various types of information interactions for three variables are conceptually understandable150

using Venn diagram (Figure 2.a). Although Venn diagram can be used to illustrate information of more than three variables

when they are grouped in three sets (Figure 1), it can’t be used to illustrate pairwise information interactions beyond three

variables. A chord diagram, on the other hand, can be useful to better understand pairwise information interaction beyond three

variables. Figure 2 provides simple template to interpret and compare Venn and chord diagrams.

There are two important caveats with these visualizations. In the general Venn diagram of 3-variate interactions, the "inter-155

action information", represented by the area where 3 circles overlap, can become negative. Hence, the Venn Diagram ceases

to be an adequate visualization. For similar reasons, in the chord diagram, the sector size of outer arc lengths should not be

interpreted as a total information transferred (Bennett et al., 2019). Information that can contribute to this length combination

of unique, redundant and synergistic components (Goodwell and Kumar, 2017; Weijs et al., 2018). Their information entangle-

ment is an active area of research in 3 or more dimensions. In this paper, the total size of the outer arc lengths is set to represent160

the sum of pairwise information interactions (used in Alfonso et al. (2010a)) and conditional entropy of each variable. This

size may be larger than the total entropy of the variable and does not have any natural or fundamental interpretation.

In this paper, we use Venn diagrams to illustrate information relations between 3 groups of variables. Group one is the set of

all sensors that are currently selected as being part of the monitoring network, which we denote as S. Group two is the set of

all sensors that are currently not selected, denoted as F , and group 3 is the single candidate sensor that is currently considered165

for addition to the network, Fc; see appendix B for an overview of notation. Since group 3 is a subset of group 2, one Venn

circle is contained in the other, and there are only 5 distinct areas vs 7 in a general 3-set Venn diagram. In this particular case,

there is no issue arising from negative interaction information.
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color legend

full:H(S), free:H(S|F)

full:H(F), free:H(F|S,Fc)

full:H(Fc), free: 0

T(S;F)-T(S;Fc)

0, because Fc⊂> F
H(Fc|S)

T(S;Fc)

1

2

3

4

5

6

7

redundant info added by candidate sensor

new info added by candidate sensor

Non-captured information
(uncertainty left,
room for improvement)

net info collected
by current set of sensors

Figure 1. Venn diagram illustrating the relations between the relevant information measures. In the legend, the joint and marginal

information-theoretical quantities (joint) entropy H(X), conditional entropy H(X|Y), and transinformation T (X;Y) for the sets of already

selected sensors S, not yet selected sensors F and the current candidate sensor FC are represented by the surfaces in the Venn diagram. For

the 3 basic circle colors (first three circles in the legend), "free" gives the quantity represented by the non-covered part and "full" gives the

quantity represented by the entire circle surface. The joint entropy that is proposed to be maximized in this paper is the area enclosed in the

thick red line.
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Figure 2. Template illustrations of information interactions with (a) Venn diagram, (b) chord diagram. The green and red areas in both

diagrams show a graphical representation of conditional entropy and mutual information respectively. The solid line circles in Venn diagram

depict single-variable entropy. *II is information interaction between three variables. The sector size in the outer circle in chord diagram is

composed of arcs whose relative lengths correspond to the sum of pairwise information interactions and conditional entropy of each variable,

and are best not interpreted.

2.3 Multi-objective optimization

Information theory-based multi-objective optimization methods for monitoring networks have gained significant attention in170

the literature. Maximizing network information content, through either the sum of marginal entropy or joint entropy, is the com-

mon theme among existing methods. However, there is no consensus on how to minimize redundant information. Table 1 given

an overview of the large number of objectives and combinations of objectives used in the last decade. On the one hand, water

monitoring in polders (WMP) method (Alfonso et al., 2010a) and joint permutation entropy (JPE) method (Stosic et al., 2017)

used normalized transinformation to minimize redundant information. While, on the other hand, multi-objective optimization175

problem (MOOP) method (Alfonso et al., 2010b), Combined regionalization and dual entropy-multi-objective optimization

(CRDEMO) method (Samuel et al., 2013), multivariable hydrometric networks (MHN) method (Keum and Coulibaly, 2017)

and greedy rank based optimization (GR 5 and 6) method (Banik et al., 2017) adopted total correlation to achieve minimum

redundancy. Interestingly, both C and T were used as competing objectives in maximum information minimum redundancy

(MIMR) method proposed by Li et al. (2012). They argued that transinformation between selected stations in the optimal set180

and non-selected stations should be maximized to account for the information transfer ability of a network. Meanwhile, re-

cently proposed methods in the literature attempted to improve monitoring network design by introducing yet other additional
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objectives (Huang et al., 2020; Wang et al., 2018; Banik et al., 2017; Keum and Coulibaly, 2017). These additional objective

are further discussed in the appendix.

2.4 Single-objective optimization185

In this paper, we argue for the Maximum Joint Entropy (maxJE) objective for maximizing the total information collected by a

monitoring network. This is equivalent to the GR3 objective proposed by Banik et al. (2017), as part of six other objectives pro-

posed in the same paper, which did provide arguments or preference for its use. In this paper, we provide theoretical argument

for using single-objective optimization of joint entropy (maxJE) instead of multi-objective optimization. The philosophy of

the maxJE objective function is rooted in using multivariate joint entropy defined by Shannon’s information theory (1948) for190

network evaluation. In the discussion, we argue that a single-objective optimization of the joint entropy of all selected sensors

will lead to a maximally informative sensor network. Also, it should be noted that the maxJE objective function indirectly

minimizes redundant information through its network selection process, which aims for finding a new station that produces

maximum joint entropy when is combined with already selected stations in each iteration. This approach ranks stations based

on growing joint information which is achievable when a new station FC can provide maximum conditional entropy H(S|Fc)195

on top of an already selected set (S) of stations (see Figure 1 for visual illustration). For case of addition of a single new station

to an already existing set, it is therefore mathematically equivalent to maximizing conditional entropy of the new station by

selecting it from the pool of non-selected stations F .

2.5 Objective functions used in comparison for this study

For the purpose of illustrating the main arguments of this study, we compare maxJE objective function (Eq.8) with three multi-200

objective optimization methods: MIMR (Eq.9), WMP (Eq.10) and minT (Eq.11). These methods were chosen since they are

highly cited methods in this field, and more importantly, recent new approaches in the literature have mostly been built on one

of these methods with additional objectives (see Table 1 for more details of examples).

Objective function (maxJE): = maximize H(〈XS1 ,XS2 , . . . ,XSk
〉 ,XFC

) (8)

205

Objective function (MIMR): =





maximize H(〈XS1 ,XS2 , . . . ,XSk
〉 ,XFC

)

maximize
∑m
i=1 T(〈XS1 ,XS2 , . . . ,XSk

〉 ,XFi)

minimize C(〈XS1 ,XS2 , . . . ,XSk
〉 ,XFC

)

(9)

Objective function (WMP): =





maximize H(FC)

subject to
∑
i∈S

T(Si;FC)
H(Si)

< SBM
(10)

Objective function (minT): =





maximize first H(FC)

minimize T(〈XS1 ,XS2 , . . . ,XSk
〉 ,XFC

)
(11)210
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Where 〈XS1 ,XS2 , . . . ,XSk
〉 denotes selected stations in the previous iterations, and XFC

denotes current candidate station.

SMB stands for constraint where only stations are considered that are below the median score of all potential stations on that

objective. m is equal to the number of non-selected station in each iteration (m+ k = n total number of stations). It can be

seen that a large number of different combinations of information-theoretical metrics are used as objectives.

2.6 Exhaustive search vs greedy add and drop215

Apart from the objective function, the optimization of monitoring networks is also characterized by constraints. These con-

straints can either be implemented for numerical reasons or to reflect the problem. In existing literature, one constraint that

has often implicitly been imposed is that the selection of stations is greedy, meaning that one station is added to the set of

selected stations each time while trying to optimize the objective function, without reconsidering the already selected stations

in the set. A practical reason for this is numerical efficiency; an exhaustive search of all subsets of k stations out of n possible220

stations will need to consider a large number of combinations due to combinatorial explosion. Also in practice, when gradually

expanding a network, it may be undesirable to relocate existing stations each time a new station is added.

In this paper, for the maximization of joint entropy that we advocate, we will consider and compare 3 constraints that

reflect strategies of placement, with the purpose of investigating whether these influence the results. Firstly, the “greedy add”

strategy is the commonly applied constraint that each time the network expands, the most favorable additional station is chosen,225

while leaving the already chosen network intact. The optimal network for k stations is found by expanding one station at a

time. Secondly, “greedy drop” is the reverse strategy, not previously discussed in literature, where the starting point is the full

network with all n stations, and the optimal network for k stations is found by reducing the full network one step at a time,

each step dropping the least informative station. Since all of the discussed monitoring design strategies use recorded data and

hence discuss networks whose stations are already established, network reduction is perhaps a more realistic scenario. Thirdly,230

“exhaustive search” is the strategy where the optimal network of k stations is found by considering all subsets of k stations

out of n. This is far more computationally expensive, and may not be feasible in larger networks for computational reasons,

or not possible in actual placement strategy for logistical reasons. It can therefore be seen as a golden standard. Because all

options are considered, this is guaranteed to find the optimal combination, given the objective function. Previous research,

such as Fahle et al. (2015) and Wang et al. (2018) already discussed sub-optimality of greedy-add. Whether greedy-drop or a235

combination of the two greedy strategies yields the the fully optimal solutions will be investigated in this paper.

3 Study area and data description

In previous studies, the focus of the research has been on finding an optimal network for the subject case study without

sufficiently addressing the theoretical justification of applying a new methodology. For this reason and the primary goal of this

paper, which is highlighting the unnecessary use of multiple objective functions in monitoring network design, we decided to240

apply our methodology in Brazos River streamflow network (Figure 3) since this network was subject of study for the MIMR

method. To isolate the effect of temporal variability of data and quantization method on methodology comparison, we used the
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same data period and floor function quantization (Eq.12) proposed by Li et al. (2012). In that paper, 12 USGS stream gauges

on the Brazos River were selected for the period of 1990-2009 with monthly temporal resolution; some statistics of the data are

presented in Figure 4. For the discretization of the time series, they used a binning approach where they empirically optimized245

parameter a to satisfy three goals: (1) to guarantee all 12 stations have distinguishable marginal entropy, (2) to keep spatial

and temporal variability of stations’ time series, bin-width should be fine enough to capture the distribution of the values in the

time series while being coarse enough so that enough data points are available per bin to have a representative histogram, and

(3) to prevent rank fluctuation to due to the bin-width assumption, sensitivity analysis must be conducted. They carried out the

sensitivity analysis and proposed a= 150m3/s for this case study, the resulting marginal entropy for each station is illustrated250

in Figure 4.

xq = a

⌊
2x+ a

2a

⌋
(12)

Where a is histogram bin-width for all intervals except the first one which its bin-width is equal to a
2 . x is station’s streamflow

value, and xq is its corresponding quantized value; and b c is the conventional mathematical floor function.

Figure 3. Brazos streamflow network and USGS stream gauges locations.
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Figure 4. Brazos River streamflow (m3/s) statistics and resulting entropy values (bits).

4 Results and Discussion255

4.1 Comparison of the objectives for Brazos River case

To assess and illustrate the workings of the different objectives in retrieving information from the water system, we compared

three existing methods with a direct maximization of the joint entropy of selected sensors, H(S,Fc), indicated with maxJE in

the results, such as tables 2 and 3. The joint entropy results in table 2 indicate that maxJE is able to find a combination of 8

stations that contains joint information of all 12 stations ranked by other existing methods. We demonstrate that other methods260

with a separate minimum redundancy objective lead to the selection of stations with lower new information content (Figure 5).

This leads to slower reduction of the remaining uncertainty that could be resolved with the full network, given by the yellow

area in Figure 5. Also, Figure 6 provides auxiliary information about the evolution of pairwise information interaction between

already selected stations 〈X1,X2, . . . ,Xi−1〉 in the previous iterations and new proposed station Xi. Figure 6 illustrates the

contrast between the choice of the proposed stations in the first six iterations by different methods.265
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Table 2. Resulting maximum joint entropy for different number of gauges found with different methods for Brazos River case study (JE used

exhaustive optimization)

Method
Multivariate dimensions

1 2 3 4 5 6 7 8 9 10 11 12

MIMR 2.47 2.84 2.87 3.21 3.23 3.23 3.23 3.32 3.33 3.52 3.93 4.1

WMP1/2 2.47 3.07 3.21 3.36 3.38 3.38 3.38 3.38 3.38 3.52 3.82 4.1

minT 2.47 2.53 2.69 2.72 2.76 2.89 3.06 3.08 3.33 3.52 3.93 4.1

maxJE 2.47 3.07 3.5 3.7 3.88 4.02 4.09 4.1 4.1 4.1 4.1 4.1

Table 3. Optimal gauge orders found with different methods for Brazos River case study.

Method
Station ranking in multivariate dimensions

1 2 3 4 5 6 7 8 9 10 11 12

MIMR 12 6 1 8 2 3 4 7 5 9 10 11

WMP1/2 12 9 7 6 5 4 3 2 1 8 11 10

minT 12 1 2 3 4 5 7 6 8 9 10 11

maxJE 12 9 10 11 8 5 7 2∗ 1∗ 3∗ 4∗ 6∗

Note that for the last 5 stations, indicated with ∗, multiple optimal orders are possible.

4.2 Is minimization of dependence needed?

The existing approaches considered above have in common that they all involve some form of dependence criterion to be

minimized. Mishra and Coulibaly (2009) stated that "The fundamental basis in designing monitoring networks based the

entropy approach is that, the stations should have as little transinformation as possible, meaning that the stations must be

independent of each other". For example, the total correlation gives a measure of total redundant information within the selected270

set. This is information that is duplicated and therefore does not contribute to the total information content of the sensors, which

is given by the joint entropy. Focusing fully on minimizing dependence, such as done in the minT objective optimization, makes

the optimization insensitive to the amount of non-duplicated information added. This results in many low entropy sensors being

selected. It is important to note that the joint entropy already accounts for duplicated information and only quantifies the non-

redundant information. This is exactly the reason why it is smaller then the sum of individual entropies. In terms of joint275

entropy, two completely dependent monitors are not considered to be more informative than one of them. This means that the

negative effect that dependency has on information content is already accounted for by maximizing joint entropy only.
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Figure 5. Approximately proportional Venn diagrams showing the evolution of information measures when progressively (going downwards

on the rows) selecting stations (selected station for each step indicated by the numbers) using four different methods (in the different columns).

The interpretation of the color-coded areas representing the information measures is the same as in figure 1. All methods select station 12

as the initial station (entropy given by pink circle on row 1). As can be seen from the diagram on the bottom right, the method maximizing

joint entropy leaves almost no information unmeasured (yellow part) with just 6 stations, while the other methods still miss capturing this

information.
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Figure 6. Evolution of pairwise information interaction between already selected stations in the previous iterations and new proposed station.

Green and red links represent proportional conditional entropy and mutual information,respectively. Links with black border emphasizes on

the information interaction of new proposed station in each iteration.

The question is then whether there is another reason, apart from information maximization, why the total correlation should

be minimized. In three of the early papers (Alfonso et al., 2010a, b; Li et al., 2012) introducing the approaches that employed

or evaluated total correlation, no such reason was given. Also in later citing research, no such arguments have been found.280

Traditional reasons for minimizing redundancy are reducing the burden of data storage and transmission, but these are not very

relevant in monitoring network design, since those costs are often negligible compared to the costs of the sensor installation
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and maintenance (see (Barrenetxea et al., 2008; Nadeau et al., 2009; Simoni et al., 2011)). Moreover, information theory tells

us that, if needed, redundant information can be removed before transmission and storage by employing data compression. The

counter-side of minimal redundancy is less reliability, a far more relevant criterion for monitoring network design. Given that285

sensors often fail or give erroneous values, one could argue that redundancy (total correlation) should actually be maximized,

given a maximum value of joint entropy. We might even want to gain more robustness at the cost of losing some information.

One could for example imagine placing a new sensor directly next to another to gain confidence in the values and increase

reliability, instead of using it to collect more informative data in other locations.

The Pareto front that would be interesting to explore in this context is the trade-off between maximum total correlation290

(robustness) vs. joint entropy (expected information gained from the network), indicated by the red line in Figure 7. Different

points on this Pareto front reflect different levels of trust in the sensors’ reliability. Less trust requires more robustness and

leads to a network design yielding more redundant information. Previous approaches, such as the MOOP approach proposed

by Alfonso et al. (2010b), explore the Pareto front given by the black dashed line, where minimum total correlation is conflicting

with maximizing joint entropy. As argued in this section, this trade-off is not a fundamental trade-off in information-theoretical295

terms, but results from the fact that usually there is some redundant information as a by-product of new information, so highly

informative stations also carry more redundant information. This redundant information does not reduce the utility of the new

information, so does not need to be included as a minimization objective in the optimization.

Summarizing, the maximization of joint entropy while minimizing redundancy is akin to maximizing effectiveness while

maximizing a form of efficiency = bits of unique info / bits collected. However bits collected do not have any significant300

associated cost. If installing and maintaining a monitoring location has a fixed cost, then efficiency should be expressed as

unique information gathered per sensor installed, which could be found by maximizing joint entropy (effectiveness) for a given

number of stations.
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Figure 7. The resulting total correlation and joint entropy for all 924 possible combinations of 6 out of 12 sensor locations. In some past

approaches, a pareto front in the lower right corner is given importance. In the paper, we argue that this trade off is irrelevant, and information

can be maximized with the horizontal direction only. If a trade-off with reliability is considered, the pareto front of interest is in the top-right

corner.

4.3 Greedy algorithms vs. exhaustive optimization of maximum joint entropy

For the objective function of maximum joint entropy, we investigated three different search strategies to obtain the optimal305

network for different numbers of sensors. The greedy-add optimization works by adding one location at a time, maximizing

joint entropy, but constrained by having the already selected locations in the new set. The greedy-drop strategy has the same

constraint, but works backward, starting from the maximum number of sensors and each time dropping the one sensor that

retains most joint entropy in the reduced set.

The exhaustive optimization tests all possible new combinations, not restricted to those containing the set that was already310

selected. Since the joint entropy of a set of locations does not depend on the order in which they are added, the number of

possible combinations is
(
n
k

)
(i.e. n choose k), where n is the number of potential stations in the pool and k is the number of
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selected stations. The computational burden is therefore greatest when about half of the stations are selected. For a number of

potential sensors under 20, this is still quite tractable (4 minutes on normal PC, implemented -by a hydrologist- in MATLAB),

but for larger numbers, the computation time increases very rapidly. We could make an optimistic estimate, only considering315

the scaling from combinatorial explosion of station sets, but not considering the dimensionality of the information measures.

For 40 stations, this estimate would yield a calculation time of more than 5 years, unless a more efficient algorithm can be

found.

Greedy approaches might be candidates for such algorithms. Most of the previous approaches listed in Table 1 can be

categorized as greedy optimizations. For the proposed joint entropy objective, we tested the optimality of greedy approaches320

against the benchmark of exhaustive optimization of all possible station combinations. For the Brazos River case study, both

the “add” and “drop” greedy selection strategies resulted in the global optimum sets, i.e. the same gauge order and resulting

joint entropy as was found by the exhaustive optimization. These results can be read from last row of tables 2 and 3. Therefore,

for this case, the greedy approaches did not result in any loss of optimality. For the last few sensors, multiple different optimal

sets could be identified, which are detailed in Table 6.325

In a further test, using artificially generated data, we experimentally falsified the hypothesis that this result is general. For

this test. we generated a correlated random gaussian dataset for 12 monitors, based on the covariance matrix of the data from

the case study. We increased the number of generated observations to 860 timesteps, to get more reliable multidimensional

probability distribution. Tables 4 show the resulting orders for twelve monitors for the three different approaches. Note how for

the exhaustive optimization in this example, in some instances 2 previously selected gauges are dropped in favor of selecting 3330

new stations. The resulting joint entropies for the selected sets are shown in Table 5

Further research should point out 1) whether faster algorithms can be formulated that yield guaranteed optimal solutions,

and 2) in which cases the greedy algorithm provides a close approximation. It is also possible to formulate greedy methods

with the ability of replacing a limited number of monitors instead of just adding monitors. This leads to a significantly reduced

computational burden compared to exhaustive optimization, while reaching the optimum more often than when adding monitors335

one at a time. In Table 4, it can be seen that allowing a maximum number of two relocated monitors would already reach the

optimal configurations for this case. It would be interesting to further investigate what properties in the data drive the sub-

optimality of greedy algorithms. Synergistic interactions (Goodwell and Kumar, 2017) are a possible explanation, although

our generate data example shows that even when moving from 1 to 2 selected stations, a replacement occurs. Since there are

only pairs of variables involved, synergy is not needed in the explanation of this behaviour. Rather, the pair with maximum340

joint entropy does not include the station with maximum entropy, which is perhaps to highly correlated with other high entropy

variables.
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Table 4. Resulting monitor orders for random uniform dataset, using 12 monitors with 860 data points

Method
Station ranking in multivariate dimensions

1 2 3 4 5 6 7 8 9 10 11 12

Exhaustive 3 1&12 -3∗ 6 5&7&11 -6∗ & -12∗ 2&6 -5∗ 9&12 -11∗ 3 10 5 8 4 11

Greedy Add 3 11 1 7 6 9 2 10 5 8 12 4

Greedy Drop 1 12 6 7 2 9 3 10 5 8 4 11

∗ means a previously selected station is removed from optima set.

Table 5. Resulting joint entropy for random uniform dataset, using 12 monitors with 860 data points

Method
Multivariate dimensions

1 2 3 4 5 6 7 8 9 10 11 12

Exhaustive 1.538 3.0025 4.2251 5.0581 5.7322 6.1717 6.515 6.6947 6.8318 6.933 7.0237 7.0834

Greedy add 1.538 2.898 4.1635 5.0431 5.6811 6.111 6.4858 6.6462 6.7892 6.899 6.9956 7.0834

Greedy drop 1.5298 3.0025 4.2251 5.0407 5.7239 6.1717 6.515 6.6947 6.8318 6.933 7.0237 7.0834

5 Conclusions

Information theory provides a valid framework for monitoring network design, especially when no single users with explicit

decision problems can be identified. Within this framework, maximizing the joint entropy is the only objective needed to345

maximize retrieved information, assuming that this joint entropy can be properly quantified. A large part of the literature on

monitoring network design has put much focus on minimizing various pairwise or joint redundancy measures, while this should

actually be a secondary objective, that is already considered in the first: maximizing the obtained information. Since this total

information is directly given by joint entropy of all selected locations, this measure can be directly optimized.

The optimal solution for maximizing joint entropy can be found by exhaustively testing all possible combinations of monitors350

that are feasible given the current network. The number of possible combinations of monitors, however, becomes prohibitively

large for more than some 25 possible locations, especially when around half of the stations are selected. Practical constraints

on sensor placement may reduce the computational burden somewhat by limiting the combinatorial explosion. One of these

constraints could be that the sensors should be placed one by one, each time optimizing the joint entropy. This so-called greedy

optimization approach adds the constraint that the chosen set for n+ 1 stations contains the chosen set for n stations. This355

approach can for example be useful in Alpine terrain, where relocating a sensor requires significant effort (Simoni et al., 2011).
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In this work we introduced the “greedy drop” approach that starts from the full set and deselects stations one by one. We

have demonstrated that the two types of greedy approaches do not always lead to the unconstrained true optimal solution.

Synergistic interactions between variable may play a role, although this is not the only possible explanation. In our case study

the suboptimality of greedy algorithms was not visible, but we demonstrated its existence with artificially generated data.360

Differences between exhaustive and greedy approaches were small, especially when using a combination of the greedy add

and greedy drop strategy, It remains to be demonstrated in further research how serious this loss of optimality is in practical

situations.

5.1 Further work

In this paper, we focused on the theoretical arguments for choosing the right objective functions to optimize, and compared365

a maximization of joint entropy to other methods, while using the same data set and quantization scheme. Another important

question that needs to be addressed in future research is how to numerically calculate this objective function, or other objective

functions used in other approaches. What many of these objective functions have in common, is that they rely on multi-variate

probability distributions. For example, in our case study, the joint entropy is calculated from a 12-dimensional probability

distribution. These probability distributions are hard to reliably estimate from limited data.370

Numerically, this presents a problem for the calculation of multivariate information measures. Estimating multivariate dis-

crete joint distributions exclusively from data requires quantities of data that exponentially grow with the number of variables,

i.e. potential locations. When these data-requirements are not met and joint distributions are still estimated directly based on

frequencies, independent data will be falsely qualified as dependent and joint information content severely underestimated.

This can also lead to apparent earlier saturation of joint entropy, at a relatively low number of stations. For the case study375

presented here, we do not recommend interpreting this saturation as reaching the number of needed stations, since it could be

a numerical artifact. This problem applies to all methods. Before numerics can be discussed, clarity is needed on the interpre-

tation and choice of the objective function. In other words, before thinking about how to optimize, we should be clear on what

to optimize. We hope that this paper helped illuminate this.
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Appendix A: Additional objectives used in recent literature

Recent literature has expanded the information theoretical objectives with additional objectives. For instance: (1) Wang et al.

(2018) proposed dynamic network evaluation framework (DNEF) method that follows MIMR method for network configura-

tion in different time windows and optimal network ranking is determined by maximum Ranking disorder index (RDI) (Eq.A2),390

which is normalized version of apportionment entropy (AE). RDI was proposed by Fahle et al. (2015) and named by Wang

et al. (2018) to analyze the uncertainty of the rank assigned to a monitoring station under different time windows; (2) Huang

et al. (2020) proposed information content, spatiotemporality, and accuracy (ISA) method, which extends MIMR method by

adding two objectives: maximizing spatiotemporality information (SI), and maximizing accuracy (A). The SI (Eq.A4) objec-

tive is introduced to incorporate spatiotemporality of satellite data into network design, and A (Eq.A5) objective is proposed to395

Maximize the interpolation accuracy of the network by minimizing the regional kriging variance; (3) Banik et al. (2017) pro-

posed six combinations (GR 1-6) of four objectives: detection time (D) (Eq.A6), reliability (R) (Eq.A7), H (Eq.7) and C (Eq.6)

for locating sensors in sewer systems; and (4) Keum and Coulibaly (2017) proposed to maximize conditional entropy as a third

objective in dual entropy-multi-objective optimization to integrate multiple networks (in their case: raingauge and streamflow

networks). Although maximizing conditional entropy can indirectly be achieved in other used-objective (joint entropy), this400

new objective gives more preference to maximizing unique information that one network can provide when another network

can’t deliver. These multi-objective optimization problems are solved by either finding an optimal solution in a Pareto front

(Alfonso et al., 2010b; Samuel et al., 2013; Keum and Coulibaly, 2017) or by merging multiple objectives with weight factors

into a single objective function (Li et al., 2012; Banik et al., 2017; Stosic et al., 2017).

AE =−
n∑

i=1

ri
M

log2

ri
M

(A1)405

RDI = nAE = AE
log2n

(A2)

Where n is the number of possible ranks that a station can have (i.e., n is equal to the total number of stations). ri

M ratio is an

occurrence probability of the outcome, where M is the number of ranks under different time windows, and ri is the number

of a certain ith rank. Therefore, AE takes on its maximum value when the ranking probability of a station has equally probable410

outcome while minimum AE happens when the station’s rank is constant. RDI ranges from 0 to 1, and higher RDI values

indicate ranking sensitivity of a station to temporal variability of the data.

SIz(X) =−
l∑

i=1

p(σz) log2 p(σz) (A3)
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SInetwork(X,γFi) =
1

n+ 1




n∑

j=1

SIz(XSj ) +SIz(γFi)


 (A4)415

Anetwork(X,γFi
) =−1

l

l∑

i=1

k∑

j=1

V arij (A5)

Where SIz(X) is the local spatiotemporal information of the grid X in local window z in the time series; and p(σz) is

probability distribution of the standard deviation σz in time series l. SInetwork(X,γFi
) is spatiotemporal of the network, which

is calculated by the average of spatiotemporal information of already selected sites SIz(XSj
) and a potential site SIz(γFi

).420

Anetwork(X,γFi
) is network accuracy, and V ar is kriging variance over time series l and number of grids k in the study area.

D(γ) =
1
S

S∑

s=1

Dsp(γ) (A6)

R(γ) =
1
S

S∑

s=1

δs (A7)

Where S is the total number of scenarios considered,and Dsp(γ) is the average of the shortest time among the detection times425

for monitoring stations, and δs is binary choice of 1 or 0 for whether the contamination is detected or not.
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Appendix B: Notation and definitions

S Set of indices of selected monitoring locations

F Set of indices of potential monitoring locations not yet selected

FC The index of the monitoring station currently under consideration for addition

XS ,XF ,XFC
The (sets of) time series (variables) measured at the monitor(s) in the respective sets

p(x1) The marginal probability distribution of random variable X1

p(x1,x2) The joint probability distribution of variable X1 and X2

H(XFC
) The entropy of the marginal distribution of time series XFC

H(XF ) The joint entropy of the marginal multivariate distribution of variables in F

H(XF |XS) The conditional joint entropy of variables in F , given knowledge of variables in S

T(XF ;XS) Mutual information or transinformation between set of variables in F and set of variables in S

C(X1,X2, . . . ,Xn) Total Correlation, the amount of information shared between all variables

SMB Stands for constraint where only stations are considered that are below the median score of all potential stations

a Histogram bin-width

x Station’s streamflow value

xq Quantized value after discretization

AE Apportionment entropy

RDI Ranking disorder index

SIz(X) Local spatiotemporal information of the grid X in local window z in the time series

p(σz) Probability distribution of the standard deviation σz in time series

Anetwork Network accuracy

V ar Kriging variance

D Detection time

Dsp(γ) The average of the shortest time among the detection times for monitoring station

R Reliability

δs Binary choice of 1 or 0 for whether the contamination is detected or not
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Table 6. All optimal combinations of sensors for the joint entropy objective. For number of sensors above 7, multiple optimal combinations

can be found due to saturation of joint entropy

Number of selected stations with Station ID

multiple optimal combinations 1 2 3 4 5 6 7 8 9 10 11 12

1 � � � � � � � � � � � �
2 � � � � � � � � � � � �
3 � � � � � � � � � � � �
4 � � � � � � � � � � � �
5 � � � � � � � � � � � �
6 � � � � � � � � � � � �
7 � � � � � � � � � � � �
8 � � � � � � � � � � � �
8 � � � � � � � � � � � �
9 � � � � � � � � � � � �
9 � � � � � � � � � � � �
9 � � � � � � � � � � � �
9 � � � � � � � � � � � �
9 � � � � � � � � � � � �
9 � � � � � � � � � � � �
9 � � � � � � � � � � � �

10 � � � � � � � � � � � �
10 � � � � � � � � � � � �
10 � � � � � � � � � � � �
10 � � � � � � � � � � � �
10 � � � � � � � � � � � �
10 � � � � � � � � � � � �
10 � � � � � � � � � � � �
10 � � � � � � � � � � � �
10 � � � � � � � � � � � �
11 � � � � � � � � � � � �
11 � � � � � � � � � � � �
11 � � � � � � � � � � � �
11 � � � � � � � � � � � �
11 � � � � � � � � � � � �
12 � � � � � � � � � � � �
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