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Letter to the Editor: 
 
 
 
Dear Dr. Wanders 
 
 
Once again thank you for handling our manuscript in Hydrology and Earth System Sciences. 
 
We tried our best to answer the comments of the anonymous reviewer to the best we could, and 
we made necessary changed in the manuscript. 
 
We look forward to your editorial decision on this manuscript. 
 
 
With kind regards, 
Shervan Gharari, on behalf of co-authors 
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Answer to the comments: 
 
Gharari et al did a good job in incorporating the feedback from the reviewers. The clarity and 
organisation of the paper has improved substantially. Especially Section 2, which now clearly 
explains the concept, and Figure 1 which demonstrates the concept, is a large improvement. Two 
main questions remain after reading the manuscript; 
 
We thank the reviewer for their constructive comments on out work. Our point by point response 
is presented in blue in the following. 
 
1) How does a vector-based spatial configuration compare to the 'classical' grid-based approach? 
This is not quantified, so probably the authors want to focus only on this difference at the 
conceptual level. 
 
We thank the reviewer for their comments. As the reviewer mentioned we did not compare our 
model with grid-based VIC. We have tried to keep the comparison in the conceptual level. For 
example, the last figure, Figure-7, is comparing the grid vs vector-based implementation of VIC 
in conceptual case. please direct us to those lines if this comparison may have stated strongly and 
beyond the conceptual level. 
 
2) The authors disagreed with my comment in the previous round that todays challenges related 
to calibration are not widely addressed, stating that it was not the aim of the paper to address 
current day challenges. Well, that is up to the authors to decide and not a content-based 
discussion where I as a reviewer should have a strong opinion about, but it leaves a bit of an 
unsatisfying feeling with the reader to find out only in line 502 that actually GRUs were 
calibrated, and that the challenges in defining GRUs remain with this vector-based approach.  
 
We have tried to make it clear in the methodology section that the current vector-based approach 
does not solve the issue of model parameter allocation and identification (refer to your second 
minor point also) 
 
Minor suggestions; 
 
Introduction does not really converge towards vector-based spatial configuration. Again, not 
content based so not my role as a reviewer, but my impression as a reader. 
 
The reviewer has a point here but the issue with lack of existing literature on systematic 
implementation of vector-based application makes creating that direction a bit challenging. We 
would be happy if the reviewer can direct us to some studies that indeed can funnel the 
introduction better to the vector-based implementation of land models. 
 
Mention already in the methods that GRUs are calibrated and not every individual computational 
unit. 
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We have clarified point 4 in the methodology subsection. This point is about the ease of 
parameter allocation to each unit and not indicating that computational unit should be given 
parameters based on GRUs. We have tried to make this clearer in point 4 by adding a sentence. 
 
Figure 1; perhaps indicate with numbers the 28 computational units? Or maybe a few, to further 
clarify the concept? Although it was clear for me already. 
 
We thank the reviewer for this comment. We have added the numbers and the figure looks more 
interesting! Thank you. 
 
Units of snow roughness in Table 1; shouldn't it be cm?  
 
To my personal knowledge snow roughness is in order of few millimetres. 
 
in general; it is not clarified or defended why these parameters were selected for calibration. It 
aren't necessarily the parameters that are identified as most sensitive in many other studies. 
 
We thank the reviewer for their comment. We have investigated a sensitivity analysis on this 
case study with much more parameters than what is calibrated here. Similar to this study we 
found that the parameters are non-identifiable and there is significant interaction between them. 
One of the parameters that is among sensitive models and is not calibrated here are the routing 
parameter. Here we keep the routing parameter the same for all the model configurations so that 
comparison of the parameters across configurations are only the result of changes in forcing 
aggregations or parameter value at computational units excluding the change in routing 
parameters across configuration.  
 
Figure 3a: Why not just show a boxplot per parameter? There seems to be no reason to connect 
the lines of the different parameters.  
 
We have changed Figure 3a to boxplot. Thank you. 
 
Figure 4: It would greatly help the reader if a summary of the four cases is added to the figure 
headers. Now, the reader has to search back in the text.  
 
Very good suggestion we have added that to Figures-4 and 5. Now they can be easier understood 
even without caption. 
 
Same for Figure 6; to help the reader, it could be indicated in the different blocks which 
information was adapted (snow for instance shows a clear effect of elevation, this would further 
stress/clarify that).  
 
We have added titles to the Figure-6. 
 
There are now double dots after every section header, I think this is not in line with the journal 
format.  
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We thank the reviewer. We have set this during the typesetting. 
 
Language/grammar check, check for instance lines 33, 57, 150, 221, 343, 351, 492 (inconsistent 
symbols). 
 
We have tried to refine the language in those lines that the reviewer mentioned (although we 
were not fully sure for few of them such as line 492 for example). We will also use the copy-
editing service of Copernicus Publication during typesetting. 
 
 
Once again, we thank the reviewer for their constructive comments. 
 
With kind regards, 
Shervan Gharari, on behalf of co-authors 
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Abstract. Land models are increasingly used in terrestrial hydrology due to their process-9 

oriented representation of water and energy fluxes. A priori specification of the grid size of the 10 

land models is typically defined based on the spatial resolution of forcing data, the modeling 11 

objectives, the available geo-spatial information, and computational resources. The variability of 12 

the inputs, soil types, vegetation covers, and forcing are masked or aggregated based on the a 13 

priori grid size. In this study, we propose an alternative vector-based implementation to directly 14 

configure a land model using unique combinations of land cover types, soil types, and other 15 

desired geographical features that has hydrological significance, such as elevation zone, slope, 16 

and aspect. The main contributions of this paper are to (1) implement the vector-based spatial 17 

configuration using the Variable Infiltration Capacity (VIC) model; (2) illustrate how the spatial 18 

configuration of the model affects simulations of basin-average quantities (i.e., streamflow) as 19 

well as the spatial variability of internal processes (SWE and ET); and (3) describe the 20 

work/challenges ahead to improve the spatial structure of land models. Our results show that a 21 

model configuration with a lower number of computational units, once calibrated, may have 22 

similar accuracy to model configurations with more computational units. However, the different 23 

calibrated parameter sets produce a range of, sometimes contradicting, internal states and fluxes. 24 

To better address the shortcomings of the current generation of land models, we encourage the 25 

land model community to adopt flexible spatial configurations to improve model representations 26 

of fluxes and states at the scale of interest. 27 
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1 Introduction 28 

Land models have evolved considerably over the past few decades. Initially, land models (or land-29 

surface models) were developed to provide the lower boundary conditions for atmospheric models 30 

(Manabe, 1969). Since then land models have increased in complexity, and they now include a 31 

variety of hydrological, biogeophysical, and biogeochemical processes (Pitman, 2003). Including 32 

this broad suite of terrestrial processes in land models enables simulations of energy and water 33 

fluxes and carbon and nitrogen cycles. 34 

Despite the recent advancements in process representation in land models, there is currently 35 

limited understanding of the appropriate spatial complexity that is justified based on the available 36 

data and the purpose of the modelling exercise (Hrachowitz and Clark, 2017). The increase of 37 

computational power, along with the existence of more accurate digital elevation models and land 38 

cover maps, encourage modelers to configure their models at the finest spatial resolution possible. 39 

Such hyper-resolution implementation of land models (Wood et al., 2011) can provide detailed 40 

simulations at spatial scales as small as 1-km2 grid over large geographical domains (e.g., Maxwell 41 

et al., 2015). However, the computational expense for hyper-resolution models could potentially 42 

be reduced using more creative spatial discretization strategies (Clark et al., 2017). 43 

It is common to adopt concepts of hydrological similarity to reduce computational costs. In this 44 

approach, spatial units are defined based on similarity in geospatial data, under the assumption that 45 

processes, and therefore parameters, are similar for areas within a spatial unit (e.g., Vivoni et al., 46 

2004, Newman et al., 2014). Hydrological Response Units (HRUs) are perhaps the most well-47 

known technique to group geospatial attributes in hydrological models. HRUs can be built based 48 

on various geospatial characteristics; for example, Kirkby and Weyman 1974, Knudsen and 49 

Refsgaard (1986), Flügel (1995), Winter (2001), and Savenije (2010) all have proposed to use 50 

geospatial indices to discretize a catchment into hydrological units with distinct hydrological 51 

behaviour. HRUs can be built based on soil type such as proposed by Kim and van de Giessen 52 

(2004). HRUs can also be built based on fieldwork and expert knowledge (Naef et al., 2002, 53 

Uhlenbrook 2001), although the spatial domain of such classification will be limited to the 54 

catchment of interest and the spatial extent of the field measurements. HRUs are often constructed 55 

by GIS-based overlaying of various maps of different characteristics and can have various shapes 56 
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such as non-regular (sub-basins), grid, hexagon, or triangulated irregular network also known as 58 

TIN (Beven 2001, Marsh et al., 2012, Oliviera et al., 2006). Land models are also beginning to 59 

adopt concepts of hydrological similarity (e.g., Newman et al., 2014; Chaney et al., 2018). 60 

Traditionally land models use the tiling scheme where a grid box is subdivided into several tiles 61 

of unique land cover, each described as a percentage of the grid (Koster and Suarez, 1992). 62 

Similarly, the concept of Grouped Response Units (GRUs, Kouwen et al., 1993), assumes similar 63 

hydrological property for areas with identical soil, vegetation, and topography. The GRU concept 64 

is utilized in the MESH land modeling framework (Pietroniro et al., 2007). 65 

A long-standing challenge is understanding the impact of grid size on model simulations (Wood 66 

et al., 1988). The effect of model grid size can have a significant impact on model simulation 67 

across scale especially if the model parameters are linked to characteristics which are averaged out 68 

across scale (Bloschl et al., 1995). Shrestha et al. (2015) have investigated the performance of 69 

Community Land Model (CLM) v4.0 coupled with ParFlow across various grid sizes. They 70 

concluded the grid size changes of more than 100 meters can significantly affect the sensible heat 71 

and latent heat fluxes as well as soil moisture. Also using CLM, Singh et al. (2015) demonstrated 72 

that topography has a substantial impact on model simulations at the hillslope scale (~100 meters), 73 

as aggregating the topographical data changes the runoff generation mechanisms. This is 74 

understandable as the CLM is based on topographical wetness index (Beven and Kirkby 1979, Niu 75 

et al., 2005). However, Melsen et al. (2016) evaluated the transferability of parameters sets across 76 

the temporal and spatial resolutions for the Variable Infiltration Capacity (VIC) model 77 

implemented in an Alpine region. They concluded that parameter sets are more transferable across 78 

various grid sizes in comparison with parameter transferability across different temporal 79 

resolutions. Haddeland et al. (2002) showed that the transpiration from the VIC model highly 80 

depends on grid resolution. It remains debatable how model parameters and performance can vary 81 

across various grid resolutions (Liang et al., 2004; Troy et al., 2008; Samaniego et al., 2017). 82 

The representation of spatial heterogeneity is an ongoing debate in the land modelling community 83 

(Clark et al., 2015). The key issue is to define which processes are represented explicitly and which 84 

processes are parameterized. The effect of spatial scale on emergent behavior has been studied for 85 

catchment scale models – the concepts of Representative Elementary Areas (REA), or 86 

Representative Elementary Watersheds (REW), were introduced to study the effect of spatial 87 
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aggregation on system-scale emergent behavior (Wood et al., 1995, Reggiani et al., 1999). The 89 

effect of scale on model simulations is not well explored for land models. More work is needed to 90 

understand the extent to which the heterogeneity of process representations is sufficient for the 91 

purpose of a given modelling application, and the extent to which the existing data can support the 92 

model configurations (Wood et al., 2011, Beven et al., 2015) and guarantee a fidelius model. 93 

In this study, we configure the Variable Infiltration Capacity (VIC) model in a flexible vector-94 

based framework to understand how model simulations depend on the spatial configuration. The 95 

remainder of this paper is organized as follows: In Section 2, we present the concept of vector-96 

based configuration for land models. In Section 3 we describe the study area and the data sets used 97 

in this study as well as the design of the experiments and elaborate the Variable Infiltration 98 

Capacity model (VIC) and mizuRoute as the vector-based routing model. In Section 4 we describe 99 

the results of the experiments. Section 5 discusses the implication of spatial discretization 100 

strategies on large-scale land model applications. The paper ends in Section 6 with conclusions of 101 

this study and implications for future work. 102 

2 The vector-based configuration for land models 103 

Land models are often applied at a regularly spaced grid. Land models are typically set up at a 104 

range of spatial configurations, ranging from grid sizes of 0.02° to 2° (approximately 2 to 200 km) 105 

and applied at sub-daily temporal resolutions for simulation of energy fluxes. A priori specification 106 

of the grid size of the land models is often derived from forcing resolutions, modeling objectives, 107 

available geo-spatial data and computational resources and is usually based on modeling 108 

convenience. Figure-1e-h illustrates the typical land model configuration – here the modeler 109 

selects a cell size, and then the soil, vegetation and forcing files are all aggregated or disaggregated 110 

to the target cell size. Original data resolution and spatial distribution of soil, land cover and forcing 111 

data are smeared while upscaled to the resolution of interest. Any change in the modeling 112 

resolution will require upscaling or downscaling of the geo-physical dataset once again. 113 

In this study, we configure the land models using non-regular shapes. Figure-1a-d presents an 114 

example of non-regular shapes created through spatial intersections of the land covers and soil 115 

types shapes. These vector-based configurations of the geospatial data are then forced at the 116 

original meteorological forcing resolution, or its upscaled or downscaled values resulting in 117 
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computational units. Therefore, each computational unit has unique geospatial data such as soil, 120 

vegetation, slope and aspect and is forced with a unique forcing. In this configuration changing of 121 

meteorological forcing resolution do not affect the decisions needed to upscale the geo-spatial data 122 

such as soil type and land cover to the grid resolution. 123 

 124 

Figure-1- Top row indicates vector-based configuration of a land model; (a) meteorological 125 

forcing at its original resolution or upscaled and downscaled resolutions, (b) land covers, (c) soil 126 

types with their spatial extent, and (d) vector-based configuration with 28 computational units 127 

each with unique forcing, soil type and land cover type. The bottom row indicates typical grid-128 

based configuration of a land model; (e) a priori resolution should be decided, (f) meteorological 129 

forcing should be upscaled or downscaled to the grid resolution, (g) land cover percentage 130 

should be calculated for each modeling grid; or a dominate landcover should be selected to 131 

represent that grid,  and finally (h) soil characteristics for each modeling grid should be 132 

identified. 133 

The benefits of vector-based configuration of land models can be summarized as follows: 134 

1- No need for a priori assumption on modeling grid size. In traditional land model 135 

implementation, the modeler selects a grid resolution (which is often a regular latitude/longitude 136 

grid). The soil parameters and forcing data from any resolution must be aggregated, disaggregated, 137 

resampled or interpolated for every grid size. The land cover data often is only considered as a 138 

percentage for every grid and spatial location of the land cover is lost. However, in the vector-139 
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based setup these decisions are only based on the input and forcing data that are chosen to be used 141 

in the modeling practice and no upscaling or downscaling to grid size is needed. Furthermore, the 142 

size of computational units can vary across modeling domain depending on the variability of the 143 

meteorological forcing and geospatial heterogeneity. For example, the spatial density of 144 

computational units can be higher in mountainous areas where temperature and precipitation 145 

gradients are larger while avoiding unnecessarily high number computational units in areas with 146 

lower gradient in meteorological forcing.  147 

2- Reasonable relation between available meteorological forcing and geo-spatial data 148 

resolutions and number of computational units: computational units that are the result of 149 

available geophysical data sets forced with the original forcing data logically represent the 150 

maximum number of computational units that can be hydrologically unique. A higher number of 151 

computational units than the proposed setup will arguably provide an unnecessary computational 152 

burden due to identical forcing data and geospatial information. 153 

3- Direct simplification of geospatial data. The vector-based implementation facilitates 154 

easier aggregation of computational units. It is easier to aggregate similar soil types or similar 155 

forested areas into unified shapes with basic GIS function (dissolving for example) than this would 156 

be if all data had to be upscaled or downscaled into a different grid size. 157 

4- Direct specification of physical parameters and avoiding unrealistic combinations of 158 

land cover, soil and other geo-physical information. As each computational unit has a specific 159 

type of land cover, soil type and other physical characteristics, it is straightforward to specify 160 

parameter values based on look up tables (i.e., no averaging, upscaling is needed). This is favorable 161 

because the modeler does not need to make decisions about methods used for upscaling of 162 

geophysical data at the grid level. Also, this might avoid the unrealistic combination of parameter 163 

sets that might be considered by the model at a grid scale, such as equiprobable combination of 164 

land cover on soil type which may not exist in reality which will be increasing the fidelity of the 165 

model representation of the processes (we will elaborate this further in the context of the VIC 166 

model in Discussion Section). We emphasize the ease of parameter allocation for vector-based 167 

implementation of land models does not address the challenge of finding the right parameter sets 168 

for each computational unit. 169 
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5- The ability to compare and constrain the parameter values for computational units 171 

and their simulations. The impact of land cover, soil type and elevation zone can be evaluated 172 

separately. For example, the vector-based implementation makes it easier to test if forested areas 173 

generate less surface runoff than grasslands. This might be more challenging at the gird-based 174 

configuration in which there are combination of different land cover types at grid scale. Similarly, 175 

the vector-based implementation may simplify regularization efforts across large geographical 176 

domains. This relative constrains can be utilized to translate often patchy expert knowledge into a 177 

sophisticated land model so that the model simulation will obey the modelers and hydrologists’ 178 

expectations. 179 

6- The possibility to incorporate additional data. If needed, additional data, such as slope 180 

and aspect for example, can be incorporated in building the computational units, accounting for 181 

changes in shortwave radiation or lapse rates for temperature. The changes can be implemented 182 

outside of the model in the forcing files. Computational units can be built also based on variation 183 

of leaf area index (LAI) giving an additional layer of information in addition to the land cover 184 

type. The additional information can be easily ingested into the model without extra effort in 185 

contrast to changing of the model parameter files at the grid scale.  186 

7- Easier comparison of model simulations and in situ point-scale observation and 187 

visualization: The vector-based implementation of land models makes it easier to compare the 188 

point measurement to model simulation as the model simulations preserve extent of geospatial 189 

features. 190 

8- Modular and controlled selection of models: The vector-based implementation identifies 191 

the characteristics and spatial boundary of geospatial domains. A model might not be suitable for 192 

processes of some of the geospatial domains. Alternatively, processes of a computational unit that 193 

is beyond the capacity of one model can be replaced with an alternative model. For example, 194 

computational units that are glaciered, can be replaced with more suitable models while the spatial 195 

configuration and forcings remain identical. Consequently, the effect of features such as glaciers 196 

can be better studied as more expert models can be applied to glacier while the rest of the 197 

computational units can be simulated with a model that includes general processes. 198 Forma&ed: Font color: Text 1
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3 Data and methods 199 

3.1 Study area: 200 

Experiments are performed for the Bow River at Banff with a basin area of approximately 2210 201 

km2 located in province of Alberta, Canada. The Bow River is located in the Canadian Rockies in 202 

the headwaters of the Saskatchewan River Basin. Most of the Bow River streamflow is due to 203 

snow melt (Nivo-glacial regime). The average basin elevation is 2130 m ranging from 3420 m at 204 

the peak top to 1380 m above mean sea level at the outlet (town of Banff). The basin annual 205 

precipitation is approximately 1000 mm with range of 500 mm for the Bow Valley up to 2000 mm 206 

for the mountain peaks. The predominant land cover is conifer forest in the Bow Valley and rocks 207 

and gravels for mountain peaks above the tree line. 208 

 209 
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Figure – 2 (a) The location of the Bow River Basin at Banff (b) Bow River Basin elevation, (c) 210 

computational units for geospatial data of elevation zones, land cover and soil type forced at WRF 211 

original resolution at 4 km (Case-3-4km) and (d) river network topology and associated sub-basins 212 

that is used for the vector-based routing. 213 

 214 

3.2 Geospatial data and meteorological forcing 215 

3.2.1 Model input dataset and forcing: 216 

The inputs and forcing we used to set up the model are as follows: 217 

1- Land cover: We used the land cover map NALCMS-2005 v2 (North American Land 218 

Change Monitoring System, Latifovic et al., 2004) that is produced by CEC (Commission for 219 

Environmental Cooperation). NALCMS-2005 v2 includes 19 different classes. The land cover 220 

map is used to set up the vegetation file and vegetation library (look up table) for the VIC model 221 

(Nijssen et al., 2001).   222 

2- Soil texture: We used the Harmonized World Soil Data, HWSD (Fischer et al., 2008). For 223 

each polygon of the world harmonized soil we use the highest proportion of soil type. The HWSD 224 

provide the information for two soil layers, in this study we base our analyses on the lower soil 225 

layer reported in HWSD to define the soil characteristics needed for the VIC soil file.  226 

3- Digital Elevation Model: in this study we make use of existing hydrologically conditioned 227 

digital elevation models (DEM) to (1) derive the river network topology for the vector-based 228 

routing, mizuRoute and (2) derive the slope, aspect, and elevation zones which are used to estimate 229 

the forcing variables.  For the first purpose we use the hydrologically conditioned DEM of 230 

HydroSHED (Lehner et al., 2006) with a resolution of 3 arc-second, approximately 90 meters; for 231 

the second purpose, we use the HydroSHED 15 arc-second DEM (approximately 500 meters).  232 

4- Meteorological forcing: we used the weather research and forecasting (WRF) model 233 

simulation for continental United States with the temporal resolution of 1 hour and spatial 234 

resolution of 4 km (Rasmussen and Liu, 2017). For upscaling the WRF input forcing, we use the 235 

CANDEX package (DOI: 10.5281/zenodo.2628351) to map the 7 forcing variables to various 236 
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resolutions (1/16˚, 1/8˚, 1/4˚, 1/2˚, 1˚ and 2˚ from the original resolution of 4 km). We used the 238 

required variables from the WRF data set namely, total precipitation, temperature, short and long 239 

wave radiation at the ground surface, V, U components of wind speed and water vapor mixing 240 

ratio.  241 

The shortwave radiation is rescaled based on the slope and aspect of the respective computational 242 

unit (refer to Appendix-A for more details). In this study we differentiated four aspects and five 243 

slope classes. The temperature at 2 meters are adjusted using the environmental lapse rate of -244 

6.5°C for 1000 meters increase in elevation. The assumed lapse rate aligns with earlier findings 245 

from the region of study (Pigeon and Jiskoot, 2008). 246 

3.2.2 Observed data for model calibration 247 

The daily streamflow is extracted from the HYDAT (WSC, Water Survey Canada) for Bow at 248 

Banff with gauges ID of 05BB001. This data is used for parameter calibration/identification of the 249 

VIC parameters. 250 

3.3 Land model and routing scheme: 251 

3.3.1 The Variable Infiltration Capacity (VIC) model: 252 

The VIC model was developed as a simple land surface/hydrological model (Liang et al. 1994) 253 

that has received applications worldwide (Melsen et al., 2016). In this study we use classic VIC 254 

version 5. The VIC model combines sub-grid probability distributions to simulate surface 255 

hydrology such as variable infiltration capacity formulation (Zhao, 1982). The VIC model uses 256 

three soil layers to represent the subsurface. While each soil layer can have various physical soil 257 

parameters (e.g., saturated hydraulic conductivity, bulk density), each layer is assumed to be 258 

uniform across the entire grid regardless of the vegetation type variability in that grid. The VIC 259 

model assumes a tile vegetation implementation within each grid similar to the mosaic approach 260 

of Koster and Suarez (1992) with bio-physical formulations for transpiration (Jarvis et al., 1976). 261 

To account for spatial variability in vegetation, the VIC model allows for root depths to be adjusted 262 

for every vegetation type. The vegetation parameters (e.g., stomatal resistance, LAI, albedo) are 263 

often identical for each land cover across the modeling domain. The VIC model can account for 264 

different elevation zones to account for temperature lapse rate given elevation difference in a grid 265 

cell, and also for the distribution of precipitation over the identified elevation zones.  266 
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In the experiments for this study, we calibrate a subset of VIC parameters namely binf, Eexp, Ksat, 267 

d2,forested, d2,non-forested, Kslow, and Sroughness (names are mentioned in Table-1). Following the concept 268 

of GRU, Kouwen et al., 1993, we assume the computational units with similar geophysical 269 

characteristics (soil and land cover) possess similar parameter values. We make sure that the d2, 270 

forested is larger than the d2,non-forested as the root depth are deeper for forested regions (constraining 271 

relative parameters). For the sake of simplicity, we limit the root zone to the upper soil layers and 272 

replace the 5-parameter VIC baseflow1 with a linear reservoir (refer to Gharari et al., 2019 for 273 

further explanation). We also assume that the two top soil layers possess homogeneous soil 274 

characteristics. 275 

3.3.2 mizuRoute, a vector-based routing scheme 276 

In this study, we make use of the vector-based routing model mizuRoute (Mizukami et al., 2016). 277 

Vector-based routing models can be configured for different computational units than the land 278 

model uses (e.g., configuring routing models using sub-basins derived from existing 279 

hydrologically conditioned DEMs such as HydroSHEDS, Lehner et al., 2006, or MERIT Hydro, 280 

Yamazaki et al., 2019). This removes the dependency of the routing on the grid size or 281 

computational unit configurations and eliminates the decisions that are often made to represent 282 

routing-related parameters at grid scale. Therefore, we can ensure that two model configurations 283 

with different geospatial configurations are routed using the same routing configuration. The 284 

intersection between the computational units in the land model and the sub-basins in the routing 285 

model defines the contribution of each computational units from the land model to each river 286 

segment.  287 

The Impulse Response Function (IRF) routing method (Mizukami et al., 2016) is used for this 288 

study. IRF, which is derived based on diffusive wave equation, includes two parameters – wave 289 

velocity and diffusivity. The diffusive wave parameters are set to 1 m/s and 1000 m2/s respectively 290 

and remain identical for all the river segments. The river network topology, assuming 291 

approximately 25 km2 starting threshold for the sub-basin size, is based on a 92-segment river 292 

network depicted in Figure-3d. 293 

 
1 The VIC baseflow parameters are: Dsmax, maximum rate of baseflow; Ds, fraction of Dsmax where non-linear 
baseflow begins; Ws, fraction of maximum soil moisture where non-linear baseflow occurs; c, exponent used for the 
non-linear part of the baseflow; and depth of the baseflow layer d3. 
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Table-1 the VIC model parameters that are subjected to perturbation for model calibration for the 294 

designed experiments. 295 

Parameter 

symbol 

Parameter 

name 

Minimum 

value 

Maximum 

value 

Unit Explanation 

binf Variable infiltration 

parameter 

0.01 0.50 [-]  

Eexp The slope of water retention 

curve 

3.00 12.00 [-]  

Ksat Saturated hydraulic 

conductivity 

5.00 1000.00 [mm/day]  

d1 The depth of topsoil layer 0.2 0.2 [m] Fixed at 20 cm for both forested 

and non-forested computational 

units 

d2,forested The depth of the second soil 

layer for forest 

computational units 

0.2 2 [m]  

d2,non-forested The depth of the second soil 

layer for non-forested 

computational units 

0.2 d2,forested [m] The maximum is bounded by the 

d2,forested 

Droot The distribution of root in 

the two soil layers 

0.5 0.5 [-] Fixed at 50% for the top and 

lower soil layers. 

Kslow Slow reservoir coefficient 0.001 0.9 [1/day]  

Sroughness Snow roughness 0.5 3 [mm]  

 296 

3.4 Experimental design: 297 

In this study, we configure the VIC model in a flexible vector-based framework to understand how 298 

model simulations depend on the spatial configuration. We consider four different methods to 299 

discretize the landscape for seven different spatial forcing grids (see Table 2). The landscape 300 

discretization methods include (1) simplified land cover and soils; (2) full detail for land cover and 301 

soils; (3) full detail for land cover and soils, including elevation zones; and (4) full detail for land 302 

cover and soils, including elevation zones and slope and aspect. The different spatial forcing 303 

resolutions are 4-km, 0.0625o, 0.125o, 0.25o, 0.5o, 1o, and 2o. This design enables us to separate 304 
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discretization of the landscape based on geo-spatial data from the spatial resolution of the forcing 305 

data. 306 

Table – 2- The numbers of computational units for the Bow River at Banff, given different spatial 307 

discretization of land cover, soil type, elevation zones and slope and aspects forced with various 308 

forcing resolutions.  309 
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4 km 6631 1508 941 479 

0.0625°  [~6.25 km] 5224 1098 663 290 

0.125°  [~12.50 km] 3079 515 283 94 

0.25°  [~25.00 km] 2013 306 154 39 

0.5° [~50.00 km] 1332 184 93 21 

1.0° [~100.00 km] 917 116 56 12 

2.0° [~200.00 km] 767 89 42 6 

 310 

 311 
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3.4.1 Experiment-1: How does the spatial configuration affect model performance? 312 

As the first experiment, we focus on how well the various configurations simulate observed 313 

streamflow for Bow River at Banff. We calibrate the parameters for the different configurations in 314 

Table 2. Model calibration is accomplished using the Genetic Algorithm implemented in the 315 

OSTRCIH framework (Mattot, 2005; Yoon and Shoemaker, 2001), maximizing the Nash-Sutcliffe 316 

Efficiency (ENS, Nash and Sutcliffe 1970) using a total budget of 1000 model evaluations given 317 

the available resources limited by the most computationally expensive model (Case-4-4km). 318 

3.4.2 Experiment-2: How well do calibrated parameter sets transfer across different model 319 

configurations? 320 

As the second experiment, we focus on how various configurations can reproduce the result from 321 

the configuration with highest computational units for a given parameter set. In other words, this 322 

experiment evaluates accuracy-efficiency tradeoffs – i.e., the extent to which spatial 323 

simplifications affect model performance under the assumption that similar computational units 324 

possess identical parameters across various configurations. This is important as it enables modelers 325 

to understand accuracy-efficiency tradeoffs, given the available data and the purpose of the 326 

modelling application. This experiment is based on perfect model experiments using the model 327 

with the highest computational unit as synthetic case (Case-4-4km). Synthetic streamflow for 328 

every river segment is generated using a calibrated parameter set for Case-4-4km. The models with 329 

lower number of computational units are then simulated using the exact same parameter set used 330 

for generating the synthetic streamflow. The differences in streamflow simulation, quantified using 331 

ENS, provide an understanding of how the simulations deteriorate when the spatial and forcing 332 

heterogeneities are masked or upscaled. This also will bring an understanding on how sensitive 333 

the changes are along the river network and at the gauge location at which the models are calibrated 334 

against the observed streamflow data. Similarly, we compare the spatial patterns of snow water 335 

equivalent for the different spatial configurations. 336 
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4 Results 337 

4.1 Experiment-1  338 

The various model configurations are compared with respect to the Nash-Sutcliffe performance 339 

metric (ENS). Results show that all the models, including the ones that are configured with coarser 340 

resolution forcings, can simulate streamflow with ENS as high as 0.70 (Table-3). It is noteworthy 341 

to mention that the configuration of Case-4-1˚ has higher ENS value compared to the cases with 342 

highest computational units, Case-4-4km for example. This might be due to various reasons 343 

including: (1) compensation of forcing aggregation on possible forcing bias at finer resolution; (2) 344 

compensation of forcing aggregation on model states and fluxes and possible adjustment for model 345 

structural inadequacy and hence directing the optimization algorithm to different possible solutions 346 

across configurations. 347 

Table-3 – The highest calibrated Nash-Sutcliffe performance metric (ENS) for the different model 348 

configurations. Details on the geospatial cases are provided in Table 2. 349 

Forcing resolution Case 4 
4 aspect groups; 

5 slope groups; 

19 classes of land cover; 

500-meter elevation 

zones; 

Case 3 
no aspect groups; 

no slope groups; 

19 classes of land cover; 

500-meter elevation 

zones; 

Case 2 
no aspect groups; 

no slope groups; 

19 classes of land cover; 

no elevation zones; 

Case 1 
no aspect groups; 

no slope groups, 

3 classes of land cover, one dominant soil 

type 

no elevation zones; 
4 km 0.80 0.81 0.78 0.75 

0.0625˚ [~6.25 km] 0.79 0.79 0.77 0.75 

0.125˚ [~12.50 km] 0.82 0.81 0.75 0.75 

0.25˚ [~25.00 km] 0.81 0.83 0.77 0.76 

0.5˚ [~50.00 km] 0.79 0.82 0.76 0.76 

1.0˚ [~100.00 km] 0.83 0.81 0.79 0.78 

2.0˚ [~200.00 km] 0.77 0.77 0.77 0.80 

 350 

We use a single objective calibration algorithm for model calibration, however and for 351 

investigating the parameter uncertainty, we check the behavioral parameter sets with ENS higher 352 

than 0.7 (an arbitrary values). These parameter sets indicate very different soil characteristics. 353 Deleted: may have354 

Deleted: parameters combinations355 
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Figure-3a illustrates the possible combinations of behavioral parameter sets for Case-2-4km (ENS> 356 

0.7). As a specific example, saturated hydraulic conductivity, Ksat, and slope of water retention 357 

curve, Eexp, have very different combinations of values within the specified parameter ranges for 358 

calibration. The result indicates the two parameters that are often fixed or a priori allocated based 359 

on look up tables can exhibit significant uncertainty and non-identifiability. It is also noteworthy 360 

to mention that among the parameters, Kslow seems to be the most identifiable parameter while it 361 

is set to the upper limit range. There might be two explanations for this behavior: (1) this might be 362 

related to the Nivo-glacier regime of the study basin which has a strong yearly cycle due to snow 363 

accumulation and snow melt (2) and the lack of macropore water movement to the baseflow 364 

component which results in dampen input to this component and in return result in Kslow to be 365 

higher than expected for a baseflow reservoir (for further reading refer to Gharari et al., 2019). 366 

Overall, the results indicate that calibrating the VIC model parameters using a sum-of-squared 367 

objective function at the basin outlet does not constrain the VIC subsurface parameters. 368 

Additionally, we examine the difference between the fluxes, in this case transpiration, for all the 369 

parameter sets presented in Figure-3a. Figure 3-b illustrates differences between the yearly 370 

transpiration flux for the computational units of case-2-4km. This difference can be as high as 250 371 

mm per year indicating the internal uncertainty of fluxes and related states in reproducing similar 372 

performance metric. This difference can be the basis of model diagnosis to understand which 373 

computational units are causing the internal uncertainty and perhaps the underlying reasons. 374 

  375 
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Figure-3 – (a) The normalized values for the parameters of Case-2-4km that have ENS, Nash-380 

Sutcliffe efficiency, values of higher than 0.7. (b) The difference of largest and smallest yearly 381 

simulated transpiration for parameter sets with ENS above 0.7. 382 

 383 

4.2 Experiment-2 384 

The second experiment compares the performance of a parameter set from the Case-4-4km across 385 

the configurations with degraded geophysical information and aggregated spatial information. 386 

Here we choose a parameter set that has ENS of above 0.7 (this can be any other parameter sets). 387 

Figure-4 shows the evaluation metric, ENS, for the streamflow of every river segment across the 388 

domain in comparison with the synthetic case (Case-4-4km). From Figure-4, it is clear that the ENS 389 

is less sensitive for river segments with larger upstream area (i.e. segments that are located more 390 

downstream). This result has two major interpretations (i) the parameter transferability across 391 

various configurations is dependent on the sensitivity of simulation at the scale of interest meaning 392 

that as long as good performance is achieved in the context of modeling, for example for the 393 

streamflow at the basin outlet, the parameters can be said to transferable for that scale and (ii) often 394 

inferred parameters at larger scale may not guarantee good performing parameters at the smaller 395 

scales (read upstream areas) as the changed in the performance metric varies significantly across 396 

scale for the smaller modeling elements. 397 
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 398 

Figure 4 – Differences of the simulated streamflow at river segments in comparison with the 399 

synthetic case, Case-4-4km, expressed in performance metric, ENS. 400 
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 402 

To understand the spatial patterns of model simulations for all the configurations, we evaluate the 403 

distribution of the snow water equivalent, SWE, for the computational units on 5th of May 2004 404 

(Figure-5). In general, the SWE follows the forcing resolution and its aggregation. Although 405 

coarser forcing resolutions results in coarser SWE simulation, the geospatial details such as 406 

elevation zones and slope and aspects result in more realistic representation of SWE as the snow 407 

layer is thinner for south facing slopes where more melt can be expected to occur, and thicker for 408 

higher elevation zones (compare SWE simulations for Case-4-2˚ and Case-3-2˚ in Figure-5) which 409 

is consistent with higher precipitation volumes and slower melt at higher elevation. Another 410 

observation from Figure-5 is the unrealistic distribution of SWE for configurations without 411 

elevation zones (Case-2 and Case-1). The lack of elevation zones results in both valley bottom and 412 

mountain tops to be forced with the same temperature. Snow is more durable in the forested areas 413 

as the result of model formulation, which are at lower elevation, while SWE is less for higher 414 

mountains, which is unrealistic. We remind the reader that the various spatial pattern of SWE 415 

across different configurations are from the simulations that results in rather similar performance 416 

metric, ENS, for the streamflow at the outlet of the basin. 417 
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Figure 5- Comparison of the snow water equivalent for 5th of May 2004 for various configurations. 420 

Figure-6a shows the performance of the streamflow across various configurations for the most 421 

downstream river segment (the gauged river segment which is used for parameter inference 422 

through calibration). Figure 6a illustrates that most of the configurations have similar scaled ENS 423 

at the basin outlet. We compared the maximum snow water equivalent across different 424 

configurations for a computational unit located in the Bow Valley Bottom (an arbitrary location of 425 

-116.134˚W and 51.382˚E) for the year 2004 (Figure-6b). The result indicates that the SWE is 426 

higher for configurations with coarser forcing resolutions (almost triple). This is due to the reduced 427 

temperature as a result of masking warmer valley bottom by cooler and higher forcing grids over 428 

the Rockies. Such analyses can provide insights on the appropriate model configurations for 429 

different applications. Also and as an example, if model configurations of different complexity are 430 

known to show similar performance for a given parameter set, uncertainty and sensitivity analysis 431 

can be done initially on the models with fewer computational units and the results of the analysis 432 

can be applied to models with a higher number of computational units. This analysis can be 433 

repeated for different parameter sets, e.g., poorly performing parameter sets or randomly selected 434 

parameter sets, to better understand accuracy-efficiency tradeoffs of the model within its specified 435 

parameters ranges. 436 

 437 

Figure -6 (a) The relative performance of model simulation across various configurations with a 438 

single parameter set. (b) Maximum of snow water equivalent for an arbitrary location of -439 
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116.134˚W and 51.382˚E located in Bow Valley Bottom across various model configurations for 441 

the year 2004. 442 

 443 

5 Discussion 444 

In this study, we proposed a vector-based configuration for land models and applied this setup to 445 

the VIC model. We used a vector-based routing scheme, mizuRoute, which was forced using 446 

output from the land model (one-way coupling). Unlike the grid-based approach, there is no 447 

upscaling of land cover percentage or soil characteristics to a new grid size. This enables us to 448 

separate the effects of changes in forcing from changes in the spatial configurations. As mentioned 449 

earlier in Section 2, the vector-based configuration of land models may help avoiding unrealistic 450 

configuration of soil type, land cover or elevation zones that may happen in traditional grid-based 451 

implementation and hence increase the model fidelity. As an example, VIC configuration at grid 452 

scale assumes equal distribution of land cover over different elevation zones. Figure-7b illustrates 453 

how the traditional VIC configuration at grid-scale wrongly considers forested land cover above 454 

tree line. This issue is avoided in vector-based configuration as the set up will only include two 455 

computational unit of forested area below tree line and bare soil above the tree line (Figure 7a). 456 

The vector-based setup also provides more flexibility in comparing the model simulations across 457 

computational units (as an example, refer to Figure 5), and also comparing model simulations with 458 

point measurements, such as snow water equivalent. Moreover, the vector-based routing results in 459 

complete decoupling of the land model computational units’ spatial extent from routing sub-basins. 460 

For the grid-based configuration of land models, it is often the case that in land model grid and 461 

routing grids are identical which result in further decision on upscaling of the routing direction to 462 

the land model grid scale. 463 
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 464 

Figure-7 – (a) The realistic configuration of a natural system with land cover consist of 50% Bare 465 

soil and 50% forest within a grid located in two different elevation zones above and below the tree 466 

line which is preserved with vector-based configurations and (b) the traditional VIC configurations 467 

for the given system at the grid for the two elevation zones and 2 land cover which results in 468 

unrealistic combination of forested land cover above the tree line and bare soil below the tree line. 469 

 470 

Our results illustrate various vector-based spatial configuration of the VIC model generates similar 471 

large-scale simulations of streamflow when the setups are calibrated by maximizing the Nash-472 

Sutcliffe score at the basin outlet. Similarly, we have shown that often behavioral parameter sets 473 

yield similar ENS and can be significantly uncertain (Figure-3a) or have significant differences for 474 

their internal behavior which may be very well masked by aggregation of the result at the grid 475 

scale or basin scale (Figure-3b and Figure-5). Generally, both parameter and states and fluxes 476 

uncertainties are not often evaluated or reported for land models (Demaria et al., 2007) or is 477 

ignored by tying parameters, linking specific hydraulic conductivity to the slope of water retention 478 

curve, for example, so that the possible combination of parameters are reduced. Moreover, the 479 

behavior of Kslow parameter can be revealing of the VIC model structural deficiencies which are 480 

not often explored for land models. The recession coefficient obtained from recession analysis on 481 

the observed hydrograph is approximately 0.01 1/day while the calibrated Kslow has much higher 482 

values of around 0.90 1/day. This can be due to damped response from the two top soil layers and 483 

lack of macropore water movement to the baseflow component. Similarly, and due to lack of 484 

macropore water movement in the VIC model, and land models in general, it is impossible to infer 485 

the Kslow based on recession analysis on the observed hydrograph (for further reading on this and 486 
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also recession analysis refer to Gharari et al., 2019).  This finding can be generalized to the 5-487 

parameter VIC baseflow, highlighting the need to properly evaluate the often not observable but 488 

calibrated baseflow parameters for the VIC model and if it is possible to identify 5 parameters 489 

based on the recession limps of a hydrograph. 490 

Land models are often applied at large spatial scales. The results clearly show that the deviation 491 

of streamflow is much lower in river segments with larger upstream area (Figure 4 and 6a). It is 492 

often the case that the model parameters and associated processes are inferred thought calibration 493 

on the streamflow at the basin outlet or over a large contributing area. We argue that this may not 494 

be a valid strategy for process understanding at the smaller scale (read computational units), given 495 

the large uncertainty exhibited by the parameters. Therefore, hyper-resolution modeling efforts, 496 

Wood et al. 2011, may suffer from poor process representation and parameter identification at the 497 

scale of interest (Beven et al., 2015). What is needed instead of efficiency metrics that aggregate 498 

model behavior across both space (e.g. at the outlet of the larger catchment) and time (e.g. 499 

expressing the mismatch between observations and simulations across the entire observation 500 

period as a single number), is diagnostic evaluation of the model’s process fidelity at the scale at 501 

which simulations are generated in case of available observations (e.g. Gupta et al., 2008; Clark et 502 

al., 2016). 503 

One might argue that the spatial discretization is important for realism of model fluxes and states. 504 

Moving to significantly high number of computational units may result in computational units that 505 

are similar in their forcing and geo-spatial fabric (such as soil and land cover types). Based on the 506 

result of this study for snow water equivalent (Figure-5), we can argue that the snow patterns are 507 

fairly similar for the configurations that have elevation zones and finer resolution of forcing (case3 508 

and 4 and forcing resolution less than 0.125 degree). (!(#̅|&̅)~!(#|&))))))))))), in which m is the model, 509 

x and & are model forcing and the model parameter set and #̅ and &̅ are upscaled forcing and 510 

parameter value at coarser spatial representation). 511 

The analysis on the accuracy-efficiency tradeoff presented in this study, Figure-6, can be used in 512 

model analysis such as sensitivity and uncertainty. One can assume a configuration with fewer 513 

computational units can be a surrogate for a model with more computational units, under the 514 

condition that both models are known to behave similarly for a given parameter set. The calibration 515 

Deleted: It can be further explored if the model simulation at 516 
finer resolutions can be approximated by interpolating result 517 
of a model with coarser resolution 518 

Deleted: ("̅|%)~(("|%)))))))))))519 

Deleted: is 520 

Deleted: * is 521 

Deleted: ). 522 



 

Page 25 of 39 
 

can be done on the model configuration with less computational unit and the parameters can be 523 

transferred directly to the model with more computational units or can be used as an initial point 524 

for optimization algorithm to speed up the calibration process. Similarly, the sensitivity analyses 525 

can be done primarily on the model with less computational units. 526 

In this study and following the concept hydrological similarity, we assume the parameters of 527 

computational units are identical for computational units with similar soil and land cover. The 528 

degree of validity of hydrological similarity concepts is debatable. For example, at the catchment 529 

scale, Oudin et al. (2010) have shown that the overlap between catchments with similar 530 

physiographic attributes and catchments with similar model performance for a given parameter set 531 

is only 60%. Physiographic similarity (in our case expressed through GRUs) does thus not 532 

necessarily imply similarity of hydrologic behavior, even though this is the critical assumption 533 

underlying GRUs. The VIC parameters can be linked to many more characteristics such as slope, 534 

height above nearest drainage (HAND, Renno et al., 2008, Gharari et al., 2011), or Topographical 535 

Wetness Index (Beven and Kirkby, 1979) as has been done by Mizukami et al. (2017) and Chaney 536 

et al. (2018). Techniques such as multiscale parameter regionalization (MPR, Samaniego et al., 537 

2010) can be used to scale parameter values for different model configurations. However, the 538 

functions that are used to link computational units and physical attributes to model parameters 539 

remains mostly based on inference, (i.e., calibration), and the reproducibility of those relationships 540 

are not very well explored. However, applying these techniques, such as in this case that has 541 

significant parameter and process uncertainty and significance accuracy-efficiency tradeoff, 542 

should be put through rigorous tests (Merz et al., 2020, Liu et al., 2016). 543 

A key outstanding challenge is for models to provide the right results for the right reasons 544 

(Kirchner, 2006). Thoughtful strategies to formulate parameter and process constraints based on 545 

expert knowledge can reduce the plausible range of behavioral parameter sets. In this study, we 546 

imposed a simple parameter constraint that the root zone moisture storage of forested area should 547 

be larger than the non-forested area (Table-1). Additional process constraints, if available, can be 548 

increasingly difficult to satisfy. More rigorous parameter estimation methods that satisfy the 549 

fidelity constraints based on expert knowledge are required (e.g., Gharari et al., 2014). 550 Forma&ed: Font: Times New Roman
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In this study, the vector-based routing configuration does not include lakes and reservoirs. This is 552 

often a neglected element of land modeling efforts and has only attracted limited attention 553 

compared to the its impact on terrestrial water cycle (Haddeland et al., 2006, Yassin et al., 2018). 554 

The presence of lakes and reservoirs and their interconnections reduces the, already limited, ability 555 

of inference of land model parameters based on calibration on the observed streamflow due to 556 

reduced variability of the streamflow. 557 

 Although not primary the result of this study, however, the Nivo-glacial regime of the Bow River 558 

Basins is mostly dominated by snow melt that contributes mostly to streamflow through baseflow 559 

(slow component of the hydrograph). The high Nash-Sutcliffe Efficiency, ENS, is partly due to 560 

the fact that it is rather easy for the land model to capture the yearly cycle of the streamflow only 561 

with snow processes (see e.g. Knoben et al., 2020, demonstrating this for the Kling Gupta 562 

Efficiency) while rapid subsurface water movement, such as macropore, are largely missing in the 563 

land models (Gharari et al., 2019). Therefore, more caution is needed for calibration of land model 564 

parameters for flood forecasting (Vionnet et al., 2019) for the Bow region and all the Nivo-glacial 565 

river systems in western Canada, McKenzie, Yukon and Colombia River Basins. 566 

 567 

6 Conclusions 568 

The vector-based configuration of land models can provide modelers with more flexibility, e.g. 569 

representing the impact of various forcing resolution or geospatial data representation. The 570 

conclusions from this study can be summarized as follows: 571 

1) The land model configuration with the highest number of computational units may not 572 

result in improved performance and better spatial simulation, in terms of obtained 573 

efficiency scores, while the internal model state and fluxes can show significant 574 

uncertainty. 575 

2) There is significant parameter and structural uncertainty associated with the land model (in 576 

this case, the VIC model). This uncertainty poses challenges for the process and parameter 577 

inference when the model is calibrated by minimizing the sum-of-squared differences 578 

between simulated and observed streamflow. Any parameter regionalization efforts should 579 
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take these uncertainties into account. Our results emphasize that more attention is needed 580 

on the topic of parameter and process inference at finer modelling scales. 581 

3) A model configuration with lower computational units, coarser resolution and less 582 

geospatial information, may reproduce model simulations with similar efficiency scores as 583 

configurations with higher computational units. Less computationally expensive 584 

configurations can be used instead for primary uncertainty and sensitivity analysis. 585 

A key scientific challenge is hydrological scaling. i.e., how do small-scale heterogeneities shape 586 

large-scale fluxes. Addressing this challenge requires a mix of both explicit representations of 587 

spatial heterogeneity (enabled through spatial discretization of the landscape) and implicit 588 

representations of heterogeneity (enabled through sub-grid parameterizations). The contribution 589 

in this paper is to advance flexible spatial configurations for land models – our approach improves 590 

the explicit representation of spatial heterogeneities, at least compared to traditional approaches 591 

that simply drape a grid over the landscape. Much more work is required across all spatial scales 592 

to carefully evaluate how a mix of explicit and implicit representations of spatial heterogeneity 593 

can improve process representations. We encourage the community to develop tools which can 594 

enable easier and more flexible configuration of land models that can be used to explore the above-595 

mentioned research questions. 596 
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7 Appendix 600 

7.1 Appendix – A 601 

This appendix reflect on the method and equations that have been used to calculate the ratio of the 602 

solar radiation on a surface with slope and aspect to a flat surface. Please note that the angles in 603 

the equations are in radian but for better communication we express angles in degree in the text. 604 

Declination angle: declination angle can be calculated for each day of year and is the same for 605 

the entire Earth (Ioan Sarbu, Calin Sebarchievici, in Solar Heating and Cooling Systems, 2017): 606 
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* = 23.45 !
"#$ sin	 5

%!
&'$

&'$
&'( (284 + 8)9        (A-1) 608 

in which * is declination angle in radian and d is the number of day in a year starting from 1st of 609 

January. 610 

Hour angle: hour angle is the angle expressed the solar hour. The reference of solar hour angle is 611 

solar noon (hour angle is set to zero) when the sun is passing the meridian of the observer or when 612 

the solar azimuth is 180° (north direction with azimuth of 0°). The hour angle can be calculated 613 

based on the: 614 

sin: = )*+,-)*+ . )*+ ∅
01) . 01) ∅ 	          (A-2) 615 

In which α, ϕ and * are the altitude angle, latitude of the observer and declination angle. The sunset 616 

and sunrise hour can be calculated as (when sun is at horizon and solar altitude angle is zero): 617 

cos:2 = − tan∅ tan *          (A-3) 618 

More caution is needed using equation A-3 for latitude above and below 66.55° north and south 619 

respectively where it can be always day or night with no sunrise or sunset during part of the year. 620 

The number of daylight hours that can be split before and after the solar noon equally can be 621 

calculated based on (assuming 15° for every 1 hour): 622 

A = %3!
"(

"#$
!            (A-4) 623 

And therefore, hour angle can be easily calculated for time before and after solar noon the 624 

(relationship between the 15° equals to an hour). Hour angle is negative for the time before solar 625 

noon and positive for the time after solar noon. Note the solar noon does not often coincide with 626 

12 pm of the local time zone. There are relationships to find the local time of solar noon. 627 

Solar altitude angle: Solar altitude angle is the angle of sun rays with the horizontal plane of an 628 

observer. This angle is maximum at solar noon and 0° for subset and sunrise. The altitude angle 629 

can be calculated based on the: 630 

sin B = sin * sin ∅ + cos * cos: cos ∅        (A-5) 631 
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For the solar noon when ω, hour angle, is zero the question simplifies to: 632 

sin B = sin * sin ∅ + cos * cos ∅ = cos(∅ − *) = sin	(!% − ∅ + *)    (A-6) 633 

Solar Azimuth: The solar azimuth angle, C456 reflect on the angle of the sun on the sky from the 634 

north with clockwise rule. The azimuth angle can be calculated as: 635 

sin C456 = )*+3 01) .
01),           (A-7) 636 

The solar azimuth angle for the solar noon is set to be 180°. 637 

The azimuth at the sunset and sunrise can be calculated: 638 

sin C456,892: = −sin:2 cos *         (A-8) 639 

sin C456,2:; = sin:2 cos *         (A-9) 640 

Surface Azimuth (a.k.a. aspect): The surface azimuth angle, C458<=>:reflect the direction of the 641 

any tilted surface to the north direction. This azimuth is fixed for any point while the solar azimuth 642 

changes over hours and seasons. 643 

Angle of incidence D: this angle represents the angle between a sloped surface and the sun rays. 644 

The model angle of the incidence for a slope surface β, and aspect of C458<=>: over latitude of ∅ 645 

can be calculated as (Kalogirou, in Solar Energy Engineering, 2009, in the reference formulation 646 

the Azimuth is from south which is corrected here for North): 647 

cos & = sin * sin ∅ cos E + sin * cos ∅ sin E cos C458<=>: + cos * cos ∅ cos E cos: −648 

cos * sin ∅ sin E cos C458<=>: cos: − cos * sin E sin C458<=>: sin:    (A-10) 649 

For the flat surface, both C458<=>: and β, is set to 0°, the incident angle can be calculated for the 650 

flat surface as 651 

cos &<?=; = sin * sin ∅ + cos * cos ∅ cos:        (A-11) 652 

In case where the angle of incident is larger than 90° the surface shades itself. 653 
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Correction of short-wave radiation based on slope and aspect. In this study we correct the 654 

WRF short wave radiation based on the surface slope and aspect. We first back calculated the 655 

incoming short-wave radiation by dividing the provided short wave radiation by the cosine of the 656 

incident angle of the flat surface. Then we can calculate the solar radiation of the sloped surface 657 

multiplying this value to the cosine of the incident angle of the slope surface. Basically, this ratio 658 

is: 659 

F = 01) @
01)@"#$%

            (A-12) 660 

The effect of the atmosphere is considered in the WRF product itself. However, and for incident 661 

level close to 90 degrees the ratio, R, might be very high values which result in the surface 662 

receiving unrealistically high value of radiation even higher than the solar constant, 1366 W/m2, 663 

at the top of the atmosphere. For cases with cosine values of incident angle lower than 0.05 we set 664 

the ratio to 0 to avoid this unrealistic condition. 665 
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 666 

Figure A-1 Short wave radiation for (top left) not corrected for slope and aspect and (bottom left) 667 

corrected for slope and aspect for 21st June 2020 and (top right) not corrected for slope and aspect 668 

and (bottom right) corrected for slope and aspect for 21st December 2020. 669 
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