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Abstract. One of the main objectives of the scientific enterprise is the development of parsimonious yet well-performing 

models for all natural phenomena and systems. In the 21st century, scientists usually represent their models, hypotheses, and 

experimental observations using digital computers. Measuring performance and parsimony for computer models is therefore 

a key theoretical and practical challenge for 21st century science. The basic dimensions of computer model parsimony are 15 

descriptive complexity, i.e. the length of the model itself, and computational complexity, i.e. the model's effort to provide 

output. Descriptive complexity is related to inference quality and generality, and Occam's razor advocates minimizing this 

complexity. Computational complexity is a practical and economic concern for limited computing resources. Both 

complexities measure facets of the phenomenological or natural complexity of the process or system that is being observed, 

analysed and modelled. 20 

This paper presents a practical technique for measuring the computational complexity of a digital dynamical model and its 

performance “bit by bit”. Computational complexity is measured by the average number of memory visits per simulation 

time step in bits, and model performance is expressed by its inverse, information loss, measured by conditional entropy of 

observations given the related model predictions, also in bits. We demonstrate this technique by applying it to a variety of 

watershed models representing a wide diversity of modelling strategies including artificial neural network, auto-regressive, 25 

simple and more advanced process-based, and both approximate and exact restatements of experimental observations. 

Comparing the models revealed that the auto-regressive model poses a favourable trade-off with high performance and low 

computational complexity, but neural networks and high-time-frequency conceptual “bucket“ models pose an unfavourable 

trade-off with low performance and high computational complexity. We conclude that the “bit by bit” approach is a practical 

approach for evaluating models in terms of performance and computational complexity, both in the universal unit of bits, 30 

which also can be used to express the other main aspect of model parsimony, description length. 
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1 Introduction 35 

1.1 The goals of Science 

One of the main objectives of the scientific enterprise is the development of parsimonious yet well-performing models for all 

natural phenomena and systems. Such models should produce output in agreement with observations of the related real-

world system, i.e. perform well in terms of accuracy and precision and overall “rightness“ (Kirchner, 2006). Moreover they 

should also contain elements of brevity, elegance, explainability, understandability, communicability, teachability, and 40 

smallness. Mathematical analytical models which are highly accurate - e.g. Newton’s Laws - represent an ideal type of 

model because they combine performance (high accuracy and precision when compared with experimental observations) 

with parsimony (high elegance, brevity, and communicability). A good scientific model is parsimonious, and if it also 

performs well in terms of accuracy and precision it will also be useful for applied decision-making and prediction. 

1.2 Occam's razor, parsimony and descriptive complexity 45 

Occam’s Razor argues that the most parsimonious model is preferable, at a given level of predictive performance that is 

adequate to the question or application at hand. This bedrock principle of science allows scientists to identify preferable 

models as that set of models which are more parsimonious than all known and stated alternative models, at any given level of 

predictive performance. Therefore, Occam's Razor is a guideline to promote models that describe well patterns in the data 

and to distil laws that allow effective compression of experimental data, also it is a guideline for inference. 50 

In the framework of Algorithmic Information Theory (AIT) (Kolmogorov, 1968; Solomonoff 1964, 1978; Chaitin 1966),  

parsimony of a model is expressed by its descriptive complexity, i.e. its size expressed in bit, when stored as instructions for 

a computer. It is noteworthy that in terms of Occam's razor, the preference for models with low descriptive complexity is 

completely independent of any practical considerations such as limited storage space or computing power. While these may 

be important in practical settings, they are not of concern in applying Occam's Razor in the process of inference to lead to the 55 

model closest to the truth or giving the best predictions out of sample. In other words, the modelling is not the tool to get 

good compression in a storage limited world, but rather the reverse: finding the shortest description is the process of 

inference, achieved by distilling patterns from data in order to find general predictive laws. 

Weijs and Ruddell (2020), call Occam’s parsimony a “weak parsimony“ because it identifies a set of parsimonious models 

rather than a single most-parsimonious model. They further argue that a single, “strongly parsimonious“ model could be 60 

identified by considering, in addition to model parsimony, also model performance, and to express them in the language of 

AIT as two additive terms of essentially the same quantity: the description length of the data in bits. A strongly parsimonious 

model in the terms of Weijs and Ruddell (2020) perfectly (or losslessly) reproduces experimental observations in the 

smallest number of bits, after adding together the compressed size of the model and the compressed corrections needed to 
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adjust the model’s predictions to equal the observations. Such a model achieves a uniquely excellent balance of minimum 65 

model size (maximum parsimony) and minimum information loss (maximum performance), and maximum generalizability 

outside the observed datasets used to construct and test the model. The approach proposed by Weijs and Ruddell (2020), 

drawing on the minimum description length principle (Rissanen, 1978; Grünwald, 2007) not only has the advantage of 

favouring models with a good trade-off between parsimony and performance: Applying a single measure, expressed in bits, 

to quantify both a model’s performance and parsimony, also offers the advantage of rigor and generality over more 70 

contextually defined performance measures, such as Root Mean Square Error, Nash-Sutcliffe Efficiency (Nash and Sutcliffe, 

1970), Kling-Gupta Efficiency (Gupta et al., 2009), Akaike Information Criterion (Akaike, 1974), or Bayesian Information 

Criterion (Schwarz, 1978), to name just a few (more in Bennett et al., 2013). This more generalized strategy greatly helps 

guiding model preference, especially in automated environments for learning models from data.  

1.3 Computational complexity 75 

Both Occam's razor and the extension proposed by Weijs and Ruddell (2020) are designed with a focus on inference, i.e. on 

distilling small and universal laws from experimental data, and are less concerned with the effort of actually applying a 

model, i.e. to make predictions. This effort, however, can be an important quality of a model in any setting when computing 

resources are limited. In earth science modelling, this is the rule rather than the exception for the following reasons, as i) 

scales of earth systems cannot be separated easily and in some cases not at all, so even for local questions it may be 80 

necessary to simulate large systems at a level of great spatio-temporal detail; ii) calibration of model parameters from data 

needs many repeated model runs for parameter identification; iii) models used in optimal decision making require repeated 

use to identify the optimal alternative. 

The efficiency at which models generate their output is subject of the discipline of Analysis of Algorithms, and is referred to 

as computational complexity, and not to be confused with descriptive complexity. In contrast to the latter, computational 85 

complexity serves the practical purpose of defining the resources needed to execute program instructions. A simple example 

to illustrate the relation of descriptive and computational complexity: Suppose we want to bake a cake; then the length of the 

recipe measures its descriptive complexity, the time or effort it takes to actually prepare the cake by following the recipe 

instructions measures its computational complexity, and the (dis-) agreement of our cake with the gold standard cake from 

the pastry shop measures its performance. 90 

Computational complexity can be measured in terms of two finite resources that are needed for computation: time and/or 

space. Time-complexity relates to the time a computer needs to arrive at the result. Although a typical personal computer 

clock beats about 2 billion times faster than a human heart, the time it takes for computations to finish can still be critical for 

our applications. Time complexity can be measured in terms of clock cycles, and often it is the scaling with the input size 

that is of interest. Space-complexity relates to the memory used, i.e. the total number of binary transistor states read during 95 

the execution of the program. As for descriptive complexity, these reads can be interpreted as answers to Yes/No questions, 

and can be measured in bit. 
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Underlying both descriptive and computational complexity lies the phenomenological or natural complexity of the process or 

system that is being observed, analysed and modelled. It might be argued that fundamental natural complexity can be 

quantified through metrics from the classical dynamical system theories (such as fractal dimensions, Kolmogorov-Sinai 100 

entropies and related metrics, see e.g. Nicolis and Nicolis, 2007; Ott, 2002). However, dynamical system approaches are  

descriptive in that they assess geometric, topologic and statistical-mechanic aspects of complexity of a description (such as 

phase spatial representations of the system kinematic geometry and statistical mechanics), and computational complexity in 

terms of the mathematical architecture underlying the dynamical systems formulation. This means that natural complexity 

remains elusive even in classical dynamical systems approaches, similarly to descriptive and computational complexity, 105 

which also essentially only capture aspects of the system, e.g. how it manifests through detectable observables, and not the 

system per se in its essence (Perdigão, 2017). In that regard, the emerging concepts and pathways in information physics 

(Perdigão et al., 2020) hold the potential to peer deeper into this matter. In a nutshell, descriptive and computational 

complexity are related, as both measure aspects of natural complexity, but the nature and strength of their relation is difficult 

to determine and also depends on our particular choices of representing them. Nevertheless, both provide important 110 

information about the natural phenomenon or system under consideration, and are important guidelines to build and operate 

models.  

1.4 Scope and goals of this paper 

In this paper, we take a practical and experimental approach to measure computational complexity by counting the total 

number of memory visits while running a model on a computer. The counting is sensitive to the size of the model and the 115 

size of the input data it reads (i.e. aspects related to storage), but also aspects related to its computational efficiency such as 

its numerical scheme, time-stepping and runtime environment. Additionally, we measure model performance by its inverse, 

information loss, by conditional entropy of observations given the related model predictions, also in bits. For demonstration, 

we run hydrological models of various types (artificial neural network, auto-regressive, simple and more advanced process-

based, and both approximate and exact restatements of experimental observations) that all aim to perform the same task of 120 

predicting discharge at the outlet of a watershed. Watersheds are complex systems that are impossible to observe or model 

completely and precisely, and are therefore an excellent sandbox for demonstration of this idea. Akin to Weijs and Ruddell 

(2020), who measured models along the dimensions of model descriptive complexity vs. information loss, we examine 

possible trade-offs between computational complexity vs. information loss. These trade-offs can be important in operational 

settings where the speed of information processing is a bottleneck.  125 

The remainder of the manuscript is structured as follows: In section two, we describe the real-world system we seek to 

represent (a small alpine watershed in western Austria), the range of models we used for testing, and the implementation 

environment and criteria for measuring model performance and computational complexity. In section three, we present and 

compare all models in terms of these criteria and illuminate differences between descriptive and computational complexity. 

In section four, we draw conclusions, discuss the limitations of the approach, and provide directions for future work. 130 
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2 Methods 

2.1 The real-world system: a watershed in Austria 

The real-world system we seek to represent with our models is the Dornbirnerach catchment in western Austria. Upstream of 

river gauge Hoher Steg (Q_Host), the target of our model predictions, the catchment covers 113 km². The catchment's 

rainfall-runoff dynamics reflect its alpine setting: Winter snow accumulation, spring snowmelt, high and intensive summer 135 

rainfall and, due to the steep terrain, rapid rainfall-runoff response. The meteorological dynamics of the system are 

represented by precipitation observations at a single rain gauge, Ebnit (P_Ebnit), located in the catchment centre. Both time 

series are available in hourly resolution for ten years (1996/01/01 – 2005/12/31). No other dynamical or structural data were 

used for model set up. While this would be overly data-scarce if we wanted to build the best possible hydrological model, we 

deemed it adequate for the aim of this study, i.e. demonstration of the bit-by-bit approach. 140 

2.2 Models 

We selected altogether eight modelling approaches with the aim of covering a wide range of model characteristics such as 

type (ignorant, perfect, conceptual-hydrological and data-driven), structure (single and double linear reservoir), numerical 

scheme (explicit and iterative) and precision (double and integer). The models are listed and described in Table 1, additional 

information is given in Eq. 1 and Fig. 1. 145 

 

Table 1. Models used in the study and their characteristics. 

ID Description 

Time 

stepping 

dt 

Variable 

precision 

Numerical 

scheme 

Training 

data 

Data for running 

the model 

Model-00 
An (almost) ignorant model, which predicts for each 

time step the observed time series mean (4.59 m³/s) 
1 h double -- Q_Host -- 

Model-01 

A perfect model representing full prior knowledge 

contained in the experimental observations. For each 

time step, the observed value of Q_Host is read as 

input and provided as output. 

1 h double -- Q_Host Q_Host(t) 

Model-02 

A simple conceptual hydrological model, 

representing the catchments' rainfall-runoff 

behaviour by a single linear reservoir (Fig. 1, left 

panel) with a single parameter - K -, and a single 

state variable - S. K was found by calibration on the 

test data (K = 55 h). Time stepping is dt = 1 h, all 

variables are double precision, and the numerical 

scheme is explicit. 

1 h double explicit 
Q_Host 

P_Ebnit 
P_Ebnit (t) 

Model-03 Same as Model-02, but time stepping is dt = 1 min 1 min double explicit 
Q_Host 

P_Ebnit 
P_Ebnit(t) 

Model-04 Same as Model-02, but all variables are integer 1 h integer explicit Q_Host int(P_Ebnit(t)) 
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precision only P_Ebnit 

Model-05 

A more advanced conceptual model (Fig. 1, right 

panel). Precipitation input is split by an intensity 

threshold - T - (2 mm/h), and enters two linear 

reservoirs - K1 - (10 h) and - K2 - (55 h). All 

parameters were found by calibration on the test 

data. Time stepping, variable precision, and 

numerical scheme are the same as in Model-02. 

1 h double explicit 
Q_Host 

P_Ebnit 
P_Ebnit(t) 

Model-06 
Same as Model-02, but the numerical scheme is 

iterative. 
1 h double iterative 

Q_Host 

P_Ebnit 
P_Ebnit(t) 

Model-07 

A simple third-order autoregressive model, which 

predicts Q_Host(t) by a linear combination of 

previous observations (see Eq. 1). All coefficients 

were found by calibration on the test data (c0 = 

0.0549, c1 = 1.9266, c2 = -1.2071, c3 = 0.2685). 

Testing models of various order we found that 

adding observations beyond lag-3 improved 

predictive power only marginally 

1 h double -- 
Q_Host 

P_Ebnit 

Q_Host(t-3) 

Q_Host(t-2) 

Q_Host(t-1) 

Model-08 

A simple feedforward artificial neural network 

(ANN) with a single hidden layer of 10 neurons, 

using P_Ebnit(t) as input to predict Q_Host(t). The 

model is a sequential model written in Python with 

the “Keras“ library. For the hidden layer it uses the 

“sigmoid“ activation function, and the learning 

process uses the loss function “mean squared error“. 

1 h double -- 
Q_Host 

P_Ebnit 
P_Ebnit(t) 

 

𝑄𝐻𝑜𝑠𝑡(𝑡) = 𝑐0 + 𝑐1 ∙ 𝑄𝐻𝑜𝑠𝑡(𝑡 − 1) + 𝑐2 ∙ 𝑄𝐻𝑜𝑠𝑡(𝑡 − 2) + 𝑐3 ∙ 𝑄𝐻𝑜𝑠𝑡(𝑡 − 3) (1) 

 

 150 
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Figure 1. (a): Model-02, a single linear reservoir with state variable S and retention constant K. The reservoir is replenished 

by precipitation P and drained by discharge Q. (b): Model-05, with two linear reservoirs. Precipitation input is split by 

intensity threshold T. 

 

We trained/calibrated each model on the entire data. This is to maintain consistency with approaches such as advocated in 155 

Weijs and Ruddell (2020), where model performance is also evaluated on the training data and model complexity 

penalization would prevent overfitting. In the present paper, the purpose is not model complexity control for optimal 

inference, but investigating the predictive performance vs. computational efficiency trade-off. While the model's out-of-

sample performance would be perhaps more interesting, we favoured consistency in objectives for demonstrating the bit-by-

bit evaluation concept across a wide range of model types. Also, as we deliberately selected models with just a few 160 

calibration parameters, which is in fact a manual, non-quantified application of Occam’s Razor, the risk of overfitting was 

low given the large number of training data (87650 time steps). 

2.3 Implementation environment 

All models were implemented as Python scripts running on Python 3.6 with the installed packages Numpy, Pandas, Scipy, 

Keras and H5py. The experiments were done on a computer running Red Hat Enterprise Linux Server release 7.4 on a 16-165 

core Intel(R) Xeon(R) CPU E5-2640 v2 @ 2.00 GHz processor. 

2.4 Measures of model performance and computational complexity 

All models were evaluated in terms of the two criteria described in the introduction: performance, i.e. the model's ability to 

reduce predictive uncertainty about the target, and computational complexity, i.e. the effort required to make the model 

generate a prediction about the target. Similar to Weijs and Ruddell (2020), we express both quantities in bits, to assure 170 

universality and comparability. 

2.4.1 Model performance 

As suggested in Weijs and Rudell (2020), we express model performance in terms of the increased uncertainty (= 

information loss) about the true value of the target when we have to rely on the model prediction instead of knowing the real 

observation. This uncertainty can be quantified by conditional entropy (see Eq. 2), where X represents the target and Y the 175 

model predictions (= predictor). Note that this assumes that our state of knowledge for each prediction is given by the 

observed error distribution around the deterministic prediction. If models would give probabilistic predictions, we could 

directly employ a relative entropy measure such as Kullback-Leibler divergence (Kullback and Leibler, 1951; Cover and 

Thomas, 2006), which would lead to fairer assessments of information loss (Weijs et al., 2010). However, models that 

directly output probabilistic predictions are not yet a standard in hydrology. 180 
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To avoid fitting of theoretical functions to the empirical data distributions, we calculated conditional entropy of discrete 

(binned) distributions, i.e. normalized empirical histograms. We applied uniform binning by defining a value range of 0 -  

150 m³/s covering all observed and simulated values of Q_Host (0.05 – 137 m³/s) and uniformly split the range into 150 bins 

of 1 m³/s width each. Compared to the typical error associated with discharge measurements in small, alpine rivers, which 

may be as high as 10%, we deemed this an adequate resolution which neither averages away the data-intrinsic variability nor 185 

fine-grains to resolutions potentially dominated by random errors. 

 

𝐻(𝑋|𝑌) = ∑ 𝑝(𝑦)

𝑦∈𝑌

𝐻(𝑋|𝑌 = 𝑦) =  − ∑ 𝑝(𝑦)

𝑦∈𝑌

∑ 𝑝(𝑥|𝑦)

𝑥∈𝑋

 𝑙𝑜𝑔2 𝑝(𝑥|𝑦) (2) 

where X is the target, Y is the predictor, y is a particular prediction, H(X|Y) is conditional entropy in (bit) 

 

When calculated in the described manner, a lower bound and two upper benchmarks for the values of conditional entropy 190 

can be stated: If the model perfectly predicts the true target value, it will be zero. Non-zero values of conditional entropy 

quantify exactly the information lost by using an imperfect prediction. If predictor and target are independent, the 

conditional entropy will be equal to the unconditional entropy of the target, which in our case is H(Q_Host) = 3.46 bit. If in 

the worst case there would be no paired data of target and predictors to learn from via model calibration, and the physically 

feasible range of the target data would be the only thing known a priori, the most honest guess about the target value would 195 

be a uniform (= maximum entropy) distribution. For the 151 bins we used, the entropy of a uniform distribution is Huniform = 

log2(151) = 7.23 bit. 

2.4.2 Model computational complexity 

We quantify computational complexity by the total number of memory read visits (in bit) on a computer while running the 

model. In the context of Information Theory, these bit counts and the bits measuring model performance by conditional 200 

entropy in the previous section can both be interpreted in the same manner as a number of binary Yes/No questions that were 

either already asked and answered during the model run (in the former case) or still need to be asked (in the latter case) in 

order to fully reproduce the data.  

Counting memory visits while running a computer program can be conveniently done by “Strace“, a troubleshooting and 

monitoring utility for Linux (see http://man7.org/linux/man-pages/man1/strace.1.html). It is a powerful tool to diagnose, 205 

debug and trace interactions between processes and the Linux kernel (Levin and Syromyatnikov, 2018). “Strace“ is 

executable along with running code in any programming language like python, C ++ or R. We instructed “Strace“ to monitor 

our test models written in Python by counting the total number of bytes read during the model execution from a file stored in 

the file system into a buffer, and the total number of bytes written from a buffer into a file stored in the file system. A buffer 

is a temporary data storing memory (usually located in the RAM) that prevents I/O bottleneck and speeds up the memory 210 

access. These counts reflect the entire effort of the model to produce the desired output: Reading input files, writing output 
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files, reading the program itself and all system functions called during its execution, efforts of numerical iteration within the 

program as well as efforts to read and write state variables during runtime. Hence, “Strace“ will penalize models which 

require large amounts of forcing data, run on high-resolution time stepping or spatial resolution, or apply unnecessarily high-

iterative numerical schemes. In short, “Strace“ evaluates all memory-related components of a model in the widest sense. 215 

 To evaluate the reproducibility of the countings, we repeated each model run 100 times, clearing the memory cache between 

individual runs. As the countings were in fact very close, we simply took the average of all runs as a single value 

representing model computational complexity. The main steps of applying 'Strace' in our work were as follows: 

1. We traced the read() and write() system calls of the models while executing their code in Python and wrote them into a 

target log file running the following command in Linux commandline: “strace -o target.log -e trace=read/write python 220 

model.py“, where “strace“ is the executable tool, “-o target.log“ is the option to set our log file path, “-e trace=read“ 

traces the read() system call that returns the number of bytes read from the required files during the model execution into 

the system buffer, “python“ is the path to executable python program and “model.py“ is the path to our model code. 

Additionally, we used “-e trace=write“ to trace the write() system call that returns the number of bytes written from the 

system buffer into the output file. 225 

2. After generating the target log file, we calculated the sum of all read operations from the target log file running the 

following command: “cat target.log | awk 'BEGIN {FS="="}{sum += $2} END {print sum >> "read_sum.txt"}“, where 

“cat“ reads the target.log file, “awk“ scans the file and sums up the returned value of each read() and writes in the “sum“ 

variable, “print sum“ writes the sum value into a file called “read_sum.txt“. Similarly, we summarized all write 

operations in a file. The sum of these read and write values is the total number of bytes which presents the evaluation of 230 

our model. 

3 Results and discussion 

3.1 Simulation vs. experimental observation 

In Fig. 2, observed precipitation at Ebnit and observed and simulated discharge time series of all models at gauge Hoher Steg 

are shown for a rainfall-runoff event in May 1999. The observed hydrograph (bold blue) shows four distinct peaks caused by 235 

three larger and one lesser rainfall events embedded in a multi-day period of rainfall. The ignorant Model-00 (black) is 

incapable of reproducing these dynamics and remains at its constant mean value prediction. Model-01 (light green) as 

expected perfectly matches the observations, and likewise the AR-3 Model-07 (pink) shows almost perfect agreement. The 

single-bucket Model-02 (purple) overall reproduces the observed rise and decline of discharge, but fails in the details: The 

rise is too slow and too small, and so is the decline. Apparently, a single linear reservoir cannot adequately represent the 240 

catchments' hydrological behaviour, irrespective of the time stepping and the numerical scheme: Discharge simulations by 

the high-resolution Model-03 (yellow) and the iterative Model-06 (dark green) are almost identical to that of Model-02. Data 

precision however does play a role: Model-04 (olive), identical to Model-02 except for a switch from double to integer 
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precision of all variables, shows markedly worse performance. The hydrograph is only coarsely reproduced by a three-step 

series. From all linear reservoir models, the two-bucket Model-05 (brown) performs best, correctly reproducing the overall 245 

course of the event and the embedded major peaks. The ANN Model-08 (red) clearly underestimates the event, and its 

dynamics are a 1:1 reflection of the observed precipitation dynamics. The former can be explained by low flow periods 

governing the training of the model, the latter by precipitation as the sole model input in combination with the non-recurrent 

nature of the ANN we used. Applying a recurrent network with the ability to capture the memory effects of the catchments' 

rainfall runoff transformation would most likely yield better results, but as mentioned, our goal was not to find the best-250 

performing model, but to compare a range of different modelling approaches in terms of performance and computational 

complexity. 

 

 

Figure 2. Top: Observed precipitation at Ebnit. Bottom: Observed discharge at gauge Hoher Steg and simulations thereof by 255 

Model-00 to Model-08 for a rainfall-runoff event in May 1999. 
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3.2 Performance vs. computational complexity 

In the previous section we discussed model performance in terms of hydrologically informed visual comparison of observed 

and simulated hydrographs. Now we will evaluate the models in terms of both model performance and model computational 260 

complexity. Model performance is expressed as the remaining uncertainty, at each time step, about the observed data D 

given the related model simulation M by conditional entropy H(D|M) as described in section 2.4.1. Model computational 

complexity is expressed as the total number of memory read visits during model execution as counted by “Strace“. For easier 

interpretation, we show average computational complexity per time step by dividing the total number of visits by the length 

of the simulation period (87650 time steps). 265 

Fig. 3 shows computational complexity and performance of all models. The theoretical optimum of zero information loss 

despite zero modelling effort lies in the lower left corner. Model-01, which simply reproduces the observations, came closest 

to this optimum, with perfect model performance (zero information loss), as to be expected. The mean Model-00, also as to 

be expected and just as in section 3.1, shows the worst performance of all models, but at least low computational complexity. 

The single-bucket Model-02 requires a higher computational effort, but model performance improves considerably. This is 270 

not the case for high-time-resolution Model-03, which, compared to Model-02, requires large computational efforts without 

being rewarded by better model performance; a disadvantage not visible in Fig. 2. The poor performance of low-precision 

Model-04 however is visible in both Fig. 2 and Fig. 3, but the associated computational savings are only minor. Interestingly, 

the conceptually advanced two-bucket Model-05 performs similar to the single-bucket Model-02 both in terms of 

performance and computational complexity, while from the visual evaluation in Fig. 2, there was a clear advantage for 275 

Model-05. A possible explanation is that when measuring model performance by conditional entropy, it is not the closeness 

in value between model prediction and observation that indicates a good model, but rather the unambiguousness of the 

mapping between the two, which seems to be comparable for Model-02 and Model-05. Contrary to our expectations, the 

iterative Model-06 required hardly higher computational efforts than its non-iterative counterpart Model-02. The reason lies 

in the pronounced autocorrelation of the hydrological system response, such that in just a few cases - mainly at the onset of 280 

floods - iterations were actually needed to satisfy the chosen iteration precision limit of 0.001. The autoregressive Model-07 

performs very well (second-best, only outperformed by the perfect Model-01), and with respect to computational complexity 

it is comparable to most other models. Obviously, a lot of information about discharge is contained in its own recordings of 

the immediate past, and this information can be tapped without much effort by an autoregressive model. The neural network 

Model-08, on the contrary, performs poorly and, to make things worse, does so in an inefficient manner: For predicting a 285 

single time step, it visits more than 3000 bits of memory, but the remaining uncertainty about the observation still amounts to 

3.37 bit. 

In the lower left corner of Fig. 3, a black square indicates a loose upper bound of the descriptive complexity of a single 

recording of our target discharge series Q_Host. The value (18.8 bit) was calculated by simply dividing the size of the 

Q_Host dataset by the number of time steps. This represents the raw size of a single data point in the series, without any 290 
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compression, and if we want we can compare it to the computational effort of generating a single data point by any of the 

models. Clearly, the descriptive complexity is much smaller than the computational complexity. 

 

 

Figure 3. Model performance expressed by its inverse, information loss per time step, measured by conditional entropy in 295 

bits vs. model computational complexity measured by the average number of memory visits per time step in bits for Model-

00 to Model-08. The inlay shows a zoom of the upper left region of the main figure. 

4 Summary and conclusions 

In this paper we suggested a practical technique for measuring the computational complexity and the performance of digital 

models and provided a proof-of-concept at the example of a range of watershed models. We started by stating that one of the 300 

main objectives of the scientific enterprise is the development of parsimonious yet well-performing models for natural 

phenomena and systems. Occam's razor in this context is a guideline to promote parsimonious models (models with low 

descriptive complexity) that describe well patterns in the data, and to distil laws that allow effective compression of 

experimental data, also it is a guideline for inference. We continued by repeating Weijs and Ruddell's (2020) argument that 
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by focusing on minimum description length only, Occam’s razor achieves only “weak parsimony“, and that “strong 305 

parsimony“ can be achieved by adding model performance as a criterion. Weijs and Ruddell (2020) suggested that in the 

framework of Algorithmic Information Theory, both aspects can conveniently be expressed in bits and added to a single 

measure of strong model parsimony. In this paper, we maintained this information-theoretic view, but focused on a different 

aspect of model complexity: Computational complexity, which is the effort required by a model to generate its output. 

Descriptive and computational complexity both measure aspects of the natural complexity of the phenomenon or system 310 

under investigation, but the nature and strength of their relation is difficult to determine and also depends on subjective 

choices. Nevertheless, both provide important information about natural complexity, and both are important guidelines to 

build and operate models.  

We measured computational complexity by counting the total number of memory visits (in bit) using the Linux tool 

“Strace“, while running a model on a computer. The counts are sensitive to the size of the model and the input data, but also 315 

to the model's numerical scheme, time-stepping and runtime environment. We also measured model performance by the 

conditional entropy of observations given the model predictions. For demonstration, we ran hydrological models of various 

types (artificial neural network, autoregressive, simple and advanced process-based with various numerical schemes). From 

the tested models, a third-order autoregressive model provided the best trade-off between computational complexity and 

performance, while a simple artificial neural network and an unnecessarily high-time-resolution conceptual model showed 320 

very high computational complexity, which did not pay off in terms of performance. For all models, computational 

complexity (in bit) exceeded the missing information (in bit) expressing models performance by about three orders of 

magnitude. We also compared a simple upper bound of descriptive complexity of the target data set to model computational 

complexity: The latter exceeded the former by about two orders of magnitude. 

To summarize, we have introduced and provided a proof-of-concept of a practical approach of measuring computational 325 

complexity and performance of computer models, both in bits, which can be used together to guide model analysis and 

optimization in a pareto trade-off manner, especially in operational settings where the speed of information processing is a 

bottleneck. Unlike approaches to estimate computational complexity via model execution time, the bit counting by “Strace“ 

is unaffected by other ongoing processes on the computer competing for CPU time. This increases reproducibility and 

unambiguousness of the results. An interesting question we encountered during development of our test cases was about 330 

where to set the system boundaries: For example, should forcing data be considered part of the model and be included into 

the counting or not? If we consider a model that performs well even with limited input data to be more parsimonious than 

another, which heavily relies on information contained in the input, we should do so. But we could also argue that the input 

is not part of the model, and should therefore be excluded from the counting. This question also applies to the extent to 

which the computational setting on the computer should be included into the counting, and is open for debate. 335 

Like the method proposed by Weijs and Ruddell (2020) to identify strongly parsimonious models, our “bit by bit“ approach 

is universal in the sense that it is applicable to any model executable on computer, and it relies on a single unit, bit. 

Combining the strong parsimony-objective by Weijs and Ruddell (2020) with the “bit by bit“ approach focusing on 
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operational efficiency potentially yields a comprehensive and multi-faceted way of model evaluation applicable across the 

earth sciences. 340 
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