
Reply to comments on revision 1 by reviewer #4  
(reviewer comments in black,​ replies in blue​) 
 
Dear authors, thank you for your reply. 
 
I enjoyed seeing how this paper has turned into a better version of itself. I think your clarifications with 
respect to the points I initially highlighted were mostly met in your reply. To simplify the process, If I agree 
with your reply, I wont add it here. However, there are still some open points that I would like to further 
discuss based on the reply and re-structuring of the paper. I will start with the reply to the comments you 
made, then move to general comments about the paper (in its current state), and finally some specific 
comments line-by-line. 
 
We thank Reviewer#4 for his/her positive review and constructive suggestions, which allowed us to              
improve the quality of the manuscript. In the following section, reviewer comments are in ​black color​,                
author responses are in blue color, and changes proposed for the text in the manuscript are in ​italics ​and                   
underline ​font. 
 
************************ 
About the reply 
************************ 
---------------------- 
In the reply regarding the discussion about optimality you responded: 
 
"In this paper, we do not answer the question ``what is optimal?'' with an optimal network. 
Rather, we reflect on the question of how to define optimality in a way that is logically 
consistent and useful within the monitoring network optimization context, thereby questioning the 
widespread use of minimum dependence between stations as part of the objectives." 
 
With this in mind, I think the title of the paper, beyond catchy, may be misleading. I am not against making 
this the point of discussion of your paper, but I believe that the title can better reflect the discussion that is 
inside. I think the main focus of discussion in this paper is to avoid using redundancy metrics unless the 
problem is explicitly defined to require them, and to see what is the effect of greedy-drop algorithm in the 
defining monitoring networks. 
 
We made a subtle change to the title. By putting optimal in quotes, we refer to the word, i.e. the definition 
of optimal, rather than the concept. This makes clear that we discuss issues with the definition of 
optimality by the objective functions.  
 
----------------------- 
"l367-368 Language has to be precise (how to numerically calculate this objective function, or other 
objective functions used in other approaches) 
Agreed, we will modify as follows: Another important question that needs to be addressed in future 
research is to investigate how the choices and assumptions made (i.e., data quantization which 
influences probability distribution) in the numerical calculation of objective functions would affect network 
ranking." 
 
In this comment, I was also trying to highlight the fact that not all of the equations to calculate the metrics 
presented in your study were explicitly shown. At the moment, some of them are there, but I was not able 



to find (in the body of the document) the complete information to replicate your study. In your paper your 
mention that you are using the same weights as the original authors (l259-260) to identify a single solution 
in the case of MOO, but it would be best if this is directly presented in the formulation to help replicate this 
study. 
 
Thanks for pointing this out. We now add the following information about trade-off weight in MOO method 
to the caption of Table 2 where the results were presented. Also, we modified equation 8 to show how li et 
al. (2012) applied the trade-off weight to the MOO method.  
 
Added in Table 2 caption: 
Note that  MIMR’s trade-off weight ( ) is based on the recommendation of  Li et al (2012) for this1 .8λ = 0  
dataset.  
 
 
 
-------------------------- 
 
************* 
About document in general 
************* 
 
I think the general structure of the abstract can be improved. I suggest you being more concise on the 
methods and conclusions of your study. Also, I think it would be a better to end the abstract highlighting 
the conclusions rather than mentioning that there is a case study. 
Thanks for your suggestion. We removed that sentence at the end of the abstract to better emphasize the 
paper's core message. We also sharpened the formulation about the impossibility of a greedy approach. 
 
The structure of the document has to critically revised. I think a literature review section would not hurt, as 
you are including these topics in the methodology. Also, I noticed that you moved the position of the 
Methodology section, and now include topics which should not be presented there. The experimental 
setup (which experiments and using which data is being used to get which values) is not really clear; also, 
the first reference to the "synthetic dataset" is shown in the results section. In addition, the first part of 
your results reads as conclusions from the literature rather than from your own numerical experiments; in 
addition, during the results section there are suggestions of further work which should be included in its 
respective section. Please, reconsider the order of the sections in your document as it needs a big 
overhaul. 
 
We systematically overhauled the paper's section2 structure based on your specific points. In revision #1, 
we applied some structural changes to accommodate other reviewers' suggestions. Your views seem to 
be more aligned with our original manuscript, so a few of those were partly reversed to accommodate 
your suggestions. It seems that this is the closest we can come to convergence on the best way to 
present this research, which is slightly more complicated due to the role of the case study, which is not 
the main source of our conclusions, but rather an illustration.  
 
Language has to be revised. Paragraphs tend to be too long and sometimes drift over more than 1 idea at 
the time. I am asking you to be more concrete in each paragraph, as I agree that the overall length of the 
document and the amount of information presented is adequate. Also, it is important to revise the 
structure of some sentences to avoid using as many commas. Finally, make sure to stick to only one term 
for the same element through the text (i.e. station). 



 
Thanks for catching this, we ​revised long paragraphs and sentences with many commas. Also, We made 
sure that the term “station” is used where we are referring to the 12 stations in this case study. 
We uniformly used measures when referring to entropy, mutual information and similar measures, 
consistent with Cover and Thomas and Shannon sources. 
 
 
 
************* 
Specific points 
************* 
 
l82 - you can be more specific which trade-offs are being interpreted. 
Thank you for your comments. We modified the text to improve its clarity. 
 
Added in L94: 
Section 4 introduces the results for the various methods, and then discusses the need for multiple 
objectives, the interpretation of trade-offs ​between redundancy and total information​,...  
 
l87 - You start the section with an addition connector ("In monitoring network design, also ..."). This leaves 
the reader without a context. 
Agreed. As you recommended in previous comments, we now move the scope subsection to the 
introduction section to have a proper context for our readers. We also modified the first sentence of the 
section to be clearer: 
Added in L67: 
 “​The information-theoretical approach to monitoring network design is not the only option, and other 
objective functions have also been used for this problem​.”  
 
 
l89 - Kriging (with capital K) 
Was fixed as recommended. 
 
l91 - "such as for example" pick one 
Thanks for catching this; we modified the text and provided more information about the referenced 
example. 
 
l93 - "on that topic" This is redundant 
Was fixed as recommended. 
l94 - "on spatially distributed observed" In your case study you do not have spatially distributed 
observations (such as radar or remote sensor products), but rather discrete observations along a stream 
(even if they are spatially distributed). 
Thanks for catching this, we changed it to “ observed data on one single variable in multiple locations” 
l95 - which -> that 
In this case, we intended this as a non-defining clause (we believe all these objective functions should in                  
principle define what we want from the network). We kept which, but now emphasized that we talk                 
specifically about objective functions for monitoring network design:  
Keeping this limited scope allows us to discuss the interpretation of these objective functions ​for               
monitoring network design​, which formalize what we actually want from a network. 
 



 
l95-98 - (Furthermore ...) In the methodology section this has to be way more concrete 
Agreed,this paragraph has more introductory language and is moved to the introduction section. Section 
2.6 provides concrete explanation for this purpose. 
l99-101 - This can be slightly rephrased to avoid as many commas. 
Was fixed as recommended. Down to one comma now. 
l103 - The discussion is not demonstrated, but rather carried out. 
Thanks for catching this, we reformulated the sentence to “​Our discussion is numerically illustrated by a                
case study using data from Brazos River in Texas, as presented in Li et al., (2012), to allow for                   
comparisons​”, as that most accurately describes the role of the case study in relation to the discussion. 
l104 - "as we will argue" This is the methodology section. Please focus the text of what has been done in 
this particular paper (therefore written in present tense). 
Agreed, we use present tense now.  
l121-123 - Sounds more like a line for the introduction and not as part of the methodology 
Agreed. The whole subsection is moved to the introduction section. 
S2.1 should not be part of the methodology. This is part of the literature review. 
Agreed. The whole subsection is moved to the introduction section. 
l125 - I am not sure if Shannon in particular talks about uncertainty. I think his work is more closely related 
to compressibility of data. Similar, but yet different. 
There is an agreement in the literature that  Shannon(1948) developed information theory (IT) based on 
entropy. In its section 6 (CHOICE, UNCERTAINTY AND ENTROPY), Shannon talks about the concept of 
uncertainty as defined by entropy. Shannon writes the following just before deriving his Entropy measure: 
“​Can we find a measure of how much “choice” is involved in the selection of the event or of how uncertain 
we are of the outcome?” 
The beauty of Shannon’s work is that it essentially unifies these seemingly different concepts of 
uncertainty and (un)compressibility. See also the recent WRR debate paper: 
 
Weijs, S. V., & Ruddell, B. L. (2020). Debates: Does information theory provide a new paradigm for earth 
science? Sharper predictions using Occam's digital razor. ​Water Resources Research​, 56, 
e2019WR026471.​ ​https://doi.org/10.1029/2019WR026471 
  
 
l131 - "For monitoring networks, the information each sensor provides through its observations 
(outcomes) is therefore linked to the uncertainty of those outcomes before measurement. These are 
quantified through the probability distributions of the data." This line is quite hard to read, please consider 
it for simplification. 
Thank you for your comments. We modified the text as follows to improve its clarity, while keeping 
precision: 
“For monitoring networks, we are interested in the information content of the observations from all 
stations. The information content is equal to the uncertainty about the observations before measuring. 
The uncertainty is quantified through probability distributions that describe the possible observations, 
based on the data.” 
 
l135 - "the placement" 
Thanks for catching this, it is fixed. 
l137 - I think this is also a good place to mention joint entropy as you will be coming back to this later on 
the paper 
l137 - "a random variable" 

https://doi.org/10.1029/2019WR026471
https://doi.org/10.1029/2019WR026471


Entropy and joint entropy are represented by the H symbol applicable for both a single variable or multiple 
variables depending on the context. We now clarify that more by stating that explicitly when introducing 
joint entropy.​ “Joint entropy (Eq.2), as an extension of entropy beyond a single variable,  measures the 
number of questions needed to determine the outcome of a multivariate system.” 
l140 - " Objective functions are often composed from these basic expressions. Details of each expression 
are presented below." I think this can be removed 
We deleted the line as recommended. 
 
l144 - You changed the name here to Discrete marginal entropy. For example (l138, entropy; l142, 
Shannon entropy; l144, Discrete marginal entropy). Please be consistent 
We removed “Shannon” from line 142.  Entropy is a general term, and discrete marginal entropy is a more 
specific term to explain how entropy values are calculated (i.e., continuous or discrete probability 
distribution). This specification is explained in the preceding sentence. We clarified by adding : “​single 
discrete variable​” to the line before the equation is introduced. 
l149 you mention is only about units, while in l151 you mention that is used in answering questions. 
Which one is then the case? I think the answers depend on the quantisation rather than the base of the 
algorithm. Please clarify this. 
Bits give the expected value of the number of equivalent binary question answers needed to determine in 
which bin the outcome falls, for any choice of quantization (layout of the bins). Switching base of the 
logarithm or unit, changes the type of question allowed to questions with e.g. more than two possible 
answers, and therefore the number of questions changes.There is also the connection to file sizes that 
can prove useful. We modified the text to clarify this point. 
Added in L122: 
The choice of the logarithm’s base for entropy calculation is determined by the desired unit — other 
information units are “nats” and “Hartley” for the natural and base 10 logarithms, respectively. For 
monitoring network design, the logarithm of base 2 is common in the literature since it can be interpreted 
as the needed number of answers to a series of binary questions, and allows comparisons with file sizes 
in bits; see e.g. Weijs et al. (2013a). 
 
l152-153 - This does not say much. Can you be more specific. Also, will you please generalise all of the 
equations in this section (H, H|X, T and C). 
We provided a list of symbols in the appendix to provide a general overview. In the original draft, we 
generalized and explained all questions in one concise paragraph. But other reviewers requested to break 
it down and explain each equation right after the first appearance in the paper.  
l155 - Marginal distributions are not used in calculating joint entropies. Please move them where 
necessary. 
Thanks for catching this, it is fixed. 
S2.2 This section contains quite a bit of information that should not be part of the Methodology. 
S2.1(S2.2 in the revision#1 draft)  was intended to help our readers interpret and understand the results 
presented in the paper. Since our methodology  to reach our conclusions is not only calculating the 
objective functions, but also interpreting them, we consider laying out the key information measures as 
part of our methodology.  Moving it to other sections would disrupt the flow of information and message of 
the paper.  
S2.2 - I do not think the word "measure" as in the title works in this context (as a noun). Consider using 
other term such as metrics. 
We kept measures, as it is more in line with how it is referred to in information textbooks. To make it                     
easier to read, we renamed the section “Understanding and visualizing the measures of information” to               
avoid ambiguity between uses of the word “measures” as a noun and as a verb.  
 



l184 - Additive properties were never discussed. What are these? 
This refers e.g. to equation 6, which tells us that in the total information measured by joint entropy, we                   
account for redundancy by subtracting the total correlation from the sum of entropies. We now explicitly                
refer to eq. 6 and use the more accurate term ​additive relations 
l185 - Please consider clarifying this line as for our previous discussion. 
We now clarified that with maximally informative, we mean reducing total uncertainty about the set of 
outcomes, rather than focusing on a specific variable or decision problem: 
….lead to a maximally informative sensor network, ​which minimizes total remaining uncertainty about the 
outcomes at all potential locations​. 
 
l213 - "However, there is no consensus on how to minimize redundant information". I think that there is no 
consensus on its definition rather than on its ways to minimise it. Most authors will agree that the only way 
to find the "optimal" result is to resort to full-enumeration, while others have used more efficient methods 
to get there, so the problem can actually be (realistically) solved. In particular, when revising Alfonso et al. 
(2010), we found out that WMP is a criteria for defining redundancy, while the way to solve the problem 
was resorting to NSGA-II. These differences have to be clarified, as they seem mixed-up in the document. 
Thanks. We modified the text to clarify this. We meant there is no consensus on how to minimize 
redundant information in terms of minimizing total correlation or pairwise transinformation. 
 
Added in L163: 
However, there is no consensus on ​whether to use total correlation or transinformation metrics​ to 
minimize redundant information 
Eq 7-10 - are framed as greedy-add, as they read to optimise the given metric given a set of previous 
iterations, and a new candidate. Therefore, its formulation is not suitable for its use in the greedy-drop. 
Would not be better just to have a definition of the objective function, and present separately the way to 
solve it? 
We agree that these equations are formulated from a greedy add perspective, because some of the 
methods we compare with (WMP and minT) are inherently formulated that way. We agree that MIMR and 
maxJE could be formulated differently without referring to Fc and the greedy add, but that would make the 
comparison with WMP and minT more complicated and would also make the way we illustrate the 
relations in figure 1 harder to understand. We now explicitly state the connection of this formulation to 
greedy and, and that MIMR and maxJE could be easily modified for exhaustive optimization: 
 
Added in L244: 
Fc  is the station considered for addition to the current set in a greedy-add approach. This formulation 
was chosen to allow a uniform presentation between methods.The objectives for methods maxJE and 
MIMR can easily be modified to consider Fc  as part of S, so that the objective function evaluates the 
entire network rather than one candidate station for addition. This allows greedy-add,  greedy-drop and 
exhaustive search methods.  
 
l277 - "This approach can for example be useful in Alpine terrain, where relocating a sensor requires 
significant effort (Simoni et al., 2011)" I think this argument is relevant when physically changing the 
placement of the sensors, but I do not see it as an argument when testing potential locations while in the 
"design" phase. 
Having done fieldwork for that project, SW realized that often deployments are not planned fully in                
advance, but adapted based on data collected. In that sense, the design phase can be somewhat fluid.                 
Because of the work involved and size of the team, hiking time, etc. a fairly limited number of stations per                    
field visit could be placed. The decision where to place the next station, or whether to remove a sensor                   



from one location and place it somewhere else could also be made with help of similar design algorithms                  
as discussed here. The objective functions could be the same, but the constraints could be different.  
l288 - optimal combination of ... Better to be specific here. 
Thank you, we changed to: ​optimal combination of selected sensors for each network size 
S2 - I think at the end of this section there is not a clear presentation of the experimental setup to test the 
hypothesis presented at the introduction of the paper. I think it would be a good idea to re-draft this 
section to clearly point out what is the methodology of the paper to support your conclusions, rather than 
mixing it with the literature review. A diagram always helps. Also, in this point it would be best to be 
(briefly) specific in the formulations, and not leave those in the references or annex (such as in S2.4), as 
this is the core of your document. 
We overhauled the structure of the Methodology section. We moved the S2.1 (Choice of scope) to the 
introduction section. In the new Methodology structure, we first introduce basic information formulas ( to 
provide context). Then, We layout the core argument of our paper and arguments around other alternative 
objective functions explored in this paper. We then provide the two diagrams to help our reader interpret 
information metrics and figures presented in the result section. 
 
l368-379 - I think belongs to the literature review, as it does not show or discuss any of the results. If it 
does, I didnt find it, so please help reader pointing that out. 
L375 to L379 contains the core reasoning of our argument in this paper.  The L368 to L374 provides 
context for this paragraph to highlight the difference between our argument and the opposing argument. 
Since in this paper, part of our method is reasoning about the objective functions, and our result is a 
contrast between what we argue for and an apparent consensus in the literature, our results and 
discussion contain atypically many references. We think these are needed at this point in the paper.  
 
l381-395 - Idem 
Thanks. We added more citations to this part of the text to support our argument. 
l406 - "efficiency = bits of unique info / bits collected" -> efficiency (i.e. bits of unique information / bits 
collected) 
We fixed as recommended. 
l406 - bits collected -> bits 
We fixed as recommended. 
l423 "when increasing network size by one station" I think this should be removed. If we consider 
increasing the network by one element at the time then is greedy add and not exhaustive search. I think 
this will be clarified when the methodology shows that you will be testing the results for the optimisation of 
the network using 3,4,5.... n sensors. 
We included this to highlight the subtle difference between increasing the network size by one station,                
and adding one station. We agree that this may add confusion and can be left to later to clarify, so we                     
removed as recommended. 
 
l428-430 - Don't downplay yourself or your setup :). It is well known that combinatorial problems are not 
simple to solve when they grow. However, try to quantitatively report what the results or setup is (type of 
PC, OS, etc). 
Thanks :) ​As per previous reviewer comments, the most important point here is the exponential growth 
and the resulting ratio between 4 minutes and 5 years, which apply regardless of the other slowing 
factors. We think the actual setup is less relevant given the other mentioned inefficiencies.  
l443-445 - I think this may go in the further work as is not something that is tested in this study. 
Agree, we  removed it here as similar points were already made in the future work section. 
l446 - Is well known that only exhaustive search can guarantee optimality. I think you can show this from 
well known (textbook) optimisation material. 



We agree that exhaustive approaches are the only ones guarantee optimality in the general case of 
optimization. However, for a given specific problem, more efficient algorithms that guarantee optimality 
could in principle exist (e.g. dynamic programming for sequential decision processes). For this specific 
problem, it is important how information measures in the objective function interact. In this paper we 
empirically show from the result of exhaustive optimization that for joint entropy, no greedy optimal 
algorithm can exist. Maybe this could be shown from textbook material, but it would also need to include 
information theory textbooks then, since it could be specific to the objective function.  
  
l446 - If there is a second dataset used in obtaining the results, this should be mentioned in the case 
study. Also, it has to be shown in the methodology what kind of experiments were carried out with it. 
We did not use a second dataset in this paper. We randomly drew data from our original dataset to 
generate an artificial dataset. We performed this to show reaching the same results by exhaustive and 
greedy algorithms was not a general truth, and can be changed if we permute the data. The reason we 
introduce the artificial data is hard to justify beforehand, as the experiment was conceived in reaction to 
the initial result. 
 
l458 - by definition, every search algorithm is more efficient than exhaustive search. 
We agree with you. We modified the text and removed the comparison to the exhaustive algorithm. 
 
T5 - This table reads way better now. Update the caption as is not monitor order, but selected stations. In 
addition, you can refer that you are using dataset #2 for these results if presented earlier in the case study 
and methodology sections. Finally, Make sure to use the same term (station) all over the paper. 
We are glad you liked the updated version. Thank you for catching this. The exhaustive search indeed 
does not give a ranking, but a series of sets. We used  the same dataset, but we randomly permuted the 
time series to generate an artificial dataset. We modified the Table’s caption to reflect this. 
 
T6 - Same comments as with T5. Please rename "Multivariate dimensions" to number of stations. 
Was fixed as recommended. 
 
l480 - Going back to our original discussion, I would like you to clarify that there is no justification on 
minimizing redundancy as long as there is no specific objective that supports that requirement. This is to 
highlight the point that (ideally) objective functions are created as a requirement for the optimisation, but 
given the fact that the problem is not that well defined in many applications, opting for joint entropy makes 
sense. 
Our argumentation is still that there is no clear justification given for minimizing redundancy in previous 
literature, except for intuitive reasons that are already taken into account in joint entropy. We cannot think 
of a realistic scenario where minimization of redundancy would be warranted. Therefore in principle our 
advice is not to use it, also given the potential benefits of maximizing redundancy. If future research 
presents a clear case for why it should be included, we would be interested in reading that, but for now 
we do not want to speculate on that. 
 
l489 - The dimensionality that feasible depends not only on the amount of stations, but also on the 
quantisation method, the potential superset of potential locations, and the hardware availability. I can 
imagine someone with an HPC cluster and a well-tuned implementation can process these results. I think 
it'll be better to leave it open on the side that complexity exponentially grows with the size of the problem 
and that should be considered. 
We agree that the bound was not strong enough. Since the effect of  exponential growth is sometimes 
difficult to commit to intuition, we think it is still helpful to illustrate with an example rather than leave open. 



Since it is always enjoyable to read references to computational power back decades later, we included 
the following up to date reference point: 
Added in L414: 
During the COVID-19 response in March 2020, Folding@home, currently the world's largest distributed 
computing project, broke the exaFLOP barrier ($10^18$ floating point operations per second). Even with 
that computational power, it would take more than 10 years to evaluate a network of 90 potential stations, 
under the impossibly optimistic assumption that evaluating one network were possible in one FLOP.  
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Abstract. This paper concerns the problem of optimal monitoring network layout using information-theoretical methods.

Numerous different objectives based on information measures have been proposed in recent literature, often focusing simul-

taneously on maximum information and minimum dependence between the chosen locations for data collection
::::::
stations. We

discuss these objective functions and conclude that a single objective optimization of joint entropy suffices to maximize the

collection of information for a given number of sensors
:::::::
stations. We argue that the widespread notion of minimizing redun-5

dancy, or dependence between monitored signals, as a secondary objective is not desirable and has no intrinsic justification.

The negative effect of redundancy on total collected information is already accounted for in joint entropy, which measures total

information net of any redundancies. In fact, for two networks of equal joint entropy, the one with a higher amount of redundant

information should be preferred for reasons of robustness against failure. In attaining the maximum joint entropy objective, we

investigate exhaustive optimization, a more computationally tractable greedy approach that adds one station at a time, and we10

introduce the “greedy drop” approach, where the full set of sensors
::::::
stations is reduced one at a time. We show that no greedy

approach can exist that is guaranteed to reach the global optimum. The arguments are illustrated by a comparative case study.

1 Introduction

Over the last decade, a large number of papers on information theory based design of monitoring networks have been published.

These studies apply information-theoretical measures on multiple time series from a set of sensors, to identify optimal subsets.15

Jointly, these papers (Alfonso et al., 2010a, b; Li et al., 2012; Ridolfi et al., 2011; Samuel et al., 2013; Stosic et al., 2017; Keum

and Coulibaly, 2017; Banik et al., 2017; Wang et al., 2018; Huang et al., 2020; Khorshidi et al., 2020) have proposed a wide

variety of different optimization objectives. Some have suggested that either a multi-objective approach or a single objective

derived from multiple objectives is necessary to find an optimal monitoring network. These methods were often compared to

other existing methods in case studies , used to demonstrate , based on the resulting networks, that one objective should be20

preferred over the other
:::::
based

::
on

:::
the

::::::::
resulting

::::::::
networks.

In this paper, we do not answer the question “what is optimal?” with an optimal network. Rather, we reflect on the question

of how to define optimality in a way that is logically consistent and useful within the monitoring network optimization context,

thereby questioning the widespread use of minimum dependence between stations as part of the objectives.
::
In

::::
fact,

:::
we

:::::
argue

:::
that

::::::::::
minimizing

::::::::::
redundancy

:
is
::
a
::::::::
redundant

::::::::
objective.

:
25
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The objective of a hydrological monitoring network depends on its purpose, which can usually be framed as supporting

decisions. The decisions can be relating to management of water systems, as for example considered by Alfonso et al. (2010a) or

flood warning and evacuation decisions in uncontrolled systems. Also purely scientific research can be formulated as involving

decisions to accept or reject certain hypotheses, focus research on certain aspects, or collect more data (Raso et al., 2018). In

fact, choosing monitoring locations is also a decision, whose objective can be formulated as choosing monitoring locations to30

optimally support subsequent decisions.

The decision problem of choosing an optimal monitoring network layout needs an explicit objective function to be optimized.

While this objective could be stated in terms of a utility function (Neumann and Morgenstern, 1953), this requires knowledge of

the decision problem(s) at hand and preferences of the decision maker, which
::
the

::::::::::::::
decision-makers

::::::::::
preferences.

:::::
These

:
are often

not explicitly available, for examplein ,
::
in
:::
the

:
case of a government operated

:::::::::::::::::
government-operated monitoring network with a35

multitude of users. As a special case of utility, it is possible to state the objective of a monitoring network in terms of information

(Bernardo, 1979). This can be done using the framework of information theory, originally outlined by Shannon (1948), who

introduced information entropy H(X) as a measure of uncertainty or missing information in the probability distribution of

random variable X, as well as many related measures.

Although ultimately the objective will be a more general utility, the focus of this paper is on information-theoretical methods40

for monitoring network design, which typically do not optimize for a specific decision problem supported by the network.

Because information and utility (value of information) are linked through a complex relationship, this does not necessarily

optimize decisions for all decision makers. Since we do not consider a specific decision problem, the focus in the present paper

is on methods for maximization of information retrieved from a sensor network.

In this paper, the rationale behind posing various information-theoretical objectives is discussed in detail. While measures45

from information theory provide a strong foundation for mathematically and conceptually rigorous quantification of informa-

tion content, it is important to pay attention to the exact meaning of the measures used. This paper is intended to shed some

light on these meanings in the context of monitoring network optimization and provides new discussion motivated in part by

recently published literature.

We present three main arguments in this paper. Firstly, we argue that objective functions for optimizing monitoring networks50

can, in principle, not be justified by analysing the resulting networks from application case studies. Evaluating performance of

a chosen monitoring network would require a performance indicator which in itself is an objective function. Case studies could

be helpful in assessing whether one objective function (the optimization objective) could be used as an approximation of an-

other, underlying, objective function (the performance indicator). However, from results of case studies we should not attempt

to draw any conclusions as to what objective function should be preferred. In other words: the objective function is intended to55

assess the quality of the monitoring network, as opposed to a practice where the resulting monitoring networks are used to as-

sess the quality of the objective function. Secondly, we argue that, in purely information-based approaches, the joint entropy of

all signals together is in principle sufficient to characterize information content and can therefore serve as single optimization

objective. Notions of minimizing dependence between monitored signals through incorporation of other information metrics

:::::::
measures

:
in the objective function lack justification and are therefore not desirable.Thirdly, because the undesirable information60
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inefficiencies associated with high dependency or redundancy are already accounted for in maximizing joint entropy, we could

actually argue for maximizing redundancy as a secondary objective , because of its associated benefits for creating a net-

work robust against failures of individual sensors.
::::::::
individual

:::::::
sensors’

:::::::
failures.

::::
The

:::::
reason

::
is
::::
that

:::
the

::::::::::
undesirable

::::::::::
information

:::::::::::
inefficiencies

:::::::::
associated

::::
with

::::
high

::::::::::
dependency

:::
or

::::::::::
redundancy

:::
are

::::::
already

:::::::::
accounted

:::
for

::
in

:::::::::::
maximizing

::::
joint

:::::::
entropy.

:
Min-

imization of redundancy would mean that each sensor becomes more essential, and therefore the network as a whole more65

vulnerable to failures in delivering information. Adding a trade-off with maximum redundancy is outside the scope of this

paper, but serves to further illustrate the argument against use of minimum redundancy.

The manuscript is organized as follows. In the following methodology section, we introduce the methods used to investigate

and illustrate the role of objective functions. In section 3, we discuss the case study on the streamflow monitoring network

of Brazos River. Section 4 introduces the results for the various methods, and then discusses the need for multiple objectives,70

the interpretation of trade-offs, and the feasibility of greedy algorithms reaching the optimum. The article concludes with

summarizing the key messages and raising important questions about the calculation of the metrics, to be addressed in future

research.

2 Methodology

1.1 Choice of scope and role of the case study75

In monitoring network design, also other objectives, not relating to information measures, have been used

1.1
:::::

Choice
:::
of

:::::
scope

:::
and

::::
role

::
of

::::
the

::::
case

:::::
study

:::
The

:::::::::::::::::::
information-theoretical

::::::::
approach

::
to

::::::::::
monitoring

:::::::
network

:::::
design

::
is
:::
not

:::
the

::::
only

:::::::
option,

:::
and

:::::
other

:::::::
objective

::::::::
functions

:::::
have

:::
also

::::
been

::::
used

:::
for

::::
this

:::::::
problem. Examples are cost, geographical spread, and squared error based metrics. Some approaches use

models describing spatial variability with certain assumptions, e.g. kriging
::::::
Kriging

:
(Bayat et al., 2019). In the case of network80

expansion to new locations, models are always needed to describe what could be measured in those locations. These could

vary from simple linear models to full hydrodynamic transport models, such as for example done in (Aydin et al., 2019).
::::
used

::
in

:::::::::::::::
Aydin et al. (2019)

:
,
::::
who

::::::::
compared

:::::::::::
performance

::
of

:::
the

::::::
sensor

:::::::::
placement

::
in

:
a
::::::
polder

:::::::
network

:::::
based

:::
on

:
a
::::::
simple

:::::::::
low-order

::::
PCA

::::::::
(principal

::::::::::
component

:::::::
analysis)

::::::
model

:::
and

:
a
:::::::
detailed

::::::::::::
hydrodynamic

::::
and

:::
salt

::::::::
transport

::::::
model.

In this paper, our main focus is to discuss the formulation of information-theoretical objective functions and previous liter-85

atureon that topic. Therefore, we restrict our scope to those information-theory based objective functions, based on spatially

distributed observed data on one single variable
::
in

:::::::
multiple

::::::::
locations. Keeping this limited scope allows us to discuss the inter-

pretation of these objective functions
:::
for

:::::::::
monitoring

:::::::
network

::::::
design, which formalize what we actually want from a network.

Furthermore, we investigate whether the desired optimum in the objective function can be found by greedy approaches, or

whether exhaustive search is needed to prevent a loss of optimality.90
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Only after it is agreed on what is wanted from a network and this is captured as an optimization problem, other issues such

as the solution or approximation of the solution to the problem become relevant. The numerical approach to this solution and

calculation of information measures involved, warrants another,
:::::::
warrants

:
independent discussion, which is outside our current

scope and will be presented in a future paper. Our discussion is numerically demonstrated by
::::::::
illustrated

:::
by

:
a
::::
case

:::::
study using

data from the case study for Brazos River in Texas, as presented in Li et al. (2012), to allow for comparisons. However, as95

we will argue, the case study can only serve as illustration, and not for normative arguments for use of a particular objective

function. Such an argument would be circular, as the performance metric will be one of the objective functions.

In this paper, since we are discussing the appropriate choice of objective function, there is no experimental setup that could

be used to provide evidence for one objective version versus the other. Rather, we must make use of normative theoretical

reasoning, and shining light on the interpretation of the objectives used and their possible justifications. The practical case100

studies in this paper therefore serve as illustration, but not as evidence for all the conclusions advocated in this paper, some of

which are arrived at through interpretation and argumentation in the discussion section. This methodology sectionintroduces

the elementary information measures used in this paper and previous literature we compare with. After

:::
The

:::::::::
manuscript

::
is
:::::::::
organized

::
as

:::::::
follows.

::
In

:::
the

::::::::
following

:::::::::::
methodology

:::::::
section,

::
we

::::::::
introduce

:::
the

::::::::
methods

::::
used

::
to

:::::::::
investigate

:::
and

:::::::
illustrate

:::
the

::::
role

::
of

::::::::
objective

:::::::::
functions.

::
In

::::::
section

:
3, we discuss visualization of these information measures, and finally,105

we discuss the proposed and previously used objective functions for monitoring network design, which are composed of these

elementary informationmeasures
:::
the

::::
case

:::::
study

::
on

::::
the

:::::::::
streamflow

::::::::::
monitoring

:::::::
network

::
of

::::::
Brazos

::::::
River.

::::::
Section

::
4

:::::::::
introduces

::
the

::::::
results

:::
for

:::
the

::::::
various

::::::::
methods,

:::
and

::::
then

::::::::
discusses

:::
the

::::
need

:::
for

:::::::
multiple

:::::::::
objectives,

:::
the

:::::::::::
interpretation

::
of

:::::::::
trade-offs

:::::::
between

:::::::::
redundancy

::::
and

::::
total

::::::::::
information,

::::
and

:::
the

:::::::::
feasibility

::
of

::::::
greedy

:::::::::
algorithms

:::::::
reaching

:::
the

:::::::::
optimum.

:::
The

::::::
article

:::::::::
concludes

::::
with

::::::::::
summarizing

:::
the

::::
key

::::::::
messages

:::
and

::::::
raising

::::::::
important

::::::::
questions

:::::
about

:::
the

:::::::::
calculation

::
of

:::
the

:::::::::
measures,

::
to

::
be

::::::::
addressed

::
in
::::::
future110

:::::::
research.

2
:::::::::::
Methodology

2.1 Information theory terms

Shannon (1948) developed information theory (IT) based on entropy, the concept that explains a system’s uncertainty re-

duction as a function of added information. To understand how, consider
:
a set of N events for which possible outcomes are115

categorized into m classes, uncertainty
:
.
::::::::::
Uncertainty is a measure of our knowledge about which outcome will occur. Once

an event is observed, and
:
it
::
is
::::::::
identified

:
which of the m classes it belongs tois identified, our uncertainty about the outcome

decreases to 0. Therefore, information can be characterized as the decrease of an observer’s uncertainty about the outcome

(Krstanovic and Singh, 1992; Mogheir et al., 2006; Samuel et al., 2013; Foroozand and Weijs, 2017; Foroozand et al., 2018)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Krstanovic and Singh, 1992; Mogheir et al., 2006; Foroozand and Weijs, 2017; Foroozand et al., 2018; Konapala et al., 2020)

. For monitoring networks, the information each sensor provides through its observations (outcomes) is therefore linked
:::
we

:::
are120

::::::::
interested

::
in

:::
the

::::::::::
information

::::::
content

:::
of

::
the

:::::::::::
observations

:::::
from

::
all

:::::::
stations.

::::
The

::::::::::
information

::::::
content

::
is
:::::
equal

:
to the uncertainty

of those outcomes before measurement. These are quantified through the probability distributions of the
::::
about

:::
the

:::::::::::
observations
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:::::
before

:::::::::
measuring.

::::
The

:::::::::
uncertainty

::
is
:::::::::
quantified

::::::
through

::::::::::
probability

::::::::::
distributions

::::
that

:::::::
describe

:::
the

:::::::
possible

:::::::::::
observations,

:::::
based

::
on

:::
the data.

In monitoring network design, IT has been applied in the literature to evaluate data collection networks that serve a variety125

of purposes, including rainfall measurement, water quality monitoring, and streamflow monitoring. These evaluations are then

used to optimize
:::
the placement of sensors. In the monitoring network optimization literature, three expressions from IT are

often used in monitoring network design: (1) entropy (H), to estimate the expected information content of observations of

random variables; (2) Mutual information, often called transinformation (T), to measure redundant information or dependency

between two variables; (3) total correlation (C), a multivariate analogue to mutual information, to measure the total nonlinear130

dependency among multiple random variables. Objective functions are often composed from these basic expressions. Details

of each expression are presented below.

The Shannon entropy H (X) is a nonparametric measure, directly on the discrete probabilities, with no prior assumptions on

data distribution. It is also referred to as discrete marginal entropy, to distinguish it both from continuous entropy and from

conditional entropy. Discrete marginal entropy (Eq.1), defined as the average information content of observations of a
:::::
single135

::::::
discrete

:
random variable X, is given by:

H(X) =−
∑
x∈X

p(x) log2 p(x) (1)

where p(x) (06 p(x)6 1) is the probability of occurrence of outcome x of random variable X. Equation 1 gives the entropy

in the units
::::
unit of “bits” since it uses a logarithm of base 2. The choice of base

::
the

::::::::::
logarithm’s

::::
base

:::
for

:::::::
entropy

:::::::::
calculation is

determined by the desired unit . In the
::
—

:::::
other

:::::::::
information

:::::
units

::
are

::::::
“nats”

:::
and

::::::::
“Hartley”

:::
for

:::
the

::::::
natural

:::
and

::::
base

::
10

::::::::::
logarithms,140

::::::::::
respectively.

:::
For

:
monitoring network designliterature, the bit is a common unit, ,

:::
the

:::::::::
logarithm

::
of

::::
base

::
2

::
is

:::::::
common

:::
in

:::
the

:::::::
literature

:
since it can be interpreted as the needed number of answers to a series of binary questions. ,

:::
and

::::::
allows

:::::::::::
comparisons

::::
with

:::
file

::::
sizes

::
in

::::
bits;

::::
see

:::
e.g.

::::::::::::::::
Weijs et al. (2013a)

:
. Joint entropy (Eq.2),

::
as

:::
an

::::::::
extension

::
of

:::::::
entropy

::::::
beyond

::
a
:::::
single

::::::::
variable,

measures the number of questions needed to determine the outcome of a multivariate system.

H(X1,X2) =−
∑
x1∈X1

∑
x2∈X2

p(x1,x2) log2 p(x1,x2) (2)145

where p(x1) and p(x2) constitute the marginal
:::::::
p(x1,x2)::

is
:::::

joint
:
probability distribution of random variable X1 and X2,

respectively; and p(x1,x2) form their joint probability distribution. For a bivariate case(X1,X2), if two random variables

are independent, then their joint entropy, H(X1,X2), is equal to the sum of marginal entropies H(X1)+H(X2). Conditional

entropy (Eq.3), H(X1|X2), explains the amount of information X1 delivers that X2 can not explain.

H(X1|X2) =−
∑
x1∈X1

∑
x2∈X2

p(x1,x2) log2
p(x1,x2)

p(x2)
(3)150

06 H(X1|X2)6 H(X1) (4)
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H(X1|X2) can have a range (Eq.4) between zero when both variables are completely dependent and marginal entropy H(X1)

when they are independent. Mutual information, in this field often referred to as transinformation (Eq.5), T(X1,X2), explains

the level of dependency and shared information between two variables by considering their joint distribution.155

T(X1;X2) =−
∑
x1∈X1

∑
x2∈X2

p(x1,x2) log2
p(x1,x2)

p(x1) ∗ p(x2)
(5)

:::::
where

:::::
p(x1)::::

and
:::::
p(x2):::::::::

constitute
:::
the

::::::::
marginal

::::::::::
probability

::::::::::
distribution

::
of

:::::::
random

:::::::
variable

::::
X1 :::

and
::::
X2,

:::::::::::
respectively;

::::
and

:::::::
p(x1,x2):::::

form
::::
their

::::
joint

:::::::::
probability

::::::::::
distribution.

:
The assessment of the dependencies beyond three variables can be estimated

by the concept of Total Correlation (Eq.6) (proposed by McGill (1954) and named by Watanabe (1960)).

C(X1,X2, . . . ,Xn) =

[
n∑
i=1

H(Xi)

]
−H(X1,X2, . . . ,Xn) (6)160

Total Correlation (C) gives the amount of information shared between all variables by taking into account their nonlinear

dependencies. C can only be non-negative since sum of all marginal entropies cannot be smaller than their multivariate joint

entropy, though in the special case of independent variables, C would become zero.

2.2 Understanding and visualizing the measures
::::::::::::::
Single-objective

:::::::::::
optimization

In this paper, we argue that, due to the additive properties of information measures, the proposed objectives functions in165

the literature are unnecessarily complicated, and
::
for

:::
the

:::::::::
Maximum

::::
Joint

:::::::
Entropy

::::::::
(maxJE)

::::::::
objective

::
for

:::::::::::
maximizing

:::
the

::::
total

:::::::::
information

::::::::
collected

:::
by

::
a

:::::::::
monitoring

::::::::
network.

::::
This

::
is

:::::::::
equivalent

::
to

:::
the

:::::
GR3

::::::::
objective

::::::::
proposed

::
by

::::::::::::::::
Banik et al. (2017),

:::
as

:::
part

::
of

:::
six

:::::
other

::::::::
objectives

::::
(see

::::::::
appendix

::
B

:::
for

::::
more

::::::
detail)

::::::::
proposed

::
in

:::
the

::::
same

::::::
paper,

:::::
which

:::
did

:::
not

:::::::
provide

:::::::::
preference

:::
for

::
its

::::
use.

::
In

:::
the

:::::::::
discussion,

:::
we

:::::
argue

::::
that a single-objective optimization of the joint entropy of all selected sensors will lead to

a maximally informative sensor network. The additive relations between some of the information measures discussed in this170

paper are illustrated in Figure 1. In this figure and later is this paper, we use a shorthand notation: we use the sets of stations

directly in the information measures, as a compact notation for the multivariate random variable measured by that set of stations

. Various types of information interactions for three variables are conceptually understandable using Venn diagram (Figure 2.a

). Although a Venn diagram can be used to illustrate information of more than three variables when they are grouped in three

sets (Figure 1), it can’t be used to illustrate pairwise information interactions beyond three variables. A chord diagram, on175

the other hand, can be useful to better understand pairwise information interaction beyond three variables. Figure 2 provides

simple template to interpret and compare Venn and chord diagrams.

There are two important caveats with these visualizations. In the general Venn diagram of 3-variate interactions, the "interaction

information", represented by the area where 3 circles overlap, can become negative. Hence, the Venn Diagram ceases to be an

adequate visualization. For similar reasons, in the chord diagram, the sector size of outer arc lengths should not be interpreted as180

a total information transferred (Bennett et al., 2019). Information that can contribute to interactions is a combination of unique,

redundant and synergistic components (Goodwell and Kumar, 2017; Weijs et al., 2018). Their information entanglement is an

6



active area of research in 3 or more dimensions. In this paper, the total size of the outer arc lengths is set to represent the sum

of pairwise information interactions (used in Alfonso et al. (2010a)) and conditional entropy of each variable. This size may

be larger than the total entropy of the variable and does not have any natural or fundamental interpretation.185

In this paper, we use Venn diagrams to illustrate information relations between 3 groups of variables. Group one is the set of

all sensors that are currently selected as being part of the monitoring network, which we denote as S. Group two is the set of

all sensors that are currently not selected, denoted as F , and group 3 is the single candidate sensor that is currently considered

for addition to the network, Fc; see appendix A for an overview of notation. Since group 3 is a subset of group 2, one Venn

circle is contained in the other, and there are only 5 distinct areas vs 7 in a general 3-set Venn diagram. In this particular case,190

there is no issue arising from negative interaction information.

:
,
:::::
which

:::::::::
minimizes

::::
total

::::::::
remaining

::::::::::
uncertainty

:::::
about

:::
the

::::::::
outcomes

::
at

::
all

::::::::
potential

::::::::
locations.

:::::
Also,

:
it
::::::
should

::
be

:::::
noted

::::
that

:::
the

:::::
maxJE

::::::::
objective

:::::::
function

:::::::
already

::::::::
penalizes

::::::::
redundant

::::::::::
information

:::::::
through

::
its

:::::::
network

::::::::
selection

:::::::
process,

:::::
which

:::::
aims

::
to

:::
find

::
a

:::
new

::::::
station

::::
that

::::::::
produces

::::::::
maximum

::::
joint

:::::::
entropy

:::::
when

::
it

::
is

::::::::
combined

::::
with

:::::::
already

:::::::
selected

::::::
stations

::
in
:::::
each

:::::::
iteration.

::::::
When

::::::
applied

::
in

:
a
::::::
greedy

::::::
search,

::::::
adding

:::
one

::::
new

::::::
station

::
at

:
a
:::::
time,

:::
this

::::::::
approach

:::::
ranks

::::::
stations

:::::
based

:::
on

:::::::
growing

::::
joint

::::::::::
information

::
as195

::::::
quickly

::
as

::::::::
possible.

::::
This

:
is
:::::::::::::
mathematically

:::::::::
equivalent

::
to

:::
add

::
to

:::
the

::::::::
selection,

::
in

::::
each

::::::::
iteration,

:::
the

::::
new

:::::
station

:::
FC:::

that
::::::::
provides

::::::::
maximum

::::::::::
conditional

::::::
entropy

::::::::
H(Fc|S)::

on
::::
top

::
of

::
an

::::::
already

:::::::
selected

:::
set

:::
(S)

::
of

:::::::
stations

::::
(see

:::::
Figure

::
1
:::
for

:::::
visual

::::::::::
illustration).

:
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color legend

full:H(S), free:H(S|F)

full:H(F), free:H(F|S,Fc)

full:H(Fc), free: 0

T(S;F)-T(S;Fc)

0, because Fc⊂> F
H(Fc|S)

T(S;Fc)

1

2

3

4

5

6

7

redundant info added by candidate sensor

new info added by candidate sensor

Non-captured information
(uncertainty left,
room for improvement)

net info collected
by current set of sensors

Figure 1. Venn diagram illustrating the relations between the relevant information measures. In the legend, the joint and marginal

information-theoretical quantities (joint) entropy H(X), conditional entropy H(X|Y), and transinformation T (X;Y) for the variable from

sets of already selected sensors S, not yet selected sensors F and the current candidate sensor FC are represented by the surfaces in the Venn

diagram. For the 3 basic circle colors (first three circles in the legend), "free" gives the quantity represented by the non-covered part and

"full" gives the quantity represented by the entire circle surface. The joint entropy that is proposed to be maximized in this paper is the area

enclosed in the thick red line.

Template illustrations of information interactions with (a) Venn diagram, (b) chord diagram. The green and red areas in both

diagrams show a graphical representation of conditional entropy and mutual information respectively. The solid line circles in

Venn diagram depict single-variable entropy. *II is information interaction between three variables. The sector size in the outer200

circle in chord diagram is composed of arcs whose relative lengths correspond to the sum of pairwise information interactions

and conditional entropy of each variable, and are best not interpreted.

2.3 Multi-objective optimization
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:::
Our

:::::::
research

::::::::
compares

::::
and

:::::::
contrasts

::
a
::::::
variety

::
of

::::::::
objective

::::::::
functions

::::
from

::::::::
literature.

:
Information theory-based multi-objective

optimization methods for monitoring networks have gained significant attention in the literature
:::::::
recently. Maximizing network205

information content, through either the sum of marginal entropy or joint entropy, is the common theme among existing methods

(Alfonso et al., 2010b; Li et al., 2012; Samuel et al., 2013; Keum and Coulibaly, 2017; Wang et al., 2018; Huang et al.,

2020). However, there is no consensus on how to
::::::
whether

::
to

::::
use

::::
total

:::::::::
correlation

::
or

::::::::::::::
transinformation

::::::::
measures

:::
to minimize

redundant information. Table 1 gives an overview of the large number of objectives and combinations of objectives used in

the last decade. On the one hand, water monitoring in polders (WMP) method (Alfonso et al., 2010a) and joint permutation210

entropy (JPE) method (Stosic et al., 2017) used normalized transinformation to minimize redundant information. While, on the

other hand, multi-objective optimization problem (MOOP) method (Alfonso et al., 2010b), Combined regionalization and dual

entropy-multi-objective optimization (CRDEMO) method (Samuel et al., 2013), multivariable hydrometric networks (MHN)

method (Keum and Coulibaly, 2017) and greedy rank based optimization (GR 5 and 6) method (Banik et al., 2017) adopted

total correlation to achieve minimum redundancy. Interestingly, both C and T were used as competing objectives in maximum215

information minimum redundancy (MIMR) method proposed by Li et al. (2012). They argued that transinformation between

selected stations in the optimal set and non-selected stations should be maximized to account for the information transfer

ability of a network. Meanwhile, recently proposed methods in the literature attempted to improve monitoring network design

by introducing yet other additional objectives (Huang et al., 2020; Wang et al., 2018; Banik et al., 2017; Keum and Coulibaly,

2017). These additional objective are further discussed in Appendix B.220

2.4 Single-objective optimization

In this paper, we argue for the Maximum Joint Entropy (maxJE) objective for maximizing the total information collected by

a monitoring network. This is equivalent to the GR3 objective proposed by Banik et al. (2017), as part of six other objectives

(see appendix B for more detail) proposed in the same paper, which did not provide preference for its use. In the discussion,

we argue that a single-objective optimization of the joint entropy of all selected sensors will lead to a maximally informative225

sensor network. Also, it should be noted that the maxJE objective function already penalizes redundant information through

its network selection process, which aims to find a new station that produces maximum joint entropy when it is combined with

already selected stations in each iteration. When applied in a greedy search, adding one new station at a time, this approach

ranks stations based on growing joint information as quickly as possible. This is mathematically equivalent to add to the

selection, in each iteration, the new station FC that provides maximum conditional entropy H(Fc|S) on top of an already230

selected set (S) of stations (see Figure 1 for visual illustration).

2.4 Objective functions used in comparison for this study

For the purpose of illustrating the main arguments of this study, we compare maxJE objective function (Eq.7) with three other

(sets of) objective functions from previously proposed methods: MIMR (Eq.8), WMP (Eq.9) and minT (Eq.10). These methods

were chosen since they are highly cited methods in this field, and more importantly, recent new approaches in the literature have235

mostly been built on one of these methods with additional objectives Alfonso et al. (2010a, b); Ridolfi et al. (2011); Li et al. (2012); Samuel et al. (2013); Stosic et al. (2017); Keum and Coulibaly (2017); Banik et al. (2017); Wang et al. (2018); Huang et al. (2020)
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.

Objective function (maxJE): = maximize H(〈XS1
,XS2

, . . . ,XSk
〉 ,XFC

)

Objective function (MIMR): =


maximize H(〈XS1 ,XS2 , . . . ,XSk

〉 ,XFC
)

maximize
∑m
i=1 T(〈XS1

,XS2
, . . . ,XSk

〉 ,XFi
)

minimize C(〈XS1
,XS2

, . . . ,XSk
〉 ,XFC

)

240

Objective function (WMP): =

 maximize H(FC)

subject to
∑
i∈S

T(Si;FC)
H(Si)

< SBM

Objective function (minT): =

 maximize first H(FC)

minimize T(〈XS1
,XS2

, . . . ,XSk
〉 ,XFC

)

Where 〈XS1
,XS2

, . . . ,XSk
〉 refers to selected stations in the previous iterations. XFC

and H(FC) denote the variable at the245

current candidate station and its marginal entropy, respectively. SMB stands for constraint where only stations are considered

that are below the median score of all potential stations on that objective. m is equal to the number of non-selected station

in each iteration (m+ k = n total number of stations). For the multi-objective approaches used in the case study, we used the

same weights as the original authors to identify a single solution. It can be seen that a large number of different combinations

of information-theoretical metrics are used as objectives.250

2.4 Exhaustive search vs greedy add and drop

Apart from the objective function, the optimization of monitoring networks is also characterized by constraints. These con-

straints can either be implemented for numerical reasons or to reflect practical aspects of the real world problem. In the
:::
The

majority of existing literature listed in Table 1 , one constraint has often implicitly been imposed : to treat the selection of

stations
::::
often

:::::::::
implicitly

:::::::
imposed

::
a

::::::::
constraint

:::
by

::::::
treating

::::::::
stations’

::::::::
selection as greedy optimization, meaning that one station255

is added to the set of
:
.
::::::
Greedy

:::::::::::
optimization

::::
adds

::::
one

::::::
station

::
to

:::
the

:
selected stations each timewhile trying to optimize the

objective function, without reconsidering the
:::
set’s

:
already selected stationsin the set.

:
. A practical reason for this is numerical

efficiency; an exhaustive search of all subsets of k stations out of n possible stations will need to consider a large number of

combinations, since the search space grows exponentially with the size n of the full set of sensors (2n combinations of sensors

need to be considered).260

In this paper, for the maximization of joint entropy that we advocate, we will consider and compare 3 cases for constraints

with a large influence on computational cost, with the purpose of investigating whether these influence the results. We also

interpret the constraints as reflections of placement strategies. Firstly, the “greedy add” strategy is the commonly applied

constraint that each time the network expands, the most favorable additional station is chosen, while leaving the already

chosen network intact. The optimal network for k stations is found by expanding one station at a time. This approach can265
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for example be useful in Alpine terrain, where relocating a sensor requires significant effort (Simoni et al., 2011). Secondly,

“greedy drop” is the reverse strategy, not previously discussed in
::
the

:
literature, where the starting point is the full network

with all n stations, and the .
::::
The

:
optimal network for k stations is found by reducing the full network one step at a time, each

step dropping the least informative station. Since all of the discussed monitoring design strategies use recorded data and hence

discuss networks whose stations are already established, network reduction is perhaps the more realistic application scenario270

for information-based design methods. Thirdly, “exhaustive search” is the strategy where the optimal network of k stations is

found by considering all subsets of k stations out of n. This unconstrained search is far more computationally expensive, and

may not be feasible in larger networks for computational reasons. It can therefore be seen as a optimality benchmark. Because

all options are considered, this is guaranteed to find the optimal combination
::
of

:::::::
selected

::::::
sensors

:::
for

:::::
each

:::::::
network

:::
size, given

the objective function.275

In this comparison, we will investigate whether the exhaustive optimization yields a series of networks where an increase in

network size may also involve relocating stations. This may not always be practically feasible or desired in actual placement

strategies, where networks are slowly expanded one station at a time. Occurrence of relocation in the sequence of growing

subsets would also show that no greedy algorithm could exist that guarantees optimality.

2.5
::::::::::::

Understanding
::::
and

::::::::::
visualizing

:::
the

::::::::
measures

::
of

:::::::::::
information280

::
In

:::
this

:::::
paper,

:::
we

:::::
argue

::::
that,

::::
due

::
to

:::
the

:::::::
additive

:::::::
relations

::
of

::::::::::
information

::::::::
measures

::::::
(Eq.6),

:::
the

::::::::
proposed

:::::::::
objectives

::::::::
functions

::
in

::
the

::::::::
literature

:::
are

:::::::::::
unnecessarily

:::::::::::
complicated,

:::
and

::
a
:::::::::::::
single-objective

:::::::::::
optimization

::
of

:::
the

::::
joint

::::::
entropy

::
of

:::
all

:::::::
selected

::::::
sensors

::::
will

:::
lead

::
to
::

a
:::::::::
maximally

::::::::::
informative

::::::
sensor

:::::::
network.

::::
The

:::::::
additive

:::::::
relations

:::::::
between

:::::
some

::
of

:::
the

::::::::::
information

::::::::
measures

:::::::::
discussed

::
in

:::
this

:::::
paper

:::
are

:::::::::
illustrated

::
in

::::::
Figure

::
1.

::
In

::::
this

:::::
figure

:::
and

:::::
later

::
is

:::
this

::::::
paper,

:::
we

:::
use

:
a
:::::::::
shorthand

::::::::
notation:

::
we

::::
use

:::
the

:::
sets

:::
of

::::::
stations

:::::::
directly

::
in

:::
the

::::::::::
information

::::::::
measures,

::
as

::
a
:::::::
compact

:::::::
notation

:::
for

:::
the

::::::::::
multivariate

:::::::
random

:::::::
variable

::::::::
measured

::
by

::::
that

:::
set285

::
of

:::::::
stations.

:::::::
Various

::::
types

:::
of

::::::::::
information

:::::::::
interactions

:::
for

:::::
three

::::::::
variables

:::
are

::::::::::
conceptually

:::::::::::::
understandable

:::::
using

:::::
Venn

:::::::
diagram

::::::
(Figure

::::
2.a).

::::::::
Although

:
a
:::::
Venn

:::::::
diagram

:::
can

::
be

::::
used

::
to
::::::::
illustrate

::::::::::
information

::
of

::::
more

::::
than

:::::
three

:::::::
variables

:::::
when

::::
they

:::
are

:::::::
grouped

::
in

::::
three

:::
sets

:::::::
(Figure

::
1),

::
it
::::
can’t

:::
be

::::
used

::
to

:::::::
illustrate

::::::::
pairwise

::::::::::
information

:::::::::
interactions

:::::::
beyond

::::
three

::::::::
variables.

::
A

:::::
chord

::::::::
diagram,

::
on

:::
the

::::
other

:::::
hand,

:::
can

:::
be

:::::
useful

::
to

:::::
better

:::::::::
understand

::::::::
pairwise

:::::::::
information

:::::::::
interaction

:::::::
beyond

::::
three

::::::::
variables.

::::::
Figure

:
2
::::::::
provides

:::::
simple

::::::::
template

::
to

:::::::
interpret

:::
and

::::::::
compare

::::
Venn

::::
and

:::::
chord

::::::::
diagrams.

:
290

:::::
There

::
are

::::
two

::::::::
important

::::::
caveats

::::
with

:::::
these

::::::::::::
visualizations.

::
In

::
the

:::::::
general

::::
Venn

:::::::
diagram

::
of

::::::::
3-variate

::::::::::
interactions,

:::
the

:::::::::
"interaction

:::::::::::
information",

:::::::::
represented

:::
by

:::
the

::::
area

:::::
where

::
3

:::::
circles

:::::::
overlap,

::::
can

::::::
become

::::::::
negative.

::::::
Hence,

:::
the

:::::
Venn

:::::::
Diagram

::::::
ceases

::
to

::
be

:::
an

:::::::
adequate

:::::::::::
visualization.

:::
For

::::::
similar

:::::::
reasons,

::
in

:::
the

:::::
chord

:::::::
diagram,

:::
the

:::::
sector

::::
size

::
of

:::::
outer

::
arc

:::::::
lengths

:::::
should

:::
not

:::
be

:::::::::
interpreted

::
as

:
a
::::
total

::::::::::
information

:::::::::
transferred

:::::::::::::::::
(Bennett et al., 2019)

:
.
::::::::::
Information

:::
that

:::
can

:::::::::
contribute

::
to

::::::::::
interactions

:
is
::
a
::::::::::
combination

::
of

:::::::
unique,

::::::::
redundant

:::
and

:::::::::
synergistic

::::::::::
components

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Goodwell and Kumar, 2017; Weijs et al., 2018; Franzen et al., 2020)

:
.
::::
Their

::::::::::
information295

:::::::::::
entanglement

::
is

::
an

:::::
active

::::
area

::
of

:::::::
research

::
in
::
3
::
or

:::::
more

::::::::::
dimensions.

::
In

:::
this

::::::
paper,

:::
the

::::
total

:::
size

::
of

:::
the

:::::
outer

:::
arc

::::::
lengths

::
is

:::
set

::
to

:::::::
represent

:::
the

::::
sum

::
of

:::::::
pairwise

::::::::::
information

::::::::::
interactions

:::::
(used

:
in
::::::::::::::::::
Alfonso et al. (2010a)

:
)
:::
and

::::::::::
conditional

::::::
entropy

::
of

::::
each

::::::::
variable.

::::
This

:::
size

::::
may

::
be

::::::
larger

::::
than

:::
the

::::
total

::::::
entropy

::
of

:::
the

:::::::
variable

::::
and

::::
does

:::
not

::::
have

:::
any

::::::
natural

:::
or

::::::::::
fundamental

::::::::::::
interpretation.
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::
In

:::
this

:::::
paper,

:::
we

:::
use

:::::
Venn

::::::::
diagrams

::
to

:::::::
illustrate

::::::::::
information

:::::::
relations

::::::::
between

:
3
::::::
groups

::
of

::::::::
variables.

::::::
Group

:::
one

::
is

:::
the

:::
set

::
of

::
all

::::::
sensors

::::
that

:::
are

::::::::
currently

:::::::
selected

::
as

:::::
being

::::
part

::
of

:::
the

:::::::::
monitoring

::::::::
network,

:::::
which

:::
we

::::::
denote

::
as

:::
S.

:::::
Group

::::
two

::
is

:::
the

:::
set

::
of300

::
all

::::::
sensors

::::
that

:::
are

::::::::
currently

:::
not

:::::::
selected,

:::::::
denoted

::
as

:::
F ,

:::
and

:::::
group

::
3

::
is

::
the

::::::
single

::::::::
candidate

::::::
sensor

:::
that

::
is

::::::::
currently

:::::::::
considered

::
for

:::::::
addition

:::
to

:::
the

:::::::
network,

::::
Fc; :::

see
::::::::
appendix

::
A

:::
for

::
an

::::::::
overview

::
of

::::::::
notation.

:::::
Since

:::::
group

::
3
::
is

:
a
::::::
subset

::
of

:::::
group

:::
2,

:::
one

:::::
Venn

::::
circle

::
is
:::::::::
contained

::
in

:::
the

:::::
other,

:::
and

:::::
there

:::
are

::::
only

:
5
:::::::
distinct

::::
areas

::
vs

::
7
::
in

:
a
:::::::
general

::::
3-set

:::::
Venn

:::::::
diagram.

:::
In

:::
this

::::::::
particular

:::::
case,

::::
there

::
is

::
no

:::::
issue

::::::
arising

::::
from

:::::::
negative

:::::::::
interaction

:::::::::::
information.

Figure 2.
::::::
Template

::::::::::
illustrations

::
of

:::::::::
information

:::::::::
interactions

::::
with

::
(a)

:::::
Venn

:::::::
diagram,

::
(b)

:::::
chord

:::::::
diagram.

::::
The

::::
green

::::
and

::
red

:::::
areas

::
in

::::
both

:::::::
diagrams

::::
show

:
a
:::::::
graphical

:::::::::::
representation

::
of

::::::::
conditional

::::::
entropy

:::
and

::::::
mutual

:::::::::
information

:::::::::
respectively.

:::
The

::::
solid

:::
line

:::::
circles

::
in
::::
Venn

:::::::
diagram

::::
depict

::::::::::::
single-variable

::::::
entropy.

::
*II

::
is
:::::::::
information

::::::::
interaction

:::::::
between

::::
three

:::::::
variables.

::::
The

::::
sector

::::
size

::
in

::
the

:::::
outer

::::
circle

::
in

:::::
chord

::::::
diagram

::
is

:::::::
composed

::
of

:::
arcs

:::::
whose

::::::
relative

::::::
lengths

::::::::
correspond

::
to

:::
the

:::
sum

::
of

::::::
pairwise

:::::::::
information

:::::::::
interactions

:::
and

:::::::::
conditional

::::::
entropy

:
of
::::
each

:::::::
variable,

:::
and

::
are

::::
best

::
not

:::::::::
interpreted.

2.6
::::::::
Objective

::::::::
functions

::::
used

:::
in

::::::::::
comparison

:::
for

::::
this

:::::
study305

:::
For

:::
the

:::::::
purpose

::
of

:::::::::
illustrating

:::
the

::::
main

:::::::::
arguments

::
of

::::
this

:::::
study,

:::
we

:::::::
compare

::::::
maxJE

::::::::
objective

:::::::
function

::::::
(Eq.7)

::::
with

::::
three

:::::
other

::::
(sets

::
of)

::::::::
objective

::::::::
functions

::::
from

:::::::::
previously

::::::::
proposed

::::::::
methods:

::::::
MIMR

::::::
(Eq.8),

:::::
WMP

:::::
(Eq.9)

::::
and

::::
minT

:::::::
(Eq.10).

::::::
These

:::::::
methods

::::
were

::::::
chosen

::::
since

::::
they

:::
are

::::::
highly

::::
cited

:::::::
methods

::
in

:::
this

:::::
field,

:::
and

:::::
more

::::::::::
importantly,

:::::
recent

::::
new

:::::::::
approaches

::
in

:::
the

::::::::
literature

::::
have

:::::
mostly

:::::
been

::::
built

::
on

:::
one

::
of

:::::
these

:::::::
methods

::::
with

::::::::
additional

:::::::::
objectives

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Alfonso et al. (2010a, b); Ridolfi et al. (2011); Li et al. (2012); Samuel et al. (2013); Stosic et al. (2017); Keum and Coulibaly (2017); Banik et al. (2017); Wang et al. (2018); Huang et al. (2020)

:
.310

Objective function (maxJE): = maximize H(〈XS1 ,XS2 , . . . ,XSk
〉 ,XFC

)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(7)
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Objective function (MIMR): =



maximize H(〈XS1
,XS2

, . . . ,XSk
〉 ,XFC

)

maximize
∑m
i=1 T(〈XS1

,XS2
, . . . ,XSk

〉 ,XFi
)

minimize C(〈XS1
,XS2

, . . . ,XSk
〉 ,XFC

)

∴ HintegratedformatH

maximize λ1(H(〈XS1 ,XS2 , . . . ,XSk
〉 ,XFC

)+
∑m
i=1

T(〈XS1
,XS2

, . . . ,XSk
〉 ,XFi

))− (1−λ1)C(〈XS1
,XS2

, . . . ,XSk
〉 ,XFC

)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(8)

Objective function (WMP): =

 maximize H(FC)

subject to
∑
i∈S

T(Si;FC)
H(Si)

< SBM
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(9)315

Objective function (minT): =

 maximize first H(FC)

minimize T(〈XS1
,XS2

, . . . ,XSk
〉 ,XFC

)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(10)

:::::
Where

::::::::::::::::::
〈XS1 ,XS2 , . . . ,XSk

〉
:::::
refers

::
to
::::::::

selected
::::::
stations

:::
in

:::
the

:::::::
previous

:::::::::
iterations.

::::
XFC::::

and
::::::
H(FC)::::::

denote
:::

the
::::::::

variable
::
at

::
the

:::::::
current

::::::::
candidate

::::::
station

::::
and

::
its

::::::::
marginal

:::::::
entropy,

:::::::::::
respectively.

:::
FC::

is
:::
the

::::::
station

::::::::::
considered

:::
for

:::::::
addition

::
to

:::
the

:::::::
current

::
set

::
in

::
a
:::::::::
greedy-add

:::::::::
approach.

::::
This

::::::::::
formulation

:::
was

:::::::
chosen

::
to

:::::
allow

:
a
:::::::
uniform

::::::::::
presentation

::::::::
between

:::::::
methods.

::::
The

:::::::::
objectives320

::
for

::::::::
methods

::::::
maxJE

:::
and

:::::::
MIMR

:::
can

:::::
easily

:::
be

::::::::
modified

::
to

:::::::
consider

::::
FC ::

as
::::
part

::
of

::
S,

:::
so

:::
that

::::
the

:::::::
objective

::::::::
function

::::::::
evaluates

::
the

::::::
entire

:::::::
network

:::::
rather

::::
than

:::
one

:::::::::
candidate

::::::
station

:::
for

:::::::
addition.

::::
This

::::::
allows

::::::::::
greedy-add,

:::::::::::
greedy-drop

:::
and

:::::::::
exhaustive

::::::
search

:::::::
methods.

:::
λ1::

is
::::::::::::::::::::
information-redundancy

::::::::
trade-off

::::::
weight

:::::::::::::
(Li et al., 2012).

::::::
SBM

::::::
(select

:::::
below

::::::::
median)

:::::
stands

:::
for

:::::::::
constraint

:::::
where

::::
only

:::::::
stations

:::
are

:::::::::
considered

::::
that

:::
are

::::::
below

:::
the

::::::
median

:::::
score

::
of

:::
all

::::::::
potential

::::::
stations

:::
on

::::
that

::::::::
objective.

:::
m

::
is

:::::
equal

::
to

::
the

:::::::
number

::
of

:::::::::::
non-selected

::::::
station

::
in

::::
each

:::::::
iteration

::::::::::
(m+ k = n

::::
total

:::::::
number

::
of

::::::::
stations).

:::
For

:::
the

:::::::::::::
multi-objective

::::::::::
approaches325

::::
used

::
in

:::
the

::::
case

:::::
study,

:::
we

::::
used

:::
the

::::
same

:::::::
weights

::
as

:::
the

:::::::
original

::::::
authors

::
to

:::::::
identify

:
a
::::::
single

:::::::
solution.

::
It

:::
can

::
be

::::
seen

::::
that

:
a
:::::
large

::::::
number

::
of

::::::::
different

:::::::::::
combinations

::
of

:::::::::::::::::::
information-theoretical

::::::::
measures

:::
are

::::
used

::
as

:::::::::
objectives.

:

3 Study area and data description

In previous studies, the focus of the research has been on finding an optimal network for the subject case study with only little

discussion on the theoretical justification of applying a new methodology. For this reason, the primary goal of this paper is330

critically discussing the rationale for use of several objective functions in monitoring network design. To illustrate differences

between the methods, we decided to apply our methodology to the Brazos River streamflow network (Figure 3) since this

network was subject of study for the MIMR method. This network is under-gauged, according to the World Meteorological

Organization density requirement. However, using the exact same case study eliminates the effect of other factors besides the

objective function on the comparison. Such factors could be initial network density, temporal, and spatial variability. To isolate335
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our comparison from those effects, as well as from methodological choice such as resolution, time period considered, and

quantization method, we used the same data period and floor function quantization (Eq.11) proposed by Li et al. (2012).

xq = a

⌊
2x+ a

2a

⌋
(11)

Here, a is the histogram bin-width for all intervals except the first one, for which the bin-width is equal to a
2 . x is station’s

streamflow value, and xq is its corresponding quantized value; and b c is the conventional mathematical floor function.340

Figure 3. Brazos streamflow network and USGS stream gauges locations.

In Li et al. (2012), 12 USGS stream gauges on the Brazos River were selected for the period of 1990-2009 with monthly

temporal resolution; some statistics of the data are presented in Figure 4. For the discretization of the time series, they used

a binning approach where they empirically optimized parameter a to satisfy three goals: (1) to guarantee all 12 stations have

distinguishable marginal entropy, (2) to keep spatial and temporal variability of stations’ time series, bin-width should be fine

enough to capture the distribution of the values in the time series while being coarse enough so that enough data points are345

available per bin to have a representative histogram, and (3) to prevent rank fluctuation to due to the bin-width assumption,

sensitivity analysis must be conducted. They carried out the sensitivity analysis and proposed a= 150m3/s for this case study,

the resulting marginal entropy for each station is illustrated in Figure 4.
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Figure 4. Brazos River streamflow (m3/s) statistics and resulting entropy values (bits).The stations’ IDs are organized from upstream to

downstream gauges in the watershed. Entropy values are calculated by floor function and parameter a= 150m3/s.

4 Results and Discussion

4.1 Comparison of the objectives for Brazos River case350

As indicated in the introduction, we should not attempt to gauge the merits of the objective functions by the intuitive optimality

of the resulting network. Rather, the merits of the networks should be gauged by the objective functions. Still, the case study

can provide insight in some behaviours resulting from the objective functions.

To assess and illustrate the workings of the different objectives in retrieving information from the water system, we compared

three existing methods with a direct maximization of the joint entropy of selected sensors, H(S,Fc), indicated with maxJE in355

the results, such as Tables 2 and 3. The joint entropy results in Table 2 indicate that maxJE is able to find a combination

of 8 stations that contains joint information of all 12 stations ranked by other existing methods. Figure 5 displays spatial

distribution of the top 8 stations chosen by different methods. Before any interpretation of the placement, we must note that

the choices made in quantization and the availability of data play an important role in the optimal networks identified. Whether

the saturation that occurs with 8 stations has meaning for the real world case study depends on whether the joint probability360

distribution can be reliably estimated. This is highly debatable and merits a separate detailed discussion which is out of the

scope of this paper. We present this case study solely to illustrate behaviour of the various objectives.
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Table 2.
:::::::
Resulting

:::::::
maximum

::::
joint

::::::
entropy

:::::
(bits)

::
for

:::::::
different

::::::
number

::
of

:::::
gauges

:::::
found

::::
with

::::::
different

:::::::
methods

:::
for

:::::
Brazos

:::::
River

:::
case

:::::
study

::
(JE

::::
used

::::::::
exhaustive

::::::::::
optimization)

Method
Multivariate dimensions

:
1
: :

2
: :

3
: :

4
: :

5
: :

6
: :

7
: :

8
: :

9
: ::

10
::
11

::
12

::::::
MIMR

::::
2.47

::::
2.84

::::
2.87

::::
3.21

::::
3.23

::::
3.23

::::
3.23

::::
3.32

::::
3.33

::::
3.52

::::
3.93

:::
4.1

::::::::
WMP1/2

::::
2.47

::::
3.07

::::
3.21

::::
3.36

::::
3.38

::::
3.38

::::
3.38

::::
3.38

::::
3.38

::::
3.52

::::
3.82

:::
4.1

::::
minT

: ::::
2.47

::::
2.53

::::
2.69

::::
2.72

::::
2.76

::::
2.89

::::
3.06

::::
3.08

::::
3.33

::::
3.52

::::
3.93

:::
4.1

::::::
maxJE

::::
2.47

::::
3.07

::
3.5

::
3.7

::::
3.88

::::
4.02

::::
4.09

::
4.1

::
4.1

::
4.1

::
4.1

:::
4.1

Note that MIMR’s trade-off weight (λ1 = 0.8) is based on the recommendation of Li et al. (2012) for this dataset.

Table 3.
::::::
Optimal

:::::
gauge

:::::
orders

:::::
found

:::
with

:::::::
different

:::::::
methods

::
for

::::::
Brazos

::::
River

:::
case

:::::
study.

Method
Station ranking in multivariate dimensions

:
1

:
2
: :

3
: :

4
: :

5
: :

6
: :

7
: :

8
: :

9
: ::

10
: ::

11
: ::

12

::::::
MIMR

::
12

: :
6

:
1

:
8

:
2

:
3

:
4

:
7

:
5

:
9

::
10

::
11

::::::::
WMP1/2

::
12

:
9

:
7

:
6

:
5

:
4

:
3

:
2

:
1

:
8

::
11

::
10

::::
minT

: ::
12

:
1

:
2

:
3

:
4

:
5

:
7

:
6

:
8

:
9

::
10

::
11

::::::
maxJE

::
12

:
9

::
10

::
11

:
8

:
5

:
7

::
2∗

::
1∗

::
3∗

::
4∗

::
6∗

Note that for the last 5 stations, indicated with ∗, multiple optimal orders are possible.

The most notable difference between MaxJE and the other methods is the selection of all 3 of the stations located most

downstream. While other methods would not select these together due to high redundancy between them, maxJE still selects

all stations, because despite the redundancy, there is still found to be enough new information in the second-most and third-365

most downstream station. This can be in part attributed to the quantization choice of equally sized bins throughout the network,

leading to higher information contents downstream. While this quantization choice is debatable, it is important, in our opinion,

to not compensate artifacts from quantization by modifying the objective function, even if the resulting network may seem more

reasonable, but rather to address those artifacts in the quantization choices themselves. To repeat the key point: An objective

function should not be chosen based on whether it yields a “reasonable network” but rather based on whether the principles370

that define it are reasonable.

Though already necessarily true from the formulation of the objective functions, we use the case study to illustrate how

other methods with a separate minimum redundancy objective lead to the selection of stations with lower new information

content (green area in Figure 6). Reduction of the yellow area in each iteration (i.e. the information loss compared to the full
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network) in Figure 6 corresponds to the growth of joint entropy values in Table 2 for each method. maxJE (by definition) has the375

fastest, and minT the slowest rate of reduction of information loss. Methods’ preference for reaching minimum redundancy or

growing joint information (red area in Figure 6) governs the reduction rate of information loss. Also, Figure 7 provides auxiliary

information about the evolution of pairwise information interaction between already selected stations X1,X2, . . . ,Xi−1 in the

previous iterations and new proposed station Xi. Figure 7 illustrates the contrast between the choice of the proposed stations

in the first six iterations by different methods. For instance, minT method aims to find a station that has minimum mutual380

information (red links in Figure 7) with already selected stations. In contrast, the maxJE method tries to grow joint entropy,

which translates to finding a station that has maximum conditional entropy (green segments in Figure 7). Other methods opt to

combine two approaches by either imposing a constraint (WMP) or having a trade-off between them (MIMR).
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Figure 5. Resulting maximum joint entropy (bits) for different number
:::::
Spatial

:::::::::
distribution of

::
the

:::
top

:
8
:::::::::
streamflow gauges found with

:::::
ranked

different methods for Brazos River case study (JE used exhaustive optimization)
:::::::
objectives.

1 2 3 4 5 6 7 8 9 10 11 12MIMR 2.472.842.873.213.233.233.233.323.333.523.934.1WMP1/2

2.473.073.213.363.383.383.383.383.383.523.824.1minT 2.472.532.692.722.762.893.063.083.333.523.934.1maxJE

2.473.073.53.73.884.024.094.14.14.14.14.1Optimal gauge orders found with different methods for Brazos River case study. 1

2 3 4 5 6 7 8 9 10 11 12MIMR 12 6182347591011WMP1/2 129765432181110minT 121234576891011maxJE

12910118572∗1∗3∗4∗6∗
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MIMR

1

8

2

3

9

WMP

7

6

5

4

1

minT(S,Fc)

2

3

4

5

9

maxJE

10

11

8

5

Figure 6.
:::::::::::
Approximately

:::::::::
proportional

:::::
Venn

:::::::
diagrams

::::::
showing

:::
the

:::::::
evolution

::
of

:::::::::
information

:::::::
measures

::::
when

::::::::::
progressively

:::::
(going

:::::::::
downwards

::
on

::
the

:::::
rows)

::::::
selecting

::::::
stations

:::::::
(selected

:::::
station

:::
for

:::
each

::::
step

::::::
indicated

:::
by

::
the

:::::::
numbers)

:::::
using

:::
four

::::::
different

:::::::
methods

::
(in

:::
the

::::::
different

::::::::
columns).

:::
The

::::::::::
interpretation

::
of

:::
the

:::::::::
color-coded

::::
areas

::::::::::
representing

::
the

:::::::::
information

::::::::
measures

:
is
:::
the

::::
same

::
as
::
in
:::::
figure

::
1.

:::
All

::::::
methods

:::::
select

:::::
station

:::
12

:
as
:::

the
:::::
initial

:::::
station

:::::::
(entropy

::::
given

::
by

::::
pink

:::::
circle

::
on

:::
row

:::
1).

::
As

:::
can

::
be

::::
seen

::::
from

:::
the

::::::
diagram

::
on

:::
the

::::::
bottom

::::
right,

:::
the

::::::
method

:::::::::
maximizing

:::
joint

::::::
entropy

:::::
leaves

::::::
almost

::
no

:::::::::
information

:::::::::
unmeasured

::::::
(yellow

::::
part)

::::
with

:::
just

::
6

::::::
stations,

:::::
while

::
the

:::::
other

::::::
methods

:::
still

::::
miss

::::::::
capturing

:::
this

:::::::::
information.

::::
Exact

:::::::
numbers

:::::
behind

:::
the

::::
Venn

:::::::
diagram

:::
can

::
be

::::
found

::::
with

:::
the

::::
code

::::::
available

::::
with

:::
this

:::::
paper.
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Figure 7.
:::::::
Evolution

::
of

:::::::
pairwise

:::::::::
information

::::::::
interaction

::::::
between

::::::
already

::::::
selected

::::::
stations

::
in

::
the

:::::::
previous

:::::::
iterations

:::
and

:::
new

:::::::
proposed

::::::
station.

::::
Green

:::
and

:::
red

::::
links

:::::::
represent

::::::::::
proportional

::::::::
conditional

::::::
entropy

:::
and

::::::
mutual

::::::::::::::::::
information,respectively.

:::::
Links

:::
with

:::::
black

:::::
border

::::::::
emphasizes

:::
on

::
the

:::::::::
information

::::::::
interaction

::
of

::::
new

:::::::
proposed

:::::
station

::
in

::::
each

::::::
iteration.

4.2 Is minimization of dependence needed?

The existing approaches considered above have in common that they all involve some form of dependence criterion to be385

minimized. For example, the total correlation gives a measure of total redundant information within the selected set. This is

information that is duplicated and therefore does not contribute to the total information content of the sensors, which is given
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by the joint entropy. Focusing fully on minimizing dependence, such as done in the minT objective optimization, makes the

optimization insensitive to the amount of non-duplicated information added. This results in many low entropy sensors being

selected. It is important to note that the joint entropy already accounts for duplicated information and only quantifies the390

non-redundant information. This is exactly the reason why it is smaller then the sum of individual entropies. In terms of joint

entropy, two completely dependent monitors
::::::
stations are considered to be exactly as informative as one of them. This means

that the negative effect that dependency has on total information content is already accounted for by maximizing joint entropy

only.

Spatial distribution of the top 8 streamflow gauges ranked different objectives. Approximately proportional Venn diagrams395

showing the evolution of information measures when progressively (going downwards on the rows) selecting stations (selected

station for each step indicated by the numbers) using four different methods (in the different columns). The interpretation of the

color-coded areas representing the information measures is the same as in figure 1. All methods select station 12 as the initial

station (entropy given by pink circle on row 1). As can be seen from the diagram on the bottom right, the method maximizing

joint entropy leaves almost no information unmeasured (yellow part) with just 6 stations, while the other methods still miss400

capturing this information. Exact numbers behind the Venn diagram can be found with the code available with this paper.

Evolution of pairwise information interaction between already selected stations in the previous iterations and new proposed

station. Green and red links represent proportional conditional entropy and mutual information,respectively. Links with black

border emphasizes on the information interaction of new proposed station in each iteration.

Mishra and Coulibaly (2009) stated that "The fundamental basis in designing monitoring networks based the entropy ap-405

proach is that, the stations should have as little transinformation as possible, meaning that the stations must be indepen-

dent of each other". However, no underlying argument for this fundamental basis is given in the paper. The question is then

whether there is another reason, apart from information maximization, why the total correlation should be minimized. In

three of the early papers (Alfonso et al., 2010a, b; Li et al., 2012) introducing the approaches that employed or evaluated

total correlation, no such reason was given other than the one by Mishra and Coulibaly (2009). Also in later citing research410

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Huang et al., 2020; Wang et al., 2018; Keum and Coulibaly, 2017; Stosic et al., 2017; Fahle et al., 2015), no such arguments

have been found
:::::
except

:::
for

::::::::::::
effectiveness,

:::::
which

:::
we

:::::
argue

::
is
:::::::

covered
:::
by

:::::::
looking

::
at

:::
the

::::
total

:::::::::::::
non-redundant

::::::::::
information

:::
the

:::::::
network

::::::
delivers. Traditional reasons for minimizing redundancy are reducing the burden of data storage and transmission,

but these are not very relevant in monitoring network design, since those costs are often negligible compared to the costs of

the sensor installation and maintenance (see (Barrenetxea et al., 2008; Nadeau et al., 2009; Simoni et al., 2011)). Moreover,415

information theory tells us that, if needed, redundant information can be removed before transmission and storage by employ-

ing data compression
::::::::::::::::::
(Weijs et al., 2013b, a). The counter-side of minimal redundancy is less reliability, a far more relevant

criterion for monitoring network design. Given that sensors often fail or give erroneous values, one could argue that redundancy

(total correlation) should actually be maximized, given a maximum value of joint entropy. We might even want to gain more

robustness at the cost of losing some information. One could for example imagine placing a new sensor directly next to another420

to gain confidence in the values and increase reliability, instead of using it to collect more informative data in other locations.
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The Pareto front that would be interesting to explore in this context is the trade-off between maximum total correlation

(robustness) vs. joint entropy (expected information gained from the network), indicated by the red line in Figure 8. Different

points on this Pareto front reflect different levels of trust in the sensors’ reliability. Less trust requires more robustness and

leads to a network design yielding more redundant information. Previous approaches, such as the MOOP approach proposed425

by Alfonso et al. (2010b), explore the Pareto front given by the black dashed line, where minimum total correlation is con-

flicting with maximizing joint entropy. As argued in this section, this trade-off is not a fundamental trade-off
::::::::::
fundamental in

information-theoretical terms, but .
:::::
Still,

:
it
:
results from the fact that usually there is some

::::
there

::
is
:::::::
usually redundant informa-

tion as a by-product of new information, so highly informative stations also carry more redundant information. This redundant

information does not reduce the utility of the new information, so does not need to be included as a minimization objective in430

the optimization.

Summarizing, the maximization of joint entropy while minimizing redundancy is akin to maximizing effectiveness while

maximizing a form of efficiency =
:::
(i.e. bits of unique info

::::::::::
information / bits collected). However, bits collected do not have any

significant associated cost. If installing and maintaining a monitoring location has a fixed cost, then efficiency should be ex-

pressed as unique information gathered per sensor installed, which could be found by maximizing joint entropy (effectiveness)435

for a given number of stations, as we suggest in this paper.
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Figure 8.
::

The
:::::::
resulting

::::
total

::::::::
correlation

:::
and

::::
joint

::::::
entropy

:::
for

::
all

::::
924

::::::
possible

::::::::::
combinations

::
of
::

6
:::
out

::
of

::
12

:::::
sensor

::::::::
locations.

::
In

::::
some

::::
past

:::::::::
approaches,

:
a
:::::
Pareto

::::
front

:
in
:::
the

::::
lower

::::
right

:::::
corner

::
is

::::
given

:::::::::
importance.

::
In

:::
this

::::
paper,

:::
we

::::
argue

:::
that

:::
this

::::
trade

:::
off

:
is
::::::::
irrelevant,

:::
and

:::::::::
information

::
can

:::
be

::::::::
maximized

::::
with

::
the

::::::::
horizontal

:::::::
direction

::::
only.

:
If
::
a
::::::
trade-off

::::
with

:::::::
reliability

:::::
needs

::
to

::
be

::::::::
considered,

:::
the

:::::
Pareto

::::
front

::
of

::::::
interest

:
is
::
in

:::
the

::::::
top-right

:::::
corner

::::::
instead

::
of

::
the

:::::
lower

::::
right

:::::
corner

:::
that

::
is

::::::::
previously

::::::::::
recommended

::
in

:::
the

:::::::
literature.

4.3 Greedy algorithms vs. exhaustive optimization of maximum joint entropy

Different search strategies have been adopted in the literature for monitoring network design. The most commonly used greedy

algorithms impose a constraint on exhaustive search space to reduce computational effort. We investigated three different search

strategies to obtain the optimal network in the context of using maxJE as an objective function. We discuss the advantages and440

limitations of each search strategy in terms of optimality of the solution and computational effort.

The resulting total correlation and joint entropy for all 924 possible combinations of 6 out of 12 sensor locations. In some past

approaches, a Pareto front in the lower right corner is given importance. In this paper, we argue that this trade off is irrelevant,

and information can be maximized with the horizontal direction only. If a trade-off with reliability needs to be considered,
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the Pareto front of interest is in the top-right corner instead of the lower right corner that is previously recommended in the445

literature.

The exhaustive optimization tests all possible new combinationswhen increasing network size by one station, not restricted

to those combinations containing the set that was already selected
::::::
already

:::::::
selected

:::
set

:
in a smaller network. Since the joint

entropy of a set of locations does not depend on the order in which they are added, the number of possible combinations is(
n
k

)
(i.e. n choose k), where n is the number of potential stations in the pool and k is the number of selected stations. The450

computational burden is therefore greatest when about half of the stations are selected. For a number of potential sensors

under 20, this is still quite tractable (4 minutes on normal PC, implemented -by a hydrologist- in MATLAB, with room for

improvement by optimizing code, language, and programmer), but for larger numbers, the computation time increases very

rapidly. When considering all sub-network sizes, the number of combinations to consider is 2n, so an exponential growth. We

could make an optimistic estimate, only considering the scaling from station combinations to evaluate, but not considering455

the dimensionality of the information measures. For 40 stations, this estimate would yield a calculation time of more than 5

years, unless a more efficient algorithm can be found. Regardless of potential improvements in implementation, the exponential

scaling will cause problems for larger systems.

Greedy approaches might be candidates for efficient algorithms. For the proposed joint entropy objective, we tested the

optimality of greedy approaches against the benchmark of exhaustive optimization of all possible station combinations. For460

the Brazos River case study, both the “add” and “drop” greedy selection strategies resulted in the global optimum sets, i.e. the

same gauge order and resulting joint entropy as was found by the exhaustive optimization. These results can be read from last

row of Tables 2 and 3. Therefore, for this case, the greedy approaches did not result in any loss of optimality. For the last few

sensors, multiple different optimal sets could be identified, which are detailed in Table 4. Results in Table 4 show multiple

network layouts with equal network size and joint information exist. For this case, network robustness could be an argument465

to prefer the network with maximum redundancy. Also, it should be acknowledged that the assumptions in data quantization

would influence reaching equal joint information, and further research is warranted to investigate the network’s susceptibility

to quantization assumptions.

In a further test, using artificially generated data, we experimentally falsified the hypothesis that greedy approaches can

guarantee optimality. For this test, we generated a correlated random Gaussian dataset for 12 monitors
::::::
stations, based on the470

covariance matrix of the data from the case study. We increased the number of generated observations to 860 time steps, to

get a more reliable multidimensional probability distribution. Table 5 shows the resulting orders for twelve monitors
::::::
stations

for the three different approaches. Note how for the exhaustive optimization in this example, in some instances, one or two

previously selected gauges are dropped in favor of selecting new stations. The resulting joint entropies for the selected sets are

shown in Table 6. This means no greedy approach can exist that finds results equivalent to the exhaustive approach.475

Based on our limited case study, the questions remain open: 1) whether faster algorithms can be formulated that yield

guaranteed optimal solutions, and 2) in which cases the greedy algorithm provides a close approximation. It is also possible

to formulate modified greedy methods with the ability of replacing a limited number of monitors instead of just adding

monitors. This leads to a significantly reduced computational burden compared to exhaustive optimization, while reaching
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the optimum more often than when adding monitors one at a time. In Table 5, it can be seen that allowing a maximum480

number of two relocated monitors would already reach the optimal configurations for this specific case. Another limitation

of this comparison is that we did not consider metaheuristic search approaches (Deb et al., 2002; Kollat et al., 2008), which

fall in between greedy and exhaustive approaches in terms of computational complexity, could serve to further explore the

optimality versus computational complexity trade-off. It would be interesting to further investigate what properties in the data

drive the sub-optimality of greedy algorithms. Synergistic interactions (Goodwell and Kumar, 2017) are a possible explanation,485

although our generated data example shows that even when moving from 1 to 2 selected stations, a replacement occurs.

Since there are only pairs of variables involved, synergy is not needed in the explanation of this behaviour. Rather, the pair

with maximum joint entropy does not always include the station with maximum entropy, which could perhaps be too highly

correlated with other high entropy variables.
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Table 4. All optimal combinations of sensors for the joint entropy objective. For number of sensors above 7, multiple optimal combinations

can be found due to saturation of joint entropy. Black squares are selected sensors.

Number of selected stations with Station ID

multiple optimal combinations 1 2 3 4 5 6 7 8 9 10 11 12

1 � � � � � � � � � � � �

2 � � � � � � � � � � � �

3 � � � � � � � � � � � �

4 � � � � � � � � � � � �

5 � � � � � � � � � � � �

6 � � � � � � � � � � � �

7 � � � � � � � � � � � �

8 � � � � � � � � � � � �

8 � � � � � � � � � � � �

9 � � � � � � � � � � � �

9 � � � � � � � � � � � �

9 � � � � � � � � � � � �

9 � � � � � � � � � � � �

9 � � � � � � � � � � � �

9 � � � � � � � � � � � �

9 � � � � � � � � � � � �

10 � � � � � � � � � � � �

10 � � � � � � � � � � � �

10 � � � � � � � � � � � �

10 � � � � � � � � � � � �

10 � � � � � � � � � � � �

10 � � � � � � � � � � � �

10 � � � � � � � � � � � �

10 � � � � � � � � � � � �

10 � � � � � � � � � � � �

11 � � � � � � � � � � � �

11 � � � � � � � � � � � �

11 � � � � � � � � � � � �

11 � � � � � � � � � � � �

11 � � � � � � � � � � � �

12 � � � � � � � � � � � �
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Table 5. Resulting monitor orders
:::::
station

::::::::
selections for random uniform

::
the

::::::::
artificially

:::::::
permuted

:
dataset , using 12 monitors with 860 data

points

Method
Station selection for various network sizes

1 2 3 4 5 6 7 8 9 10 11 12

Exhaustive
Added 3 1;12 6 5;7;11 2;6 9;12 3 10 5 8 4 11

Removed∗ 3 6; 12 5 11

Greedy Add 3 11 1 7 6 9 2 10 5 8 12 4

Greedy Drop 1 12 6 7 2 9 3 10 5 8 4 11

∗ means a previously selected station is removed from optimal set of selected stations.

Table 6. Resulting joint entropy for random uniform
::
the

::::::::
artificially

::::::::
permuted dataset , using 12 monitors with 860 data points

Method
Number of stations

1 2 3 4 5 6 7 8 9 10 11 12

Exhaustive 1.538 3.003 4.225 5.058 5.732 6.172 6.515 6.695 6.832 6.933 7.024 7.083

Greedy add 1.538 2.898 4.164 5.043 5.681 6.111 6.486 6.646 6.789 6.899 6.996 7.083

Greedy drop 1.530 3.003 4.225 5.041 5.724 6.172 6.515 6.695 6.832 6.933 7.024 7.083

:::::
Based

:::
on

:::
our

:::::::
limited

::::
case

:::::
study,

:::
the

:::::::::
questions

::::::
remain

:::::
open:

:::
1)

:::::::
whether

:::::
faster

:::::::::
algorithms

::::
can

:::
be

:::::::::
formulated

::::
that

:::::
yield490

:::::::::
guaranteed

::::::
optimal

:::::::::
solutions,

:::
and

::
2)

::
in

::::::
which

::::
cases

:::
the

::::::
greedy

::::::::
algorithm

::::::::
provides

:
a
:::::
close

::::::::::::
approximation.

::
It
::
is

::::
also

:::::::
possible

::
to

::::::::
formulate

:::::::
modified

:::::::
greedy

:::::::
methods

::::
with

:::
the

::::::
ability

::
of

::::::::
replacing

::
a

::::::
limited

:::::::
number

::
of

::::::
stations

:::::::
instead

::
of

:::
just

:::::::
adding

:::::::
stations.

::::
This

::::
leads

::
to

::
a

::::::::::
significantly

:::::::
reduced

::::::::::::
computational

::::::
burden,

:::::
while

::::::::
reaching

::
the

::::::::
optimum

:::::
more

::::
often

::::
than

:::::
when

::::::
adding

:::::::
stations

:::
one

::
at

:
a
:::::

time.
::
In

:::::
Table

::
5,
::

it
::::
can

::
be

::::
seen

::::
that

:::::::
allowing

::
a
::::::::
maximum

:::::::
number

::
of
::::

two
::::::::
relocated

:::::::
stations

:::::
would

:::::::
already

:::::
reach

:::
the

::::::
optimal

::::::::::::
configurations

:::
for

::::
this

::::::
specific

:::::
case.

:::::::
Another

::::::::
limitation

:::
of

:::
this

::::::::::
comparison

::
is

::::
that

:::
we

:::
did

:::
not

:::::::
consider

::::::::::::
metaheuristic495

:::::
search

::::::::::
approaches

::::::::::::::::::::::::::::::
(Deb et al., 2002; Kollat et al., 2008),

::::::
which

:::
fall

::
in

:::::::
between

::::::
greedy

::::
and

:::::::::
exhaustive

:::::::::
approaches

::
in
:::::

terms
:::

of

:::::::::::
computational

::::::::::
complexity,

:::::
could

:::::
serve

::
to
::::::

further
:::::::

explore
:::
the

:::::::::
optimality

::::::
versus

::::::::::::
computational

:::::::::
complexity

::::::::
trade-off.

::
It
::::::
would

::
be

:::::::::
interesting

::
to
:::::::

further
:::::::::
investigate

:::::
what

::::::::
properties

:::
in

:::
the

::::
data

:::::
drive

:::
the

:::::::::::::
sub-optimality

::
of

::::::
greedy

::::::::::
algorithms.

::::::::::
Synergistic

:::::::::
interactions

:::::::::::::::::::::::::
(Goodwell and Kumar, 2017)

:::
are

:
a
:::::::
possible

:::::::::::
explanation,

::::::::
although

:::
our

::::::::
generated

:::::
data

:::::::
example

::::::
shows

:::
that

:::::
even

::::
when

:::::::
moving

:::::
from

:
1
:::
to

:
2
:::::::
selected

::::::::
stations,

:
a
:::::::::::
replacement

::::::
occurs.

:::::
Since

:::::
there

:::
are

::::
only

:::::
pairs

::
of

::::::::
variables

::::::::
involved,

:::::::
synergy500

:
is
:::
not

:::::::
needed

::
in

:::
the

::::::::::
explanation

::
of

::::
this

:::::::::
behaviour.

::::::
Rather,

:::
the

::::
pair

::::
with

:::::::::
maximum

::::
joint

:::::::
entropy

::::
does

:::
not

::::::
always

:::::::
include

:::
the

:::::
station

::::
with

:::::::::
maximum

:::::::
entropy,

:::::
which

:::::
could

:::::::
perhaps

::
be

:::
too

::::::
highly

:::::::::
correlated

::::
with

::::
other

::::
high

:::::::
entropy

::::::::
variables.

:
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5 Conclusions

The aim of this paper was to contribute to better understanding the problem of optimal monitoring network layout using

information-theoretical methods. Since using resulting networks and performance metrics from case studies to demonstrate505

that one objective should be preferred over the other would be circular, the results from our case study served as an illustration

of the effects, but not as arguments supporting the conclusions we draw about objective functions. We investigated the rationale

for using various multiple-objective and single-objective approaches, and discussed the advantages and limitations of using

exhaustive vs. greedy search. The main conclusions for the study can be summarized as follows:

• The purpose of the monitoring network governs which objective functions should be considered. When no explicit510

information about users and their decision problems can be identified, maximizing the total information collected by the

network becomes a reasonable objective. Joint entropy is the only objective needed to maximize retrieved information,

assuming that this joint entropy can be properly quantified.

• We argued that the widespread notion of minimizing redundancy, or dependence between monitored signals, as a sec-

ondary objective is not desirable and has no intrinsic justification. The negative effect of redundancy on total collected515

information is already accounted for in joint entropy, which measures total information net of any redundancies.

• When the negative effect on total information is already accounted for, redundant information is arguably beneficial, as

it increases robustness of the network information delivery when individual sensors may fail. Maximizing redundancy as

an objective secondary to maximizing joint entropy could therefore be argued for, and trade-off between these objectives

could be explored depending on the specific case.520

• The comparison of exhaustive and greedy search approaches shows that no greedy approach can exist that is guaranteed

to give the true optimum subset of sensors for each network size. However, the exponential computational complex-

ity, which doubles the number of sensor combinations to evaluate with every sensor added, makes exhaustive search

prohibitive when the number of possible locations become larger than about 25.
::
for

:::::
large

::::::::
networks,

:::::::::
illustrated

:::
by

:::
the

::::::::
following.

:::::::
During

:::
the

:::::::::
COVID-19

::::::::
response

:::
in

::::::
March

:::::
2020,

::::::::::::::
Folding@home,

:::::::
currently

::::
the

::::::
world’s

::::::
largest

::::::::::
distributed525

:::::::::
computing

::::::
project,

:::::
broke

:::
the

::::::::
exaFLOP

::::::
barrier

:::::
(1018

::::::
floating

:::::
point

:::::::::
operations

:::
per

:::::::
second).

::::
Even

::::
with

::::
that

::::::::::::
computational

:::::
power,

::
it
::::::
would

:::
take

:::::
more

::::
than

:::
10

::::
years

:::
to

:::::::
evaluate

:
a
:::::::
network

::
of

:::
90

::::::::
potential

:::::::
stations,

:::::
under

:::
the

:::::::::
impossibly

:::::::::
optimistic

:::::::::
assumption

::::
that

::::::::
evaluating

::::
one

:::::::
network

::::
were

:::::::
possible

::
in

:::
one

::::::
FLOP.

:
The complexity of the greedy approach is quadratic

in the number of locations, and therefore feasible for large search spaces.

• The constraints to the search space imposed by the greedy approach could also be interpreted as a logistical constraint.530

In a network expansion scenario, it disallows replacement of stations already selected in the previous iteration.

• We introduced the “greedy drop” approach that starts from the full set and deselects stations one by one. We have

demonstrated that the two types of greedy approaches do not always lead to the same result, and neither approach

guarantees the unconstrained true optimal solution. Synergistic interactions between variables may play a role, although

28



this is not the only possible explanation. In our case study, the suboptimality of greedy algorithms was not visible in535

original data, but we demonstrated its existence with artificially generated data. In our specific case studies, differences

between exhaustive and greedy approaches were small; especially when using a combination of the greedy add and

greedy drop strategy. It remains to be demonstrated in further research how serious this loss of optimality is in a range of

practical situations, and how results compare to intermediate computational complexity approaches such as metaheuristic

algorithms.540

5.1 Further work

In this paper, we focused on the theoretical arguments for justifying the use of various objective functions, and compared a

maximization of joint entropy to other methods, while using the same data set and quantization scheme. Since the majority of

previous research used greedy search tools to find optimal network configurations, we compared greedy and exhaustive search

approaches to raise awareness in the scientific community that greedy optimization might fall into local optimum, though its545

application can be justified considering computation cost of exhaustive approach. Banik et al. (2017) compared computation

cost for greedy and metaheuristic optimization (Non-dominated Sorting Genetic Algorithm II). They reported that the greedy

approach resulted in drastic reduction of the computational time for the same set of objective functions (metaheuristic com-

putation cost was higher 58 times in one trial and 476 times in another). We recommend further investigation of these three

search tools in terms of both optimality (for the maxJE objective) and computation cost.550

Another important question that needs to be addressed in future research is to investigate how the choices and assumptions

made (i.e., data quantization which influences probability distribution) in the numerical calculation of objective functions would

affect network ranking. What many of these objective functions have in common, is that they rely on multivariate probability

distributions. For example, in our case study, the joint entropy is calculated from a 12-dimensional probability distribution.

These probability distributions are hard to reliably estimate from limited data, especially in higher dimensions, since data re-555

quirements grow exponentially. Also, these probability distributions and the resulting information measures are influenced by

multiple factors, including choices about the data’s temporal scale and quantization. To have an unbiased comparison frame-

work of objective functions, we kept data and quantization choices from a case study previously described in the literature. It is

worth acknowledging that these assumptions, as well as data availability, can greatly influence optimal network ranking
::::::
station

:::::::
selection, and require more attention in future research.560

Numerically, the limited data size in the case study presents a problem for the calculation of multivariate information mea-

sures. Estimating multivariate discrete joint distributions exclusively from data requires quantities of data that exponentially

grow with the number of variables, i.e. potential locations. When these data-requirements are not met and joint distributions

are still estimated directly based on frequencies, independent data will be falsely qualified as dependent and joint information

content severely underestimated. This can also lead to apparent earlier saturation of joint entropy, at a relatively low number of565

stations. For the case study presented here, we do not recommend interpreting this saturation as reaching the number of needed

stations, since it could be a numerical artifact. This problem applies to all methods discussed in this paper. Before numerics
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can be discussed, clarity is needed on the interpretation and choice of the objective function. In other words, before thinking

about how to optimize, we should be clear on what to optimize. We hope that this paper helped illuminate this.

The code and data that were used to generate the results in this manuscript are available from https://github.com/hydroinfotheory570

and the USGS https://waterdata.usgs.gov/nwis. This research was supported by funding from Hossein Foroozand’s NSERC

CGS - Doctoral award and Steven V. Weijs’s NSERC discovery grant.

Appendix A: Notation and definitions

S Set of indices of selected monitoring
::::::
stations

:
locations

F Set of indices of potential monitoring locations not yet selected

FC The index of the monitoring station currently under consideration for addition

XS ,XF ,XFC
The (sets of) time series (variables) measured at the monitor

::::::
station(s) in the respective sets

p(x1) The marginal probability distribution of random variable X1

p(x1,x2) The joint probability distribution of variable X1 and X2

H(FC) A shorthand for H(XFC
). In information measures, the set is used as shorthand for variables in that set

H(XFC
) The entropy of the marginal distribution of time series in FC

H(XF |XS) The conditional joint entropy of variables in F , given knowledge of variables in S

T(XF ;XS) Mutual information or transinformation between set of variables in F and set of variables in S

C(X1,X2, . . . ,Xn) Total Correlation, the amount of information shared between all variables

SMB
::
λ1 Stands for

:::::::::::::::::::
Information-redundancy

::::::::
trade-off

::::::
weight

:::::
SBM

: ::::::
“select

:::::
below

::::::::
median”,

:::
the constraint where only stations are considered that are below the median score of all potential stations

a Histogram bin-width

x Station’s streamflow value

xq Quantized value after discretization

AE Apportionment entropy

RDI Ranking disorder index

SIz(X) Local spatiotemporal information of the grid X in local window z in the time series

p(σz) Probability distribution of the standard deviation σz in time series

Anetwork Network accuracy

V ar Kriging variance

D Detection time

Dsp(γ) The average of the shortest time among the detection times for monitoring station

R Reliability

δs Binary choice of 1 or 0 for whether the contamination is detected or not
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Appendix B: Additional objectives used in recent literature

Recent literature has expanded the information-theoretical objectives with additional objectives. For instance: (1) Wang et al.575

(2018) proposed dynamic network evaluation framework (DNEF) method that follows MIMR method for network configura-

tion in different time windows and optimal network ranking is determined by maximum Ranking disorder index (RDI) (Eq.B2),

which is normalized version of apportionment entropy (AE). RDI was proposed by Fahle et al. (2015) and named by Wang

et al. (2018) to analyze the uncertainty of the rank assigned to a monitoring station under different time windows; (2) Huang

et al. (2020) proposed information content, spatiotemporality, and accuracy (ISA) method, which extends MIMR method by580

adding two objectives: maximizing spatiotemporality information (SI), and maximizing accuracy (A). The SI (Eq.B4) objec-

tive is introduced to incorporate spatiotemporality of satellite data into network design, and A (Eq.B5) objective is proposed

to Maximize the interpolation accuracy of the network by minimizing the regional kriging
::::::
Kriging

:
variance; (3) Banik et al.

(2017) proposed six combinations (GR 1-6) of four objectives: detection time (D) (Eq.B6), reliability (R) (Eq.B7), H (Eq.2)

and C (Eq.6) for locating sensors in sewer systems; and (4) Keum and Coulibaly (2017) proposed to maximize conditional585

entropy as a third objective in dual entropy-multi-objective optimization to integrate multiple networks (in their case: rain-

gauge and streamflow networks). Although maximizing conditional entropy can indirectly be achieved in other used-objective

(joint entropy), this new objective gives more preference to maximizing unique information that one network can provide when

another network can’t deliver. These multi-objective optimization problems are solved by either finding an optimal solution in

a Pareto front (Alfonso et al., 2010b; Samuel et al., 2013; Keum and Coulibaly, 2017) or by merging multiple objectives with590

weight factors into a single objective function (Li et al., 2012; Banik et al., 2017; Stosic et al., 2017).

AE =−
n∑
i=1

ri
M

log2
ri
M

(B1)

RDI = nAE = AE
log2n

(B2)

Where n is the number of possible ranks that a station can have (i.e., n is equal to the total number of stations). riM ratio is an595

occurrence probability of the outcome, where M is the number of ranks under different time windows, and ri is the number

of a certain ith rank. Therefore, AE takes on its maximum value when the ranking probability of a station has equally probable

outcome while minimum AE happens when the station’s rank is constant. RDI ranges from 0 to 1, and higher RDI values

indicate ranking sensitivity of a station to temporal variability of the data.

SIz(X) =−
l∑
i=1

p(σz) log2 p(σz) (B3)600

SInetwork(X,γFi
) =

1

n+1

 n∑
j=1

SIz(XSj
)+SIz(γFi

)

 (B4)
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Anetwork(X,γFi) =−
1

l

l∑
i=1

k∑
j=1

V arij (B5)

Where SIz(X) is the local spatiotemporal information of the grid X in local window z in the time series; and p(σz) is605

probability distribution of the standard deviation σz in time series l. SInetwork(X,γFi
) is spatiotemporal of the network, which

is calculated by the average of spatiotemporal information of already selected sites SIz(XSj ) and a potential site SIz(γFi).

Anetwork(X,γFi) is network accuracy, and V ar is kriging
:::::::
Kriging variance over time series l and number of grids k in the

study area.

D(γ) =
1

S

S∑
s=1

Dsp(γ) (B6)610

R(γ) =
1

S

S∑
s=1

δs (B7)

Where S is the total number of scenarios considered,and Dsp(γ) is the average of the shortest time among the detection times

for monitoring stations, and δs is binary choice of 1 or 0 for whether the contamination is detected or not.
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