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Abstract. To provide an accurate estimate of global water resources and help to formulate water allocation policies, global 10 

hydrological models (GHMs) have been developed. However, it is difficult to obtain parameter values for GHMs, which 

results in large uncertainty in estimation of the global water balance components. In this study, a framework is developed for 

building GHMs based on parameter regionalization of catchment scale conceptual hydrological models. That is, using 

appropriate global scale regionalization scheme (GSRS) and conceptual hydrological models to simulate runoff at the grid 

scale globally and the Network Response Routing (NRF) method to converge the grid runoff to catchment streamflow. To 15 

achieve this, five regionalization methods (i.e. the global mean method, the spatial proximity method, the physical similarity 

method, the physical similarity method considering distance, and the regression method) are first tested for four conceptual 

hydrological models over thousands medium-sized catchments (2500-50000 km
2
) around the world to find the appropriate 

global scale regionalization scheme. The selected GSRS is then used to regionalize conceptual model parameters for global 

land grids with 0.5
o
×0.5

o
 resolution on latitude and longitude. The results show that: (1) Spatial proximity method with the 20 

Inverse Distance Weighting (IDW) method and the output average option (SPI-OUT) offers the best regionalization solution, 

and the greatest gains of the SPI-OUT method were achieved with mean distance between the donor catchments and the target 

catchment is no more than 1500 km. (2) It was found the Kling-Gupta efficiency (KGE) value of 0.5 is a good threshold value 

to select donor catchments. And (3) Four different GHMs established based on framework were able to produce reliable 

streamflow simulations. Overall, the proposal framework can be used with any conceptual hydrological model for estimating 25 

global water resources, even though uncertainty exists in terms of using difference conceptual models.   

1 Introduction 

Water resource is one of the most important natural resources that can significantly influence the social and economic 

development for a region and a country (Parajka et al., 2007). The management of water resources should be based on a fully 

understanding of the spatial and temporal variation of regional water resources. In particular, problems caused by climate 30 
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change, increasing water demand due to growing world population, water conflicts in multinational river basins and virtual 

water trade all reflect the requirements of continental and global-scale hydrological simulations (Döll et al., 2003; GRDC, 

2005; Oki and Kanae, 2006; Widén-Nilsson et al., 2007). Hydrological models are main tools for simulating runoff at multiple 

spatial and temporal scales (Arnell, 2003; Xia et al., 2003; Oki and Kanae, 2006; Elin et al., 2007) and have achieved a great 

progress during the past few decades (Korzoun et al., 1974; Vörösmarty et al. 1989; Widén-Nilsson et al., 2007; Oleson et al., 35 

2010; Beck et al., 2016; Sood and Smakhtin, 2015). The most commonly used continental or global scale hydrological models 

are the land surface scheme (LSS) which is a component of climate models that simulate the energy balance at soil, atmosphere 

and vegetation interfaces (Haddeland et al., 2011; Bierkens, 2015). However, global climate models have large biases in global 

runoff simulations (Yang and Dickinson, 1996; Sellers et al. 1986; Sood and Smakhtin, 2015). Hence, global hydrological 

models (GHMs) are developed to simulate (sub-) surface water fluxes and storages. Some of the widely used GHMs include 40 

Variable Infiltration Capacity model (VIC, Liang et al. 1994), Water Balance Model–Water Transport Model (WBM-WTM, 

Vörösmarty et al. 1989) and PCRaster GLOBal Water Balance model (PCRGLOBWB, van Beek and Bierkens 2008; van Beek  

et al., 2012; http://www.globalhydrology.nl/models/pcr-globwb-1-0/). 

The majority of GHMs applied at the continental to global scale tends to rely on a priori parameterizations based on expert 

opinion, hydrologic theory, field data, case studies, or data sets of questionable quality (Beck et al., 2016). For example, the 45 

parameter values of the WBM-WTM are tuned by an adjustment factor, rather than calibration (Vörösmarty et al. 1989). The 

parameter values of the Macro Probability Distribution Model (Macro-PDM) are set based on literature review or previous 

model applications and 6 out of 13 parameters are globally uniform (Arnell et al., 1999, 2003). The Community Land Model 

(CLM) (Oleson et al., 2010) consider the base flow recession constant (k) as a fixed value, even though it has been recognized 

that k varies spatially (Hall, 1968; Beck et al., 2013b). The k value of the PCRGLOBWB was determined based on the drainage 50 

theory and hydrogeologic data, however, many studies have found that there is a weak link between k and current 

hydrogeologic data sets (van Beek and Bierkens 2008; Peña-Arancibia et al., 2010; Beck et al., 2013b). Therefore, it is unlikely 

that the current global-scale hydrological models have reached their potential in streamflow simulations. Considering the 

restriction of the priori parameterizations, some GHMs have been developed on the basis of model parameter regionalization. 

For example, the Water and Snow Balance Modeling System Macroscale (WASMOD-M) transferred the calibrated parameter 55 

sets to grid cells by searching for the most commonly occurring parameter set within a rectangular window and found that 

regionalized parameters produced better streamflow estimates than spatially uniform parameters (Widén-Nilsson et al., 2007). 

Beck et al. (2016) transferred the calibrated parameter sets of Hydrologiska Byråns Vattenbalansavdelning (HBV) model from 

the selected (674 out of 1787) donor catchments to 0.5° grid cells with the most similar climatic and physiographic 

characteristics and found that HBV with regionalized parameters outperformed nine state-of-the-art macroscale models.  60 

Additionally, some studies have focused on regionalization of macro-scale hydrologic models and illustrated the effectiveness 

of regionalization method in macro-scale runoff simulation. For example, Troy et al. (2006) interpolated the model parameters 
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of calibrated grid cells to the uncalibrated grid cells across the continental United States and found that this approach was 

efficient for large-scale applications. Livneh and Lettenmaier (2013) tested regression model which linking ‘‘zonally 

representative’’ parameters to catchment descriptors across the continental United States and found that this approach resulted 65 

in skillful model performance. Various regionalization methods were proposed in the past few decades(Abdulla et al., 1997; 

Hundecha et al., 2004; Pokhrel et al., 2008; Jin et al., 2009; Luis et al., 2010; He et al., 2011; Razavi and Coulibaly, 2013). The 

widely used regionalization methods in literatures include regression-based approaches (RE), distance/attributes-based 

approaches (spatial proximity and physical similarity) and global mean method (GM) (Jin et al., 2009; He et al., 2011; Razavi 

and Coulibaly, 2013). Other techniques for regionalization include clustering methods and hydrologic classification (Merz 70 

and Bloschl, 2004; Luis et al., 2010; Livneh and Lettenmaier, 2013). Numerous studies have been made to compare 

regionalization approaches in different regions (e.g., Oudin et al., 2008; Li et al., 2010; Yang et al., 2018, 2019, 2020). 

However, there is still no clear conclusion on the best-performed regionalization method. In addition, none of these GHMs 

developed on model parameter regionalization has compared the widely used regionalization approach and investigated the 

optimal approaches at the global scale, instead, they all used one specific scheme to calculate model parameters for GHMs. 75 

More over, most of these studies only established one global hydrological model and the uncertainty of GHMs is not taken into 

account by using various hydrological models with different structures and concepts. 

Therefore, in order to complement existing global water-balance models to reduce runoff estimation uncertainty and provide 

valuable spatial and temporal estimates of global water resources, a framework for building GHMs is proposed by combining 

four conceptual hydrological models and five regionalization methods over 2277 medium-sized catchments with drainage area 80 

between 2500 and 50000 km
2
 around the world. Specifically, the objectives of this study are to: 

(1) identify an appropriate parameter regionalization method and the optimal global scale regionalization scheme (GSRS) for 

building GHMs; 

(2) build four GHMs by regionalizing model parameters from watershed scale to grid scale using the framework; 

(3) validate the performance of GHMs over 2277 catchments around the world widely; 85 

(4) simulate global water resources. 

2. Material and methods 

2.1 Meteorological data 

The meteorological data used in this study are daily precipitation, air temperature and potential evaporation. The potential 

evaporation data at the global scale were obtained from the Global Land Evaporation Amsterdam Model (GLEAM v3) 90 

potential evaporation data set (1980-2015) at the 0.5° resolution, which is calculated by using the Priestley and Taylor equation 

based on observations of surface net radiation and near-surface air temperature (Martens et al., 2017; Miralles et al., 2011). The 
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daily temperature data were obtained from the European Centre for Medium range Weather Forecasts (ECMWF)–Interim 

Reanalysis (ERA-Interim) at the 0.5° resolution (1979–2019, Dee et al., 2011; 

https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/). The precipitation data were obtained from 95 

the Global Precipitation Climatology Centre (GPCC) V.2018 precipitation data set (1982-2016) (Fuchs et al.,2009), which is 

based on gauged precipitation data provided by national meteorological and hydrological services, regional and global data 

collections as well as the World Meteorological Organization (WMO) GTS-data (GPCC, http://gpcc.dwd.de). 

In addition, thirteen catchment descriptors were selected for hydrological model parameter regionalization, which have been 

commonly used in some other studies (e.g. Koren et al., 2010; Yang et al., 2018; Oudin et al., 2008; Merz and Blöschl, 2004) 100 

(Table 1).We assumes that these catchment descriptors independent from each other and a well-behaved relationship exists in 

the catchment descriptors and model parameters. 

Table 1 The statistical information of catchment descriptors used in regionalization methods 

 Mean Median Minimum Maximum 

Climate index     

Aridity index 0.85  0.80  0.04  3.33  

Mean annual potential evaporation 

  evapotranspiration(mm) 

1169  1089  301  3060  

Terrain characteristics     

Mean slope (° ) 2.49  1.78  0.01  20.95  

Mean elevation (m) 645  545  1.94  4719  

Area (km
2
) 12016 7486 2500 50000 

Land use     

Forest (%) 41.67  41.01  0.00  98.79  

Water body (%) 2.60  0.07  0.00  69.73  

Built-up land (%) 1.49  0.31  0.00  62.35  

Total cultivated land (%) 16.98  6.41  0.00  96.20  

Soil index     

Topsoil Clay Fraction (% wt.) 16.83  15.97  0.00  73.26  

Subsoil Clay Fraction (% wt.) 18.38  17.35  0.00  78.22  

Water holding capacity 11.82  3.74  0.00  50.00  

Soil thickness(mm) 42.36  43.83  0.00  100.00  

Data Citation: Harmonized World Soil Database (version 1.1); GlobCover Land Cover Maps, 

http://due.esrin.esa.int/page_globcover.php; Global Aridity and PET Database, http://www.cgiar-csi.org. 105 
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2.2 Observed streamflow data 

The observed daily streamflow data were obtained from the Global Runoff Data Centre (GRDC; http://www.bafg.de/GRDC/). 

The GRDC dataset aims at helping earth scientists to analyze global climate trends and to assess the environmental impacts and 

risks. It comprises river discharge data for more than 9500 stations from 161 countries. Basin boundaries and flow path were 

taken from HYDRO1K (USGS 1996a). Continent boundaries were taken from STN-30p (Vörösmarty et al., 2000).  110 

There are some uncertainties which will impact the results. For example, small catchments might result in less reliable results 

since the model resolution is 0.5 degree. Besides, almost all large rivers are regulated (Vörösmarty et al., 2004; Nilsson et al., 

2005) while it is difficult to obtain reliable time-series data on regulation. The following three criteria were used to choose 

catchments from our analysis: 

(1) The streamflow record length was required to be at least 5 years (not necessarily consecutive) during the 1982–2015 115 

period. 

(2) The catchment size is over 2,500 km
2
. 

(3) The upper limit of catchment size was set as 50,000 km
2
 in order to minimize the effects of regulation. 

In total, 2277 catchments were selected, and Fig. 1 shows the spatial distribution of these catchments. The majority of the 

catchments are located in North America, Europe, Southeast Asia and central South America. Only a few catchments are 120 

located in the Middle East, North Africa, the central Australian and the Russian Far East and Siberia regions. 

 

Figure 1: Location of the catchments used in this study 

2.3 Hydrological models 

Four conceptual hydrological models were used to simulate runoff at the daily time step. These hydrological models were 125 

chosen because of the proven effectiveness around the world and the successful application in regionalization studies. The 

model structures of these hydrological models differ from each other and the number of the model parameters varies from six 

to twenty-one.  
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2.3.1 The Génie Rural à 4 paramètres Journalier model (GR4J) 

GR4J has four free parameters and is constructed based on the unit hydrograph principles (Perrin et al., 2003). GR4J is one of 130 

the most commonly used hydrological models in the world, because of its simpleness and good performance (Li et al., 2014; 

Oudin et al., 2008; Zhang et al., 2014; 2016). Since there is no snow module in the original GR4J model, the snow 

module-CemaNeige (Valéry et al., 2010) was incorporated into GR4J in this study. CemaNeige allows to estimate the 

snowmelt and simulate the snowpack evolution by using 2 parameters, and the coupling of GR4J and CemaNeige has been 

tested in some other studies (e.g. Valéry et al., 2010; Coron et al., 2014; Hublart et al., 2015). Therefore, there are six model 135 

parameters in total for GR4J in this study. 

2.3.2 The simple lumped conceptual daily rainfall-runoff model (SIMHYD) 

SIMHYD is a simplified version of the HYDROLOG model (Chiew et al., 1980), which contains three storages for 

interception loss, soil moisture and groundwater and routing process (Chiew et al., 2002). The SIMHYD model has been 

applied in ungauged catchments over different climate regions (e.g. Zhang and Chiew, 2009). The same as GR4J, the snow 140 

module (CemaNeige, Valéry et al., 2010; Coron et al., 2014; Hublart et al., 2015) was incorporated into the original version for 

snowmelt simulations, so there are eleven parameters in total for SIMHYD in this application. 

2.3.3 The Xinanjiang model (XAJ) 

XAJ was developed by Zhao et al. (1980; 1992) for the prediction inflow of Xinanjiang Reservoir. It consists of 

evapotranspiration, runoff production, runoff separation, and flow routing. It is the most commonly used hydrological model in 145 

China, and has been tested in various climate regions and many regionalization studies (e.g. Zhang and Chiew, 2009; Li and 

Zhang, 2017; Yang et al., 2020). The same snow module (CemaNeige, Valéry et al., 2010; Coron et al., 2014; Hublart et al., 

2015) was coupled with the original XAJ model for snowmelt simulation. Therefore, the total number of parameters becomes 

seventeen.  

2.3.4 The Hydrological Model of École de technologie supérieure model (HMETS) 150 

HMETS was developed by École de technologie supérieure and contains two reservoirs for the saturated and vadose zones 

(Chen et al., 2011; Martel et al., 2017). HMETS has been used in diverse climate regions in Canada and China (e.g. Chen et al., 

2018; Shen et al., 2018). It has twenty-one parameters and can simulate the main hydrological processes (i.e. snow 

accumulation, snowmelt and refreezing, infiltration and flow routing and evapotranspiration).  

2.4 Model calibration and evaluation criteria 155 

For each catchment, the record of observed streamflow data was split into a calibration period (consisting of the first 70% of 

the record) and a validation period (consisting of the remaining 30% of the record). In addition, the shuffled complex evolution 
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method optimization algorithm (SCE-UA, Duan et al., 1992; 1993) was used to optimize the hydrological model parameters, in 

which, the objective function was chosen to be the KGE (Gupta et al., 2009). KGE has been introduced as an improvement of 

the widely used Nash-Sutcliffe efficiency, which considers different types of  model errors, namely the error in the mean, the 160 

variability, and the dynamics. The KGE was calculated by using Eq. (1): 

2 2

2 sim sim

obsobs

CV
KGE 1 ( 1) 1 1

CV

Q
R

Q

   
         

                                                                 (1) 

where obs
Q

 is the mean of observed runoff and sim
Q

is the mean of simulated runoff. R is the Pearson correlation coefficient 

between observed and simulated runoffs. simCV
 and obsCV

 represent the coefficient of variations of observed and 

simulated streamflows. KGE value ranges from ‐∞ to 1 and the larger the KGE value, the better the simulation. 165 

2.5 Regionalization methods 

The regionalization methods used in this study are the most commonly used regression-based approaches, 

distance/attributes-based approaches and global mean method (Jin et al., 2009; He et al., 2011; Razavi and Coulibaly, 2013).  

The regression-based method assumes that a well-behaved relationship exists in the observable catchment characteristics and 

model parameters (Burn and Boorman, 1993). Parameters for an ungauged catchment are derived by using the relationship 170 

between catchment descriptors and model parameters for the donor catchments. In this study, all catchment descriptors were 

assumed to be related to model parameters (Arsenault and Brissette, 2014; Yang et al., 2018, 2019). 

The distance/attributes-based methods assume that the parameter sets of hydrological models on gauged catchments can be 

transferred to nearby or physically similar ungauged catchments following different procedures. The key of these methods is to 

find the closest or the most similar donor (gauged) catchments to the ungauged catchments. The distance/attributes-based 175 

methods usually include: spatial proximity (SP) method, physical similarity (PS) method and physical similarity method 

considering distance (PSD) (Yang et al., 2018, 2020). 

The SP method assumes that nearby catchments should have similar behavior for climate and catchment conditions (features) 

varying uniformly in space. The Euclidean distance was used to calculate the distance Dud between the donor and ungauged 

catchments in this study. The Dud was calculated by using Eq. (2): 180 

            
         

                                                                             (2) 

where, u and d represent the ungauged and donor catchments, respectively;    ,    and   ,    are catchment positions of the 

ungauged and donor catchments under the Lambert Azimuthal Equal Area projection system, respectively. 

The PS method is based on the assumption that catchments with similar attributes show similar hydrological behaviors. The 

core of PS method is the selection of the physical similarity metric (Samaniego et al., 2010). Many studies have focused on the 185 

selection of proper similarity index between donor and ungauged catchments and the proper catchments attributes for 
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similarity index calculation (Burn and Boorman 1993; Luis et al., 2010; Samaniego et al., 2010).The similarity index in this 

study was calculated following Eq. (3) (Burn and Boorman 1993): 

      
             

    

 
                                                                                       (3) 

where,    is the catchment descriptor; u and d represent the ungauged and donor catchments, respectively;   is the total 190 

number of catchment descriptors and      represents the range of     catchment descriptor. 

Considering the limitation of the two regionalization methods mentioned above, some studies (e.g. Samuel et al., 2011; 

Viviroli and Seibert, 2015; Yang et al., 2018) integrated SP with PS to improve the regionalization ability. In present study, the 

PSD method in which the distance was considered as one of the catchment descriptors was used and then the similarity index 

was calculated.  195 

For distance/attributes-based methods, there are two different averaging options to transfer the model parameter sets from 

donor catchments: (i) parameter average option, which transfers the averaged model parameters from donor catchments to 

ungauged catchments; and (ii) output average option, which averages runoff simulations calculated by using individual 

parameter sets from donor catchments to ungauged catchments (Oudin et al., 2008; Yang et al., 2018). In addition, there are 

two different weighting approaches used to combine the model parameters or model outputs: (i) Arithmetic Mean (AM) 200 

method; and (ii) Inverse Distance Weighted (IDW) method (Parajka et al. 2007; Yang et al. 2018). 

The GM method is a relatively simple regionalization method. Generally, the arithmetic mean of the parameters of all gauged 

catchments is directly applied to the ungauged catchments. All regionalization methods used in this study are summarized in 

Table 2. 

2.6 The performance of regionalization methods under different efficiency thresholds 205 

In order to find the suitable donor catchments and the optimal regionalization scheme for GHMs, the performance of 

regionalization methods under different thresholds of model efficiency was tested. A threshold of model efficiency 

(all, >0, >0.5, >0.6, >0.7, >0.8, >0.9) was determined for the calibration period. In other words, when the efficiencies of the 

catchments were below a threshold, these catchments were not used as donor catchments to predict runoffs for ungauged 

catchments. The threshold named ‘all’ means that no catchment was excluded from the donor catchments. However, all 210 

catchments, whether poorly or well modeled, were all considered as pseudo-ungauged.  

2.7 Framework establishment 

Firstly, all five parameter regionalization methods were applied at the catchment scale over 2277 catchments by using four 

conceptual hydrological models. Secondly, the best performed regionalization method was selected as global scale 

regionalization scheme (GSRS) for regionalization of global hydrological models at the spatial resolution of 0.5
o×0.5

 o
 grid 215 

cell all over the world except for Antarctica and Arctic region. This procedure is based on an assumption that the parameters at 
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the catchment scale can also be used at the grid cell scale. In other words, the 0.5
o×0.5

 o
 grid cell was treated as a catchment 

(Beck et al., 2016).  

The GSRS was only used to simulate runoff at the grid scale. For calculating watershed streamflow, runoff routing algorithms 

are required (Vörösmarty et al. 1989; Döll et al., 2003). There are several large-scale runoff routing algorithms have been 220 

developed (Graham et al., 1999; Vörösmarty et al., 2000; Döll and Lehner, 2002). The Network Response Routing (NRF) 

method was selected in this study to converge the grid runoff to catchment streamflow, since this method transfers 

high-resolution delay dynamics, instead of networks, to any lower spatial resolution where runoff is generated (Gong et al., 

2009; Li et al., 2019). There are 2 parameters for the NRF runoff routing approach and these parameters were calibrated using 

catchment observations but not regionalized. Thus the framework was established, that is, using GSRS and conceptual 225 

hydrological models to simulate runoff at the grid scale globally and then using NRF method to converge the grid runoff to 

catchment streamflow. According to the framework, four GHMs were built. 

Table 2 Summary of regionalization methods used in this study 

Regionalization methods Averaging options Weighting approaches 

method 

Abbreviation 

Global mean (GM)   GM 

Spatial Proximity (SP) 

Parameter Averaging 
Arithmetic Mean SPA 

Inverse Distance Weighted SPI 

Output Averaging 
Arithmetic Mean SPA-OUT 

Inverse Distance Weighted SPI-OUT 

Physical Similarity (PS) 

Parameter Averaging 
Arithmetic Mean PSA 

Inverse Distance Weighted PSI 

Output Averaging 
Arithmetic Mean PSA-OUT 

Inverse Distance Weighted PSI-OUT 

Physical Similarity considering 

distance (PSD) 

Parameter Averaging 
Arithmetic Mean PSDA 

Inverse Distance Weighted PSDI 

Output Averaging 
Arithmetic Mean PSDA-OUT 

Inverse Distance Weighted PSDI-OUT 

Regression (RE) Multiple linear 

regression 

 RE 

SPA means spatial proximity method with parameter averaging option and arithmetic mean approach; PSI-OUT means 

physical similarity method with output averaging option and Inverse Distance Weighted approach. 230 

3. Results and discussion 

3.1 Hydrological model calibration and validation at catchment scale 

Figure 2 shows the cumulative density function (CDF) curves of the percentage of catchments with KGE values exceeding the 

given value (Mittelhammer et al., 2013) for all hydrological models over the calibration and validation periods. The calibration 

https://doi.org/10.5194/hess-2020-127
Preprint. Discussion started: 15 June 2020
c© Author(s) 2020. CC BY 4.0 License.



10 
 

results of different hydrological models are close to each other. For all hydrological models, the KGE value of more than 60% 235 

catchments are higher than 0.7 for the calibration period and 0.5 for the validation period, respectively. In Table 3, we can see 

the number of catchments and its percentage in the total catchments under different thresholds of model efficiency 

(>0, >0.5, >0.6, >0.7, >0.8, >0.9) in the calibration period. Generally, the number of catchments under different thresholds are 

similar among the models. More detailed spatial distribution of the model efficiency at the calibration period is shown in Fig. 3. 

We can see that the KGE values are above 0.8 for most catchments in eastern Canada, the USA, the southern China and along 240 

the Atlantic Coast of Europe. For those regions, the good model performances are probably attributed to the dense precipitation 

gauges. Other catchments in the American tropics, the Andes (South America) and the northwest China show low KGE values, 

because of the complex topography and the lack of precipitation gauges in these areas. The results show that the distributions 

of model efficiency of four hydrological models are similar to each other and indicate that the difference between hydrological 

models was negligible in the model calibration and validation, which is in line with previous studies (Beck et al., 2016; Vetter 245 

et al., 2015; Demirel et al., 2015). 

 

Figure 2: The performance of hydrological models by split-sample test evaluated by the KGE value. The solid and dash lines show 

the performance for the calibration and validation periods respectively. 

3.2 Parameter regionalization at the catchment scale 250 

Figure 4 shows the model performance of distance/attributes-based methods using the different number of donor catchments 

with different weighting and averaging options under each KGE threshold. It shows that the IDW approach performs better 

than the AM approach for all distance/attributes-based regionalization methods and all hydrological models. This is consistent 

with the results from other studies (e.g. Arsenault and Brissette, 2014; Samuel et al., 2011; Li et al., 2014). The worse 

performance of AM approach probably caused by the large difference of distance or similarity among our studied catchments. 255 

However, the weighting scheme of IDW minimizes the negative impact caused by the farthest distance or the least similar 

donors. 
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Further, the output averaging option outperforms the parameter averaging option globally in the study, which is also consistent 

with previous studies (e.g. Arsenault and Brissette, 2014; Samuel et al., 2011; Li et al., 2014; Yang et al., 2018, 2020) at the 

regional scale.  260 

 

Figure 3: Spatial distribution of model efficiency (i.e. KGE). 

Table 3. The numbers and the percentage of donor catchments under different efficiency thresholds for four hydrological models 

   all  >0 >0.5 >0.6  >0.7  >0.8  >0.9  

GR4J  2277 2229 1902 1707 1386 791 170 

 100 98 84 75 61 35 7 

SIMHYD 2277 2243 1985 1826 1491 965 211 

 100 99 87 80 65 42 9 

XAJ 2277 2240 1947 1770 1477 939 236 

 100 98 86 78 65 41 10 

HMETS  

 

2277 2258 1903 1711 1375 840 193 

 100 99 84 75 60 37 8 

The hydrological model performance is improved with the increase in the number of donor catchments for all hydrological 

models when using the output averaging option. However, for the parameter averaging option, with the increase number of 265 

donor catchments the KGE value becomes smaller for most of the regionalization methods. In addition, the optimal number of 

donor catchments for output averaging option always lies between 4 and 6. To balance the effect and the amount of 

computation, 5 donor catchments are suggested to use for output averaging method. 
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 270 

Figure 4: The median KGE value for distance/attributes-based regionalization methods with an increasing number of donor 

catchments. 

How will using the poorly calibrated catchments as donor catchments impact the performance in the regionalization method 

and hydrological modeling, has not been much discussed in the literature. In this study, we compared the performance of 

regionalization methods under different KGE thresholds for all regionalization methods (including regression method, not 275 

shown) and found that the KGE threshold value of 0.5 is the best. Using catchments under the KGE threshold of 0.5 as donor 

catchments has little effect on the performance of hydrological models for ungauged catchments. However, when using the 

efficiency threshold up to 0.9, the hydrological model performance is remarkably dropped for ungauged catchments. This is 

attributed to the limited number and the particular location of the gauged catchments considered (Table 5). When using the 

threshold of 0.90, only 170 (for GR4J), 211 (for SIMHYD), 236 (for XAJ) and 193 (for HMETS) donor catchments out of the 280 

2277 catchments were available for use. Therefore, the threshold of 0.5 was taken as the best performance threshold and the 

total number of donor catchments for global regionalization scheme ranges from 1902 (for GR4J) to 1985 (for SIMHYD) for 

different hydrological models. Thus, when there are limited gauged (donor) catchments around the ungauged catchment, it 

may be preferable to keep poorly calibrated gauged catchments in regionalization. 

The performance of all regionalization approaches under threshold 0.5 is shown in Fig.5. The differences were observed 285 

among regionalization methods. For example, the median KGE value of the SPI-OUT was the highest and the value of the GM 

method was the lowest, which indicated that the SPI-OUT outperforms all other regionalization methods for all hydrological 

models and the GM method produces the worst results. 
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Figure 5: Comparison of model efficiencies on ungauged catchments using several regionalization schemes (see the detailed 290 

information of regionalization methods in Table 3). 

Figure 6 shows the percentage of the best performed regionalization method under different mean distance (between the donor 

and ungauged catchments). For all hydrological models, when the mean distance between donor and ungauged catchments is 

smaller than 1500 km, the average proportion of catchments that the SPI-OUT method outperforming others is the largest. This 

indicates that the greatest gains of the SPI-OUT method in performance were achieved for ungauged catchments with mean 295 

distance no more than 1500 km from the donors. 

 

Figure 6: The proportion of outperformed regionalization method over 2277 catchments with increasing mean distance between the 

donor and ungauged catchments. 

Overall, the performance of different regionalization schemes were consistent in each hydrological models. That is the 300 

SPI-OUT method outperformd the others and the GM method performed the worst. In addition, the differences of 

regionalization performance among hydrological models were small, which indicated that the difference of regionalization 

performance caused by model structure is not significant. However, in this study, it is the two parsimonious hydrological 

models (i.e., GR4J and SIMHYD) that slightly outperforms the other two more complex models (i.e., XAJ and HMETS) in 
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most of the situations. This phenomenon may be caused by equifinality. Equifinality is defined as having multiple sets of 305 

parameters that lead to equally acceptable model performance during the model calibration and validation (Beven and Freer, 

2001; Luis et al., 2010). Some studies indicated that hydrological models with large parameter spaces and high parameter 

interdependence may have more acceptable parameter sets during calibration than the parsimonious hydrological models and 

consequently have a less chance to be successful for hydrological regionalization (Arsenault and Brissette, 2014; Yang et al., 

2018). In order to illustrate the equifinality of different hydrological models exists in this study, 10 calibration sets were 310 

generated instead of a single one during model calibration, considering that 10 sets should be different enough from one 

another to adequately sample the parameter set uncertainty under equifinality constraints (Arsenault and Brissette, 2014). 

The 10 calibrated parameter sets for each catchment were only accepted if the KGE value was within 0.01 of the best KGE 

value for that basin to ensure equifinality was present. The normalization arithmetic was used to calculate the distribution of 

model parameters during the 10 calibration. A normalization factor (NF) was calculated by using Eq. (4): 315 

max, min,

, , 

i i

top i bottom i

cal cal
NF

bou bou





                                                                            (4) 

where, i represents the ith model parameter; max,ical and min,ical are the maximum and minimum parameter values among the 

10 calibration, respectively; ,top ibou and ,bottom ibou  are the top and bottom limitation of the ith parameter during model 

calibration. The closer that NF is to 1, the larger the parameter spaces exist in the 10 calibration. 

The NF values of each parameters of four hydrological models were calculated for 2277 catchments. Figure 7 shows the 320 

percentage of catchments with NF values exceeding the given value (Mittelhammer et al., 2013) for each parameters of four 

hydrological models. For GR4J, the parameter equifinality is not as important as for other hydrological model, as indicated that 

the NF values are relative smaller. For SIMHYD, there are 5 parameters (out of 11) with high NF values. However, for XAJ 

and HMETS, most parameters have high NF values. This illustrate that four models are all subject to the effects of parameter 

equifinality. In particular, the equifinality is more serious for models with more parameters (i.e. XAJ and HMETS) than those 325 

with few parameters (i.e. GR4J and SIMHYD). 

The parameter equifinality would affect the regionalization results of this study, which needs to be further investigated in the 

future. In fact, due to the high relationship between regionalization methods and calibrated model parameter sets, equifinality 

has been recognized as one of the major source of uncertainty exist in regionalization. However, it is hard to quantify its impact 

on regionalization performance, since the high uncertainties exist in regionalization. In the past few decades, there are some 330 

studies have focused on evaluating the uncertainty caused by equifinality for runoff simulations in ungauged basins (Arsenault 

and Brissette, 2014). Some have also proposed new regionalization methods to reduce the influence of uncertainty ( Luis et al., 

2010). However, further research is needed on issues of uncertainties exist in regionalization, since we are still far from 

understanding uncertainty lies in every aspect of prediction in ungauged basins (PUB) studies. 
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  335 

Figure 7: The CDF curves of different parameters. The different lines represent the different parameters of each hydrological 

model (no need to specify in this study). 

3.3 GHMs regionalization at the grid scale  

The GSRS was selected based on the best performed catchment scale regionalization methods (section 3.2). That is, only 

catchments with KGE value being greater than 0.5 at the calibration period were used as donor catchments. For grid cells with 340 

a mean distance less than 1500 km to donors, the calibrated parameter sets of the 5 nearest donor catchments were transferred 

by using SPI-OUT method. For grid cells with a mean distance larger than 1500 km, the parameters were extracted from 

PSDI-OUT method. Figure 8 shows the mean distance to the 5 nearest donor catchments. The mean distances were generally 

<1500 km for most part of the world for all GHMs. While there were still some regions where the mean distance was >1500 km, 

like southern South America, Southeast Asia, Northeast Africa and Northeast North America. 345 

By using the above parameter regionalization at the grid scale, the runoff can be calculated for all global grid cells. To further 

quantify the performance of the global regionalization scheme, the NRF runoff routing approach was used to converge runoff 

of GHMs to streamflow time series for all 2277 catchments. The KGE values are presented in Fig. 9 and Table 4. Even though 

the KGE values from GHMs were smaller than those obtained by using the best performed catchment scale regionalization 

methods (i.e. SPI-OUT), they were close to those obtained by using the other catchment scale distance/attributes-based 350 

regionalization results. In addition, the performance of the GHMs are better than that of the catchment scale regression and 

global mean methods. The median KGE value of SIMHYD-G was the largest (0.384) and that of HMETS-G was the least 

(0.374). The difference between the median KGE value of GHMs and that using the best performed catchment scale 

regionalization method (i.e., SPI-OUT) were 0.134 (for GR4J), 0.137 (for SIMHYD), 0.137 (for XAJ) and 0.121 (for HMETS), 

respectively. The difference between the median KGE value of GHMs and that using the calibrated parameters were 0.370 (for 355 

GR4J), 0.389 (for SIMHYD), 0.384 (for XAJ) and 0.346 (for HMETS), respectively. The performance of GHMs built using 

framework was about half of that obtained using calibrated parameters in terms of the median KGE value. This result is 

consistent with previous study obtained by Beck at al. (2016) using an aggregate objective function (AOF) score as model 

calibration criterion in 1113 small-to-medium sized catchments at global scale. In fact, the median daily KGE values of four 
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GHMs are larger than that found from Beck at al. (2016) (0.19 for HBV with regionalization parameters and 0.04 for the 360 

ensemble mean of nine state-of-the-art models). However, the performance of GHMs was not as good as that of the regional 

hydrological model calibration (Widén-Nilsson et al., 2007; Beck et al. 2016).  

In fact, GHMs were built for macroscale water resource management and they would not be the first choice for basin scale 

applications because of its coarse resolution (Sood and Smakhtin, 2015). Whereas, four different GHMs were built effectively 

for providing valuable estimates of global water resources and helping to formulate water allocation policies under climate 365 

change. 

 

Figure 8: Mean distance to the 5 nearest donor catchments. 

 

Figure 9: The cumulative density function (CDF) curves of different regionalization methods.  370 

Table 4. The median of KGE values for the tested regionalization methods and hydrological models over all catchments 

  CAL GM SPI-OUT framework 

GR4J 0.748 0.141 0.512 0.378 

SIMHYD 0.774 0.068 0.522 0.384 

XAJ 0.766 -0.093 0.519 0.382 

HMETS 0.750 0.019 0.495 0.374 
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To further evaluate the effectiveness of the framework in terms of climate regimes, Table 5 summarizes the median KGE 

value over 2277 catchments for five Köppen-Geiger climate types. Generally, all GHMs perform much worse for arid climate 

regions than for the other four climate types. Figure 10 showed the spatial distribution of KGE value of GHMs. For most of 

Europe and the east coast of North America, KGE is generally above 0.5, and even above 0.7 over many catchments. In 375 

contrast, most catchments in southwest Africa and northwest Australian perform much worse. In fact, previous studies 

indicated that most of the existing GHMs overestimate runoff in arid basins (e.g. TRIP with different land-surface models, Oki 

et al., 2001; WGHM, Döll et al., 2003; HBV, Beck et al., 2016). Because for arid regions, the high evaporative losses, the 

highly nonlinear response behavior, and the flashy nature of the streamflow time series make it difficult to simulate streamflow 

time series (Pilgrim et al., 1988; Widén-Nilsson et al., 2007; Beck et al., 2016). 380 

The differences among four GHMs are small, indicating that even though uncertainty exists in terms of using difference 

conceptual models, the proposal framework can be used with any conceptual hydrological model. Overall, the XAJ-G 

performs the best and the HMET-G performs the worst. Parajka et al. (2013) compared previous studies and found that poorer 

regionalization performance with more model parameters. However, this is not shown in our study. The results show that 

neither the GR4J-G model (who has the least model parameters), nor the HMETS-G model (who has the largest number of 385 

model parameters) shows the best performance in global regionalization scheme, which indicates that the performance of 

regionalization method does not reduce with the increase of number of the model parameters. Similar conclusion has been 

drawn in Yang et al. (2020) where they studied dependence of regionalization methods on the complexity of hydrological 

models on 86 independent catchments in Norway. This might because both model structure and adequate complexity are 

important (Gan et al., 1997; Orth et al., 2015; Reynolds et al., 2018; Yang et al., 2020). It suggests that hydrologists must strike 390 

the right balance between model flexibility and the number of parameters for optimal results. 

Table 5.The median KGE values obtained by GHMs for different climate types 

Climate Type GR4J-G SIMHYD-G XAJ-G HMETS-G 

All (n=2277) 0.378 0.384 0.382 0.374 

A: equatorial (n=293) 0.192 0.283 0.273 0.269 

B: arid (n=247) -0.310 -0.340 -0.316 -0.332 

C: warm temperate (n=717) 0.449 0.450 0.454 0.452 

D: snow (n=970) 0.467 0.465 0.464 0.467 

E: polar (n=50) 0.483 0.465 0.517 0.440 

https://doi.org/10.5194/hess-2020-127
Preprint. Discussion started: 15 June 2020
c© Author(s) 2020. CC BY 4.0 License.



18 
 

 

Figure 10: The distribution of KGE value obtained by GHMs.  

3.4 Runoff variation obtained by GHMs  395 

In order to evaluate global water budget of four GHMs, the performance of the GHMs is further evaluated over six large basins, 

whose drainage area is larger than 40,000 km
2
 from six continents. Figure 11 shows mean monthly hydrograph of observed and 

simulated streamflows. Generally, the seasonality of streamflow was well captured by the GHMs. For three out of six 

catchments (i.e. Beaver river in North America; Passo mariano pinto in South America and Hofkirchen in Europe), 

streamflows of January and February are underestimated, while streamflows of April and May are overestimated. In addition, 400 

a slight overestimation is found in Oceania and African catchments (i.e. Red rock and Hol pads leegte), which may be caused 

by the bias from GPCC precipitation (Muller Schmied et al., 2016).  
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 405 

 

Figure 11: Comparison of long-term intra-annual variations of simulated and observed runoff at six continents.. Note different 

ordinate scales. 

3.5 Global and continental water resources 

Using the established GHMs, the global and continental water resources were calculated and compared to those calculated 410 

using other GHMs in literatures (Table 6). The spatial variability of long-term (1982-2015) average annual runoff is presented 
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in Fig. 12. Generally, four GHMs show similar results at 2277 catchments. However, the estimated global water budget from 

the GHMs are not always consistent with each other.  

The performances of four GHMs were consistent with each other at the catchment scale (see Fig. 10). However, when it comes 

to the grid cell scale, the differences among 4 GHMs become larger. For example, the simulated continental runoffs from the 415 

GR4J-G and HMETS-G are larger than those from the SIMHYD-G and XAJ-G, especially in Asia and Africa. Furthermore, 

the global long-term annual runoff estimated by GHMs is 48309 km
3
/yr for GR4J-G, 42539 km

3
/yr for SIMHYD-G, 42089 

km
3
/yr for XAJ-G and 45157 km

3
/yr for HMETS-G. The annual runoff differences between four GHMs’ are even higher than 

the value of annual runoff in Africa. This indicates the hydrological model structure differences bring large uncertainty in 

global water budget estimates.  420 

The six individual simulations of global long term average water resources showed in Table 6 encompass a range between 

29500 and 48300 km
3
/yr. The difference between these individual global water resource simulations is 18800 km

3
/yr, which is 

even much higher than the global consumptive water use estimated using Global Water Use Model of WaterGAP 2 (1250 

km
3
/yr in 1995). In fact, it is difficult to compare different GHMs, for there are different time periods, data quality, spatial and 

temporal resolution and so on of the data used in the building of the GHMs. Our study gives relatively more consistent results 425 

among the 4 GHMs due probably to the reason that same data (amount, period) are used. Moreover, the artificial impact on 

runoff cannot be ignored, because of the regulation, water extraction and re-routing of water to other basins have influence on 

the runoff estimation. In present study, catchments smaller than 50,000 km
2
 were used to minimize these impacts. In the future 

studies, a reliable global precipitation and runoff database which considered anthropogenic influences could be used for 

improvements. 430 

 
Figure 12: Long-term average annual total runoff from land and open water fraction of cell (time period 1982–2015), in mm/yr 
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Table 6. Global and continental runoff estimates in km3/year (many data may not be directly comparable because of different 

continental boundaries and averaging periods) 

long-term average 

annual runoff

（km
3
/yr） K78 O01 

 

 

D03 GRDC W07 GR4J-G SIMHYD-G XAJ-G HMETS-G 

Global (except 

Antarctica) 44560  29485  

 

36687 40533  38605  

 

48309  

 

42539  

 

42089  

 

45157  

Europe 2970  2191  2763 3083  3669  3322  3168  3219  3325  

Asia 14100  9385  11234 13848  13611  18050  14915  14635  16412  

Africa 4600  3616  3529 3690  3738  4918  3753  3764  3694  

North America
a
 8180  3824  5540 6294  7009  7577  6871  7061  7599  

South America 12200  8789  11382 11897  9448  12425  11832  11764  12369  

Oceania
b
 2510  1680  2239 1722  1129  2017  1999  1646  1758  

Bolded columns are from this study 435 

K78, Korzun et al. (1978), Table 157, time period not specified.  

O01, Oki et al. (2001), Table 2, land-suface models and TRIP routing model, time period 1987–1988. 

D03, Döll et al. (2003), Table 1, model WGHM, time period 1961–1990. 

GRDC (2004), time period ‘‘approximately’’ 1961–1990. 

W07, Widén-Nilsson et al. (2001), Table 2, model WASMOD-M, time period
  440 

a
 Includes Greenland, exceptW07 who only simulated a minor part of Greenland. 

b 
Oceania is defined as Australia, New Zeeland, Papua New Guinea and some small Islands. 

4. Conclusions 

By conducting a comprehensive evaluation using five regionalization methods and four daily conceptual hydrological models 

over a wide range of catchments around the world, the best performed global regionalization method at the catchment scale 445 

was found. According to the catchment-scale regionalization results, the optimal GSRS produced parameter maps for all grid 

cells (0.5°×0.5°) covering the global land area, except for Antarctica and Arctic region, were obtained. On the basis of the 

GSRS, for grid cells with a mean distance less than 1500 km to donors, the calibrated parameter sets of the 5 nearest donor 

catchments were transferred by using SPI-OUT method. And for those grid cells with a mean distance larger than 1500 km, the 

parameters were extracted from PSDI-OUT method. Thus, the framework was established according to the GSRS, conceptual 450 

hydrological models and NRF method. The main conclusions are: 

 The SPI-OUT method offers the best results with the largest KGE value using the 0.5 efficiency threshold for all 

hydrological models, and the optimal number of donor catchments lies between 3 and 6 for the output averaging 

option. 

 The median KGE values of the GHMs were smaller than those obtained by using the best performed catchment scale 455 

regionalization methods (SPI-OUT), but were close to those obtained by using the other catchment scale 

distance/attributes-based regionalization results. They were about half of that obtained using calibrated parameters 

for all 2277 catchments. 
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 The continental runoff estimates of GR4J-G and HMETS-G were larger than that of SIMHYD-G and XAJ-G, 

especially for Asia and Africa. The global long-term average annual runoff estimated by GHMs are 48309 (for 460 

GR4J-G), 42539 (for SIMHYD-G), 42089 (for XAJ-G) and 45157 (for HMETS-G) km
3
/yr. 

 The proposal framework can be used with any GHM for estimating global water resources, even though uncertainty 

exists in terms of using different conceptual models. 
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