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Abstract. Land models are increasingly used in terrestrial
hydrology due to their process-oriented representation of wa-
ter and energy fluxes. A priori specification of the grid size
of the land models is typically defined based on the spatial
resolution of forcing data, the modeling objectives, the avail-
able geospatial information, and computational resources.
The variability of the inputs, soil types, vegetation covers,
and forcing is masked or aggregated based on the a priori grid
size. In this study, we propose an alternative vector-based im-
plementation to directly configure a land model using unique
combinations of land cover types, soil types, and other de-
sired geographical features that have hydrological signifi-
cance, such as elevation zone, slope, and aspect. The main
contributions of this paper are to (1) implement the vector-
based spatial configuration using the Variable Infiltration Ca-
pacity (VIC) model; (2) illustrate how the spatial configura-
tion of the model affects simulations of basin-average quan-
tities (i.e., streamflow) as well as the spatial variability of
internal processes (snow water equivalent, SWE, and evapo-
transpiration, ET); and (3) describe the work and challenges
ahead to improve the spatial structure of land models. Our re-
sults show that a model configuration with a lower number of
computational units, once calibrated, may have similar accu-
racy to model configurations with more computational units.
However, the different calibrated parameter sets produce a
range of, sometimes contradicting, internal states and fluxes.
To better address the shortcomings of the current generation
of land models, we encourage the land model community to
adopt flexible spatial configurations to improve model repre-
sentations of fluxes and states at the scale of interest.

1 Introduction

Land models have evolved considerably over the past few
decades. Initially, land models (or land-surface models) were
developed to provide the lower boundary conditions for at-
mospheric models (Manabe, 1969). Since then land models
have increased in complexity, and they now include a va-
riety of hydrological, biogeophysical, and biogeochemical
processes (Pitman, 2003). Including this broad suite of ter-
restrial processes in land models enables simulations of en-
ergy and water fluxes and carbon and nitrogen cycles.

Despite the recent advancements in process representation
in land models, there is currently limited understanding of the
appropriate spatial complexity that is justified based on the
available data and the purpose of the modeling exercise (Hra-
chowitz and Clark, 2017). The increase of computational
power, along with the existence of more accurate digital el-
evation models and land cover maps, encourages modelers
to configure their models at the finest spatial resolution pos-
sible. Such hyper-resolution implementation of land models
(Wood et al., 2011) can provide detailed simulations at spa-
tial scales as small as a 1 km2 grid over large geographical
domains (e.g., Maxwell et al., 2015). However, the computa-
tional expense of hyper-resolution models could potentially
be reduced using more creative spatial discretization strate-
gies (Clark et al., 2017).

It is common to adopt concepts of hydrological similar-
ity to reduce computational costs. In this approach, spatial
units are defined based on similarity in geospatial data, un-
der the assumption that processes, and therefore parame-
ters, are similar for areas within a spatial unit (e.g., Vivoni
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et al., 2004; Newman et al., 2014). Hydrological response
units (HRUs) are perhaps the most well-known technique
to group geospatial attributes in hydrological models. HRUs
can be built based on various geospatial characteristics; for
example, Kirkby and Weyman (1974), Knudsen et al. (1986),
Flügel (1995), Winter (2001), and Savenije (2010) all have
proposed to use geospatial indices to discretize a catchment
into hydrological units with distinct hydrological behavior.
HRUs can be built based on soil type such as proposed by
Park and Van De Giesen (2004). HRUs can also be built
based on fieldwork and expert knowledge (Naef et al., 2002;
Uhlenbrook et al., 2004), although the spatial domain of such
classification will be limited to the catchment of interest and
the spatial extent of the field measurements. HRUs are of-
ten constructed by GIS-based overlaying of maps of differ-
ent characteristics and can have various shapes such as non-
regular (sub-basins), grid, hexagon, or triangulated irregu-
lar network, also known as TIN (Beven, 2011; Marsh et al.,
2012; Olivera et al., 2006). Land models are also beginning
to adopt concepts of hydrological similarity (e.g., Newman et
al., 2014; Chaney et al., 2018). Traditionally land models use
the tiling scheme, whereby a grid box is subdivided into sev-
eral tiles of unique land cover, each described as a percentage
of the grid (Koster and Suarez, 1992). Similarly, the concept
of grouped response units (GRUs; Kouwen et al., 1993) as-
sumes similar hydrological property for areas with identical
soil, vegetation, and topography. The GRU concept is uti-
lized in the MESH land modeling framework (Pietroniro et
al., 2007).

A long-standing challenge is understanding the impact of
grid size on model simulations (Wood et al., 1988). The ef-
fect of model grid size can have a significant impact on model
simulation across scale, especially if the model parameters
are linked to characteristics which are averaged out across
scale (Blöschl et al., 1995). Shrestha et al. (2015) have in-
vestigated the performance of the Community Land Model
(CLM) v4.0 coupled with ParFlow across various grid sizes.
They concluded that grid sizes of more than 100 m can signif-
icantly affect the sensible heat and latent heat fluxes as well
as soil moisture. Also using the CLM, Singh et al. (2015)
demonstrated that topography has a substantial impact on
model simulations at the hillslope scale (∼ 100 m), as aggre-
gating the topographical data changes the runoff generation
mechanisms. This is understandable as the CLM is based on
a topographic wetness index (Beven and Kirkby, 1979; Niu
et al., 2005). However, Melsen et al. (2016) evaluated the
transferability of parameter sets across the temporal and spa-
tial resolutions for the Variable Infiltration Capacity (VIC)
model implemented in an Alpine region. They concluded that
parameter sets are more transferable across various grid sizes
in comparison with parameter transferability across different
temporal resolutions. Haddeland et al. (2002) showed that
the transpiration from the VIC model highly depends on grid
resolution. It remains debatable how model parameters and

performance can vary across various grid resolutions (Liang
et al., 2004; Troy et al., 2008; Samaniego et al., 2017).

The representation of spatial heterogeneity is an ongoing
debate in the land modeling community (Clark et al., 2015).
The key issue is to define which processes are represented
explicitly and which processes are parameterized. The effect
of spatial scale on emergent behavior has been studied for
catchment-scale models – the concepts of representative el-
ementary area (REAs) and representative elementary water-
shed (REW) were introduced to study the effect of spatial
aggregation on system-scale emergent behavior (Wood et al.,
1988; Reggiani et al., 1999). The effect of scale on model
simulations is not well explored for land models. More work
is needed to understand the extent to which the heterogeneity
of process representations is sufficient for the purpose of a
given modeling application and the extent to which the exist-
ing data can support the model configurations (Wood et al.,
2011; Beven et al., 2015) and guarantee a fidelius model.

In this study, we configure the VIC model in a flexible
vector-based framework to understand how model simula-
tions depend on the spatial configuration. The remainder of
this paper is organized as follows: in Sect. 2, we present
the concept of vector-based configuration for land models.
In Sect. 3 we describe the study area and the data sets used
in this study as well as the design of the experiments and
elaborate the VIC model and mizuRoute as the vector-based
routing model. In Sect. 4 we describe the results of the ex-
periments. Section 5 discusses the implication of spatial dis-
cretization strategies for large-scale land model applications.
The paper ends in Sect. 6 with conclusions of this study and
implications for future work.

2 The vector-based configuration for land models

Land models are often applied at a regularly spaced grid.
Land models are typically set up at a range of spatial con-
figurations, ranging from grid sizes of 0.02 to 2◦ (approxi-
mately 2 to 200 km) and applied at sub-daily temporal reso-
lutions for the simulation of energy fluxes. A priori specifica-
tion of the grid size of the land models is often derived from
forcing resolutions, modeling objectives, available geospa-
tial data, and computational resources and is usually based
on modeling convenience. Figure 1e–h illustrate the typical
land model configuration – here the modeler selects a cell
size, and then the soil, vegetation, and forcing files are all
aggregated or disaggregated to the target cell size. Original
data resolution and spatial distribution of soil, land cover,
and forcing data are smeared while upscaled to the resolu-
tion of interest. Any change in the modeling resolution will
require upscaling or downscaling of the geophysical data set
once again.

In this study, we configure the land models using non-
regular shapes. Figure 1a–d present an example of non-
regular shapes created through spatial intersections of the
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land covers and soil type shapes. These vector-based config-
urations of the geospatial data are then forced at the original
meteorological forcing resolution or its upscaled or down-
scaled values, resulting in computational units. Therefore,
each computational unit has unique geospatial data such as
soil, vegetation, slope, and aspect and is forced with a unique
forcing. In this configuration, changing meteorological forc-
ing resolution does not affect the decisions needed to upscale
the geospatial data such as soil type and land cover to the grid
resolution.

The benefits of vector-based configuration of land models
can be summarized as follows:

1. There is no need for a priori assumption on modeling
grid size. In traditional land model implementation, the
modeler selects a grid resolution (which is often a reg-
ular latitude/longitude grid). The soil parameters and
forcing data from any resolution must be aggregated,
disaggregated, resampled, or interpolated for every grid
size. The land cover data are often only considered as
a percentage for every grid, and spatial location of the
land cover is lost. However, in the vector-based setup,
these decisions are only based on the input and forc-
ing data that are chosen to be used in the modeling
practice, and no upscaling or downscaling to grid size
is needed. Furthermore, the size of computational units
can vary across the modeling domain depending on the
variability of the meteorological forcing and geospa-
tial heterogeneity. For example, the spatial density of
computational units can be higher in mountainous ar-
eas, where temperature and precipitation gradients are
larger while avoiding an unnecessarily high number of
computational units in areas with a lower gradient in
meteorological forcing.

2. There is a reasonable relation between available me-
teorological forcing and geospatial data resolution and
the number of computational units. Computational units
that are the result of available geophysical data sets
forced with the original forcing data logically represent
the maximum number of computational units that can
be hydrologically unique. A higher number of compu-
tational units than the proposed setup will arguably pro-
vide an unnecessary computational burden due to iden-
tical forcing data and geospatial information.

3. Direct simplification of geospatial data is possible. The
vector-based implementation facilitates easier aggrega-
tion of computational units. It is easier to aggregate
similar soil types or similar forested areas into unified
shapes with a basic GIS function (dissolving for exam-
ple) than this would be if all data had to be upscaled or
downscaled into a different grid size.

4. Direct specification of physical parameters is possi-
ble, and unrealistic combinations of land cover, soil,

and other geophysical information are avoided. As each
computational unit has a specific type of land cover, soil
type, and other physical characteristics, it is straightfor-
ward to specify parameter values based on lookup tables
(i.e., no averaging; upscaling is needed). This is favor-
able because the modeler does not need to make deci-
sions about methods used for upscaling of geophysical
data at the grid level. Also, this might avoid the unreal-
istic combination of parameter sets that might be con-
sidered by the model at a grid scale, such as equiprob-
able combination of land cover on soil type which may
not exist in reality, which will be increasing the fidelity
of the model representation of the processes (we will
elaborate this further in the context of the VIC model
in the Discussion). We emphasize that the ease of pa-
rameter allocation for vector-based implementation of
land models does not address the challenge of finding
the right parameter sets for each computational unit.

5. It has the ability to compare and constrain the parame-
ter values for computational units and their simulations.
The impact of land cover, soil type and elevation zone
can be evaluated separately. For example, the vector-
based implementation makes it easier to test if forested
areas generate less surface runoff than grasslands. This
might be more challenging at the gird-based configura-
tion, in which there are a combination of different land
cover types at grid scale. Similarly, the vector-based im-
plementation may simplify regularization efforts across
large geographical domains. These relative constraints
can be utilized to translate often patchy expert knowl-
edge into a sophisticated land model.

6. It is possible to incorporate additional data. If needed,
additional data, such as slope and aspect, for example,
can be incorporated in building the computational units,
accounting for changes in shortwave radiation or lapse
rates for temperature. The changes can be implemented
outside of the model in the forcing files. Computational
units can be built also based on variation of the leaf area
index (LAI), giving an additional layer of information in
addition to the land cover type. The additional informa-
tion can be easily ingested into the model without extra
effort in contrast to changing the model parameter files
at the grid scale.

7. Comparison of model simulations and in situ point-
scale observation and visualization are easier. The
vector-based implementation of land models makes it
easier to compare the point measurement to model sim-
ulation as the model simulations preserve the extent of
geospatial features.

8. The selection of models is modular and controlled. The
vector-based implementation identifies the character-
istics and spatial boundary of geospatial domains. A
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Figure 1. Panels (a–d) indicate vector-based configuration of a land model. (a) Meteorological forcing at its original resolution or upscaled
and downscaled resolutions, (b) land covers, (c) soil types with their spatial extent, and (d) vector-based configuration with 28 computational
units each with unique forcing, soil type, and land cover type. The bottom row indicates typical grid-based configuration of a land model;
(e) a priori resolution should be decided; (f) meteorological forcing should be upscaled or downscaled to the grid resolution; (g) land cover
percentage should be calculated for each modeling grid, or a dominate land cover should be selected to represent that grid; and finally (h) soil
characteristics for each modeling grid should be identified.

model might not be suitable for processes of some of the
geospatial domains. Alternatively, processes of a com-
putational unit that is beyond the capacity of one model
can be replaced with an alternative model. For example,
computational units that are glaciered can be replaced
with more suitable models, while the spatial configu-
ration and forcings remain identical. Consequently, the
effect of features such as glaciers can be better studied
as more expert models can be applied to glaciers, while
the rest of the computational units can be simulated with
a model that includes general processes.

3 Data and methods

3.1 Study area

Experiments are performed for the Bow River at Banff, as
part of the Saskatchewan River basin, with an area of ap-
proximately 2210 km2, located in the Canadian Rockies,
province of Alberta, Canada. Most of the Bow River stream-
flow is due to snowmelt (nivo-glacial regime). The aver-
age basin elevation is 2130 m, ranging from 3420 m at the
peak top to 1380 m above mean sea level at the outlet (town
of Banff). The basin annual precipitation is approximately
1000 mm, with a range of 500 mm for the Bow Valley up
to 2000 mm for the mountain peaks. The predominant land
cover is conifer forest in the Bow Valley and rocks and grav-
els for mountain peaks above the treeline.

3.2 Geospatial data and meteorological forcing

3.2.1 Model input data set and forcing

The inputs and forcing we used to set up the model are as
follows:

1. Land cover: we used the land cover map NALCMS-
2005 v2 (North American Land Change Monitoring
System; Latifovic et al., 2004) that is produced by
CEC (Commission for Environmental Cooperation).
NALCMS-2005 v2 includes 19 different classes. The
land cover map is used to set up the vegetation file and
vegetation library (lookup table) for the VIC model (Ni-
jssen et al., 2001).

2. Soil texture: we used the Harmonized World Soil Data
(HWSD; Fischer et al., 2008). For each polygon of the
world harmonized soil we use the highest proportion of
soil type. The HWSD provide the information for two
soil layers; in this study we base our analyses on the
lower soil layer reported in HWSD to define the soil
characteristics needed for the VIC soil file.

3. Digital elevation model: in this study we make use
of existing hydrologically conditioned digital elevation
models (DEMs) to (1) derive the river network topol-
ogy for the vector-based routing, mizuRoute; and (2) de-
rive the slope, aspect, and elevation zones, which are
used to estimate the forcing variables. For the first pur-
pose we use the hydrologically conditioned DEM of
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Figure 2. (a) The location of the Bow River basin at Banff, (b) Bow River basin elevation, (c) computational units for geospatial data of
elevation zones, land cover, and soil type forced at WRF original resolution at 4 km (Case 3–4 km), and (d) river network topology and
associated sub-basins that are used for the vector-based routing.

HydroSHED (Lehner et al., 2006) with a resolution of
3 arcsec, approximately 90 m; for the second purpose,
we use the HydroSHED 15 arcsec DEM (approximately
500 m).

4. Meteorological forcing: we used the weather re-
search and forecasting (WRF) model simulation
for the continental United States, with a tem-
poral resolution of 1 h and spatial resolution of
4 km (Rasmussen and Liu, 2017). For upscaling the
WRF input forcing, we use the CANDEX package
(https://doi.org/10.5281/zenodo.2628351) to map the
seven forcing variables to various resolutions (1/16,
1/8, 1/4, 1/2, 1, and 2◦ from the original resolution of
4 km). We used the required variables from the WRF
data set, namely, total precipitation, temperature, short-
and longwave radiation at the ground surface, V and U
components of wind speed, and water vapor mixing ra-
tio.

The shortwave radiation is rescaled based on the slope
and aspect of the respective computational unit (refer to Ap-

pendix A for more details). In this study we differentiated
four aspects and five slope classes. The temperatures at 2 m
are adjusted using the environmental lapse rate of −6.5 ◦C
for an 1000 m increase in elevation. The assumed lapse rate
aligns with earlier findings from the region of study (Pigeon
and Jiskoot, 2008).

3.2.2 Observed data for model calibration

The daily streamflow is extracted from the HYDAT (WSC,
Water Survey of Canada) for Bow at Banff with a gauge ID
of 05BB001. These data are used for parameter calibration
and identification of the VIC parameters.

3.3 Land model and routing scheme

3.3.1 The Variable Infiltration Capacity (VIC) model

The VIC model was developed as a simple land-
surface/hydrological model (Liang et al., 1994) that has been
applied worldwide (Melsen et al., 2016). In this study we
use the classic VIC version 5. The VIC model combines sub-
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grid probability distributions to simulate surface hydrology
such as variable infiltration capacity formulation (Zhao et al.,
1980). The VIC model uses three soil layers to represent the
subsurface. While each soil layer can have various physical
soil parameters (e.g., saturated hydraulic conductivity and
bulk density), each layer is assumed to be uniform across
the entire grid, regardless of the vegetation type variability
in that grid. The VIC model assumes a tile vegetation imple-
mentation within each grid similar to the mosaic approach of
Koster and Suarez (1992) with biophysical formulations for
transpiration (Jarvis, 1976). To account for spatial variability
in vegetation, the VIC model allows for root depths to be ad-
justed for every vegetation type. The vegetation parameters
(e.g., stomatal resistance, LAI, albedo) are often identical for
each land cover type across the modeling domain. The VIC
model can account for different elevation zones to account
for the temperature lapse rate, given the elevation difference
in a grid cell, and also for the distribution of precipitation
over the identified elevation zones.

In the experiments for this study, we calibrate a sub-
set of VIC parameters namely binf, Eexp, Ksat, d2,forested,
d2,non-forested, Kslow, and Sroughness (names are mentioned in
Table 1). Following the concept of GRUs (Kouwen et al.,
1993), we assume that the computational units with simi-
lar geophysical characteristics (soil and land cover) possess
similar parameter values. We make sure that the d2,forested is
larger than the d2,non-forested as the root depths are deeper for
forested regions (constraining relative parameters). For the
sake of simplicity, we limit the root zone to the upper soil
layers and replace the five-parameter VIC baseflow1 with a
linear reservoir (refer to Gharari et al., 2019, for further ex-
planation). We also assume that the two top soil layers pos-
sess homogeneous soil characteristics.

3.3.2 mizuRoute, a vector-based routing scheme

In this study, we make use of the vector-based routing model
mizuRoute (Mizukami et al., 2016). Vector-based routing
models can be configured for different computational units
than the land model uses (e.g., configuring routing models
using sub-basins derived from existing hydrologically con-
ditioned DEMs such as HydroSHEDS, Lehner et al., 2006,
or MERIT Hydro, Yamazaki et al., 2019). This removes the
dependency of the routing on the grid size or computational
unit configurations and eliminates the decisions that are often
made to represent routing-related parameters at grid scale.
Therefore, we can ensure that two model configurations with
different geospatial configurations are routed using the same
routing configuration. The intersection between the compu-
tational units in the land model and the sub-basins in the

1The VIC baseflow parameters are Dsmax, maximum rate of
baseflow; Ds, fraction of Dsmax where nonlinear baseflow begins;
Ws, fraction of maximum soil moisture where nonlinear baseflow
occurs; c, exponent used for the nonlinear part of the baseflow; and
d3, depth of the baseflow layer.

routing model defines the contribution of each computational
units from the land model to each river segment.

The impulse response function (IRF) routing method
(Mizukami et al., 2016) is used for this study. IRF, which is
derived based on diffusive wave equation, includes two pa-
rameters – wave velocity and diffusivity. The diffusive wave
parameters are set to 1 m s−1 and 1000 m2 s−1 respectively
and remain identical for all the river segments. The river net-
work topology, assuming approximately a 25 km2 starting
threshold for the sub-basin size, is based on a 92-segment
river network, depicted in Fig. 3d.

3.4 Experimental design

In this study, we configure the VIC model in a flexible vector-
based framework to understand how model simulations de-
pend on the spatial configuration. We consider four different
methods to discretize the landscape for seven different spa-
tial forcing grids (see Table 2). The landscape discretization
methods include (1) simplified land cover and soils; (2) full
detail on land cover and soils; (3) full detail on land cover and
soils, including elevation zones; and (4) full detail on land
cover and soils, including elevation zones, slope, and aspect.
The different spatial forcing resolutions are 4 km, 0.0625,
0.125, 0.25, 0.5, 1, and 2◦. This design enables us to sepa-
rate discretization of the landscape based on geospatial data
from the spatial resolution of the forcing data.

3.4.1 Experiment 1: how does the spatial configuration
affect model performance?

As the first experiment, we focus on how well the various
configurations simulate observed streamflow for Bow River
at Banff. We calibrate the parameters for the different config-
urations in Table 2. Model calibration is accomplished using
the Genetic Algorithm implemented in the OSTRICH frame-
work (Mattot, 2005; Yoon and Shoemaker, 2001), maximiz-
ing the Nash–Sutcliffe efficiency (ENS; Nash and Sutcliffe,
1970) using a total budget of 1000 model evaluations given
the available resources limited by the most computationally
expensive model (Case 4–4 km).

3.4.2 Experiment 2: how well do calibrated parameter
sets transfer across different model
configurations?

As the second experiment, we focus on how various con-
figurations can reproduce the result from the configuration
with highest computational units for a given parameter set. In
other words, this experiment evaluates accuracy–efficiency
trade-offs – i.e., the extent to which spatial simplifications
affect model performance under the assumption that simi-
lar computational units possess identical parameters across
various configurations. This is important as it enables mod-
elers to understand accuracy–efficiency trade-offs, given the
available data and the purpose of the modeling application.
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Table 1. The VIC model parameters that are subject to perturbation for model calibration for the designed experiments.

Parameter Parameter Minimum Maximum Unit Explanation
symbol name value value

binf Variable infiltration parameter 0.01 0.50 (–)

Eexp The slope of water retention curve 3.00 12.00 (–)

Ksat Saturated hydraulic conductivity 5.00 1000.00 (mm d−1)

d1 The depth of topsoil layer 0.2 0.2 (m) Fixed at 20 cm for both forested
and non-forested computational
units.

d2,forested The depth of the second soil layer for
forest computational units

0.2 2 (m)

d2,non-forested The depth of the second soil layer for
non-forested computational units

0.2 d2,forested (m) The maximum is bounded by
the d2,forested parameter.

Droot The distribution of root in the two soil
layers

0.5 0.5 (–) Fixed at 50 % for the top and
lower soil layers.

Kslow Slow reservoir coefficient 0.001 0.9 (d−1)

Sroughness Snow roughness 0.5 3 (mm)

Table 2. The numbers of computational units for the Bow River at Banff, given different spatial discretization of land cover, soil type,
elevation zones, slopes, and aspects forced with various forcing resolutions.

Forcing resolution Case 4
4 aspect groups;
5 slope groups;
19 classes of
land
cover;
500 m elevation
zones;

Case 3
no aspect groups;
no slope groups;
19 classes of land
cover;
500 m elevation
zones;

Case 2
no aspect groups;
no slope groups;
19 classes of land
cover;
no elevation zones;

Case 1
no aspect groups;
no slope groups,
3 classes of land
cover, one
dominant soil type
no elevation zones;

Number of unique
combination of
geospatial data
(soil, land cover,
elevation zones,
slopes, and as-
pects)

– 582 65 56 3

Number of compu-
tational units

4 km 6631 1508 941 479

0.0625◦ (∼ 6.25 km) 5224 1098 663 290
0.125◦ (∼ 12.50 km) 3079 515 283 94
0.25◦ (∼ 25.00 km) 2013 306 154 39
0.5◦ (∼ 50.00 km) 1332 184 93 21
1.0◦ (∼ 100.00 km) 917 116 56 12
2.0◦ (∼ 200.00 km) 767 89 42 6

This experiment is based on perfect model experiments using
the model with the highest computational unit as a synthetic
case (Case 4–4 km). Synthetic streamflow for every river seg-
ment is generated using a calibrated parameter set for Case
4–4 km. The models with a lower number of computational

units are then simulated using the exact same parameter set
used for generating the synthetic streamflow. The differences
in streamflow simulation, quantified using ENS, provide an
understanding of how the simulations deteriorate when the
spatial and forcing heterogeneities are masked or upscaled.
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This also will bring an understanding on how sensitive the
changes are along the river network and at the gauge loca-
tion at which the models are calibrated against the observed
streamflow data. Similarly, we compare the spatial patterns
of snow water equivalent for the different spatial configura-
tions.

4 Results

4.1 Experiment 1

The various model configurations are compared with respect
to the Nash–Sutcliffe performance metric (ENS). Results
show that all the models, including the ones that are config-
ured with coarser resolution forcings, can simulate stream-
flow with ENS as high as 0.70 (Table 3). It is noteworthy
to mention that the configuration of Case 4–1◦ has a higher
ENS value compared to the cases with highest computational
units, Case 4–4 km for example. This might be due to vari-
ous reasons including (1) compensation of forcing aggrega-
tion on possible forcing bias at finer resolution and (2) com-
pensation of forcing aggregation on model states and fluxes
and possible adjustment for model structural inadequacy and
hence directing the optimization algorithm to different pos-
sible solutions across configurations.

We use a single objective calibration algorithm for model
calibration, however, and for investigating the parameter un-
certainty, we check the behavioral parameter sets with ENS
higher than 0.7 (arbitrary units). These parameter sets in-
dicate very different soil characteristics. Figure 3a illus-
trates the possible combinations of behavioral parameter sets
for Case 2–4 km (ENS>0.7). As a specific example, satu-
rated hydraulic conductivity, Ksat, and slope of water reten-
tion curve, Eexp, have very different combinations of values
within the specified parameter ranges for calibration. The re-
sult indicates the two parameters that are often fixed or a
priori allocated based on lookup tables can exhibit signifi-
cant uncertainty and non-identifiability. It is also notewor-
thy to mention that among the parameters, Kslow seems to
be the most identifiable parameter, while it is set to the up-
per limit range. There might be two explanations for this be-
havior: (1) this might be related to the nivo-glacier regime
of the study basin, which has a strong yearly cycle due to
snow accumulation and snowmelt; (2) the lack of macropore
water movement to the baseflow component results in damp-
ened input to this component and in return results in Kslow
being higher than expected for a baseflow reservoir (for fur-
ther reading, refer to Gharari et al., 2019). Overall, the results
indicate that calibrating the VIC model parameters using a
sum of squared objective function at the basin outlet does
not constrain the VIC subsurface parameters. Additionally,
we examine the difference between the fluxes, in this case
transpiration, for all the parameter sets presented in Fig. 3a.
Figure 3b illustrates differences between the yearly transpi-

ration flux for the computational units of case 2–4 km. This
difference can be as high as 250 mm yr−1 indicating the in-
ternal uncertainty of fluxes and related states in reproducing
similar performance metric. This difference can be the basis
of model diagnosis to understand which computational units
are causing the internal uncertainty and perhaps the underly-
ing reasons for it.

4.2 Experiment 2

The second experiment compares the performance of a pa-
rameter set from the Case 4–4 km across the configurations
with degraded geophysical information and aggregated spa-
tial information. Here we choose a parameter set that hasENS
of above 0.7 (this can be any other parameter sets). Figure 4
shows the evaluation metric,ENS, for the streamflow of every
river segment across the domain in comparison with the syn-
thetic case (Case 4–4 km). From Fig. 4, it is clear that theENS
is less sensitive for river segments with a larger upstream area
(i.e., segments that are located more downstream). This result
has two major interpretations (i) the parameter transferability
across various configurations is dependent on the sensitivity
of simulation at the scale of interest, meaning that as long as
good performance is achieved in the context of modeling, for
example for the streamflow at the basin outlet, the parame-
ters can be said to transferable for that scale; and (ii) often
inferred parameters at larger scale may not guarantee good
performing parameters at the smaller scales (read upstream
areas) as the change in the performance metric varies signif-
icantly across scale for the smaller modeling elements.

To understand the spatial patterns of model simulations
for all the configurations, we evaluate the distribution of the
snow water equivalent, SWE, for the computational units on
5 May 2004 (Fig. 5). In general, the SWE follows the forc-
ing resolution and its aggregation. Although coarser forcing
resolution results in coarser SWE simulation, the geospa-
tial details such as elevation zones, slopes, and aspects re-
sult in more realistic representation of SWE as the snow
layer is thinner for south-facing slopes where more melt can
be expected to occur and thicker for higher elevation zones
(compare SWE simulations for Case 4–2◦ and Case 3–2◦

in Fig. 5), which is consistent with higher precipitation vol-
umes and slower melt at higher elevation. Another observa-
tion from Fig. 5 is the unrealistic distribution of SWE for
configurations without elevation zones (Case 2 and Case 1).
The lack of elevation zones results in both valley bottoms and
mountaintops being forced with the same temperature. Snow
is more durable in the forested areas, which are at lower el-
evation, as the result of the model formulation, while SWE
is less for higher mountains, which is unrealistic. We remind
the reader that the various spatial patterns of SWE across dif-
ferent configurations are from the simulations that result in a
rather similar performance metric,ENS, for the streamflow at
the outlet of the basin.
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Table 3. The highest calibrated Nash–Sutcliffe performance metric (ENS) for the different model configurations. Details on the geospatial
cases are provided in Table 2.

Forcing resolution Case 4
4 aspect groups;
5 slope groups;
19 classes of land
cover;
500 m elevation
zones;

Case 3
no aspect groups;
no slope groups;
19 classes of land
cover;
500 m elevation
zones;

Case 2
no aspect groups;
no slope groups;
19 classes of land
cover;
no elevation zones;

Case 1
no aspect groups;
no slope groups,
3 classes of land cover, one domi-
nant soil type
no elevation zones;

4 km 0.80 0.81 0.78 0.75
0.0625◦ (∼ 6.25 km) 0.79 0.79 0.77 0.75
0.125◦ (∼ 12.50 km) 0.82 0.81 0.75 0.75
0.25◦ (∼ 25.00 km) 0.81 0.83 0.77 0.76
0.5◦ (∼ 50.00 km) 0.79 0.82 0.76 0.76
1.0◦ (∼ 100.00 km) 0.83 0.81 0.79 0.78
2.0◦ (∼ 200.00 km) 0.77 0.77 0.77 0.80

Figure 3. (a) The normalized values for the parameters of Case 2–4 km that have ENS (Nash–Sutcliffe efficiency) values of higher than 0.7.
(b) The difference of largest and smallest yearly simulated transpiration for parameter sets with ENS above 0.7.

Figure 6a shows the performance of the streamflow across
various configurations for the most downstream river seg-
ment (the gauged river segment which is used for parame-
ter inference through calibration). Figure 6a illustrates that
most of the configurations have a similar scaled ENS at the
basin outlet. We compared the maximum snow water equiv-
alent across different configurations for a computational unit
located in the Bow Valley bottom (an arbitrary location of
−116.134◦W and 51.382◦ E) for the year 2004 (Fig. 6b).
The result indicates that the SWE is higher for configurations
with coarser forcing resolutions (almost triple). This is due to
the reduced temperature as a result of masking warmer val-
ley bottom by cooler and higher forcing grids over the Rock-
ies. Such analyses can provide insights into the appropriate
model configurations for different applications. Also, and as
an example, if model configurations of different complexity
are known to show similar performance for a given parameter
set, uncertainty and sensitivity analysis can be done initially

on the models with fewer computational units, and the re-
sults of the analysis can be applied to models with a higher
number of computational units. This analysis can be repeated
for different parameter sets, e.g., poorly performing parame-
ter sets or randomly selected parameter sets, to better under-
stand accuracy–efficiency trade-offs of the model within its
specified parameters ranges.

5 Discussion

In this study, we proposed a vector-based configuration for
land models and applied this setup to the VIC model. We
used a vector-based routing scheme, mizuRoute, which was
forced using output from the land model (one-way coupling).
Unlike the grid-based approach, there is no upscaling of land
cover percentage or soil characteristics to a new grid size.
This enables us to separate the effects of changes in forc-
ing resolution from changes in the spatial configurations. As
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Figure 4. Differences of the simulated streamflow at river segments in comparison with the synthetic case, Case 4–4 km, expressed in the
performance metric ENS.
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Figure 5. Comparison of the snow water equivalent for 5 May 2004 for various configurations.
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Figure 6. (a) The relative performance of model simulation across various configurations with a single parameter set. (b) Maximum of snow
water equivalent for an arbitrary location of −116.134◦W and 51.382◦ E located in Bow Valley bottom across various model configurations
for the year 2004.

mentioned earlier in Sect. 2, the vector-based configuration
of land models may help to avoid unrealistic configuration
of soil type, land cover, or elevation zones that may hap-
pen in traditional grid-based implementation and hence in-
crease the model fidelity. As an example, VIC configuration
at grid scale assumes equal distribution of land cover over
different elevation zones. Figure 7b illustrates how the tra-
ditional VIC configuration at grid scale wrongly considers
forested land cover above the treeline. This issue is avoided
in the vector-based configuration as the setup will only in-
clude two computational units of forested area below the
treeline and bare soil above the treeline (Fig. 7a). The vector-
based setup provides more flexibility in comparing the model
simulations across computational units (as an example, refer
to Fig. 5) and also comparing model simulations with point
measurements, such as snow water equivalent. Moreover, the
vector-based routing results in complete decoupling of the
land model computational units’ spatial extent from routing
sub-basins. For the grid-based configuration of land models,
it is often the case that in land, model grids and routing grids
are identical, which result in further decisions on upscaling
of the routing direction to the land model grid scale.

Our results illustrate that various vector-based spatial con-
figuration of the VIC model generates similar large-scale
simulations of streamflow when the setups are calibrated by
maximizing the Nash–Sutcliffe score at the basin outlet. Sim-
ilarly, we have shown that often behavioral parameter sets
yield similar ENS values and can be significantly uncertain
(Fig. 3a) or have significant differences for their internal be-

havior, which may be very well masked by aggregation of
the result at the grid scale or basin scale (Figs. 3b and 5).
Generally, parameter, state and flux uncertainties are not of-
ten evaluated or reported on in land models (Demaria et al.,
2007) or are ignored by tying parameters, linking specific hy-
draulic conductivity to the slope of the water retention curve,
for example, so that the possible combinations of parameters
are reduced. Moreover, the behavior of the Kslow parameter
can be revealing of the VIC model structural deficiencies,
which are not often explored for land models. The recession
coefficient obtained from recession analysis on the observed
hydrograph is approximately 0.01 d−1, while the calibrated
Kslow has much higher values of around 0.90 d−1. This can
be due to a dampened response from the two top soil lay-
ers and a lack of macropore water movement to the baseflow
component. Similarly, and due to a lack of macropore water
movement in the VIC model, and land models in general, it is
impossible to infer the Kslow based on recession analysis on
the observed hydrograph (for further reading on this and also
recession analysis refer to Gharari et al., 2019). This finding
can be generalized to the five-parameter VIC baseflow, high-
lighting the need to properly evaluate the often not observ-
able but calibrated baseflow parameters for the VIC model
and if it is possible to identify five parameters based on the
recession limps of a hydrograph.

Land models are often applied at large spatial scales. The
results clearly show that the deviation of streamflow is much
lower in river segments with a larger upstream area (Figs. 4
and 6a). It is often the case that the model parameters and
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Figure 7. (a) The realistic configuration of a natural system with land cover consisting of 50 % bare soil and 50 % forest within a grid located
in two different elevation zones above and below the treeline which is preserved with vector-based configurations and (b) the traditional
VIC configurations for the given system at the grid for the two elevation zones and two land cover types which results in an unrealistic
combination of forested land cover above the treeline and bare soil below the treeline.

associated processes are inferred through calibration on the
streamflow at the basin outlet or over a large contributing
area. We argue that this may not be a valid strategy for pro-
cess understanding at the smaller scale (read computational
units), given the large uncertainty exhibited by the parame-
ters. Therefore, hyper-resolution modeling efforts (Wood et
al., 2011) may suffer from poor process representation and
parameter identification at the scale of interest (Beven et al.,
2015). What is needed instead of efficiency metrics that ag-
gregate model behavior across both space (e.g., at the outlet
of the larger catchment) and time (e.g., expressing the mis-
match between observations and simulations across the en-
tire observation period as a single number) is diagnostic eval-
uation of the model’s process fidelity at the scale at which
simulations are generated in the case of available observa-
tions (e.g., Gupta et al., 2008; Clark et al., 2016).

One might argue that the spatial discretization is impor-
tant for the realism of model fluxes and states. Moving to a
significantly high number of computational units may result
in computational units that are similar in their forcing and
geospatial fabric (such as soil and land cover types). Based
on the result of this study for snow water equivalent (Fig. 5),
we can argue that the snow patterns are fairly similar for the
configurations that have elevation zones and finer resolution
of forcing (Cases 3 and 4 and forcing resolution less than
0.125◦). (m

(
x|θ

)
∼m(x|θ), in which m is the model, x and

θ are model forcing and the model parameter set, and x and θ
are upscaled forcing and parameter values at coarser spatial
representation.)

The analysis of the accuracy–efficiency trade-off pre-
sented in this study, Fig. 6, can be used in model analysis
such as sensitivity and uncertainty. One can assume that a
configuration with fewer computational units can be a surro-
gate for a model with more computational units, under the
condition that both models are known to behave similarly for
a given parameter set. The calibration can be done on the
model configuration with fewer computational units, and the
parameters can be transferred directly to the model with more
computational units or can be used as an initial point for opti-

mization algorithm to speed up the calibration process. Sim-
ilarly, the sensitivity analyses can be done primarily on the
model with fewer computational units.

In this study, and following the concept hydrological sim-
ilarity, we assume the parameters of computational units
are identical for computational units with similar soil and
land cover. The degree of validity of hydrological similar-
ity concepts is debatable. For example, at the catchment
scale, Oudin et al. (2010) have shown that the overlap be-
tween catchments with similar physiographic attributes and
catchments with similar model performance for a given pa-
rameter set is only 60 %. Thus, physiographic similarity (in
our case expressed through GRUs) does not necessarily im-
ply similarity of hydrologic behavior, even though this is
the critical assumption underlying GRUs. The VIC param-
eters can be linked to many more characteristics such as
slope, height above nearest drainage (HAND; Renno et al.,
2008; Gharari et al., 2011), or topographic wetness index
(Beven and Kirkby, 1979), as has been done by Mizukami
et al. (2016) and Chaney et al. (2018). Techniques such as
multiscale parameter regionalization (MPR; Samaniego et
al., 2010) can be used to scale parameter values for differ-
ent model configurations. However, the functions that are
used to link computational units and physical attributes to
model parameters remain mostly based on inference, (i.e.,
calibration), and the reproducibility of those relationships are
not very well explored. However, application of these tech-
niques, such as in this case that has significant parameter
and process uncertainty and significant accuracy–efficiency
trade-off, should be put through rigorous tests (Merz et al.,
2020; Liu et al., 2016).

A key outstanding challenge is for models to provide the
right results for the right reasons (Kirchner, 2006). Thought-
ful strategies to formulate parameter and process constraints
based on expert knowledge can reduce the plausible range of
behavioral parameter sets. In this study, we imposed a sim-
ple parameter constraint that the root zone moisture storage
of forested area should be larger than the non-forested area
(Table 1). Additional process constraints, if available, can be
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increasingly difficult to satisfy. More rigorous parameter es-
timation methods that satisfy the fidelity constraints based on
expert knowledge are required (e.g., Gharari et al., 2014).

In this study, the vector-based routing configuration does
not include lakes and reservoirs. This is often a neglected el-
ement of land modeling efforts and has only attracted limited
attention compared to the its impact on terrestrial water cycle
(Haddeland et al., 2006; Yassin et al., 2019). The presence of
lakes and reservoirs and their interconnections reduces the,
already limited, ability of inference of land model parame-
ters based on calibration on the observed streamflow (Dang
et al., 2020).

Although not primarily the result of this study, however,
the nivo-glacial regime of the Bow River basins is mostly
dominated by snowmelt that contributes mostly to stream-
flow through baseflow (slow component of the hydrograph).
The high Nash–Sutcliffe efficiency, ENS, is partly due to the
fact that it is rather easy for the land model to capture the
yearly cycle of the streamflow only with snow processes (see,
e.g., Knoben et al., 2020, demonstrating this for the Kling–
Gupta efficiency), while rapid subsurface water movement,
such as macropore movement, is largely missing in the land
models (Gharari et al., 2019). Therefore, more caution is
needed for the calibration of land model parameters for flood
forecasting (Vionnet et al., 2020) for the Bow region and all
the nivo-glacial river systems in western Canada, McKenzie,
Yukon, and Colombia River basins.

6 Conclusions

The vector-based configuration of land models can provide
modelers with more flexibility, e.g., representing the impact
of various forcing resolutions or geospatial data representa-
tion. The conclusions from this study can be summarized as
follows:

1. The land model configuration with the highest number
of computational units may not result in improved per-
formance and better spatial simulation, in terms of ob-
tained efficiency scores, while the internal model state
and fluxes can show significant uncertainty.

2. There is significant parameter and structural uncertainty
associated with the land model (in this case, the VIC
model). This uncertainty poses challenges for the pro-
cess and parameter inference when the model is cali-
brated by minimizing the sum of squared differences
between simulated and observed streamflow. Any pa-
rameter regionalization efforts should take these uncer-
tainties into account. Our results emphasize that more
attention is needed on the topic of parameter and pro-
cess inference at finer modeling scales.

3. A model configuration with lower computational units,
coarser resolution, and less geospatial information may
reproduce model simulations with similar efficiency
scores as configurations with higher computational
units. Less computationally expensive configurations
can be used for primary uncertainty and sensitivity anal-
ysis.

A key scientific challenge is hydrological scaling; i.e., how
do small-scale heterogeneities shape large-scale fluxes? Ad-
dressing this challenge requires a mix of both explicit rep-
resentations of spatial heterogeneity (enabled through spa-
tial discretization of the landscape) and implicit representa-
tions of heterogeneity (enabled through sub-grid parameteri-
zations). The contribution in this paper is to advance flexible
spatial configurations for land models – our approach im-
proves the explicit representation of spatial heterogeneities,
at least compared to traditional approaches that simply drape
a grid over the landscape. Much more work is required across
all spatial scales to carefully evaluate how a mix of explicit
and implicit representations of spatial heterogeneity can im-
prove process representations. We encourage the community
to develop tools which can enable easier and more flexible
configuration of land models that can be used to explore the
above-mentioned research questions.
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Appendix A

This appendix reflects on the method and equations that have
been used to calculate the ratio of the solar radiation on a
surface with slope and aspect to a flat surface. Please note
that the angles in the equations are in radians, but for better
communication we express angles in degrees in the text.

Declination angle: the declination angle can be calculated
for each day of year and is the same for the entire Earth
(Sarbu and Sebarchievici, 2017):

δ = 23.45
π

180
sin

[
2π
360

360
365

(284+ d)
]
, (A1)

in which δ is the declination angle in radians, and d is the
number of days in a year starting from 1 January.

Hour angle: the hour angle is the angle expressed at the so-
lar hour. The reference of solar hour angle is solar noon (hour
angle is set to zero) when the sun is passing the meridian of
the observer or when the solar azimuth is 180◦ (north direc-
tion with azimuth of 0◦). The hour angle can be calculated
based on the

sinω =
sinα− sinδ sin∅

cosδ cos∅
. (A2)

in which α, φ, and δ are the altitude angle, latitude of the
observer, and declination angle. The sunset and sunrise hour
can be calculated as (when sun is at horizon and solar altitude
angle is zero)

cosωs =− tan∅ tanδ. (A3)

More caution is needed using Eq. (A3) for latitudes above
and below 66.55◦ north and south respectively where it can
be always day or night with no sunrise or sunset during part
of the year. The number of daylight hours that can be split be-
fore and after the solar noon equally can be calculated based
on (assuming 15◦ for every 1 h)

n=
2ωs
15

180
π
. (A4)

And therefore, the hour angle can be easily calculated for
the time before and after solar noon (every 15◦ is equal to
an hour). The hour angle is negative for the time before solar
noon and positive for the time after solar noon. Note the solar
noon does not often coincide with 12:00 of the local time
zone. There are relationships to find the local time of solar
noon.

Solar altitude angle: the solar altitude angle is the angle of
sun rays with the horizontal plane of an observer. This angle
is maximum at solar noon and 0◦ for sunset and sunrise. The
altitude angle can be calculated based on the

sinα = sinδ sin∅+ cosδ cosωcos∅. (A5)

For the solar noon, when ω, the hour angle, is zero, the
question simplifies to

sinα = sinδ sin∅+ cosδ cos∅= cos(∅− δ)

= sin
(π

2
−∅+ δ

)
. (A6)

Solar azimuth: the solar azimuth angle, ASun, reflects the
angle of the sun on the sky from the north in a clockwise
fashion. The azimuth angle can be calculated as

sinASun =
sinωcosδ

cosα
. (A7)

The solar azimuth angle for the solar noon is set to be 180◦.
TS1The azimuth at the sunset and sunrise can be calculated

by

sinASun,rise =−sinωs cosδ (A8)
sinASun,set = sinωs cosδ. (A9)

Surface azimuth (a.k.a. aspect): the surface azimuth angle,
ASurface, reflects the direction of any tilted surface to a north-
ern direction. This azimuth is fixed for any point, while the
solar azimuth changes over hours and seasons.

Angle of incidence θ : this angle represents the angle be-
tween sun rays and the normal vector of a sloped surface.
The model angle of the incidence for a slope surface, β, and
aspect of ASurface over latitudes of ∅ can be calculated as
(Kalogirou, 2009; in the reference formulation the azimuth
is from the south, which is corrected here for north)

cosθ = sinδ sin∅cosβ + sinδ cos∅sinβ cosASurface

+ cosδ cos∅cosβ cosω− cosδ sin∅sinβ cos
ASurface cosω− cosδ sinβ sinASurface sinω .

(A10)

For the flat surface, both ASurface and β are set to 0◦. The
incident angle can be calculated for the flat surface as

cosθflat = sinδ sin∅+ cosδ cos∅cosω. (A11)

In the case that the angle of incident is larger than 90◦, the
surface shades itself.

Correction of shortwave radiation based on slope and as-
pect: in this study we correct the WRF shortwave radia-
tion based on the surface slope and aspect. We first back-
calculated the incoming shortwave radiation by dividing the
shortwave radiation provided by the cosine of the incident
angle of the flat surface. Then we can calculate the solar ra-
diation of the sloped surface. multiplying this value by the
cosine of the incident angle of the slope surface. Basically,
this ratio is

R =
cosθ

cosθflat
. (A12)
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Figure A1. Shortwave radiation (a) not corrected for slope and aspect and (b) corrected for slope and aspect for 21 June 2020 and (c) not
corrected for slope and aspect and (d) corrected for slope and aspect for 21 December 2020.

The effect of the atmosphere is considered in the WRF
product itself. However, and for incident levels close to 90◦,
the ratio, R, might have very high values, which results in
the surface receiving an unrealistically high value of radia-
tion, even higher than the solar constant, 1366 W m−2, at the
top of the atmosphere. For cases with cosine values of the
incident angle lower than 0.05, we set the ratio to 0 to avoid
this unrealistic condition.
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