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Abstract. This paper concerns the problem of optimal monitoring network layout using information-theoretical methods.
Numerous different objectives based on information measures have been proposed in recent literature, often focusing simul-
taneously on maximum information and minimum dependence between the chosen locations for data collection. We discuss
these objective functions and conclude that a single objective optimization of joint entropy suffices to maximize the collection
of information for a given number of sensors. We argue that the widespread notion of minimizing redundancy, or dependence
between monitored signals, as a secondary objective is not desirable and has no intrinsic justification. The negative effect of
redundancy on total collected information is already accounted for in joint entropy, which measures total information net of
any redundancies. In fact, for two networks of equal joint entropy, the one with a higher amount of redundant information
should be preferred for reasons of robustness against failure. In attaining the maximum joint entropy objective, we investigate
exhaustive optimization, a more computationally tractable greedy approach that adds one station at a time, and we introduce
the “greedy drop” approach, where the full set of sensors is reduced one at a time. We show that no greedy approach can exist

that is guaranteed to reach the global optimum. The arguments are illustrated by a comparative case study.

1 Introduction

Over the last decade, a large number of papers on information theory based design of monitoring networks have been published.
These studies apply information-theoretical measures on multiple time series from a set of sensors, to identify optimal subsets.
Jointly, these papers (Alfonso et al., 2010a, b; Li et al., 2012; Ridolfi et al., 2011; Samuel et al., 2013; Stosic et al., 2017; Keum
and Coulibaly, 2017; Banik et al., 2017; Wang et al., 2018; Huang et al., 2020; Khorshidi et al., 2020) have proposed a wide
variety of different optimization objectives. Some have suggested that either a multi-objective approach or a single objective
derived from multiple objectives is necessary to find an optimal monitoring network. These methods were often compared
to other existing methods in case studies, used to demonstrate, based on the resulting networks, that one objective should be
preferred over the other.

In this paper, we do not answer the question “what is optimal?” with an optimal network. Rather, we reflect on the question
of how to define optimality in a way that is logically consistent and useful within the monitoring network optimization context,

thereby questioning the widespread use of minimum dependence between stations as part of the objectives.
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The objective of a hydrological monitoring network depends on its purpose, which can usually be framed as supporting
decisions. The decisions can be relating to management of water systems, as for example considered by Alfonso et al. (2010a) or
flood warning and evacuation decisions in uncontrolled systems. Also purely scientific research can be formulated as involving
decisions to accept or reject certain hypotheses, focus research on certain aspects, or collect more data (Raso et al., 2018). In
fact, choosing monitoring locations is also a decision, whose objective can be formulated as choosing monitoring locations to
optimally support subsequent decisions.

The decision problem of choosing an optimal monitoring network layout needs an explicit objective function to be optimized.
While this objective could be stated in terms of a utility function (Neumann and Morgenstern, 1953), this requires knowledge
of the decision problem(s) at hand and preferences of the decision maker, which are often not explicitly available, for example
in case of a government operated monitoring network with a multitude of users. As a special case of utility, it is possible to
state the objective of a monitoring network in terms of information (Bernardo, 1979). This can be done using the framework
of information theory, originally outlined by Shannon (1948), who introduced information entropy H(X) as a measure of
uncertainty or missing information in the probability distribution of random variable X, as well as many related measures.

Although ultimately the objective will be a more general utility, the focus of this paper is on information-theoretical methods
for monitoring network design, which typically do not optimize for a specific decision problem supported by the network.
Because information and utility (value of information) are linked through a complex relationship, this does not necessarily
optimize decisions for all decision makers. Since we do not consider a specific decision problem, the focus in the present paper
is on methods for maximization of information retrieved from a sensor network.

In this paper, the rationale behind posing various information-theoretical objectives is discussed in detail. While measures
from information theory provide a strong foundation for mathematically and conceptually rigorous quantification of informa-
tion content, it is important to pay attention to the exact meaning of the measures used. This paper is intended to shed some
light on these meanings in the context of monitoring network optimization and provides new discussion motivated in part by
recently published literature.

We present three main arguments in this paper. Firstly, we argue that objective functions for optimizing monitoring networks
can, in principle, not be justified by analysing the resulting networks from application case studies. Evaluating performance
of a chosen monitoring network would require a performance indicator which in itself is an objective function. Case studies
could be helpful in assessing whether one objective function (the optimization objective) could be used as an approximation
of another, underlying, objective function (the performance indicator). However, from results of case studies we should not
attempt to draw any conclusions as to what objective function should be preferred. In other words: the objective function is
intended to assess the quality of the monitoring network, as opposed to a practice where the resulting monitoring networks are
used to assess the quality of the objective function. Secondly, we argue that, in purely information-based approaches, the joint
entropy of all signals together is in principle sufficient to characterize information content and can therefore serve as single op-
timization objective. Notions of minimizing dependence between monitored signals through incorporation of other information
metrics in the objective function lack justification and are therefore not desirable. Thirdly, because the undesirable information

inefficiencies associated with high dependency or redundancy are already accounted for in maximizing joint entropy, we could
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actually argue for maximizing redundancy as a secondary objective, because of its associated benefits for creating a network
robust against failures of individual sensors. Minimization of redundancy would mean that each sensor becomes more essential,
and therefore the network as a whole more vulnerable to failures in delivering information. Adding a trade-off with maximum
redundancy is outside the scope of this paper, but serves to further illustrate the argument against use of minimum redundancy.

The manuscript is organized as follows. In the following methodology section, we introduce the methods used to investigate
and illustrate the role of objective functions. In section 3, we discuss the case study on the streamflow monitoring network
of Brazos River. Section 4 introduces the results for the various methods, and then discusses the need for multiple objectives,
the interpretation of trade-offs, and the feasibility of greedy algorithms reaching the optimum. The article concludes with
summarizing the key messages and raising important questions about the calculation of the metrics, to be addressed in future

research.

2 Methodology
2.1 Choice of scope and role of the case study

In monitoring network design, also other objectives, not relating to information measures, have been used. Examples are cost,
geographical spread, and squared error based metrics. Some approaches use models describing spatial variability with certain
assumptions, e.g. kriging (Bayat et al., 2019). In the case of network expansion to new locations, models are always needed
to describe what could be measured in those locations. These could vary from simple linear models to full hydrodynamic
transport models, such as for example done in (Aydin et al., 2019). In this paper, our main focus is to discuss the formulation
of information-theoretical objective functions and previous literature on that topic. Therefore, we restrict our scope to those
information-theory based objective functions, based on spatially distributed observed data on one single variable. Keeping
this limited scope allows us to discuss the interpretation of these objective functions, which formalize what we actually want
from a network. Furthermore, we investigate whether the desired optimum in the objective function can be found by greedy
approaches, or whether exhaustive search is needed to prevent a loss of optimality.

Only after it is agreed on what is wanted from a network and this is captured as an optimization problem, other issues such
as the solution or approximation of the solution to the problem become relevant. The numerical approach to this solution and
calculation of information measures involved, warrants another, independent discussion, which is outside our current scope and
will be presented in a future paper. Our discussion is numerically demonstrated by using data from the case study for Brazos
River in Texas, as presented in Li et al. (2012), to allow for comparisons. However, as we will argue, the case study can only
serve as illustration, and not for normative arguments for use of a particular objective function. Such an argument would be
circular, as the performance metric will be one of the objective functions.

In this paper, since we are discussing the appropriate choice of objective function, there is no experimental setup that could
be used to provide evidence for one objective version versus the other. Rather, we must make use of normative theoretical
reasoning, and shining light on the interpretation of the objectives used and their possible justifications. The practical case

studies in this paper therefore serve as illustration, but not as evidence for all the conclusions advocated in this paper, some of
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which are arrived at through interpretation and argumentation in the discussion section. This methodology section introduces
the elementary information measures used in this paper and previous literature we compare with. After, we discuss visualization
of these information measures, and finally, we discuss the proposed and previously used objective functions for monitoring

network design, which are composed of these elementary information measures.
2.2 Information theory terms

Shannon (1948) developed information theory (IT) based on entropy, the concept that explains a system’s uncertainty reduction
as a function of added information. To understand how, consider set of N events for which possible outcomes are categorized
into m classes, uncertainty is a measure of our knowledge about which outcome will occur. Once an event is observed, and
which of the m classes it belongs to is identified, our uncertainty about the outcome decreases to 0. Therefore, information can
be characterized as the decrease of an observer’s uncertainty about the outcome (Krstanovic and Singh, 1992; Mogheir et al.,
2006; Samuel et al., 2013; Foroozand and Weijs, 2017; Foroozand et al., 2018). For monitoring networks, the information
each sensor provides through its observations (outcomes) is therefore linked to the uncertainty of those outcomes before
measurement. These are quantified through the probability distributions of the data.

In monitoring network design, IT has been applied in the literature to evaluate data collection networks that serve a variety
of purposes, including rainfall measurement, water quality monitoring, and streamflow monitoring. These evaluations are
then used to optimize placement of sensors. In the monitoring network optimization literature, three expressions from IT are
often used in monitoring network design: (1) entropy (H), to estimate the expected information content of observations of
random variables; (2) Mutual information, often called transinformation (T), to measure redundant information or dependency
between two variables; (3) total correlation (C), a multivariate analogue to mutual information, to measure the total nonlinear
dependency among multiple random variables. Objective functions are often composed from these basic expressions. Details
of each expression are presented below.

The Shannon entropy H (X) is a nonparametric measure, directly on the discrete probabilities, with no prior assumptions on
data distribution. It is also referred to as discrete marginal entropy, to distinguish it both from continuous entropy and from
conditional entropy. Discrete marginal entropy (Eq.1), defined as the average information content of observations of a random
variable X, is given by:

H(X)=— Y p()log, p(x) (1)
z€X

where p(x) (0 < p(x) < 1) is the probability of occurrence of outcome z of random variable X. Equation 1 gives the entropy

in the units of “bits” since it uses a logarithm of base 2. The choice of base is determined by the desired unit. In the monitoring

network design literature, the bit is a common unit, since it can be interpreted as the needed number of answers to a series of

binary questions. Joint entropy (Eq.2) measures the number of questions needed to determine the outcome of a multivariate

system.

H(X1,X5) = Z Z p(z1,22)logy p(z1,22) (2)

1€X1 w2€ X2
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where p(x1) and p(x2) constitute the marginal probability distribution of random variable X; and X», respectively; and
p(x1,22) form their joint probability distribution. For a bivariate case (X7, X32), if two random variables are independent,
then their joint entropy, H(X7, X32), is equal to the sum of marginal entropies H(X;) 4+ H(X>). Conditional entropy (Eq.3),

H(X;|X2), explains the amount of information X delivers that X5 can not explain.

H(X;|X2) = Z Z p(x1,29) 10g2]M 3)
T1€X1 226X p(ib’g)
0 < H(X;|X2) <H(Xy) 4)

H(X;|X32) can have a range (Eq.4) between zero when both variables are completely dependent and marginal entropy H(X7)
when they are independent. Mutual information, in this field often referred to as transinformation (Eq.5), T(X1, X2), explains

the level of dependency and shared information between two variables by considering their joint distribution.

x1,T
T(X1;X2)=— > Y plx1,22) Ylog, —2ELT2)_ (5)

21E€X1 T2€X> p($1)*p(x2)

The assessment of the dependencies beyond three variables can be estimated by the concept of Total Correlation (Eq.6) (pro-
posed by McGill (1954) and named by Watanabe (1960)).

C(X1,Xs,..., X [ZH

Total Correlation (C) gives the amount of information shared between all variables by taking into account their nonlinear

XlaX27 aX ) (6)

dependencies. C can only be non-negative since sum of all marginal entropies cannot be smaller than their multivariate joint

entropy, though in the special case of independent variables, C would become zero.
2.3 Understanding and visualizing the measures

In this paper, we argue that, due to the additive properties of information measures, the proposed objectives functions in the
literature are unnecessarily complicated, and a single-objective optimization of the joint entropy of all selected sensors will
lead to a maximally informative sensor network. The additive relations between some of the information measures discussed
in this paper are illustrated in Figure 1. In this figure and later is this paper, we use a shorthand notation: we use the sets of
stations directly in the information measures, as a compact notation for the multivariate random variable measured by that set
of stations. Various types of information interactions for three variables are conceptually understandable using Venn diagram
(Figure 2.a). Although a Venn diagram can be used to illustrate information of more than three variables when they are grouped
in three sets (Figure 1), it can’t be used to illustrate pairwise information interactions beyond three variables. A chord diagram,
on the other hand, can be useful to better understand pairwise information interaction beyond three variables. Figure 2 provides

simple template to interpret and compare Venn and chord diagrams.
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There are two important caveats with these visualizations. In the general Venn diagram of 3-variate interactions, the "inter-
action information", represented by the area where 3 circles overlap, can become negative. Hence, the Venn Diagram ceases
to be an adequate visualization. For similar reasons, in the chord diagram, the sector size of outer arc lengths should not be
interpreted as a total information transferred (Bennett et al., 2019). Information that can contribute to interactions is a combi-
nation of unique, redundant and synergistic components (Goodwell and Kumar, 2017; Weijs et al., 2018). Their information
entanglement is an active area of research in 3 or more dimensions. In this paper, the total size of the outer arc lengths is set to
represent the sum of pairwise information interactions (used in Alfonso et al. (2010a)) and conditional entropy of each variable.
This size may be larger than the total entropy of the variable and does not have any natural or fundamental interpretation.

In this paper, we use Venn diagrams to illustrate information relations between 3 groups of variables. Group one is the set of
all sensors that are currently selected as being part of the monitoring network, which we denote as S. Group two is the set of
all sensors that are currently not selected, denoted as F', and group 3 is the single candidate sensor that is currently considered
for addition to the network, F,; see appendix A for an overview of notation. Since group 3 is a subset of group 2, one Venn
circle is contained in the other, and there are only 5 distinct areas vs 7 in a general 3-set Venn diagram. In this particular case,

there is no issue arising from negative interaction information.
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Figure 1. Venn diagram illustrating the relations between the relevant information measures. In the legend, the joint and marginal
information-theoretical quantities (joint) entropy H(X), conditional entropy H(XIY), and transinformation T (X;Y) for the variable from
sets of already selected sensors S, not yet selected sensors F and the current candidate sensor Fc are represented by the surfaces in the Venn
diagram. For the 3 basic circle colors (first three circles in the legend), "free" gives the quantity represented by the non-covered part and
"full" gives the quantity represented by the entire circle surface. The joint entropy that is proposed to be maximized in this paper is the area

enclosed in the thick red line.
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a) Sample venn diagram b) Sample chord diagram

A

H(B)

B

I(A,C)~

Figure 2. Template illustrations of information interactions with (a) Venn diagram, (b) chord diagram. The green and red areas in both
diagrams show a graphical representation of conditional entropy and mutual information respectively. The solid line circles in Venn diagram
depict single-variable entropy. *II is information interaction between three variables. The sector size in the outer circle in chord diagram is
composed of arcs whose relative lengths correspond to the sum of pairwise information interactions and conditional entropy of each variable,

and are best not interpreted.

2.4 Multi-objective optimization

Information theory-based multi-objective optimization methods for monitoring networks have gained significant attention in
the literature. Maximizing network information content, through either the sum of marginal entropy or joint entropy, is the
common theme among existing methods (Alfonso et al., 2010b; Li et al., 2012; Samuel et al., 2013; Keum and Coulibaly, 2017,
Wang et al., 2018; Huang et al., 2020). However, there is no consensus on how to minimize redundant information. Table 1 gives
an overview of the large number of objectives and combinations of objectives used in the last decade. On the one hand, water
monitoring in polders (WMP) method (Alfonso et al., 2010a) and joint permutation entropy (JPE) method (Stosic et al., 2017)
used normalized transinformation to minimize redundant information. While, on the other hand, multi-objective optimization
problem (MOOP) method (Alfonso et al., 2010b), Combined regionalization and dual entropy-multi-objective optimization
(CRDEMO) method (Samuel et al., 2013), multivariable hydrometric networks (MHN) method (Keum and Coulibaly, 2017)
and greedy rank based optimization (GR 5 and 6) method (Banik et al., 2017) adopted total correlation to achieve minimum
redundancy. Interestingly, both C and T were used as competing objectives in maximum information minimum redundancy
(MIMR) method proposed by Li et al. (2012). They argued that transinformation between selected stations in the optimal

set and non-selected stations should be maximized to account for the information transfer ability of a network. Meanwhile,
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recently proposed methods in the literature attempted to improve monitoring network design by introducing yet other additional
objectives (Huang et al., 2020; Wang et al., 2018; Banik et al., 2017; Keum and Coulibaly, 2017). These additional objective

are further discussed in Appendix B.
2.5 Single-objective optimization

In this paper, we argue for the Maximum Joint Entropy (maxJE) objective for maximizing the total information collected by
a monitoring network. This is equivalent to the GR3 objective proposed by Banik et al. (2017), as part of six other objectives
(see appendix B for more detail) proposed in the same paper, which did not provide preference for its use. In the discussion,
we argue that a single-objective optimization of the joint entropy of all selected sensors will lead to a maximally informative
sensor network. Also, it should be noted that the maxJE objective function already penalizes redundant information through
its network selection process, which aims to find a new station that produces maximum joint entropy when it is combined with
already selected stations in each iteration. When applied in a greedy search, adding one new station at a time, this approach
ranks stations based on growing joint information as quickly as possible. This is mathematically equivalent to add to the
selection, in each iteration, the new station Fc that provides maximum conditional entropy H (F.|S) on top of an already

selected set (S) of stations (see Figure 1 for visual illustration).
2.6 Objective functions used in comparison for this study

For the purpose of illustrating the main arguments of this study, we compare maxJE objective function (Eq.7) with three other
(sets of) objective functions from previously proposed methods: MIMR (Eq.8), WMP (Eq.9) and minT (Eq.10). These methods
were chosen since they are highly cited methods in this field, and more importantly, recent new approaches in the literature
have mostly been built on one of these methods with additional objectives Alfonso et al. (2010a, b); Ridolfi et al. (2011); Li
et al. (2012); Samuel et al. (2013); Stosic et al. (2017); Keum and Coulibaly (2017); Banik et al. (2017); Wang et al. (2018);
Huang et al. (2020).

Objective function (maxJE): = mazimize H((Xgs,, Xg,,---, X5, ), XFe) @)

maximize H((Xs,, Xs,,...,Xs,), Xr,)
Objective function (MIMR): = ¢ mazximize Z£1T(<XSNX52’ vy X5, ), XF) 8)
minimize C((Xg,, Xy, X5,.) s XFe)

mazimize H(F¢)

: ©)
subjectto ), g T(gzéﬁ)c) < SBM

Objective function (WMP): =

o . . maximize first H(F¢)
Objective function (minT): = (10)
minimize T ((Xg,, Xsyy--, X5, ), XFe)
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Where (Xg,,Xs,,...,Xg,) refers to selected stations in the previous iterations. X, and H(F) denote the variable at the
current candidate station and its marginal entropy, respectively. SM B stands for constraint where only stations are considered
that are below the median score of all potential stations on that objective. m is equal to the number of non-selected station
in each iteration (m + k = n total number of stations). For the multi-objective approaches used in the case study, we used the
same weights as the original authors to identify a single solution. It can be seen that a large number of different combinations

of information-theoretical metrics are used as objectives.
2.7 Exhaustive search vs greedy add and drop

Apart from the objective function, the optimization of monitoring networks is also characterized by constraints. These con-
straints can either be implemented for numerical reasons or to reflect practical aspects of the real world problem. In the
majority of existing literature listed in Table 1, one constraint has often implicitly been imposed: to treat the selection of sta-
tions as greedy optimization, meaning that one station is added to the set of selected stations each time while trying to optimize
the objective function, without reconsidering the already selected stations in the set. A practical reason for this is numerical
efficiency; an exhaustive search of all subsets of k stations out of n possible stations will need to consider a large number of
combinations, since the search space grows exponentially with the size n of the full set of sensors (2" combinations of sensors
need to be considered).

In this paper, for the maximization of joint entropy that we advocate, we will consider and compare 3 cases for constraints
with a large influence on computational cost, with the purpose of investigating whether these influence the results. We also
interpret the constraints as reflections of placement strategies. Firstly, the “greedy add” strategy is the commonly applied
constraint that each time the network expands, the most favorable additional station is chosen, while leaving the already chosen
network intact. The optimal network for & stations is found by expanding one station at a time. This approach can for example
be useful in Alpine terrain, where relocating a sensor requires significant effort (Simoni et al., 2011). Secondly, “greedy drop” is
the reverse strategy, not previously discussed in literature, where the starting point is the full network with all n stations, and the
optimal network for & stations is found by reducing the full network one step at a time, each step dropping the least informative
station. Since all of the discussed monitoring design strategies use recorded data and hence discuss networks whose stations are
already established, network reduction is perhaps the more realistic application scenario for information-based design methods.
Thirdly, “exhaustive search” is the strategy where the optimal network of k stations is found by considering all subsets of k
stations out of n. This unconstrained search is far more computationally expensive, and may not be feasible in larger networks
for computational reasons. It can therefore be seen as a optimality benchmark. Because all options are considered, this is
guaranteed to find the optimal combination, given the objective function.

In this comparison, we will investigate whether the exhaustive optimization yields a series of networks where an increase in
network size may also involve relocating stations. This may not always be practically feasible or desired in actual placement
strategies, where networks are slowly expanded one station at a time. Occurrence of relocation in the sequence of growing

subsets would also show that no greedy algorithm could exist that guarantees optimality.

10
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3 Study area and data description

In previous studies, the focus of the research has been on finding an optimal network for the subject case study with only little
discussion on the theoretical justification of applying a new methodology. For this reason, the primary goal of this paper is
critically discussing the rationale for use of several objective functions in monitoring network design. To illustrate differences
between the methods, we decided to apply our methodology to the Brazos River streamflow network (Figure 3) since this
network was subject of study for the MIMR method. This network is under-gauged, according to the World Meteorological
Organization density requirement. However, using the exact same case study eliminates the effect of other factors besides the
objective function on the comparison. Such factors could be initial network density, temporal, and spatial variability. To isolate
our comparison from those effects, as well as from methodological choice such as resolution, time period considered, and

quantization method, we used the same data period and floor function quantization (Eq.11) proposed by Li et al. (2012).

xq:aV:HaJ (11)

2a

Here, a is the histogram bin-width for all intervals except the first one, for which the bin-width is equal to 5. z is station’s

streamflow value, and z, is its corresponding quantized value; and | | is the conventional mathematical floor function.
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Figure 3. Brazos streamflow network and USGS stream gauges locations.
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In Li et al. (2012), 12 USGS stream gauges on the Brazos River were selected for the period of 1990-2009 with monthly
temporal resolution; some statistics of the data are presented in Figure 4. For the discretization of the time series, they used
a binning approach where they empirically optimized parameter a to satisfy three goals: (1) to guarantee all 12 stations have
distinguishable marginal entropy, (2) to keep spatial and temporal variability of stations’ time series, bin-width should be fine
enough to capture the distribution of the values in the time series while being coarse enough so that enough data points are
available per bin to have a representative histogram, and (3) to prevent rank fluctuation to due to the bin-width assumption,
sensitivity analysis must be conducted. They carried out the sensitivity analysis and proposed a = 150 m? /s for this case study,

the resulting marginal entropy for each station is illustrated in Figure 4.

H(S10)=2.39  H(S11)=2.25 H(S12)=2.47

(S7)=0.74 H(S8)=1.09 H(S9)=1.33 mean=235.48 mean=248.88 Mean=258.96
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Figure 4. Brazos River streamflow (m?/s) statistics and resulting entropy values (bits).The stations’ IDs are organized from upstream to

downstream gauges in the watershed. Entropy values are calculated by floor function and parameter a = 150 m®/s.

4 Results and Discussion
4.1 Comparison of the objectives for Brazos River case

As indicated in the introduction, we should not attempt to gauge the merits of the objective functions by the intuitive optimality
of the resulting network. Rather, the merits of the networks should be gauged by the objective functions. Still, the case study
can provide insight in some behaviours resulting from the objective functions.

To assess and illustrate the workings of the different objectives in retrieving information from the water system, we compared
three existing methods with a direct maximization of the joint entropy of selected sensors, H (S, F,.), indicated with maxJE in
the results, such as Tables 2 and 3. The joint entropy results in Table 2 indicate that maxJE is able to find a combination

of 8 stations that contains joint information of all 12 stations ranked by other existing methods. Figure 5 displays spatial
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distribution of the top 8 stations chosen by different methods. Before any interpretation of the placement, we must note that
the choices made in quantization and the availability of data play an important role in the optimal networks identified. Whether
the saturation that occurs with 8 stations has meaning for the real world case study depends on whether the joint probability
distribution can be reliably estimated. This is highly debatable and merits a separate detailed discussion which is out of the
scope of this paper. We present this case study solely to illustrate behaviour of the various objectives.

The most notable difference between MaxJE and the other methods is the selection of all 3 of the stations located most
downstream. While other methods would not select these together due to high redundancy between them, maxJE still selects
all stations, because despite the redundancy, there is still found to be enough new information in the second-most and third-
most downstream station. This can be in part attributed to the quantization choice of equally sized bins throughout the network,
leading to higher information contents downstream. While this quantization choice is debatable, it is important, in our opinion,
to not compensate artifacts from quantization by modifying the objective function, even if the resulting network may seem more
reasonable, but rather to address those artifacts in the quantization choices themselves. To repeat the key point: An objective
function should not be chosen based on whether it yields a “reasonable network™ but rather based on whether the principles
that define it are reasonable.

Though already necessarily true from the formulation of the objective functions, we use the case study to illustrate how
other methods with a separate minimum redundancy objective lead to the selection of stations with lower new information
content (green area in Figure 6). Reduction of the yellow area in each iteration (i.e. the information loss compared to the full
network) in Figure 6 corresponds to the growth of joint entropy values in Table 2 for each method. maxJE (by definition) has the
fastest, and minT the slowest rate of reduction of information loss. Methods’ preference for reaching minimum redundancy or
growing joint information (red area in Figure 6) governs the reduction rate of information loss. Also, Figure 7 provides auxiliary
information about the evolution of pairwise information interaction between already selected stations X1, Xo,..., X;_1 in the
previous iterations and new proposed station X;. Figure 7 illustrates the contrast between the choice of the proposed stations
in the first six iterations by different methods. For instance, minT method aims to find a station that has minimum mutual
information (red links in Figure 7) with already selected stations. In contrast, the maxJE method tries to grow joint entropy,
which translates to finding a station that has maximum conditional entropy (green segments in Figure 7). Other methods opt to

combine two approaches by either imposing a constraint (WMP) or having a trade-off between them (MIMR).
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Table 2. Resulting maximum joint entropy (bits) for different number of gauges found with different methods for Brazos River case study

(JE used exhaustive optimization)

Multivariate dimensions
Method

1 2 3 4 5 6 7 8 9 10 11 12

MIMR 247 284 287 321 323 323 323 332 333 352 393 41
WMP1/2 247 307 321 336 338 338 338 338 338 352 382 41
minT 247 253 269 272 276 289 3.06 3.08 333 352 393 41
maxJE 247 307 35 37 388 402 409 41 41 41 41 41

Table 3. Optimal gauge orders found with different methods for Brazos River case study.

Station ranking in multivariate dimensions
Method

1 2 3 4 5 6 7 8 9 10 11 12

MIMR 12 6 1

2 5 9 10 11
WMP1/2 12 9 7 6 5

4

8

4
3 2 1 8§ 11 10

minT 12 1 2 3 7

maxJE 12 9 10 11 7

6 8 9 10 11

whn O W

Note that for the last 5 stations, indicated with *, multiple optimal orders are possible.

4.2 Is minimization of dependence needed?

The existing approaches considered above have in common that they all involve some form of dependence criterion to be
300 minimized. For example, the total correlation gives a measure of total redundant information within the selected set. This is
information that is duplicated and therefore does not contribute to the total information content of the sensors, which is given
by the joint entropy. Focusing fully on minimizing dependence, such as done in the minT objective optimization, makes the
optimization insensitive to the amount of non-duplicated information added. This results in many low entropy sensors being
selected. It is important to note that the joint entropy already accounts for duplicated information and only quantifies the
305 non-redundant information. This is exactly the reason why it is smaller then the sum of individual entropies. In terms of joint
entropy, two completely dependent monitors are considered to be exactly as informative as one of them. This means that the

negative effect that dependency has on total information content is already accounted for by maximizing joint entropy only.
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Figure 5. Spatial distribution of the top 8 streamflow gauges ranked different objectives.
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Figure 6. Approximately proportional Venn diagrams showing the evolution of information measures when progressively (going downwards
on the rows) selecting stations (selected station for each step indicated by the numbers) using four different methods (in the different columns).
The interpretation of the color-coded areas representing the information measures is the same as in figure 1. All methods select station 12
as the initial station (entropy given by pink circle on row 1). As can be seen from the diagram on the bottom right, the method maximizing
joint entropy leaves almost no information unmeasured (yellow part) with just 6 stations, while the other methods still miss capturing this

information. Exact numbers behind the Venn diagram can be found with the code available with this paper.

16



310

MIMR WMP minT(S,Fc) maxJE

So So

Figure 7. Evolution of pairwise information interaction between already selected stations in the previous iterations and new proposed station.
Green and red links represent proportional conditional entropy and mutual information,respectively. Links with black border emphasizes on

the information interaction of new proposed station in each iteration.

Mishra and Coulibaly (2009) stated that "The fundamental basis in designing monitoring networks based the entropy ap-
proach is that, the stations should have as little transinformation as possible, meaning that the stations must be independent of
each other". However, no underlying argument for this fundamental basis is given in the paper. The question is then whether
there is another reason, apart from information maximization, why the total correlation should be minimized. In three of the

early papers (Alfonso et al., 2010a, b; Li et al., 2012) introducing the approaches that employed or evaluated total correlation,
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no such reason was given other than the one by Mishra and Coulibaly (2009). Also in later citing research, no such arguments
have been found. Traditional reasons for minimizing redundancy are reducing the burden of data storage and transmission, but
these are not very relevant in monitoring network design, since those costs are often negligible compared to the costs of the
sensor installation and maintenance (see (Barrenetxea et al., 2008; Nadeau et al., 2009; Simoni et al., 2011)). Moreover, infor-
mation theory tells us that, if needed, redundant information can be removed before transmission and storage by employing
data compression. The counter-side of minimal redundancy is less reliability, a far more relevant criterion for monitoring net-
work design. Given that sensors often fail or give erroneous values, one could argue that redundancy (total correlation) should
actually be maximized, given a maximum value of joint entropy. We might even want to gain more robustness at the cost of
losing some information. One could for example imagine placing a new sensor directly next to another to gain confidence in
the values and increase reliability, instead of using it to collect more informative data in other locations.

The Pareto front that would be interesting to explore in this context is the trade-off between maximum total correlation
(robustness) vs. joint entropy (expected information gained from the network), indicated by the red line in Figure 8. Different
points on this Pareto front reflect different levels of trust in the sensors’ reliability. Less trust requires more robustness and
leads to a network design yielding more redundant information. Previous approaches, such as the MOOP approach proposed
by Alfonso et al. (2010b), explore the Pareto front given by the black dashed line, where minimum total correlation is conflicting
with maximizing joint entropy. As argued in this section, this trade-off is not a fundamental trade-off in information-theoretical
terms, but results from the fact that usually there is some redundant information as a by-product of new information, so highly
informative stations also carry more redundant information. This redundant information does not reduce the utility of the new
information, so does not need to be included as a minimization objective in the optimization.

Summarizing, the maximization of joint entropy while minimizing redundancy is akin to maximizing effectiveness while
maximizing a form of efficiency = bits of unique info / bits collected. However, bits collected do not have any significant
associated cost. If installing and maintaining a monitoring location has a fixed cost, then efficiency should be expressed as
unique information gathered per sensor installed, which could be found by maximizing joint entropy (effectiveness) for a given

number of stations, as we suggest in this paper.
4.3 Greedy algorithms vs. exhaustive optimization of maximum joint entropy

Different search strategies have been adopted in the literature for monitoring network design. The most commonly used greedy
algorithms impose a constraint on exhaustive search space to reduce computational effort. We investigated three different search
strategies to obtain the optimal network in the context of using maxJE as an objective function. We discuss the advantages and

limitations of each search strategy in terms of optimality of the solution and computational effort.
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Figure 8. The resulting total correlation and joint entropy for all 924 possible combinations of 6 out of 12 sensor locations. In some past
approaches, a Pareto front in the lower right corner is given importance. In this paper, we argue that this trade off is irrelevant, and information
can be maximized with the horizontal direction only. If a trade-off with reliability needs to be considered, the Pareto front of interest is in the

top-right corner instead of the lower right corner that is previously recommended in the literature.

The exhaustive optimization tests all possible new combinations when increasing network size by one station, not restricted
to those combinations containing the set that was already selected in a smaller network. Since the joint entropy of a set of
locations does not depend on the order in which they are added, the number of possible combinations is (Z) (i.e. n choose k),
where n is the number of potential stations in the pool and k is the number of selected stations. The computational burden is
therefore greatest when about half of the stations are selected. For a number of potential sensors under 20, this is still quite
tractable (4 minutes on normal PC, implemented -by a hydrologist- in MATLAB, with room for improvement by optimizing
code, language, and programmer), but for larger numbers, the computation time increases very rapidly. When considering all
sub-network sizes, the number of combinations to consider is 2", so an exponential growth. We could make an optimistic
estimate, only considering the scaling from station combinations to evaluate, but not considering the dimensionality of the

information measures. For 40 stations, this estimate would yield a calculation time of more than 5 years, unless a more efficient
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algorithm can be found. Regardless of potential improvements in implementation, the exponential scaling will cause problems
for larger systems.

Greedy approaches might be candidates for efficient algorithms. For the proposed joint entropy objective, we tested the
optimality of greedy approaches against the benchmark of exhaustive optimization of all possible station combinations. For
the Brazos River case study, both the “add” and “drop” greedy selection strategies resulted in the global optimum sets, i.e. the
same gauge order and resulting joint entropy as was found by the exhaustive optimization. These results can be read from last
row of Tables 2 and 3. Therefore, for this case, the greedy approaches did not result in any loss of optimality. For the last few
sensors, multiple different optimal sets could be identified, which are detailed in Table 4. Results in Table 4 show multiple
network layouts with equal network size and joint information exist. For this case, network robustness could be an argument
to prefer the network with maximum redundancy. Also, it should be acknowledged that the assumptions in data quantization
would influence reaching equal joint information, and further research is warranted to investigate the network’s susceptibility
to quantization assumptions.

In a further test, using artificially generated data, we experimentally falsified the hypothesis that greedy approaches can
guarantee optimality. For this test, we generated a correlated random Gaussian dataset for 12 monitors, based on the covariance
matrix of the data from the case study. We increased the number of generated observations to 860 time steps, to get a more
reliable multidimensional probability distribution. Table 5 shows the resulting orders for twelve monitors for the three different
approaches. Note how for the exhaustive optimization in this example, in some instances,one or two previously selected gauges
are dropped in favor of selecting new stations. The resulting joint entropies for the selected sets are shown in Table 6. This
means no greedy approach can exist that finds results equivalent to the exhaustive approach.

Based on our limited case study, the questions remain open: 1) whether faster algorithms can be formulated that yield
guaranteed optimal solutions, and 2) in which cases the greedy algorithm provides a close approximation. It is also possible to
formulate modified greedy methods with the ability of replacing a limited number of monitors instead of just adding monitors.
This leads to a significantly reduced computational burden compared to exhaustive optimization, while reaching the optimum
more often than when adding monitors one at a time. In Table 5, it can be seen that allowing a maximum number of two
relocated monitors would already reach the optimal configurations for this specific case. Another limitation of this comparison
is that we did not consider metaheuristic search approaches (Deb et al., 2002; Kollat et al., 2008), which fall in between
greedy and exhaustive approaches in terms of computational complexity, could serve to further explore the optimality versus
computational complexity trade-off. It would be interesting to further investigate what properties in the data drive the sub-
optimality of greedy algorithms. Synergistic interactions (Goodwell and Kumar, 2017) are a possible explanation, although
our generated data example shows that even when moving from 1 to 2 selected stations, a replacement occurs. Since there are
only pairs of variables involved, synergy is not needed in the explanation of this behaviour. Rather, the pair with maximum
joint entropy does not always include the station with maximum entropy, which could perhaps be too highly correlated with

other high entropy variables.
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Table 4. All optimal combinations of sensors for the joint entropy objective. For number of sensors above 7, multiple optimal combinations

can be found due to saturation of joint entropy. Black squares are selected sensors.

Station ID

Number of selected stations with
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Table 5. Resulting monitor orders for random uniform dataset, using 12 monitors with 860 data points

Station selection for various network sizes

Method
t)o2 |3 4 [ s]oe |78 |o]0]n]n
Added 3011216 | 5711 | 26912 | 3|10 |5 8 4 |11
Exhaustive
Removed* 3 6;12 5 11
Greedy Add sl o] 7 Je| o f2fw|s|s]n]4
Greedy Drop vz e 7 [ 2] 9 [3][w]s]s]4|n
+ means a previously selected station is removed from optimal set when expanding the network.
Table 6. Resulting joint entropy for random uniform dataset, using 12 monitors with 860 data points
Multivariate dimensions
Method
1 2 3 4 5 6 7 8 9 10 11 12
Exhaustive 1.538 3.003 4225 5.058 5732 6.172 6.515 6.695 6.832 6.933 7.024 7.083
Greedy add 1.538 2.898 4.164 5.043 5681 6.111 6486 6.646 6.789 6.899 6.996 7.083
Greedy drop 1.530 3.003 4.225 5.041 5724 6.172 6.515 6.695 6.832 6933 7.024 7.083

385 5 Conclusions

The aim of this paper was to contribute to better understanding the problem of optimal monitoring network layout using
information-theoretical methods. Since using resulting networks and performance metrics from case studies to demonstrate
that one objective should be preferred over the other would be circular, the results from our case study served as an illustration
of the effects, but not as arguments supporting the conclusions we draw about objective functions. We investigated the rationale

390 for using various multiple-objective and single-objective approaches, and discussed the advantages and limitations of using

exhaustive vs. greedy search. The main conclusions for the study can be summarized as follows:

e The purpose of the monitoring network governs which objective functions should be considered. When no explicit
information about users and their decision problems can be identified, maximizing the total information collected by the

network becomes a reasonable objective. Joint entropy is the only objective needed to maximize retrieved information,

395 assuming that this joint entropy can be properly quantified.
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o We argued that the widespread notion of minimizing redundancy, or dependence between monitored signals, as a sec-

ondary objective is not desirable and has no intrinsic justification. The negative effect of redundancy on total collected

information is already accounted for in joint entropy, which measures total information net of any redundancies.

When the negative effect on total information is already accounted for, redundant information is arguably beneficial, as
it increases robustness of the network information delivery when individual sensors may fail. Maximizing redundancy as
an objective secondary to maximizing joint entropy could therefore be argued for, and trade-off between these objectives

could be explored depending on the specific case.

The comparison of exhaustive and greedy search approaches shows that no greedy approach can exist that is guaranteed
to give the true optimum subset of sensors for each network size. However, the exponential computational complexity,
which doubles the number of sensor combinations to evaluate with every sensor added, makes exhaustive search pro-
hibitive when the number of possible locations become larger than about 25. The complexity of the greedy approach is

quadratic in the number of locations, and therefore feasible for large search spaces.

The constraints to the search space imposed by the greedy approach could also be interpreted as a logistical constraint.

In a network expansion scenario, it disallows replacement of stations already selected in the previous iteration.

We introduced the “greedy drop” approach that starts from the full set and deselects stations one by one. We have
demonstrated that the two types of greedy approaches do not always lead to the same result, and neither approach
guarantees the unconstrained true optimal solution. Synergistic interactions between variables may play a role, although
this is not the only possible explanation. In our case study, the suboptimality of greedy algorithms was not visible in
original data, but we demonstrated its existence with artificially generated data. In our specific case studies, differences
between exhaustive and greedy approaches were small; especially when using a combination of the greedy add and
greedy drop strategy. It remains to be demonstrated in further research how serious this loss of optimality is in a range of
practical situations, and how results compare to intermediate computational complexity approaches such as metaheuristic

algorithms.

5.1 Further work

In this paper, we focused on the theoretical arguments for justifying the use of various objective functions, and compared a
maximization of joint entropy to other methods, while using the same data set and quantization scheme. Since the majority of
previous research used greedy search tools to find optimal network configurations, we compared greedy and exhaustive search
approaches to raise awareness in the scientific community that greedy optimization might fall into local optimum, though its
application can be justified considering computation cost of exhaustive approach. Banik et al. (2017) compared computation
cost for greedy and metaheuristic optimization (Non-dominated Sorting Genetic Algorithm II). They reported that the greedy
approach resulted in drastic reduction of the computational time for the same set of objective functions (metaheuristic com-

putation cost was higher 58 times in one trial and 476 times in another). We recommend further investigation of these three
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search tools in terms of both optimality (for the maxJE objective) and computation cost. Another important question that needs
to be addressed in future research is to investigate how the choices and assumptions made (i.e., data quantization which influ-
430 ences probability distribution) in the numerical calculation of objective functions would affect network ranking. What many of
these objective functions have in common, is that they rely on multivariate probability distributions. For example, in our case
study, the joint entropy is calculated from a 12-dimensional probability distribution. These probability distributions are hard to
reliably estimate from limited data, especially in higher dimensions, since data requirements grow exponentially. Also, these
probability distributions and the resulting information measures are influenced by multiple factors, including choices about the
435 data’s temporal scale and quantization. To have an unbiased comparison framework of objective functions, we kept data and
quantization choices from a case study previously described in the literature. It is worth acknowledging that these assumptions,

as well as data availability, can greatly influence optimal network ranking, and require more attention in future research.
Numerically, the limited data size in the case study presents a problem for the calculation of multivariate information mea-
sures. Estimating multivariate discrete joint distributions exclusively from data requires quantities of data that exponentially
440 grow with the number of variables, i.e. potential locations. When these data-requirements are not met and joint distributions
are still estimated directly based on frequencies, independent data will be falsely qualified as dependent and joint information
content severely underestimated. This can also lead to apparent earlier saturation of joint entropy, at a relatively low number of
stations. For the case study presented here, we do not recommend interpreting this saturation as reaching the number of needed
stations, since it could be a numerical artifact. This problem applies to all methods discussed in this paper. Before numerics
445 can be discussed, clarity is needed on the interpretation and choice of the objective function. In other words, before thinking

about how to optimize, we should be clear on what to optimize. We hope that this paper helped illuminate this.
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Appendix A: Notation and definitions

S Set of indices of selected monitoring locations

F Set of indices of potential monitoring locations not yet selected

Feo The index of the monitoring station currently under consideration for addition

Xs, Xp,XrF, The (sets of) time series (variables) measured at the monitor(s) in the respective sets

p(z1) The marginal probability distribution of random variable X

p(x1,22) The joint probability distribution of variable X; and X5

H(F¢) A shorthand for H(X r,, ). In information measures, the set is used as shorthand for variables in that set
H(XF,) The entropy of the marginal distribution of time series in Fi

H(Xp|Xs) The conditional joint entropy of variables in F’, given knowledge of variables in S

T(Xp; Xg) Mutual information or transinformation between set of variables in F' and set of variables in .S
C(X1,Xs,...,X,) Total Correlation, the amount of information shared between all variables

SMB Stands for constraint where only stations are considered that are below the median score of all potential stations
a Histogram bin-width

x Station’s streamflow value

Zq Quantized value after discretization

AE Apportionment entropy

RDI Ranking disorder index

SL.(X) Local spatiotemporal information of the grid X in local window z in the time series

(o) Probability distribution of the standard deviation o, in time series

Apctwork Network accuracy

Var Kriging variance

D Detection time

Dgp(7) The average of the shortest time among the detection times for monitoring station

R Reliability

Os Binary choice of 1 or O for whether the contamination is detected or not

Appendix B: Additional objectives used in recent literature

Recent literature has expanded the information-theoretical objectives with additional objectives. For instance: (1) Wang et al.
(2018) proposed dynamic network evaluation framework (DNEF) method that follows MIMR method for network configura-
tion in different time windows and optimal network ranking is determined by maximum Ranking disorder index (RDI) (Eq.B2),
which is normalized version of apportionment entropy (AE). RDI was proposed by Fahle et al. (2015) and named by Wang

et al. (2018) to analyze the uncertainty of the rank assigned to a monitoring station under different time windows; (2) Huang

25



465

470

475

480

485

et al. (2020) proposed information content, spatiotemporality, and accuracy (ISA) method, which extends MIMR method by
adding two objectives: maximizing spatiotemporality information (SI), and maximizing accuracy (A). The SI (Eq.B4) objec-
tive is introduced to incorporate spatiotemporality of satellite data into network design, and A (Eq.B5) objective is proposed to
Maximize the interpolation accuracy of the network by minimizing the regional kriging variance; (3) Banik et al. (2017) pro-
posed six combinations (GR 1-6) of four objectives: detection time (D) (Eq.B6), reliability (R) (Eq.B7), H (Eq.2) and C (Eq.6)
for locating sensors in sewer systems; and (4) Keum and Coulibaly (2017) proposed to maximize conditional entropy as a third
objective in dual entropy-multi-objective optimization to integrate multiple networks (in their case: raingauge and streamflow
networks). Although maximizing conditional entropy can indirectly be achieved in other used-objective (joint entropy), this
new objective gives more preference to maximizing unique information that one network can provide when another network
can’t deliver. These multi-objective optimization problems are solved by either finding an optimal solution in a Pareto front
(Alfonso et al., 2010b; Samuel et al., 2013; Keum and Coulibaly, 2017) or by merging multiple objectives with weight factors
into a single objective function (Li et al., 2012; Banik et al., 2017; Stosic et al., 2017).

n

T T
AE=-) —Llog, — Bl
2 Vi 089 M (B1)
RDI =nAE = AL (B2)
0go N

Where n is the number of possible ranks that a station can have (i.e., n is equal to the total number of stations). % ratio is an
occurrence probability of the outcome, where M is the number of ranks under different time windows, and r; is the number
of a certain i rank. Therefore, AE takes on its maximum value when the ranking probability of a station has equally probable
outcome while minimum AE happens when the station’s rank is constant. RDI ranges from O to 1, and higher RDI values

indicate ranking sensitivity of a station to temporal variability of the data.

l

SL(X) == _p(02)logy p(o) (B3)
=1
1 n
SInetwork(XfyFi) = n+l ;SIZ(XSJ) +SIZ(’7FI) (B4)
1 l k
Anetwo’r‘k (X, ’YFl) = _7 ;; Varij (BS)

Where SI,(X) is the local spatiotemporal information of the grid X in local window z in the time series; and p(c,) is
probability distribution of the standard deviation o, in time series . Sl,etwork (X, VF; ) is spatiotemporal of the network, which

is calculated by the average of spatiotemporal information of already selected sites SI.(Xs,) and a potential site SI.(vr, ).
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Apetwork(X,7vr, ) is network accuracy, and Var is kriging variance over time series [ and number of grids & in the study area.

(B6)

0|~

S
490 D(7)= <Y Do)

B7)

9]

1 S
R(v) =5

Where S is the total number of scenarios considered,and Dy, () is the average of the shortest time among the detection times

for monitoring stations, and J; is binary choice of 1 or O for whether the contamination is detected or not.

27



495

500

505

510

515

520

525

530

References

Alfonso, L., Lobbrecht, A., and Price, R.: Information theory—based approach for location of monitoring water level gauges in pold-
ers, Water Resources Research, 46, https://doi.org/10.1029/2009WRO008101, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/
2009WRO008101, _eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2009WR008101, 2010a.

Alfonso, L., Lobbrecht, A., and Price, R.: Optimization of water level monitoring network in polder systems using information the-
ory, Water Resources Research, 46, https://doi.org/10.1029/2009WRO008953, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/
2009WRO008953, _eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2009WR008953, 2010b.

Aydin, B. E., Hagedooren, H., Rutten, M. M., Delsman, J., Oude Essink, G. H. P., van de Giesen, N., and Abraham, E.: A Greedy Algorithm
for Optimal Sensor Placement to Estimate Salinity in Polder Networks, Water, 11, 1101, https://doi.org/10.3390/w11051101, https://www.
mdpi.com/2073-4441/11/5/1101, number: 5 Publisher: Multidisciplinary Digital Publishing Institute, 2019.

Banik, B. K., Alfonso, L., Di Cristo, C., and Leopardi, A.: Greedy Algorithms for Sensor Location in Sewer Systems, Water, 9, 856,
https://doi.org/10.3390/w9110856, https://www.mdpi.com/2073-4441/9/11/856, number: 11 Publisher: Multidisciplinary Digital Publish-
ing Institute, 2017.

Barrenetxea, G., Ingelrest, F., Schaefer, G., and Vetterli, M.: The hitchhiker’s guide to successful wireless sensor network deployments,
in: Proceedings of the 6th ACM conference on Embedded network sensor systems, SenSys *08, pp. 43-56, Association for Computing
Machinery, Raleigh, NC, USA, https://doi.org/10.1145/1460412.1460418, https://doi.org/10.1145/1460412.1460418, 2008.

Bayat, B., Hosseini, K., Nasseri, M., and Karami, H.: Challenge of rainfall network design considering spatial versus spatiotemporal varia-
tions, Journal of Hydrology, 574, 990-1002, https://doi.org/10.1016/j.jhydrol.2019.04.091, http://www.sciencedirect.com/science/article/
pii/S0022169419304317, 2019.

Bennett, A., Nijssen, B., Ou, G., Clark, M., and Nearing, G.: Quantifying Process Connectivity With Transfer Entropy in Hydrologic Models,
Water Resources Research, 55, 4613-4629, https://doi.org/10.1029/2018 WR024555, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.
1029/2018WR024555, _eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018 WR024555, 2019.

Bernardo, J. M.: Expected Information as Expected Utility, The Annals of Statistics, 7, 686—690, https://doi.org/10.1214/a0s/1176344689,
https://projecteuclid.org/euclid.aos/1176344689, publisher: Institute of Mathematical Statistics, 1979.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions
on Evolutionary Computation, 6, 182-197, https://doi.org/10.1109/4235.996017, conference Name: IEEE Transactions on Evolutionary
Computation, 2002.

Fahle, M., Hohenbrink, T. L., Dietrich, O., and Lischeid, G.: Temporal variability of the optimal monitoring setup assessed using information
theory, Water Resources Research, 51, 7723-7743, https://doi.org/10.1002/2015WRO017137, https://agupubs.onlinelibrary.wiley.com/doi/
abs/10.1002/2015WRO017137, _eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2015WR017137, 2015.

Foroozand, H. and Weijs, S. V.: Entropy Ensemble Filter: A Modified Bootstrap Aggregating (Bagging) Procedure to Improve Efficiency in
Ensemble Model Simulation, Entropy, 19, 520, https://doi.org/10.3390/e19100520, https://www.mdpi.com/1099-4300/19/10/520, num-
ber: 10 Publisher: Multidisciplinary Digital Publishing Institute, 2017.

Foroozand, H., Radi¢, V., and Weijs, S. V.: Application of Entropy Ensemble Filter in Neural Network Forecasts of Tropical Pacific Sea
Surface Temperatures, Entropy, 20, 207, https://doi.org/10.3390/¢20030207, https://www.mdpi.com/1099-4300/20/3/207, number: 3 Pub-
lisher: Multidisciplinary Digital Publishing Institute, 2018.

28


https://doi.org/10.1029/2009WR008101
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009WR008101
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009WR008101
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009WR008101
https://doi.org/10.1029/2009WR008953
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009WR008953
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009WR008953
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009WR008953
https://doi.org/10.3390/w11051101
https://www.mdpi.com/2073-4441/11/5/1101
https://www.mdpi.com/2073-4441/11/5/1101
https://www.mdpi.com/2073-4441/11/5/1101
https://doi.org/10.3390/w9110856
https://www.mdpi.com/2073-4441/9/11/856
https://doi.org/10.1145/1460412.1460418
https://doi.org/10.1145/1460412.1460418
https://doi.org/10.1016/j.jhydrol.2019.04.091
http://www.sciencedirect.com/science/article/pii/S0022169419304317
http://www.sciencedirect.com/science/article/pii/S0022169419304317
http://www.sciencedirect.com/science/article/pii/S0022169419304317
https://doi.org/10.1029/2018WR024555
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018WR024555
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018WR024555
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018WR024555
https://doi.org/10.1214/aos/1176344689
https://projecteuclid.org/euclid.aos/1176344689
https://doi.org/10.1109/4235.996017
https://doi.org/10.1002/2015WR017137
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017137
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017137
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017137
https://doi.org/10.3390/e19100520
https://www.mdpi.com/1099-4300/19/10/520
https://doi.org/10.3390/e20030207
https://www.mdpi.com/1099-4300/20/3/207

535

540

545

550

5565

560

565

Goodwell, A. E. and Kumar, P.: Temporal information partitioning: Characterizing synergy, uniqueness, and redundancy in interacting en-
vironmental variables, Water Resources Research, 53, 5920-5942, https://doi.org/10.1002/2016 WR020216, https://agupubs.onlinelibrary.
wiley.com/doi/abs/10.1002/2016 WR020216, _eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2016 WR020216, 2017.

Huang, Y., Zhao, H., Jiang, Y., and Lu, X.: A Method for the Optimized Design of a Rain Gauge Network Combined with Satellite Re-
mote Sensing Data, Remote Sensing, 12, 194, https://doi.org/10.3390/rs12010194, https://www.mdpi.com/2072-4292/12/1/194, number:
1 Publisher: Multidisciplinary Digital Publishing Institute, 2020.

Keum, J. and Coulibaly, P.: Information theory-based decision support system for integrated design of multivariable hydrometric networks,
Water Resources Research, 53, 6239-6259, https://doi.org/10.1002/2016 WR019981, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.
1002/2016WR019981, _eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2016WR019981, 2017.

Khorshidi, M. S., Nikoo, M. R., Taravatrooy, N., Sadegh, M., Al-Wardy, M., and Al-Rawas, G. A.: Pressure sensor placement in
water distribution networks for leak detection using a hybrid information-entropy approach, Information Sciences, 516, 56-71,
https://doi.org/10.1016/j.ins.2019.12.043, http://www.sciencedirect.com/science/article/pii/S0020025519311545, 2020.

Kollat, J. B., Reed, P. M., and Kasprzyk, J. R.: A new epsilon-dominance hierarchical Bayesian optimization algorithm for large multiobjec-
tive monitoring network design problems, Advances in Water Resources, 31, 828—845, https://doi.org/10.1016/j.advwatres.2008.01.017,
http://www.sciencedirect.com/science/article/pii/S0309170808000298, 2008.

Krstanovic, P. F. and Singh, V. P.: Evaluation of rainfall networks using entropy: I. Theoretical development, Water Resources Management,
6, 279-293, https://doi.org/10.1007/BF00872281, https://doi.org/10.1007/BF00872281, 1992.

Li, C., Singh, V. P, and Mishra, A. K.: Entropy theory-based criterion for hydrometric network evaluation and design: Maximum information
minimum redundancy, Water Resources Research, 48, https://doi.org/10.1029/2011WRO011251, https://agupubs.onlinelibrary.wiley.com/
doi/abs/10.1029/2011WRO011251, _eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/201 1WR011251, 2012.

McGill, W. J.: Multivariate information transmission, Psychometrika, 19, 97-116, https://doi.org/10.1007/BF02289159, https://doi.org/10.
1007/BF02289159, 1954.

Mishra, A. K. and Coulibaly, P.: Developments in hydrometric network design: A review, Reviews of Geophysics, 47,
https://doi.org/10.1029/2007RG000243, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2007RG000243, _eprint:
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2007RG000243, 2009.

Mogheir, Y., Singh, V. P,, and de Lima, J. L. M. P.: Spatial assessment and redesign of a groundwater quality monitoring network using
entropy theory, Gaza Strip, Palestine, Hydrogeology Journal, 14, 700-712, https://doi.org/10.1007/s10040-005-0464-3, https://doi.org/10.
1007/s10040-005-0464-3, 2006.

Nadeau, D. F.,, Brutsaert, W., Parlange, M. B., Bou-Zeid, E., Barrenetxea, G., Couach, O., Boldi, M.-O., Selker, J. S., and Vetterli, M.:
Estimation of urban sensible heat flux using a dense wireless network of observations, Environmental Fluid Mechanics, 9, 635-653,
https://doi.org/10.1007/s10652-009-9150-7, https://doi.org/10.1007/s10652-009-9150-7, 2009.

Neumann, J. v. and Morgenstern, O.: Theory of Games and Economic Behavior, Princeton University Press, 1953.

Raso, L., Weijs, S. V., and Werner, M.: Balancing Costs and Benefits in Selecting New Information: Efficient Monitoring Using Deterministic
Hydro-economic Models, Water Resources Management, 32, 339-357, https://doi.org/10.1007/s11269-017-1813-4, https://doi.org/10.
1007/s11269-017-1813-4, 2018.

Ridolfi, E., Montesarchio, V., Russo, F., and Napolitano, F.: An entropy approach for evaluating the maximum information content achievable
by an urban rainfall network, Natural Hazards and Earth System Sciences, 11, 2075-2083, https://doi.org/https://doi.org/10.5194/nhess-
11-2075-2011, https://www.nat-hazards-earth-syst-sci.net/11/2075/2011/, publisher: Copernicus GmbH, 2011.

29


https://doi.org/10.1002/2016WR020216
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016WR020216
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016WR020216
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016WR020216
https://doi.org/10.3390/rs12010194
https://www.mdpi.com/2072-4292/12/1/194
https://doi.org/10.1002/2016WR019981
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016WR019981
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016WR019981
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016WR019981
https://doi.org/10.1016/j.ins.2019.12.043
http://www.sciencedirect.com/science/article/pii/S0020025519311545
https://doi.org/10.1016/j.advwatres.2008.01.017
http://www.sciencedirect.com/science/article/pii/S0309170808000298
https://doi.org/10.1007/BF00872281
https://doi.org/10.1007/BF00872281
https://doi.org/10.1029/2011WR011251
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011WR011251
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011WR011251
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011WR011251
https://doi.org/10.1007/BF02289159
https://doi.org/10.1007/BF02289159
https://doi.org/10.1007/BF02289159
https://doi.org/10.1007/BF02289159
https://doi.org/10.1029/2007RG000243
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2007RG000243
https://doi.org/10.1007/s10040-005-0464-3
https://doi.org/10.1007/s10040-005-0464-3
https://doi.org/10.1007/s10040-005-0464-3
https://doi.org/10.1007/s10040-005-0464-3
https://doi.org/10.1007/s10652-009-9150-7
https://doi.org/10.1007/s10652-009-9150-7
https://doi.org/10.1007/s11269-017-1813-4
https://doi.org/10.1007/s11269-017-1813-4
https://doi.org/10.1007/s11269-017-1813-4
https://doi.org/10.1007/s11269-017-1813-4
https://doi.org/https://doi.org/10.5194/nhess-11-2075-2011
https://doi.org/https://doi.org/10.5194/nhess-11-2075-2011
https://doi.org/https://doi.org/10.5194/nhess-11-2075-2011
https://www.nat-hazards-earth-syst-sci.net/11/2075/2011/

570

575

580

585

Samuel, J., Coulibaly, P., and Kollat, J.: CRDEMO: Combined regionalization and dual entropy-multiobjective optimization for hydrometric
network design, Water Resources Research, 49, 80708089, https://doi.org/10.1002/2013WR014058, https://agupubs.onlinelibrary.wiley.
com/doi/abs/10.1002/2013WR014058, _eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2013WR014058, 2013.

Shannon, C. E.: A mathematical theory of communication, The Bell System Technical Journal, 27, 379423, https://doi.org/10.1002/j.1538-
7305.1948.tb01338.x, conference Name: The Bell System Technical Journal, 1948.

Simoni, S., Padoan, S., Nadeau, D. F., Diebold, M., Porporato, A., Barrenetxea, G., Ingelrest, F., Vetterli, M., and Parlange, M. B.: Hy-
drologic response of an alpine watershed: Application of a meteorological wireless sensor network to understand streamflow gener-
ation, Water Resources Research, 47, https://doi.org/10.1029/2011WR010730, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/
2011WRO010730, _eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2011WR010730, 2011.

Stosic, T., Stosic, B., and Singh, V. P.: Optimizing streamflow monitoring networks using joint permutation entropy, Journal of Hydrol-
ogy, 552, 306-312, https://doi.org/10.1016/j.jhydrol.2017.07.003, http://www.sciencedirect.com/science/article/pii/S0022169417304547,
2017.

Wang, W., Wang, D., Singh, V. P, Wang, Y., Wu, J., Wang, L., Zou, X., Liu, J., Zou, Y., and He, R.: Optimization of rainfall networks using
information entropy and temporal variability analysis, Journal of Hydrology, 559, 136-155, https://doi.org/10.1016/j.jhydrol.2018.02.010,
http://www.sciencedirect.com/science/article/pii/S0022169418300866, 2018.

Watanabe, S.: Information Theoretical Analysis of Multivariate Correlation, IBM Journal of Research and Development, 4, 66-82,
https://doi.org/10.1147/rd.41.0066, conference Name: IBM Journal of Research and Development, 1960.

Weijs, S. V., Foroozand, H., and Kumar, A.: Dependency and Redundancy: How Information Theory Untangles Three Variable Interactions in
Environmental Data, Water Resources Research, 54, 7143-7148, https://doi.org/10.1029/2018WR022649, https://agupubs.onlinelibrary.
wiley.com/doi/abs/10.1029/2018WR022649, _eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018WR022649, 2018.

30


https://doi.org/10.1002/2013WR014058
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013WR014058
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013WR014058
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013WR014058
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1029/2011WR010730
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011WR010730
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011WR010730
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011WR010730
https://doi.org/10.1016/j.jhydrol.2017.07.003
http://www.sciencedirect.com/science/article/pii/S0022169417304547
https://doi.org/10.1016/j.jhydrol.2018.02.010
http://www.sciencedirect.com/science/article/pii/S0022169418300866
https://doi.org/10.1147/rd.41.0066
https://doi.org/10.1029/2018WR022649
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018WR022649
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018WR022649
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018WR022649

‘Kdonuy jurof wnwrxep = grxew pue ¢ Koemode pue Kjeroduwdjoneds Jusjuod UOHEWIONUT = VST SYIOMIWEL]

uonenyeAr YJomioN otweuk(q = JANJ SJUey ApooIn) = YO SYI0MION dmwoIpAH d[qerreAn[njA = NHIN ‘Adonug uoneinuiod jutor = g4 ‘uoneziumdQ aanoalqo-nnja-£donug [en pue uonezieuorSay
pauIquo)) = QNN KouBpunpay WNWIUIjA] UONBULIOJU] WNWIXBIA = YIATIA ‘UOIBUWLIOUISURL], WNWIUTA = [Ur ‘wa[qoid uoneziwndQ 2A103(qQ BN = JOOIA ‘SIOP[od UT SULIONUO JaBM =dIAM AoeIndoe
s1 'y pue ‘uoneusiojur Ajerodurajoneds ST IS "Xopul JOPIOSIP SuDjuel J0J spuels [ “AN[IGRI[AI ST Y PUE ‘QUIN) UON0AP ST (] "9ANI2[qo 1By} U0 suoness [enuajod [[e Jo 9I00s UBIPIW Y} MOJIq I JBY) POIOPISUOD

e suone)s A[Uo dIoYM JUTRIISUOD 0] SPUBIS N FS 'Y SIYSIOM (IIM PIZIWIXEW ST JBY) U0TOUN 9A1399[q0 paIyS1om e Jo 1ed SuLIo] JO (UTUr) POZIWTUIW IO (XBU) PIZIWIXRW ST JAN[QO UB IOUIoYM SMOYS [qe) oY ],

0 K3 2 1 o .
‘Awhﬂvm:? 3T ey ﬁ‘ﬁoﬁmmﬁwwﬁ ST — o (27 419) 157K = 141 :50A199(q0 JINM

xew 1oded sy Arxew
V Xew 29 IS Xew ' (v —1)— ' (0202) Te 32 Sueny VSI
1Ay xew Y (v —1)— Y (8102) Te 10 Suepm AANA
3 Xew 29 (1 urw urw Xew (L107) "Te 10 yiueg 924D
urw Xew (L10T) T2 10 YIueg 3 1)
¥ Xew 2 (] unu (L102) Te 10 iueg 12! 0
xew (L102) " 32 Yiueg €49
M xew (L107) 'Te 10 Yiueg aad
 utw (L10T) T2 12 1ueg 28
Xeur uru Xeuwr (L107) £[eqIMoD pue wnay NHIN
xeur urw (L107) T8 19 915018 adr
urw Xeut (€102) 'Te 10 [onwres ONWH@ID
Y (v —1)— Y (T100) 10 1T ANIIN
unw 451 XEW (1102) T2 10 yiopry Lurux
uruw Xew (q0107) 'Te 10 osuojy dOOIN
M Xeut (80107) 'Te 19 osuoj|y €dINM
M Xeut (80107) ‘T8 19 osuoj|y TdINM
M Xew (BO10T) & 10 0SUOI[Y IdNM
s100 (dlo)a  (s21)ad  (s:20)0  (§:24)1L (92 (°19)H Wds  (24)H
QIUAIYY PO

uonoung aAndR[qO

“a1nyeI)1[ Juadal ur pasodoid spoyjet £q pasn s9A1}O9[QO [BOT)RI0YI-UOTIBWLIOJUT SNOLIEA *T J[qRY,

31



