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Abstract. Land models are increasingly used in terrestrial hydrology due to their process-9 

oriented representation of water and energy fluxes. A priori specification of the grid size of the 10 

land models is typically defined based on the spatial resolution of forcing data, the modeling 11 

objectives, the available geo-spatial information, and computational resources. The variability of 12 

the inputs, soil types, vegetation covers, and forcing are masked or aggregated based on the a 13 

priori grid size. In this study, we propose an alternative vector-based implementation to directly 14 

configure a land model using unique combinations of land cover types, soil types, and other 15 

desired geographical features that has hydrological significance, such as elevation zone, slope, 16 

and aspect. The main contributions of this paper are to (1) implement the vector-based spatial 17 

configuration using the Variable Infiltration Capacity (VIC) model; (2) illustrate how the spatial 18 

configuration of the model affects simulations of basin-average quantities (i.e., streamflow) as 19 

well as the spatial variability of internal processes (SWE and ET); and (3) describe the 20 

work/challenges ahead to improve the spatial structure of land models. Our results show that a 21 

model configuration with a lower number of computational units, once calibrated, may have 22 

similar accuracy to model configurations with more computational units. However, the different 23 

calibrated parameter sets produce a range of, sometimes contradicting, internal states and fluxes. 24 

To better address the shortcomings of the current generation of land models, we encourage the 25 

land model community to adopt flexible spatial configurations to improve model representations 26 

of fluxes and states at the scale of interest. 27 
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1 Introduction 28 

Land models have evolved considerably over the past few decades. Initially, land models (or land-29 

surface models) were developed to provide the lower boundary conditions for atmospheric models 30 

(Manabe, 1969). Since then land models have increased in complexity, and they now include a 31 

variety of hydrological, biogeophysical, and biogeochemical processes (Pitman, 2003). Including 32 

this broad suite of terrestrial processes makes land models enables simulations of energy and water 33 

fluxes and carbon and nitrogen cycles. 34 

Despite the recent advancements in process representation in land models, there is currently 35 

limited understanding of the appropriate spatial complexity that is justified based on the available 36 

data and the purpose of the modelling exercise (Hrachowitz and Clark, 2017). The increase of 37 

computational power, along with the existence of more accurate digital elevation models and land 38 

cover maps, encourage modelers to configure their models at the finest spatial resolution possible. 39 

Such hyper-resolution implementation of land models (Wood et al., 2011) can provide detailed 40 

simulations at spatial scales as small as 1-km2 grid over large geographical domains (e.g., Maxwell 41 

et al., 2015). However, the computational expense for hyper-resolution models could potentially 42 

be reduced using more creative spatial discretization strategies (Clark et al., 2017). 43 

It is common to adopt concepts of hydrological similarity to reduce computational costs. In this 44 

approach, spatial units are defined based on similarity in geospatial data, under the assumption that 45 

processes, and therefore parameters, are similar for areas within a spatial unit (e.g., Vivoni et al., 46 

2004, Newman et al., 2014). Hydrological Response Units (HRUs) are perhaps the most well-47 

known technique to group geospatial attributes in hydrological models. HRUs can be built based 48 

on various geospatial characteristics; for example, Kirkby and Weyman 1974, Knudsen and 49 

Refsgaard (1986), Flügel (1995), Winter (2001), and Savenije (2010) all have proposed to use 50 

geospatial indices to discretize a catchment into hydrological units with distinct hydrological 51 

behaviour. HRUs can be built based on soil type such as proposed by Kim and van de Giessen 52 

(2004). HRUs can also be built based on fieldwork and expert knowledge (Naef et al., 2002, 53 

Uhlenbrook 2001), although the spatial domain of such classification will be limited to the 54 

catchment of interest and the spatial extent of the field measurements. HRUs are often constructed 55 

by GIS-based overlaying of various maps of different characteristics and can have various shapes 56 
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such as for non-regular (sub-basins), grid, hexagon, or triangulated irregular network also known 57 

as TIN (Beven 2001, Marsh et al., 2012, Oliviera et al., 2006). Land models are also beginning to 58 

adopt concepts of hydrological similarity (e.g., Newman et al., 2014; Chaney et al., 2018). 59 

Traditionally land models use the tiling scheme where a grid box is subdivided into several tiles 60 

of unique land cover, each described as a percentage of the grid (Koster and Suarez, 1992). 61 

Similarly, the concept of Grouped Response Units (GRUs, Kouwen et al., 1993), assumes similar 62 

hydrological property for areas with identical soil, vegetation, and topography. The GRU concept 63 

is utilized in the MESH land modeling framework (Pietroniro et al., 2007). 64 

A long-standing challenge is understanding the impact of grid size on model simulations (Wood 65 

et al., 1988). The effect of model grid size can have a significant impact on model simulation 66 

across scale especially if the model parameters are linked to characteristics which are averaged out 67 

across scale (Bloschl et al., 1995). Shrestha et al. (2015) have investigated the performance of 68 

Community Land Model (CLM) v4.0 coupled with ParFlow across various grid sizes. They 69 

concluded the grid size changes of more than 100 meters can significantly affect the sensible heat 70 

and latent heat fluxes as well as soil moisture. Also using CLM, Singh et al. (2015) demonstrated 71 

that topography has a substantial impact on model simulations at the hillslope scale (~100 meters), 72 

as aggregating the topographical data changes the runoff generation mechanisms. This is 73 

understandable as the CLM is based on topographical wetness index (Beven and Kirkby 1979, Niu 74 

et al., 2005). However, Melsen et al. (2016) evaluated the transferability of parameters sets across 75 

the temporal and spatial resolutions for the Variable Infiltration Capacity (VIC) model 76 

implemented in an Alpine region. They concluded that parameter sets are more transferable across 77 

various grid sizes in comparison with parameter transferability across different temporal 78 

resolutions. Haddeland et al. (2002) showed that the transpiration from the VIC model highly 79 

depends on grid resolution. It remains debatable how model parameters and performance can vary 80 

across various grid resolutions (Liang et al., 2004; Troy et al., 2008; Samaniego et al., 2017). 81 

The representation of spatial heterogeneity is an ongoing debate in the land modelling community 82 

(Clark et al., 2015). The key issue is to define which processes are represented explicitly and which 83 

processes are parameterized. The effect of spatial scale on emergent behavior has been studied for 84 

catchment scale models – the concepts of Representative Elementary Areas (REA), or 85 

Representative Elementary Watersheds (REW), were introduced to study the effect of spatial 86 
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aggregation on system-scale emergent behavior (Wood et al., 1995, Reggiani et al., 1999). The 87 

effect of scale on model simulations is not well explored for land models. More work is needed to 88 

understand the extent to which the heterogeneity of process representations is sufficient for the 89 

purpose of a given modelling application, and the extent to which the existing data can support the 90 

model configurations (Wood et al., 2011, Beven et al., 2015) and guarantee a fidelius model. 91 

In this study, we configure the Variable Infiltration Capacity (VIC) model in a flexible vector-92 

based framework to understand how model simulations depend on the spatial configuration. The 93 

remainder of this paper is organized as follows: In Section 2, we present the concept of vector-94 

based configuration for land models. In Section 3 we describe the study area and the data sets used 95 

in this study as well as the design of the experiments, and elaborate the Variable Infiltration 96 

Capacity model (VIC) and mizuRoute as the vector-based routing model. In Section 4 we describe 97 

the results of the experiments. Section 5 discusses the implication of spatial discretization 98 

strategies on large-scale land model applications. The paper ends in Section 6 with conclusions of 99 

this study and implications for future work. 100 

2 The vector-based configuration for land models 101 

Land models are often applied at a regularly spaced grid. Land models are typically set up at a 102 

range of spatial configurations, ranging from grid sizes of 0.02 to 2 (approximately 2 to 200 km) 103 

and applied at sub-daily temporal resolutions for simulation of energy fluxes. A priori specification 104 

of the grid size of the land models is often derived from forcing resolutions, modeling objectives, 105 

available geo-spatial data and computational resources and is usually based on modeling 106 

convenience. Figure-1e-h illustrates the typical land model configuration – here the modeler 107 

selects a cell size, and then the soil, vegetation and forcing files are all aggregated or disaggregated 108 

to the target cell size. Original data resolution and spatial distribution of soil, land cover and forcing 109 

data are smeared while upscaled to the resolution of interest. Any change in the modeling 110 

resolution will require upscaling or downscaling of the geo-physical dataset once again. 111 

In this study, we configure the land models using non-regular shapes. Figure-1a-d presents an 112 

example of non-regular shapes created through spatial intersections of the land covers and soil 113 

types shapes. These vector-based configuration of the geospatial data are then forced at the original 114 

meteorological forcing resolution, or its upscaled or downscaled values resulting in computational 115 
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units. Therefore, each computational unit has unique geospatial data such as soil, vegetation, slope 116 

and aspect and is forced with a unique forcing. In this configuration changing of meteorological 117 

forcing resolution do not affect the decisions needed to upscale the geo-spatial data such as soil 118 

type and land cover to the grid resolution. 119 

 120 

Figure-1- Top row indicates vector-based configuration of a land model; (a) meteorological 121 

forcing at its original resolution or upscaled and downscaled resolutions, (b) land covers, (c) soil 122 

types with their spatial extent, and (d) vector-based configuration with 28 computational units each 123 

with unique forcing, soil type and land cover type. The bottom row indicates typical grid-based 124 

configuration of a land model; (e) a priori resolution should be decided, (f) meteorological forcing 125 

should be upscaled or downscaled to the grid resolution, (g) land cover percentage should be 126 

calculated for each modeling grid; or a dominate landcover should be selected to represent that 127 

grid,  and finally (h) soil characteristics for each modeling grid should be identified. 128 

The benefits of vector-based configuration of land models can be summarized as follows: 129 

1- No need for a priori assumption on modeling grid size. In traditional land model 130 

implementation, the modeler selects a grid resolution (which is often a regular latitude/longitude 131 

grid). The soil parameters and forcing data from any resolution must be aggregated, disaggregated, 132 

resampled or interpolated for every grid size. The land cover data often is only considered as a 133 

percentage for every grid and spatial location of the land cover is lost. However, in the vector-134 

based setup these decisions are only based on the input and forcing data that are chosen to be used 135 
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in the modeling practice and no upscaling or downscaling to grid size is needed. Furthermore, the 136 

size of computational units can vary across modeling domain depending on the variability of the 137 

meteorological forcing and geospatial heterogeneity. For example, the spatial density of 138 

computational units can be higher in mountainous areas where temperature and precipitation 139 

gradients are larger while avoiding unnecessarily high number computational units in areas with 140 

lower gradient in meteorological forcing.  141 

2- Reasonable relation between available meteorological forcing and geo-spatial data 142 

resolutions and number of computational units: computational units that are the result of 143 

available geophysical data sets forced with the original forcing data logically represent the 144 

maximum number of computational units that can be hydrologically unique. A higher number of 145 

computational units than the proposed setup will arguably provide an unnecessary computational 146 

burden due to identical forcing data and geospatial information. 147 

3- Direct simplification of geospatial data. The vector-based implementation facilitates 148 

easier aggregation of computational units. It is easier to aggregate similar soil types or similar 149 

forested areas into a unified shapes with basic GIS function (dissolving for example) than this 150 

would be if all data had to be upscaled or downscaled into a different grid size. 151 

4- Direct specification of physical parameters and avoiding unrealistic combinations of 152 

land cover, soil and other geo-physical information. As each computational unit has a specific 153 

type of land cover, soil type and other physical characteristics, it is straightforward to specify 154 

parameter values based on look up tables (i.e., no averaging, upscaling is needed). This is favorable 155 

because the modeler does not need to make decisions about methods used for upscaling of 156 

geophysical data at the grid level. Also, this might avoid the unrealistic combination of parameter 157 

sets that might be considered by the model at a grid scale, such as equiprobable combination of 158 

land cover on soil type which may not exist in reality which will be increasing the fidelity of the 159 

model representation of the processes (we will elaborate this further in the context of the VIC 160 

model in Discussion Section). 161 

5- The ability to compare and constrain the parameter values for computational units 162 

and their simulations. The impact of land cover, soil type and elevation zone can be evaluated 163 

separately. For example, the vector-based implementation makes it easier to test if forested areas 164 
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generate less surface runoff than grasslands. This might be more challenging at the gird-based 165 

configuration in which there are combination of different land cover types at grid scale. Similarly, 166 

the vector-based implementation may simplify regularization efforts across large geographical 167 

domains. This relative constrains can be utilized to translate often patchy expert knowledge into a 168 

sophisticated land model so that the model simulation will obey the modelers and hydrologists’ 169 

expectations. 170 

6- The possibility to incorporate additional data. If needed, additional data, such as slope 171 

and aspect for example, can be incorporated in building the computational units, accounting for 172 

changes in shortwave radiation or lapse rates for temperature. The changes can be implemented 173 

outside of the model in the forcing files. Computational units can be built also based on variation 174 

of leaf area index (LAI) giving an additional layer of information in addition to the land cover 175 

type. The additional information can be easily ingested into the model without extra effort in 176 

contrast to changing of the model parameter files at the grid scale.  177 

7- Easier comparison of model simulations and in situ point-scale observation and 178 

visualization: The vector-based implementation of land models makes it easier to compare the 179 

point measurement to model simulation as the model simulations preserve extent of geospatial 180 

features. 181 

8- Modular and controlled selection of models: The vector-based implementation identifies 182 

the characteristics and spatial boundary of geospatial domains. A model might not be suitable for 183 

processes of some of the geospatial domains. Alternatively, processes of a computational unit that 184 

is beyond the capacity of one model can be replaced with an alternative model. For example, 185 

computational units that are glaciered, can be replaced with more suitable models while the spatial 186 

configuration and forcings remain identical. Consequently, the effect of features such as glaciers 187 

can be better studied as more expert models can be applied to glacier while the rest of the 188 

computational units can be simulated with a model that includes general processes. 189 
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3 Data and methods 190 

3.1 Study area: 191 

Experiments are performed for the Bow River at Banff with a basin area of approximately 2210 192 

km2 located in province of Alberta, Canada. The Bow River is located in the Canadian Rockies in 193 

the headwaters of the Saskatchewan River Basin. Most of the Bow River streamflow is due to 194 

snow melt (Nivo-glacial regime). The average basin elevation is 2130 m ranging from 3420 m at 195 

the peak top to 1380 m above mean sea level at the outlet (town of Banff). The basin annual 196 

precipitation is approximately 1000 mm with range of 500 mm for the Bow Valley up to 2000 mm 197 

for the mountain peaks. The predominant land cover is conifer forest in the Bow Valley and rocks 198 

and gravels for mountain peaks above the tree line. 199 

 200 
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Figure – 2 (a) The location of the Bow River Basin at Banff (b) Bow River Basin elevation, (c) 201 

computational units for geospatial data of elevation zones, land cover and soil type forced at WRF 202 

original resolution at 4 km (Case-3-4km) and (d) river network topology and associated sub-basins 203 

that is used for the vector-based routing. 204 

 205 

3.2 Geospatial data and meteorological forcing 206 

3.2.1 Model input dataset and forcing: 207 

The inputs and forcing we used to set up the model are as follows: 208 

1- Land cover: We used the land cover map NALCMS-2005 v2 (North American Land 209 

Change Monitoring System, Latifovic et al., 2004) that is produced by CEC (Commission for 210 

Environmental Cooperation). NALCMS-2005 v2 includes 19 different classes. The land cover 211 

map is used to set up the vegetation file and vegetation library (look up table) for the VIC model 212 

(Nijssen et al., 2001).   213 

2- Soil texture: We used the Harmonized World Soil Data, HWSD (Fischer et al., 2008). For 214 

each polygon of the world harmonized soil we use the highest proportion of soil type. The HWSD 215 

provide the information for two soil layers, in this study we base our analyses on the lower soil 216 

layer reported in HWSD to define the soil characteristics needed for the VIC soil file.  217 

3- Digital Elevation Model: in this study we make use of existing hydrologically conditioned 218 

digital elevation models (DEM) to (1) derive the river network topology for the vector-based 219 

routing, mizuRoute and (2) to derive the slope, aspect and elevation zones which are used to 220 

estimate the forcing variables. For the first purpose we use hydrologically conditioned DEM of 221 

HydroSHED (Lehner et al., 2006) with resolution of 3 arc-second, approximately 90 meters; for 222 

the second purpose we use HydroSHED 15 arc-second DEM (approximately 500 meters). 223 

4- Meteorological forcing: we used the weather research and forecasting (WRF) model 224 

simulation for continental United States with the temporal resolution of 1 hour and spatial 225 

resolution of 4 km (Rasmussen and Liu, 2017). For upscaling the WRF input forcing, we use the 226 

CANDEX package (DOI: 10.5281/zenodo.2628351) to map the 7 forcing variables to various 227 
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resolutions (1/16˚, 1/8˚, 1/4˚, 1/2˚, 1˚ and 2˚ from the original resolution of 4 km). We used the 228 

required variables from the WRF data set namely, total precipitation, temperature, short and long 229 

wave radiation at the ground surface, V, U components of wind speed and water vapor mixing 230 

ratio.  231 

The shortwave radiation is rescaled based on the slope and aspect of the respective computational 232 

unit (refer to Appendix-A for more details). In this study we differentiated four aspects and five 233 

slope classes. The temperature at 2 meters are adjusted using the environmental lapse rate of -234 

6.5C for 1000 meters increase in elevation. The assumed lapse rate aligns with earlier findings 235 

from the region of study (Pigeon and Jiskoot, 2008). 236 

3.2.2 Observed data for model calibration 237 

The daily streamflow is extracted from the HYDAT (WSC, Water Survey Canada) for Bow at 238 

Banff with gauges ID of 05BB001. This data is used for parameter calibration/identification of the 239 

VIC parameters. 240 

3.3 Land model and routing scheme: 241 

3.3.1 The Variable Infiltration Capacity (VIC) model: 242 

The VIC model was developed as a simple land surface/hydrological model (Liang et al. 1994) 243 

that has received applications worldwide (Melsen et al., 2016). In this study we use classic VIC 244 

version 5. The VIC model combines sub-grid probability distributions to simulate surface 245 

hydrology such as variable infiltration capacity formulation (Zhao, 1982). The VIC model uses 246 

three soil layers to represent the subsurface. While each soil layer can have various physical soil 247 

parameters (e.g., saturated hydraulic conductivity, bulk density), each layer is assumed to be 248 

uniform across the entire grid regardless of the vegetation type variability in that grid. The VIC 249 

model assumes a tile vegetation implementation within each grid similar to the mosaic approach 250 

of Koster and Suarez (1992) with bio-physical formulations for transpiration (Jarvis et al., 1976). 251 

To account for spatial variability in vegetation, the VIC model allows for root depths to be adjusted 252 

for every vegetation type. The vegetation parameters (e.g., stomatal resistance, LAI, albedo) are 253 

often identical for each land cover across the modeling domain. The VIC model can account for 254 

different elevation zones to account for temperature lapse rate given elevation difference in a grid 255 

cell, and also for the distribution of precipitation over the identified elevation zones.  256 
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In the experiments for this study, we calibrate a subset of VIC parameters namely binf, Eexp, Ksat, 257 

d2,forested, d2,non-forested, Kslow, and Sroughness (names are mentioned in Table-1). Following the concept 258 

of GRU, Kouwen et al., 1993, we assume the computational units with similar geophysical 259 

characteristics (soil and land cover) possess similar parameter values. We make sure that the d2, 260 

forested is larger than the d2,non-forested as the root depth are deeper for forested regions (constraining 261 

relative parameters). For the sake of simplicity, we limit the root zone to the upper soil layers and 262 

replace the 5-parameter VIC baseflow1 with a linear reservoir (refer to Gharari et al., 2019 for 263 

further explanation). We also assume that the two top soil layers possess homogeneous soil 264 

characteristics. 265 

3.3.2 mizuRoute, a vector-based routing scheme 266 

In this study, we make use of the vector-based routing model mizuRoute (Mizukami et al., 2016). 267 

Vector-based routing models can be configured for different computational units than the land 268 

model uses (e.g., configuring routing models using sub-basins derived from existing 269 

hydrologically conditioned DEMs such as HydroSHEDS, Lehner et al., 2006, or MERIT Hydro, 270 

Yamazaki et al., 2019). This removes the dependency of the routing on the grid size or 271 

computational unit configurations and eliminates the decisions that are often made to represent 272 

routing-related parameters at grid scale. Therefore, we can ensure that two model configurations 273 

with different geospatial configurations are routed using the same routing configuration. The 274 

intersection between the computational units in the land model and the sub-basins in the routing 275 

model defines the contribution of each computational units from the land model to each river 276 

segment.  277 

The Impulse Response Function (IRF) routing method (Mizukami et al., 2016) is used for this 278 

study. IRF, which is derived based on diffusive wave equation, includes two parameters – wave 279 

velocity and diffusivity. The diffusive wave parameters are set to 1 m/s and 1000 m2/s respectively 280 

and remain identical for all the river segments. The river network topology, assuming 281 

approximately 25 km2 starting threshold for the sub-basin size, is based on a 92-segment river 282 

network depicted in Figure-3d. 283 

 
1 The VIC baseflow parameters are: Dsmax, maximum rate of baseflow; Ds, fraction of Dsmax where non-linear 

baseflow begins; Ws, fraction of maximum soil moisture where non-linear baseflow occurs; c, exponent used for the 

non-linear part of the baseflow; and depth of the baseflow layer d3. 
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Table-1 the VIC model parameters that are subjected to perturbation for model calibration for the 284 

designed experiments. 285 

Parameter 

symbol 

Parameter 

name 

Minimum 

value 

Maximum 

value 

Unit Explanation 

binf Variable infiltration 

parameter 

0.01 0.50 [-]  

Eexp The slope of water retention 

curve 

3.00 12.00 [-]  

Ksat Saturated hydraulic 

conductivity 

5.00 1000.00 [mm/day]  

d1 The depth of topsoil layer 0.2 0.2 [m] Fixed at 20 cm for both forested 

and non-forested computational 

units 

d2,forested The depth of the second soil 

layer for forest 

computational units 

0.2 2 [m]  

d2,non-forested The depth of the second soil 

layer for non-forested 

computational units 

0.2 d2,forested [m] The maximum is bounded by the 

d2,forested 

Droot The distribution of root in 

the two soil layers 

0.5 0.5 [-] Fixed at 50% for the top and 

lower soil layers. 

Kslow Slow reservoir coefficient 0.001 0.9 [1/day]  

Sroughness Snow roughness 0.5 3 [mm]  

 286 

3.4 Experimental design: 287 

In this study, we configure the VIC model in a flexible vector-based framework to understand how 288 

model simulations depend on the spatial configuration. We consider four different methods to 289 

discretize the landscape for seven different spatial forcing grids (see Table 2). The landscape 290 

discretization methods include (1) simplified land cover and soils; (2) full detail for land cover and 291 

soils; (3) full detail for land cover and soils, including elevation zones; and (4) full detail for land 292 

cover and soils, including elevation zones and slope and aspect. The different spatial forcing 293 

resolutions are 4-km, 0.0625o, 0.125o, 0.25o, 0.5o, 1o, and 2o. This design enables us to separate 294 
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discretization of the landscape based on geo-spatial data from the spatial resolution of the forcing 295 

data. 296 

Table – 2- The numbers of computational units for the Bow River at Banff, given different spatial 297 

discretization of land cover, soil type, elevation zones and slope and aspects forced with various 298 

forcing resolutions.  299 
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4 km 6631 1508 941 479 

0.0625  [~6.25 km] 5224 1098 663 290 

0.125  [~12.50 km] 3079 515 283 94 

0.25  [~25.00 km] 2013 306 154 39 

0.5 [~50.00 km] 1332 184 93 21 

1.0 [~100.00 km] 917 116 56 12 

2.0 [~200.00 km] 767 89 42 6 

 300 

 301 



Page 14 of 38 

 

3.4.1 Experiment-1: How does the spatial configuration affect model performance? 302 

As the first experiment, we focus on how well the various configurations simulate observed 303 

streamflow for Bow River at Banff. We calibrate the parameters for the different configurations in 304 

Table 2. Model calibration is accomplished using the Genetic Algorithm implemented in the 305 

OSTRCIH framework (Mattot, 2005; Yoon and Shoemaker, 2001), maximizing the Nash-Sutcliffe 306 

Efficiency (ENS, Nash and Sutcliffe 1970) using a total budget of 1000 model evaluations given 307 

the available resources limited by the most computationally expensive model (Case-4-4km). 308 

3.4.2 Experiment-2: How well do calibrated parameter sets transfer across different model 309 

configurations? 310 

As the second experiment, we focus on how various configurations can reproduce the result from 311 

the configuration with highest computational units for a given parameter set. In other words, this 312 

experiment evaluates accuracy-efficiency tradeoffs – i.e., the extent to which spatial 313 

simplifications affect model performance under the assumption that similar computational units 314 

possess identical parameters across various configurations. This is important as it enables modelers 315 

to understand accuracy-efficiency tradeoffs, given the available data and the purpose of the 316 

modelling application. This experiment is based on perfect model experiments using the model 317 

with the highest computational unit as synthetic case (Case-4-4km). Synthetic streamflow for 318 

every river segment is generated using a calibrated parameter set for Case-4-4km. The models with 319 

lower number of computational units are then simulated using the exact same parameter set used 320 

for generating the synthetic streamflow. The differences in streamflow simulation, quantified using 321 

ENS, provide an understanding of how the simulations deteriorate when the spatial and forcing 322 

heterogeneities are masked or upscaled. This also will bring an understanding on how sensitive 323 

the changes are along the river network and at the gauge location at which the models are calibrated 324 

against the observed streamflow data. Similarly, we compare the spatial patterns of snow water 325 

equivalent for the different spatial configurations. 326 
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4 Results 327 

4.1 Experiment-1  328 

The various model configurations are compared with respect to the Nash-Sutcliffe performance 329 

metric (ENS). Results show that all the models, including the ones that are configured with coarser 330 

resolution forcings, can simulate streamflow with ENS as high as 0.70 (Table-3). It is noteworthy 331 

to mention that the configuration of Case-4-1˚ has higher ENS value compared to the cases with 332 

highest computational units, Case-4-4km for example. This might be due to various reasons 333 

including: (1) compensation of forcing aggregation on possible forcing bias at finer resolution; (2) 334 

compensation of forcing aggregation on model states and fluxes and possible adjustment for model 335 

structural inadequacy and hence directing the optimization algorithm to different possible solutions 336 

across configurations. 337 

Table-3 – The highest calibrated Nash-Sutcliffe performance metric (ENS) for the different model 338 

configurations. Details on the geospatial cases are provided in Table 2. 339 

Forcing resolution Case 4 

4 aspect groups; 

5 slope groups; 

19 classes of land cover; 

500-meter elevation 

zones; 

Case 3 

no aspect groups; 

no slope groups; 

19 classes of land cover; 

500-meter elevation 

zones; 

Case 2 

no aspect groups; 

no slope groups; 

19 classes of land cover; 

no elevation zones; 

Case 1 

no aspect groups; 

no slope groups, 

3 classes of land cover, one dominant soil 

type 

no elevation zones; 

4 km 0.80 0.81 0.78 0.75 

0.0625˚ [~6.25 km] 0.79 0.79 0.77 0.75 

0.125˚ [~12.50 km] 0.82 0.81 0.75 0.75 

0.25˚ [~25.00 km] 0.81 0.83 0.77 0.76 

0.5˚ [~50.00 km] 0.79 0.82 0.76 0.76 

1.0˚ [~100.00 km] 0.83 0.81 0.79 0.78 

2.0˚ [~200.00 km] 0.77 0.77 0.77 0.80 

 340 

We use a single objective calibration algorithm for model calibration, however and for 341 

investigating the parameter uncertainty, we check the behavioral parameter sets with ENS higher 342 

than 0.7 (an arbitrary values). These parameter sets may have very different soil parameters 343 
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combinations. Figure-3a illustrates the possible combinations of behavioral parameter sets for 344 

Case-2-4km (ENS> 0.7). As a specific example, saturated hydraulic conductivity, Ksat, and slope of 345 

water retention curve, Eexp, have very different combinations of values within the specified 346 

parameter ranges for calibration. The result indicates the two parameters that are often fixed or a 347 

priori allocated based on look up tables can exhibit significant uncertainty and non-identifiability. 348 

It is also noteworthy to mention that among the parameters, Kslow seems to be the most identifiable 349 

parameter while it is set to the upper limit range. There might be two explanation for this behavior: 350 

(1) this might be related to the Nivo-glacier regime of the basin of study that has strong yearly 351 

cycle due to snow accumulation and snow melt (2) and the lack of macropore water movement to 352 

the baseflow component which results in dampen input to this component and in return result in 353 

Kslow to be higher than expected for a baseflow reservoir (for further reading refer to Gharari et al., 354 

2019). Overall, the results indicate that calibrating the VIC model parameters using a sum-of-355 

squared objective function at the basin outlet does not constrain the VIC subsurface parameters. 356 

Additionally, we examine the difference between the fluxes, in this case transpiration, for all the 357 

parameter sets presented in Figure-3a. Figure 3-b illustrates differences between the yearly 358 

transpiration flux for the computational units of case-2-4km. This difference can be as high as 250 359 

mm per year indicating the internal uncertainty of fluxes and related states in reproducing similar 360 

performance metric. This difference can be the basis of model diagnosis to understand which 361 

computational units are causing the internal uncertainty and perhaps the underlying reasons. 362 
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  363 

Figure-3 – (a) The normalized values for the parameters of Case-2-4km that have ENS, Nash-364 

Sutcliffe efficiency, values of higher than 0.7. (b) The difference of largest and smallest yearly 365 

simulated transpiration for parameter sets with ENS above 0.7. 366 

 367 

4.2 Experiment-2 368 

The second experiment compares the performance of a parameter set from the Case-4-4km across 369 

the configurations with degraded geophysical information and aggregated spatial information. 370 

Here we choose a parameter set that has ENS of above 0.7 (this can be any other parameter sets). 371 

Figure-4 shows the evaluation metric, ENS, for the streamflow of every river segment across the 372 

domain in comparison with the synthetic case (Case-4-4km). From Figure-4, it is clear that the ENS 373 

is less sensitive for river segments with larger upstream area (i.e. segments that are located more 374 

downstream). This result has two major interpretations (i) the parameter transferability across 375 

various configurations is dependent on the sensitivity of simulation at the scale of interest meaning 376 

that as long as good performance is achieved in the context of modeling, for example for the 377 

streamflow at the basin outlet, the parameters can be said to transferable for that scale and (ii) often 378 

inferred parameters at larger scale may not guarantee good performing parameters at the smaller 379 
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scales (read upstream areas) as the changed in the performance metric varies significantly across 380 

scale for the smaller modeling elements. 381 

 382 
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Figure 4 – Differences of the simulated streamflow at river segments in comparison with the 383 

synthetic case, Case-4-4km, expressed in performance metric, ENS. 384 

 385 

To understand the spatial patterns of model simulations for all the configurations, we evaluate the 386 

distribution of the snow water equivalent, SWE, for the computational units on 5th of May 2004 387 

(Figure-5). In general, the SWE follows the forcing resolution and its aggregation. Although 388 

coarser forcing resolutions results in coarser SWE simulation, the geospatial details such as 389 

elevation zones and slope and aspects result in more realistic representation of SWE as the snow 390 

layer is thinner for south facing slopes where more melt can be expected to occur, and thicker for 391 

higher elevation zones (compare SWE simulations for Case-4-2˚ and Case-3-2˚ in Figure-5) which 392 

is consistent with higher precipitation volumes and slower melt at higher elevation. Another 393 

observation from Figure-5 is the unrealistic distribution of SWE for configurations without 394 

elevation zones (Case-2 and Case-1). The lack of elevation zones results in both valley bottom and 395 

mountain tops to be forced with the same temperature. Snow is more durable in the forested areas 396 

as the result of model formulation, which are at lower elevation, while SWE is less for higher 397 

mountains, which is unrealistic. We remind the reader that the various spatial pattern of SWE 398 

across different configurations are from the simulations that results in rather similar performance 399 

metric, ENS, for the streamflow at the outlet of the basin. 400 
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 401 

Figure 5- Comparison of the snow water equivalent for 5th of May 2004 for various configurations. 402 
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Figure-6a shows the performance of the streamflow across various configurations for the most 403 

downstream river segment (the gauged river segment which is used for parameter inference 404 

through calibration). Figure 6a illustrates that most of the configurations have similar scaled ENS 405 

at the basin outlet. We compared the maximum snow water equivalent across different 406 

configurations for a computational unit located in the Bow Valley Bottom (an arbitrary location of 407 

-116.134˚W and 51.382˚E) for the year 2004 (Figure-6b). The result indicates that the SWE is 408 

higher for configurations with coarser forcing resolutions (almost triple). This is due to the reduced 409 

temperature as a result of masking warmer valley bottom by cooler and higher forcing grids over 410 

the Rockies. Such analyses can provide insights on the appropriate model configurations for 411 

different applications. Also and as an example, if model configurations of different complexity are 412 

known to show similar performance for a given parameter set, uncertainty and sensitivity analysis 413 

can be done initially on the models with fewer computational units and the results of the analysis 414 

can be applied to models with a higher number of computational units. This analysis can be 415 

repeated for different parameter sets, e.g., poorly performing parameter sets or randomly selected 416 

parameter sets, to better understand accuracy-efficiency tradeoffs of the model within its specified 417 

parameters ranges. 418 

 419 

Figure -6 (a) The relative performance of model simulation across various configurations with a 420 

single parameter set. (b) Maximum of snow water equivalent for an arbitrary location of -421 

116.134˚W and 51.382˚E located in Bow Valley Bottom across various model configurations for 422 

the year 2004. 423 
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 424 

5 Discussion 425 

In this study, we proposed a vector-based configuration for land models and applied this setup to 426 

the VIC model. We used a vector-based routing scheme, mizuRoute, which was forced using 427 

output from the land model (one-way coupling). Unlike the grid-based approach, there is no 428 

upscaling of land cover percentage or soil characteristics to a new grid size. This enables us to 429 

separate the effects of changes in forcing from changes in the spatial configurations. As mentioned 430 

earlier in Section 2, the vector-based configuration of land models may help avoiding unrealistic 431 

configuration of soil type, land cover or elevation zones that may happen in traditional grid-based 432 

implementation and hence increase the model fidelity. As an example, VIC configuration at grid 433 

scale assumes equal distribution of land cover over different elevation zones. Figure-7b illustrates 434 

how the traditional VIC configuration at grid-scale wrongly considers forested land cover above 435 

tree line. This issue is avoided in vector-based configuration as the set up will only include two 436 

computational unit of forested area below tree line and bare soil above the tree line (Figure 7a). 437 

The vector-based setup also provides more flexibility in comparing the model simulations across 438 

computational units (as an example, refer to Figure 5), and also comparing model simulations with 439 

point measurements, such as snow water equivalent. Moreover, the vector-based routing results in 440 

complete decoupling of the land model computational units’ spatial extent from routing sub-basins. 441 

For the grid-based configuration of land models, it is often the case that in land model grid and 442 

routing grids are identical which result in further decision on upscaling of the routing direction to 443 

the land model grid scale. 444 

 445 
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Figure-7 – (a) The realistic configuration of a natural system with land cover consist of 50% Bare 446 

soil and 50% forest within a grid located in two different elevation zones above and below the tree 447 

line which is preserved with vector-based configurations and (b) the traditional VIC configurations 448 

for the given system at the grid for the two elevation zones and 2 land cover which results in 449 

unrealistic combination of forested land cover above the tree line and bare soil below the tree line. 450 

 451 

Our results illustrate various vector-based spatial configuration of the VIC model generates similar 452 

large-scale simulations of streamflow when the setups are calibrated by maximizing the Nash-453 

Sutcliffe score at the basin outlet. Similarly, we have shown that often behavioral parameter sets 454 

yield similar ENS and can be significantly uncertain (Figure-3a) or have significant differences for 455 

their internal behavior which may be very well masked by aggregation of the result at the grid 456 

scale or basin scale (Figure-3b and Figure-5). Generally, both parameter and states and fluxes 457 

uncertainties are not often evaluated or reported for land models (Demaria et al., 2007) or is 458 

ignored by tying parameters, linking specific hydraulic conductivity to the slope of water retention 459 

curve, for example, so that the possible combination of parameters are reduced. Moreover, the 460 

behavior of Kslow parameter can be revealing of the VIC model structural deficiencies which are 461 

not often explored for land models. The recession coefficient obtained from recession analysis on 462 

the observed hydrograph is approximately 0.01 1/day while the calibrated Kslow has much higher 463 

values of around 0.90 1/day. This can be due to damped response from the two top soil layers and 464 

lack of macropore water movement to the baseflow component. Similarly, and due to lack of 465 

macropore water movement in the VIC model, and land models in general, it is impossible to infer 466 

the Kslow based on recession analysis on the observed hydrograph (for further reading on this and 467 

also recession analysis refer to Gharari et al., 2019).  This finding can be generalized to the 5-468 

parameter VIC baseflow, highlighting the need to properly evaluate the often not observable but 469 

calibrated baseflow parameters for the VIC model and if it is possible to identify 5 parameters 470 

based on the recession limps of a hydrograph. 471 

Land models are often applied at large spatial scales. The results clearly show that the deviation 472 

of streamflow is much lower in river segments with larger upstream area (Figure 4 and 6a). It is 473 

often the case that the model parameters and associated processes are inferred thought calibration 474 
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on the streamflow at the basin outlet or over a large contributing area. We argue that this may not 475 

be a valid strategy for process understanding at the smaller scale (read computational units), given 476 

the large uncertainty exhibited by the parameters. Therefore, hyper-resolution modeling efforts, 477 

Wood et al. 2011, may suffer from poor process representation and parameter identification at the 478 

scale of interest (Beven et al., 2015). What is needed instead of efficiency metrics that aggregate 479 

model behavior across both space (e.g. at the outlet of the larger catchment) and time (e.g. 480 

expressing the mismatch between observations and simulations across the entire observation 481 

period as a single number), is diagnostic evaluation of the model’s process fidelity at the scale at 482 

which simulations are generated in case of available observations (e.g. Gupta et al., 2008; Clark et 483 

al., 2016). 484 

One might argue that the spatial discretization is important for realism of model fluxes and states. 485 

Moving to significantly high number of computational units may result in computational units that 486 

are similar in their forcing and geo-spatial fabric (such as soil and land cover types). Based on the 487 

result of this study for snow water equivalent (Figure-5), we can argue that the snow patterns are 488 

fairly similar for the configurations that have elevation zones and finer resolution of forcing (case3 489 

and 4 and forcing resolution less than 0.125 degree). It can be further explored if the model 490 

simulation at finer resolutions can be approximated by interpolating result of a model with coarser 491 

resolution (𝑚(𝑥̅|𝜃)~𝑚(𝑥|𝜃)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , in which m is the model, x is forcing and 𝝷 is the model parameter 492 

set).  493 

The analysis on the accuracy-efficiency tradeoff presented in this study, Figure-6, can be used in 494 

model analysis such as sensitivity and uncertainty. One can assume a configuration with fewer 495 

computational units can be a surrogate for a model with more computational units, under the 496 

condition that both models are known to behave similarly for a given parameter set. The calibration 497 

can be done on the model configuration with less computational unit and the parameters can be 498 

transferred directly to the model with more computational units or can be used as an initial point 499 

for optimization algorithm to speed up the calibration process. Similarly, the sensitivity analyses 500 

can be done primarily on the model with less computational units. 501 

In this study and following the concept hydrological similarity, we assume the parameters of 502 

computational units are identical for computational units with similar soil and land cover. The 503 
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degree of validity of hydrological similarity concepts is debatable. For example, at the catchment 504 

scale, Oudin et al. (2010) have shown that the overlap between catchments with similar 505 

physiographic attributes and catchments with similar model performance for a given parameter set 506 

is only 60%. Physiographic similarity (in our case expressed through GRUs) does thus not 507 

necessarily imply similarity of hydrologic behavior, even though this is the critical assumption 508 

underlying GRUs. The VIC parameters can be linked to many more characteristics such as slope, 509 

height above nearest drainage (HAND, Renno et al., 2008), or Topographical Wetness Index 510 

(Beven and Kirkby, 1979) as has been done by Mizukami et al. (2017) and Chaney et al. (2018). 511 

Techniques such as multiscale parameter regionalization (MPR, Samaniego et al., 2010) can be 512 

used to scale parameter values for different model configurations. However, the functions that are 513 

used to link computational units and physical attributes to model parameters remains mostly based 514 

on inference, (i.e., calibration), and the reproducibility of those relationships are not very well 515 

explored. However, applying these techniques, such as in this case that has significant parameter 516 

and process uncertainty and significance accuracy-efficiency tradeoff, should be put through 517 

rigorous tests (Merz et al., 2020, Liu et al., 2016). 518 

A key outstanding challenge is for models to provide the right results for the right reasons 519 

(Kirchner, 2006). Thoughtful strategies to formulate parameter and process constraints based on 520 

expert knowledge can reduce the plausible range of behavioral parameter sets. In this study, we 521 

imposed a simple parameter constraint that the root zone moisture storage of forested area should 522 

be larger than the non-forested area (Table-1). Additional process constraints, if available, can be 523 

increasingly difficult to satisfy. More rigorous parameter estimation methods that satisfy the 524 

fidelity constraints based on expert knowledge are required (e.g., Gharari et al., 2014).  525 

6 Conclusions 526 

The vector-based configuration of land models can provide modelers with more flexibility, e.g. 527 

representing the impact of various forcing resolution or geospatial data representation. The 528 

conclusions from this study can be summarized as follows: 529 

1) The land model configuration with the highest number of computational units may not 530 

result in improved performance and better spatial simulation, in terms of obtained 531 
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efficiency scores, while the internal model state and fluxes can show significant 532 

uncertainty. 533 

2) There is significant parameter and structural uncertainty associated with the land model (in 534 

this case, the VIC model). This uncertainty poses challenges for the process and parameter 535 

inference when the model is calibrated by minimizing the sum-of-squared differences 536 

between simulated and observed streamflow. Any parameter regionalization efforts should 537 

take these uncertainties into account. Our results emphasize that more attention is needed 538 

on the topic of parameter and process inference at finer modelling scales. 539 

3) A model configuration with lower computational units, coarser resolution and less 540 

geospatial information, may reproduce model simulations with similar efficiency scores as 541 

configurations with higher computational units. Less computationally expensive 542 

configurations can be used instead for primary uncertainty and sensitivity analysis. 543 

A key scientific challenge is hydrological scaling. i.e., how do small-scale heterogeneities shape 544 

large-scale fluxes. Addressing this challenge requires a mix of both explicit representations of 545 

spatial heterogeneity (enabled through spatial discretization of the landscape) and implicit 546 

representations of heterogeneity (enabled through sub-grid parameterizations). The contribution 547 

in this paper is to advance flexible spatial configurations for land models – our approach improves 548 

the explicit representation of spatial heterogeneities, at least compared to traditional approaches 549 

that simply drape a grid over the landscape. Much more work is required across all spatial scales 550 

to carefully evaluate how a mix of implicit and implicit representations of spatial heterogeneity 551 

can improve process representations.We encourage the community to develop tools which can 552 

enable easier and more flexible configuration of land models that can be used to explore the above-553 

mentioned research questions. 554 
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7 Appendix 558 

7.1 Appendix – A 559 

This appendix reflect on the method and equations that have been used to calculate the ratio of the 560 

solar radiation on a surface with slope and aspect to a flat surface. Please note that the angles in 561 

the equations are in radian but for better communication we express angles in degree in the text. 562 

Declination angle: declination angle can be calculated for each day of year and is the same for 563 

the entire Earth (Ioan Sarbu, Calin Sebarchievici, in Solar Heating and Cooling Systems, 2017): 564 

𝛿 = 23.45
𝜋

180
sin⁡ [

2𝜋

360

360

365
(284 + 𝑑)]        (A-1) 565 

in which 𝛿 is declination angle in radian and d is the number of day in a year starting from 1st of 566 

January. 567 

Hour angle: hour angle is the angle expressed the solar hour. The reference of solar hour angle is 568 

solar noon (hour angle is set to zero) when the sun is passing the meridian of the observer or when 569 

the solar azimuth is 180 (north direction with azimuth of 0). The hour angle can be calculated 570 

based on the: 571 

sin𝜔 =
sin𝛼−sin𝛿 sin∅

cos𝛿 cos∅
⁡          (A-2) 572 

In which α, ϕ and 𝛿 are the altitude angle, latitude of the observer and declination angle. The sunset 573 

and sunrise hour can be calculated as (when sun is at horizon and solar altitude angle is zero): 574 

cos𝜔𝑠 = − tan∅ tan 𝛿          (A-3) 575 

More caution is needed using equation A-3 for latitude above and below 66.55 north and south 576 

respectively where it can be always day or night with no sunrise or sunset during part of the year. 577 

The number of daylight hours that can be split before and after the solar noon equally can be 578 

calculated based on (assuming 15 for every 1 hour): 579 

𝑛 =
2𝜔𝑠

15

180

𝜋
           (A-4) 580 
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And therefore, hour angle can be easily calculated for time before and after solar noon the 581 

(relationship between the 15 equals to an hour). Hour angle is negative for the time before solar 582 

noon and positive for the time after solar noon. Note the solar noon does not often coincide with 583 

12 pm of the local time zone. There are relationships to find the local time of solar noon. 584 

Solar altitude angle: Solar altitude angle is the angle of sun rays with the horizontal plane of an 585 

observer. This angle is maximum at solar noon and 0 for subset and sunrise. The altitude angle 586 

can be calculated based on the: 587 

sin 𝛼 = sin𝛿 sin ∅ + cos 𝛿 cos𝜔 cos ∅        (A-5) 588 

For the solar noon when ω, hour angle, is zero the question simplifies to: 589 

sin 𝛼 = sin𝛿 sin ∅ + cos 𝛿 cos ∅ = cos(∅ − 𝛿) = sin⁡(
𝜋

2
− ∅ + 𝛿)    (A-6) 590 

Solar Azimuth: The solar azimuth angle, 𝐴𝑆𝑢𝑛 reflect on the angle of the sun on the sky from the 591 

north with clockwise rule. The azimuth angle can be calculated as: 592 

sin 𝐴𝑆𝑢𝑛 =
sin𝜔 cos𝛿

cos 𝛼
          (A-7) 593 

The solar azimuth angle for the solar noon is set to be 180. 594 

The azimuth at the sunset and sunrise can be calculated: 595 

sin 𝐴𝑆𝑢𝑛,𝑟𝑖𝑠𝑒 = −sin𝜔𝑠 cos 𝛿         (A-8) 596 

sin 𝐴𝑆𝑢𝑛,𝑠𝑒𝑡 = sin𝜔𝑠 cos 𝛿         (A-9) 597 

Surface Azimuth (a.k.a. aspect): The surface azimuth angle, 𝐴𝑆𝑢𝑟𝑓𝑎𝑐𝑒reflect the direction of the 598 

any tilted surface to the north direction. This azimuth is fixed for any point while the solar azimuth 599 

changes over hours and seasons. 600 

Angle of incidence 𝜽: this angle represents the angle between a sloped surface and the sun rays. 601 

The model angle of the incidence for a slope surface β, and aspect of 𝐴𝑆𝑢𝑟𝑓𝑎𝑐𝑒 over latitude of ∅ 602 
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can be calculated as (Kalogirou, in Solar Energy Engineering, 2009, in the reference formulation 603 

the Azimuth is from south which is corrected here for North): 604 

cos 𝜃 = sin 𝛿 sin∅ cos 𝛽 + sin 𝛿 cos ∅ sin 𝛽 cos 𝐴𝑆𝑢𝑟𝑓𝑎𝑐𝑒 + cos 𝛿 cos ∅ cos 𝛽 cos 𝜔 −605 

cos 𝛿 sin ∅ sin 𝛽 cos 𝐴𝑆𝑢𝑟𝑓𝑎𝑐𝑒 cos𝜔 − cos 𝛿 sin 𝛽 sin 𝐴𝑆𝑢𝑟𝑓𝑎𝑐𝑒 sin𝜔    (A-10) 606 

For the flat surface, both 𝐴𝑆𝑢𝑟𝑓𝑎𝑐𝑒  and β, is set to 0, the incident angle can be calculated for the 607 

flat surface as 608 

cos 𝜃𝑓𝑙𝑎𝑡 = sin 𝛿 sin ∅ + cos 𝛿 cos ∅ cos𝜔        (A-11) 609 

In case where the angle of incident is larger than 90 the surface shades itself. 610 

Correction of short-wave radiation based on slope and aspect. In this study we correct the 611 

WRF short wave radiation based on the surface slope and aspect. We first back calculated the 612 

incoming short-wave radiation by dividing the provided short wave radiation by the cosine of the 613 

incident angle of the flat surface. Then we can calculate the solar radiation of the sloped surface 614 

multiplying this value to the cosine of the incident angle of the slope surface. Basically, this ratio 615 

is: 616 

𝑅 =
cos 𝜃

cos𝜃𝑓𝑙𝑎𝑡
            (A-12) 617 

The effect of the atmosphere is considered in the WRF product itself. However, and for incident 618 

level close to 90 degrees the ratio, R, might be very high values which result in the surface 619 

receiving unrealistically high value of radiation even higher than the solar constant, 1366 W/m2, 620 

at the top of the atmosphere. For cases with cosine values of incident angle lower than 0.05 we set 621 

the ratio to 0 to avoid this unrealistic condition. 622 
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 623 

Figure A-1 Short wave radiation for (top left) not corrected for slope and aspect and (bottom left) 624 

corrected for slope and aspect for 21st June 2020 and (top right) not corrected for slope and aspect 625 

and (bottom right) corrected for slope and aspect for 21st December 2020. 626 

 627 
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