
Letter to the Editor: 

 

Dear Dr. Niko Wanders, 

 

Thank you very much for handling our manuscript in HESSD and facilitating the fruitful open 
discussion process. We did RXU beVW WR addUeVV UeYieZeUV¶ cRPPeQWV iQ Whe UeYiVed PaQXVcUiSW. 
The major changes are as follow: 

1- We have reshuffled the structure of the manuscript so that the concept of vector-based 
configuration of land models is presented earlier and separately in the manuscript 
(currently in Section 2). 

2- We have reworded the VIC-GRU to vector-based configuration of land models instead. 
We used the concept of the GRU for parameter allocation in this work [which can be 
different for other studies and parameter allocation]. 

3- We have re-calibrated the parameters with snow roughness as requested by the first 
reviewer. 

4- We have merged two of the Figures and simplified the first Figure. The numbering of the 
Figures may have changed due to the change in the structure of the manuscript. 

5- We fully removed Experiment-3 which was exploring the presence of the macropore 
water movement in the VIC model.  

We hope the current changes in the manuscript satisfy the editor and the reviewers and hopefully 
warrant publication in the current format. Looking forward to hearing back from you. 

 

With kind regards, 
 
Shervan Gharari, on behalf of the co-authors 

 

 

 

 

 

 



Answer to the comments by anonymous reviewer#1 

We thank the reviewer for their constructive comments on our work. For convenience, the 
UeYieZeU¶V cRmmenWV aUe giYen in green and our response is in blue. 

Gharari et al present an application of the VIC model, using Grouped Response Units to define 
computational units, rather than grids. It is acknowledged that this concept was already presented 
in 1993. I do think it is justified to re-introduce older concepts if these can serve the science of 
today, however, then the re-introduction should also deal with some of the challenges of today, 
and this is currently not the case.  

As the reviewer rightly mentioned, this manuscript does not intend to introduce the concept of 
GRU, instead, it tries to use it as a base for implementation of the VIC model in a vector-based 
fashion which has been used worldwide and hopefully draw the attention for wider land model 
community to use the concept of vector-based setup (and based on GRUs parameterization). 
 
SRlYiQg Whe ³challeQgeV Rf WRda\´ (Zhich Whe UeYieZeU deVcUibeV iQ more depth in their later 
comments, and which we respond to in more depth later in this document) is not the main goal of 
this paper. In this manuscript, we try to point out the technical and scientific advantages of using 
a vector-based setup. To do so, here we reflect on one of often not very well explored challenges 
in land modeling community, that is trade-Rff beWZeeQ accXUac\ Rf Whe laQd PRdelV¶ VSaWial 
representation and their performance. We hope our paper sheds some light on the ongoing 
discussion. The vector-based implementation concept was very helpful in this respect as we 
could change the resolution of forcing without really affecting the parameter values at the 
computational units level as there is no upscaling to the grid resolution. It was also very helpful 
to use the GRU concept in the parameterization of the VIC model however other 
parameterization techniques could be explored within the vector-based implementation of land 
models. We think that is a major advantage that we highlighted in this manuscript. Also, 
following the suggestion by the second reviewer, we have moved the use of GRU concept in 
grouping the parameter values for a specific combination of geospatial data after introducing the 
vector-based implementation concept. 

FiUVWl\, Whe UeadeU haV WR dR TXiWe VRme VeaUching WR fXll\ caSWXUe Whe cRnceSW Rf GRU¶V, and iWV 
cRmSaUiVRn WR HRU¶V. Onl\ Zhen Whe inYeVWigaWed caVeV aUe SUeVenWed iW be- comes clear what a 
GRU exactly iV and Whe chRiceV iW encRmSaVVeV Zhen defining GRU¶V. ThiV VeemV WR be Whe 
result of an overall quite weak structure in the manuscript; the introduction does not clearly 
present the aim or goal, probably because the structural test (case 3, presented in the intro in line 
103-110) seems to be completely out of context. In the same fashion, 3.1.3 is not well embedded. 
Furthermore, sections are not logically structured, e.g. subsection 3.3 only consists of 2 sentences 
while some subsubsections are longer, and parameter are presented well after the calibration is 
discussed and the cases are introduced. I suggest restructuring the manuscript, clearly 
introducing the concepts with simple examples, and omitting parts that do not fit the aim or goal 
of the study.  

We agree with the reviewer that the introduction structure can be improved (this is also 
mentioned by the second reviewer). We agree that the third experiment is somewhat out of the 



scope of this paper (although experiment three is related to the parameter/process uncertainty; 
will be mentioned in the following). We removed Experiment-3. We have reworked the structure 
so that the vector-based implementation of land models comes earlier as a separated section 
(Section 2). We hope the current structure is easier to read and follow. 

One of the key questions in defining the spatial discretization of models is of course the 
calibUaWiRn. WheUeaV Whe GRU¶V cRnceSWXall\ mighW make VenVe cRmSaUed WR gUid cellV, iW 
introduces new questions on how to calibrate the parameters, and this is not well explained in the 
text. Does each GRU receive its own set of parameters? And is this then related in any way to the 
underlying data? As the authors rightly suggest, parameter ranges can be adapted based on soil 
type or land use, but it seems this was not done by the authors. Not surprisingly, the results 
demonstrate some of the already known flaws from calibrating on discharge outlet; the 
everlasting problem of equifinality and overparameterization. If the authors believe the GRU 
concept is valuable to reintroduce (and I can see it has potential), this value should be 
demonstrated in a more sophisticated calibration. If the same calibration is done as for usual 
grid-models, of course we know we can achieve good model performance because there are 
enough buttons to push, but what do we learn from it compared to a grid-based model and what 
does it add? 1000 evaluations in the calibration procedure seems rather limited given the 
dimensions of the problem; this is understandable from a computational point of view, but also a 
chance WR demRnVWUaWe Zh\ GRU¶V make mRUe VenVe Whan gUidV ZiWhin WheVe bRXndV, b\ making 
XVe Rf Whe RSSRUWXniWieV WhaW GRU¶V RffeU in cRmSaUiVRn WR gUidV.  

We thank the reviewer for this comment. We fully agree wiWh Whe UeYieZeU¶V cRmmenWV Rn Whe 
SaUameWeUV¶ YalXeV and eVWimaWiRn. EYeU\Whing bRilV dRZn WR hRZ computational units are 
parameterized (which can be very well based on the GRU concept or other techniques). We tried 
to briefly explain this in the VIC parameter specification in Section 3.3.1. Just a brief explanation 
here: 

1- The soil layers get the same set of parameters for bulk density, saturated hydraulic 
conductivity (no difference between the vertical soil layers). This is added to Section 
3.3.1. 

2- The conceptual soil parameters such as binf are unified across the scale (similar to most of 
VIC application). 

3- The soil depths that conceptually define the storage of the system are defined based on 
land cover. The forested areas have deeper soil (or root zone) to allow for larger storage 
and transpiration. Just to mention that this is an advantage of the vector-based 
implementation and an illustration of more sophisticated calibration strategy. If more 
hydrological knowledge at the scale of interest is available that can be translated into the 
constraint. 

4- Kslow is similar for the entire system (or a gauges) as it can be inferred/calibrated only 
from the recession analysis. 

Of course, more intuitive and sophisticated parameter allocation can be explored but the above-
mentioned parameter selection is aligned with what is often done for calibrating the VIC model. 
This is purposefully not to make the regionalisation so complex that the manuscript deviates 



from its own message (which is vector-based implementation and accuracy-efficiency trade-off 
implementation).  

I know my colleagues who work with MESH model sometime do this distinction between 
parameter values of various GRUs in their applications/scientific explorations, for example, 
different soil with different land cover have different parameters. I personally do not move to 
that direction for few reasons: (1) the parameters of the spatially largest GRU will be the most 
sensitive ones when calibrating against the observed streamflow (or polishing of smaller GRUs 
that have very small contribution, <1%, may be needed), (2) expansion of parameter for 
calibUaWiRn WhaW Ze dRn¶W knRZ hRZ WR Wied acWXall\ will unnecessarily add to the dimension of 
the problem (no information tangible construct them). There is an ongoing effort to relate the 
parameters to physical characteristics but each of the decisions in itself is an assumption and 
cannot be inferred directly from the data (for example Mizukami et al., 2017 Table-3). We totally 
agUee ZiWh Whe UeYieZeU Rn ³WhiV YalXe VhRXld be demRnVWUaWed in a mRUe VRShiVWicaWed 
calibUaWiRn´ bXW aW Whe Vame Wime Ze haYe nRW mXch daWa fRU Whe VRShiVWicaWed calibUaWiRn 
especially the entire subsurface flow movement. 
We should also emphasize that part of the motivation for vector-based configuration is 
computational efficiency with respect to optimization, for example in the MESH model, the 
underlying assumption is that grouping units from a parametrization perspective, since we expect 
them to behave in a physical similar way, allows us to characterize the variability with respect to 
the forcing and of course the subsequent hydrological response, while maintaining the degrees of 
freedom for parameter estimation reasonable. Our accuracy-performance trade-off is aligned 
with this mentality also. 

Reflecting on reviewer comment, there might be two benefits of allocating the computational 
units parameter values: 

1- Technical aspect; which is the ease of parameter allocation to a computational unit (as 
each computational unit has a specific land cover and soil type), or better implementation 
of regionalization rules if applicable. Easier coupling with vector-based routing. 

2- The scientific values of implementing the models in a vector-based fashion. That is a 
grand challenge and an ongoing development. For example, how to effectively 
parameterize the model simulation at computational units. I personally think part of the 
reason that the GRU parameter allocation was overlooked or not implemented widely for 
land models, as the reviewer mentioned with sophisticated calibration, is the lack of data 
and proper understanding of how parameters behave at the scale of modeling. One of the 
scientific applications we had here is the trade-off between accuracy of spatial 
representation and model performance.  

Perhaps, I agree that the current manuscript has more emphasis on the first than the latter but at 
the same time the vector-based implementation can be a vehicle to explore the more scientific 
questions. For sake of simplicity and to emphasize on the advantages of the vector-based 
configuration, we tried to put less emphasis on the sophisticated parameterization. As 
computational hydrology team at University of Saskatchewan we are moving to face this grand 
challenge in future. 



The modeling set up, calibration and parameter perturbation for calibration are based on the 
objective of the modeling. Our objective here is accuracy-efficiency trade-off for land model and 
hydrograph simulation. 

Reflecting on the computational costs of the setups: 

1- 1000 simulations are selected as an arbitrary value based on the computational 
infrastructure (and time) we had available for the Case4-4km which has 6000 
computational units (the most computationally expensive setup). 

2- For context, 6000 computational units will be equivalent of approximately 1/3 of the 
CONUS domain with standard gridded simulation at 0.25 by 0.25 degree lat/lon. 

3- Consequently, running 1000 simulations for the Case4-4km takes 5 days on 50 CPUs of 
ComputeCanada infrastructure (assuming nothing goes wrong with the job), or 
approximately 8 months on a single CPU. 

4- We have tried the impact of more calibration runs for simpler cases (up to couple of 
thousands of simulations) but did not find a noticeable increase in NS scores. 

5- Also, our choice for hourly forcing data increases the storage space needed by almost a 
factor of 40 compared to daily inputs that is used for VIC-4 and earlier.  

An e[amSle: The UeVXlWV fURm FigXUe 4 aUe cUiWici]ed in Whe We[W aV: ³The UeVXlW indicaWeV Whe WZR 
parameters that are often fixed or a priori allocated based on look up tables can exhibit 
significant uncertainty and non-idenWifiabiliW\´. The BURRkV-Corey coefficient is from such a 
high conceptual level that it might be challenging to find good values in lookup tables, but Ksat 
might be able to be estimated. The lookup tables can then provide an indication for a search 
range for the parameter and decrease the equifinality issues with these two parameters.  

The soil data that need to inform this choice are themselves so uncertain that they may not 
guarantee PRUe ³UealiVWic ksat UaQgeV´. AlVR, sub-resolution heterogeneity is not account for, nor 
is ksat very relevant if the dominant flowpath is macropores (which might be very well the case 
given the significant elevation differences in the region of study). TheUefRUe, Ze didQ¶W WU\ WR a 
priori limit the ksat calibration ranges too much. This uncertainty in ksat also has high implication 
for the future regionalization that might be built partly on ksat. 
We also wanted to indicate that parameters may be more uncertain that what is suggested in look 
XS WableV. IW iV RfWeQ Whe caVe Whe laQd PRdeliQg cRPPXQiW\ ³kill´ Whe SRWeQWial XQceUWaiQW\ iQ 
parameters and processes either by assigning (hardcoded) parameter values from look up tables 
or using calibration techniques that yield single best solution (Mendoza et al., 2014). 

ShRUWl\, I caQ Vee Zh\ GRU¶V PighW haYe added YalXe iQ laQd-surface modeling. How- ever, the 
re-introduction of this concept in this manuscript might not make a very good case to convince 
people of this fact, given that calibration is one of the main challenges and the potential for 
GRU¶V in WhiV cRnWe[W iV nRW Zell e[SlRUed. 

We thank the reviewer for his/her constructive suggestions. We try to improve the manuscript 
flow. Meanwhile, we would like to emphasize that the focus of this manuscript is not to come up 
with the parameterization scheme for the model but instead to provide an alternative 
representation of spatial data that can be beneficial for land modeling community. We 



demonstrated that how an existing model, such as VIC, can easily be implemented in a vector-
based framework. Moreover, the vector-based implementation is not tied to any calibration 
strategy. A modeller may use the vector-based set up for a land model while avoiding any 
automatic calibration. 

Other suggestions:  

In section 2.3, it remains unclear why structural changes to the model were made. Some of the 
most sensitive parameters of the model (Ds, Dm) have been replaced by a linear reservoir 
coefficient. Furthermore, the description focusses on VIC4 while VIC5 was explored. Why is 
that?  

It is a very good point for discussion. 

1- VIC has a baseflow formulation that has 5 (or one can say 6) parameters, 4 for the 
baseflow formulation and 2 for the physical specification of the depth and porosity of the 
lower layer. These 6 parameters are impossible to be inferred from the recession analysis 
of a hydrograph. 

2- The common structure of the land models does not allow for recession analysis based on 
master recession curve. The soil layers act like a cascade of reservoirs. The water 
movement from the second layer of VIC can already be damped enough that it may not 
even need a slow baseflow reservoir (Gharari et al., 2019). 

3- One simple solution to that is to basically seize the micropore water movement to the 
baseflow layer, and only allow macropore water movement based on fraction of surface 
runoff for example (experiment three). 

4- The recession coefficient of the Bow River at Banff is in scale of 0.01 day-1 or 100 days. 
This is not similar to what we get from the automatic calibration. Kslow is one identifiable 
and sensitive parameter given the regime of the Bow River but much higher value [this 
was wrongly stated in our first reply]. Similarly, the Ds and Dsmax can show sensitivity but 
are they really identifiable if a simpler one-parameter baseflow does not hydrologically 
and logically does what is it expected to do [to simulate the baseflow and get close to the 
recession analysis]. These are the diagnostics checks that should be done even before any 
sensitivity analysis. 

We mentioned VIC-4 to emphasize why VIC was used so widely. We will remove the 
explanation on VIC-4. We simplified the VIC description and focused only on VIC version 5. 

It is not explained how the parameters in Table 2 were selected for calibration. It is for instance 
remarkable that no snow parameters, such as snow roughness, are included in the calibration ± is 
WhiV becaXVe GRU¶V fRcXV Rn VRil and land XVe? FXUWheUmRUe, iW iV nRW claUified WR which soil layer 
Eexp and Ksat refer, or is this kept constant over both soil layers?  

We have indeed chosen to only calibrate those parameters that relate to aspects of computational 
XQiWV¶ configuration (and more importantly forcing resolution for accuracy-efficiency trade-off). 
We also set the Ksat and Eexp similar for both layers (clarified in the Section 3.3.1). 



Additionally, aQd baVed RQ Whe UeYieZeU¶V VXggeVWiRQ Ze iQclXded Whe VQRZ URXghQeVV SaUaPeWeU 
in our calibration. 

Minor for tables and figures:  

Table 1 the unit of forcing resolution is missing (degree) Figure 3 the a,b,c labels are missing, the 
legend is not readable. Figure 4 not sure if this is very informative. More interesting to see a 
bR[SlRW Rf eYeU\ SaUameWeU WR demRnVWUaWe Whe Zide Uange. FigXUe 5 CaSWiRn Va\V ³deYiaWiRn´ bXW 
you demonstrate NSE compared to benchmark run, and not the deviation in NSE.  

We fixed the forcing resolution in original Table-1 (which is now Table-2). 

We fixed original Figure-3 (which is now Figure-2). 

We replaced Figure-4 with a normalized illustration of the parameter values above ENS of 0.7. 
We added extra interpretation of this Figure in the Results and Discussion Sections. 

Please not that this is deviation from synthetic case and not standard deviation. We rephrased the 
caption.  

We thank the reviewer for the constructive comments, and we hope to enrich our manuscript by 
addresVing Whe UeYieZeU¶V cRmmenW VXfficienWl\ and VXcceVVfXll\. 

With kind regards, 

Shervan Gharari, on behalf of the co-authors 
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Answer to the comments by anonymous reviewer#2 



We thank the reviewer for their comments on our manuscript. FRU cRnYenience, Whe UeYieZeU¶V 
comments are given in black and our response is in blue. 

The SaSeU WiWled ³Fle[ible YecWRU-baVed VSaWial cRQfigXUaWiRQV iQ laQd PRdelV´ XVeV a QeZ VSaWial 
configuration approach with the VIC model that is based on the group response unit concept. The 
main goals in the paper are to first introduce a method to defining heterogeneity in VIC and then 
to assess the added value of multiple spatial configurations over the Bow River basin at Banff. 
The paper is a novel contribution and will be an excellent addition to the land surface/hydrologic 
modeling community. However, there are multiple issues that I describe below that should be 
addressed before publication.  

The abstract is too long. I strongly suggest reducing the size of the abstract by 20%- 40%.  

We have reduced the length of the abstract to ~75% of the original abstracts. 

I dRQ¶W Ueall\ XQdeUVWaQd Whe diffeUeQce beWZeeQ GRU aQd HRU iQ WhiV VWXd\; fURP P\ 
understanding a GRU is composed of many HRUs. For example, a sub-basin (GRU) will have 
multiple HRUs. But based on what is being done here, these GRUs are just the classic GIS 
partitioning happening and thus very similar to the original definition of a HRU. Maybe I am 
misunderstanding something. In any case, please clarify the use of the GRU term here.  

We thank the reviewer for their comment. The reviewer is correct on the original concept of 
GRUs and HRUs. As the reviewer correctly points out, GRUs and HRUs typically define a 
hierarchal spatial organization where HRUs are nested within GRUs (e.g., Clark et al., 2015). 
For example, in land models, a GRU could be a model grid box and HRUs could be the 
vegetation tiles within a model grid box; in hydrology models, a GRU could be a sub-basin and 
HRUs the hydrologically similar areas within a sub-basin. The forcing data could be either 
constant across the HRUs or distributed to each HRU (distributed forcing within GRUs is 
important in cases where there are strong climate gradients within GRUs, e.g., due to large 
elevation range). GRUs are also used to describe classifications of the landscape across the 
modelling domain (Kouwen et al., 1993, Pietroniro et al., 2007). 

We agree with the reviewer that using the vector-based implementation there is little difference 
between the concept of GRU and HRU. To avoid confusion, we abandon the concept of GRU 
entirely and present the model as a vector-based implementation (that can benefit from the 
concepts of GRU and HRU). We only use the concept of GRU as a matter of parameter 
allocation in Section 3.3.1 and in the discussion to reflect on the validity of the assumption on 
parameter allocation. 

Figures 1 and 2 - These two figures are not very informativekATespecially Figure 1. I would 
remove them. Maybe some of these ideas could be merged into an improved (or split) Figure 3.  

We have revised Figure 1 and made it more conceptual in the newer version. We have removed 
figure 2 to the discussion as an example the unrealistic combination of land cover and elevation 
zone in the VIC model for discussion purposes. 



Figure 3 - You should have a, b, c, d coded on the panels themselves. Panel c is very unclear. I 
think this whole figure is critical to understand the implementation and thus should be improved 
(and perhaps split into two).  

A, b, c, d are added to the panels. We have clarified the c as well to have a more readable legend. 
We believe the changes we made in Figure 1 now make the concept easier to understand. 
Therefore Figure 3 (now figure 2) is more directed to illustrates the basin of interest 
characteristics. 

Figure 6 - The 3 dimensionality of this figure is unnecessary and frankly confusing. The 2d 
surface is more than enough to get the point across.  

We have made it 2 D figure and merge it with original Figure 8. 

Figure 8 - Again, the 2d surface would be much better here.  

We have made it 2 D figure and merge it with original Figure 6. 

Line 122 - Only using tmin, tmax, precipitation, and wind speed is only one option in the earlier 
VIC versions. One could also still use longwave in, shortwave in, among others.  

We have revised the VIC description and now the description should be much clearer. 

Line 153 - AlWhRXgh I aP ceUWaiQl\ a faQ Rf ³killiQg Whe gUid´, iW iV QRW eQWiUel\ WUXe WhaW 
"resolution loses its meaning" with the introduced approach. You still have an effective spatial 
resolution which is governed by the level of details that needs to exist in your polygons. Of 
course the advantage here is that you can have the size of those polygons vary as a function of 
VSace; hRZeYeU, \RX Zill VWill haYe Whe cRQceSW Rf aQ effecWiYe VSaWial UeVRlXWiRQ SUeVeQW. I¶d 
suggest thinking more carefully of what moving to a polygon based approach really means and 
how it can be "upscaled" in more informative ways than the classic coarsening of the grid.  

An excellent point raised by the reviewer. The reviewer is certainly correct that we still have the 
same upscaling challenges in vector-based implementations. We discussed this issue in more 
detail in the revised paper (Section 2). 
 
One of the ideas behind the vector-based modeling is the flexibility of the input data. For 
example, for a larger basin, the forcing can be set to a higher resolution for the mountainous 
headwater. For our test case (limited spatial domain), this concept can be explored in detail, and 
our current work focuses on resampling and coarsening of the forcing grids. We will rework this 
VecWiRQ WR iQclXde PRUe diVcXVViRQ RQ Whe iPSRUWaQce Rf ³SRl\gRQV´ YV ³gUid´ aQd Whe 
implications for large/continental scale modeling. 
 

* Check for typos; there appear to be a few throughout the text (e.g., VIV-GRU on line 182)  

We tried to remove the typos as much as possible in the manuscript. 



We thank the reviewer for the constructive comments, and we hope to enrich our manuscript by 
addUeVVing Whe UeYieZeU¶V cRmmenW VXfficienWl\ and VXcceVVfXll\. 

With kind regards, 
 
Shervan Gharari, on behalf of the co-authors 
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Abstract. Land models are increasingly used in terrestrial hydrology due to their process-9 

oriented representation of water and energy fluxes. A priori specification of the grid size of the 10 

land models is typically defined based on the spatial resolution of forcing data, the modeling 11 

objectives, the available geo-spatial information, and computational resources. The variability of 12 

the inputs, soil types, vegetation covers, and forcing are masked or aggregated based on the a 13 

priori grid size. In this study, we propose an alternative vector-based implementation to directly 14 

configure a land model using unique combinations of land cover types, soil types, and other 15 

desired geographical features that has hydrological significance, such as elevation zone, slope, 16 

and aspect. The main contributions of this paper are to (1) implement the vector-based spatial 17 

configuration using the Variable Infiltration Capacity (VIC) model; (2) illustrate how the spatial 18 

configuration of the model affects simulations of basin-average quantities (i.e., streamflow) as 19 

well as the spatial variability of internal processes (SWE and ET); and (3) describe the 20 

work/challenges ahead to improve the spatial structure of land models. Our results show that a 21 

model configuration with a lower number of computational units, once calibrated, may have 22 

similar accuracy to model configurations with more computational units. However, the different 23 

calibrated parameter sets produce a range of, sometimes contradicting, internal states and fluxes. 24 

To better address the shortcomings of the current generation of land models, we encourage the 25 

land model community to adopt flexible spatial configurations to improve model representations 26 

of fluxes and states at the scale of interest. 27 
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1 Introduction 84 

Land models have evolved considerably over the past few decades. Initially, land models (or land-85 

surface models) were developed to provide the lower boundary conditions for atmospheric models 86 

(Manabe, 1969). Since then land models have increased in complexity, and they now include a 87 

variety of hydrological, biogeophysical, and biogeochemical processes (Pitman, 2003). Including 88 

this broad suite of terrestrial processes makes land models enables simulations of energy and water 89 

fluxes and carbon and nitrogen cycles. 90 

Despite the recent advancements in process representation in land models, there is currently 91 

limited understanding of the appropriate spatial complexity that is justified based on the available 92 

data and the purpose of the modelling exercise (Hrachowitz and Clark, 2017). The increase of 93 

computational power, along with the existence of more accurate digital elevation models and land 94 

cover maps, encourage modelers to configure their models at the finest spatial resolution possible. 95 

Such hyper-resolution implementation of land models (Wood et al., 2011) can provide detailed 96 

simulations at spatial scales as small as 1-km2 grid over large geographical domains (e.g., Maxwell 97 

et al., 2015). However, the computational expense for hyper-resolution models could potentially 98 

be reduced using more creative spatial discretization strategies (Clark et al., 2017). 99 

It is common to adopt concepts of hydrological similarity to reduce computational costs. In this 100 

approach, spatial units are defined based on similarity in geospatial data, under the assumption that 101 

processes, and therefore parameters, are similar for areas within a spatial unit (e.g., Vivoni et al., 102 

2004, Newman et al., 2014). Hydrological Response Units (HRUs) are perhaps the most well-103 

known technique to group geospatial attributes in hydrological models. HRUs can be built based 104 

on various geospatial characteristics; for example, Kirkby and Weyman 1974, Knudsen and 105 

Refsgaard (1986), Flügel (1995), Winter (2001), and Savenije (2010) all have proposed to use 106 

geospatial indices to discretize a catchment into hydrological units with distinct hydrological 107 

behaviour. HRUs can be built based on soil type such as proposed by Kim and van de Giessen 108 

(2004). HRUs can also be built based on fieldwork and expert knowledge (Naef et al., 2002, 109 

Uhlenbrook 2001), although the spatial domain of such classification will be limited to the 110 

catchment of interest and the spatial extent of the field measurements. HRUs are often constructed 111 

by GIS-based overlaying of various maps of different characteristics and can have various shapes 112 
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such as for non-regular (sub-basins), grid, hexagon, or triangulated irregular network also known 116 

as TIN (Beven 2001, Marsh et al., 2012, Oliviera et al., 2006). Land models are also beginning to 117 

adopt concepts of hydrological similarity (e.g., Newman et al., 2014; Chaney et al., 2018). 118 

Traditionally land models use the tiling scheme where a grid box is subdivided into several tiles 119 

of unique land cover, each described as a percentage of the grid (Koster and Suarez, 1992). 120 

Similarly, the concept of Grouped Response Units (GRUs, Kouwen et al., 1993), assumes similar 121 

hydrological property for areas with identical soil, vegetation, and topography. The GRU concept 122 

is utilized in the MESH land modeling framework (Pietroniro et al., 2007). 123 

A long-standing challenge is understanding the impact of grid size on model simulations (Wood 124 

et al., 1988). The effect of model grid size can have a significant impact on model simulation 125 

across scale especially if the model parameters are linked to characteristics which are averaged out 126 

across scale (Bloschl et al., 1995). Shrestha et al. (2015) have investigated the performance of 127 

Community Land Model (CLM) v4.0 coupled with ParFlow across various grid sizes. They 128 

concluded the grid size changes of more than 100 meters can significantly affect the sensible heat 129 

and latent heat fluxes as well as soil moisture. Also using CLM, Singh et al. (2015) demonstrated 130 

that topography has a substantial impact on model simulations at the hillslope scale (~100 meters), 131 

as aggregating the topographical data changes the runoff generation mechanisms. This is 132 

understandable as the CLM is based on topographical wetness index (Beven and Kirkby 1979, Niu 133 

et al., 2005). However, Melsen et al. (2016) evaluated the transferability of parameters sets across 134 

the temporal and spatial resolutions for the Variable Infiltration Capacity (VIC) model 135 

implemented in an Alpine region. They concluded that parameter sets are more transferable across 136 

various grid sizes in comparison with parameter transferability across different temporal 137 

resolutions. Haddeland et al. (2002) showed that the transpiration from the VIC model highly 138 

depends on grid resolution. It remains debatable how model parameters and performance can vary 139 

across various grid resolutions (Liang et al., 2004; Troy et al., 2008; Samaniego et al., 2017). 140 

The representation of spatial heterogeneity is an ongoing debate in the land modelling community 141 

(Clark et al., 2015). The key issue is to define which processes are represented explicitly and which 142 

processes are parameterized. The effect of spatial scale on emergent behavior has been studied for 143 

catchment scale models – the concepts of Representative Elementary Areas (REA), or 144 

Representative Elementary Watersheds (REW), were introduced to study the effect of spatial 145 
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aggregation on system-scale emergent behavior (Wood et al., 1995, Reggiani et al., 1999). The 152 

effect of scale on model simulations is not well explored for land models. More work is needed to 153 

understand the extent to which the heterogeneity of process representations is sufficient for the 154 

purpose of a given modelling application, and the extent to which the existing data can support the 155 

model configurations (Wood et al., 2011, Beven et al., 2015) and guarantee a fidelius model. 156 

In this study, we configure the Variable Infiltration Capacity (VIC) model in a flexible vector-157 

based framework to understand how model simulations depend on the spatial configuration. The 158 

remainder of this paper is organized as follows: In Section 2, we present the concept of vector-159 

based configuration for land models. In Section 3 we describe the study area and the data sets used 160 

in this study as well as the design of the experiments, and elaborate the Variable Infiltration 161 

Capacity model (VIC) and mizuRoute as the vector-based routing model. In Section 4 we describe 162 

the results of the experiments. Section 5 discusses the implication of spatial discretization 163 

strategies on large-scale land model applications. The paper ends in Section 6 with conclusions of 164 

this study and implications for future work. 165 

2 The vector-based configuration for land models 166 

Land models are often applied at a regularly spaced grid. Land models are typically set up at a 167 

range of spatial configurations, ranging from grid sizes of 0.02° to 2° (approximately 2 to 200 km) 168 

and applied at sub-daily temporal resolutions for simulation of energy fluxes. A priori specification 169 

of the grid size of the land models is often derived from forcing resolutions, modeling objectives, 170 

available geo-spatial data and computational resources and is usually based on modeling 171 

convenience. Figure-1e-h illustrates the typical land model configuration – here the modeler 172 

selects a cell size, and then the soil, vegetation and forcing files are all aggregated or disaggregated 173 

to the target cell size. Original data resolution and spatial distribution of soil, land cover and forcing 174 

data are smeared while upscaled to the resolution of interest. Any change in the modeling 175 

resolution will require upscaling or downscaling of the geo-physical dataset once again. 176 

In this study, we configure the land models using non-regular shapes. Figure-1a-d presents an 177 

example of non-regular shapes created through spatial intersections of the land covers and soil 178 

types shapes. These vector-based configuration of the geospatial data are then forced at the original 179 

meteorological forcing resolution, or its upscaled or downscaled values resulting in computational 180 
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units. Therefore, each computational unit has unique geospatial data such as soil, vegetation, slope 200 

and aspect and is forced with a unique forcing. In this configuration changing of meteorological 201 

forcing resolution do not affect the decisions needed to upscale the geo-spatial data such as soil 202 

type and land cover to the grid resolution. 203 

 204 

Figure-1- Top row indicates vector-based configuration of a land model; (a) meteorological 205 

forcing at its original resolution or upscaled and downscaled resolutions, (b) land covers, (c) soil 206 

types with their spatial extent, and (d) vector-based configuration with 28 computational units each 207 

with unique forcing, soil type and land cover type. The bottom row indicates typical grid-based 208 

configuration of a land model; (e) a priori resolution should be decided, (f) meteorological forcing 209 

should be upscaled or downscaled to the grid resolution, (g) land cover percentage should be 210 

calculated for each modeling grid; or a dominate landcover should be selected to represent that 211 

grid,  and finally (h) soil characteristics for each modeling grid should be identified. 212 

The benefits of vector-based configuration of land models can be summarized as follows: 213 

1- No need for a priori assumption on modeling grid size. In traditional land model 214 

implementation, the modeler selects a grid resolution (which is often a regular latitude/longitude 215 

grid). The soil parameters and forcing data from any resolution must be aggregated, disaggregated, 216 

resampled or interpolated for every grid size. The land cover data often is only considered as a 217 

percentage for every grid and spatial location of the land cover is lost. However, in the vector-218 

based setup these decisions are only based on the input and forcing data that are chosen to be used 219 
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in the modeling practice and no upscaling or downscaling to grid size is needed. Furthermore, the 220 

size of computational units can vary across modeling domain depending on the variability of the 221 

meteorological forcing and geospatial heterogeneity. For example, the spatial density of 222 

computational units can be higher in mountainous areas where temperature and precipitation 223 

gradients are larger while avoiding unnecessarily high number computational units in areas with 224 

lower gradient in meteorological forcing.  225 

2- Reasonable relation between available meteorological forcing and geo-spatial data 226 

resolutions and number of computational units: computational units that are the result of 227 

available geophysical data sets forced with the original forcing data logically represent the 228 

maximum number of computational units that can be hydrologically unique. A higher number of 229 

computational units than the proposed setup will arguably provide an unnecessary computational 230 

burden due to identical forcing data and geospatial information. 231 

3- Direct simplification of geospatial data. The vector-based implementation facilitates 232 

easier aggregation of computational units. It is easier to aggregate similar soil types or similar 233 

forested areas into a unified shapes with basic GIS function (dissolving for example) than this 234 

would be if all data had to be upscaled or downscaled into a different grid size. 235 

4- Direct specification of physical parameters and avoiding unrealistic combinations of 236 

land cover, soil and other geo-physical information. As each computational unit has a specific 237 

type of land cover, soil type and other physical characteristics, it is straightforward to specify 238 

parameter values based on look up tables (i.e., no averaging, upscaling is needed). This is favorable 239 

because the modeler does not need to make decisions about methods used for upscaling of 240 

geophysical data at the grid level. Also, this might avoid the unrealistic combination of parameter 241 

sets that might be considered by the model at a grid scale, such as equiprobable combination of 242 

land cover on soil type which may not exist in reality which will be increasing the fidelity of the 243 

model representation of the processes (we will elaborate this further in the context of the VIC 244 

model in Discussion Section). 245 

5- The ability to compare and constrain the parameter values for computational units 246 

and their simulations. The impact of land cover, soil type and elevation zone can be evaluated 247 

separately. For example, the vector-based implementation makes it easier to test if forested areas 248 

Moved (inser1on) [3]

Moved (inser1on) [4]

Moved (inser1on) [5]



 

Page 7 of 38 
 

generate less surface runoff than grasslands. This might be more challenging at the gird-based 249 

configuration in which there are combination of different land cover types at grid scale. Similarly, 250 

the vector-based implementation may simplify regularization efforts across large geographical 251 

domains. This relative constrains can be utilized to translate often patchy expert knowledge into a 252 

sophisticated land model so that the model simulation will obey the modelers and hydrologists’ 253 

expectations. 254 

6- The possibility to incorporate additional data. If needed, additional data, such as slope 255 

and aspect for example, can be incorporated in building the computational units, accounting for 256 

changes in shortwave radiation or lapse rates for temperature. The changes can be implemented 257 

outside of the model in the forcing files. Computational units can be built also based on variation 258 

of leaf area index (LAI) giving an additional layer of information in addition to the land cover 259 

type. The additional information can be easily ingested into the model without extra effort in 260 

contrast to changing of the model parameter files at the grid scale.  261 

7- Easier comparison of model simulations and in situ point-scale observation and 262 

visualization: The vector-based implementation of land models makes it easier to compare the 263 

point measurement to model simulation as the model simulations preserve extent of geospatial 264 

features. 265 

8- Modular and controlled selection of models: The vector-based implementation identifies 266 

the characteristics and spatial boundary of geospatial domains. A model might not be suitable for 267 

processes of some of the geospatial domains. Alternatively, processes of a computational unit that 268 

is beyond the capacity of one model can be replaced with an alternative model. For example, 269 

computational units that are glaciered, can be replaced with more suitable models while the spatial 270 

configuration and forcings remain identical. Consequently, the effect of features such as glaciers 271 

can be better studied as more expert models can be applied to glacier while the rest of the 272 

computational units can be simulated with a model that includes general processes. 273 
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3 Data and methods 274 

3.1 Study area: 275 

Experiments are performed for the Bow River at Banff with a basin area of approximately 2210 276 

km2 located in province of Alberta, Canada. The Bow River is located in the Canadian Rockies in 277 

the headwaters of the Saskatchewan River Basin. Most of the Bow River streamflow is due to 278 

snow melt (Nivo-glacial regime). The average basin elevation is 2130 m ranging from 3420 m at 279 

the peak top to 1380 m above mean sea level at the outlet (town of Banff). The basin annual 280 

precipitation is approximately 1000 mm with range of 500 mm for the Bow Valley up to 2000 mm 281 

for the mountain peaks. The predominant land cover is conifer forest in the Bow Valley and rocks 282 

and gravels for mountain peaks above the tree line. 283 

 284 
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Figure – 2 (a) The location of the Bow River Basin at Banff (b) Bow River Basin elevation, (c) 285 

computational units for geospatial data of elevation zones, land cover and soil type forced at WRF 286 

original resolution at 4 km (Case-3-4km) and (d) river network topology and associated sub-basins 287 

that is used for the vector-based routing. 288 

 289 

3.2 Geospatial data and meteorological forcing 290 

3.2.1 Model input dataset and forcing: 291 

The inputs and forcing we used to set up the model are as follows: 292 

1- Land cover: We used the land cover map NALCMS-2005 v2 (North American Land 293 

Change Monitoring System, Latifovic et al., 2004) that is produced by CEC (Commission for 294 

Environmental Cooperation). NALCMS-2005 v2 includes 19 different classes. The land cover 295 

map is used to set up the vegetation file and vegetation library (look up table) for the VIC model 296 

(Nijssen et al., 2001).   297 

2- Soil texture: We used the Harmonized World Soil Data, HWSD (Fischer et al., 2008). For 298 

each polygon of the world harmonized soil we use the highest proportion of soil type. The HWSD 299 

provide the information for two soil layers, in this study we base our analyses on the lower soil 300 

layer reported in HWSD to define the soil characteristics needed for the VIC soil file.  301 

3- Digital Elevation Model: in this study we make use of existing hydrologically conditioned 302 

digital elevation models (DEM) to (1) derive the river network topology for the vector-based 303 

routing, mizuRoute and (2) to derive the slope, aspect and elevation zones which are used to 304 

estimate the forcing variables. For the first purpose we use hydrologically conditioned DEM of 305 

HydroSHED (Lehner et al., 2006) with resolution of 3 arc-second, approximately 90 meters; for 306 

the second purpose we use HydroSHED 15 arc-second DEM (approximately 500 meters). 307 

4- Meteorological forcing: we used the weather research and forecasting (WRF) model 308 

simulation for continental United States with the temporal resolution of 1 hour and spatial 309 

resolution of 4 km (Rasmussen and Liu, 2017). For upscaling the WRF input forcing, we use the 310 

CANDEX package (DOI: 10.5281/zenodo.2628351) to map the 7 forcing variables to various 311 
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resolutions (1/16˚, 1/8˚, 1/4˚, 1/2˚, 1˚ and 2˚ from the original resolution of 4 km). We used the 312 

required variables from the WRF data set namely, total precipitation, temperature, short and long 313 

wave radiation at the ground surface, V, U components of wind speed and water vapor mixing 314 

ratio.  315 

The shortwave radiation is rescaled based on the slope and aspect of the respective computational 316 

unit (refer to Appendix-A for more details). In this study we differentiated four aspects and five 317 

slope classes. The temperature at 2 meters are adjusted using the environmental lapse rate of -318 

6.5°C for 1000 meters increase in elevation. The assumed lapse rate aligns with earlier findings 319 

from the region of study (Pigeon and Jiskoot, 2008). 320 

3.2.2 Observed data for model calibration 321 

The daily streamflow is extracted from the HYDAT (WSC, Water Survey Canada) for Bow at 322 

Banff with gauges ID of 05BB001. This data is used for parameter calibration/identification of the 323 

VIC parameters. 324 

3.3 Land model and routing scheme: 325 

3.3.1 The Variable Infiltration Capacity (VIC) model: 326 

The VIC model was developed as a simple land surface/hydrological model (Liang et al. 1994) 327 

that has received applications worldwide (Melsen et al., 2016). In this study we use classic VIC 328 

version 5. The VIC model combines sub-grid probability distributions to simulate surface 329 

hydrology such as variable infiltration capacity formulation (Zhao, 1982). The VIC model uses 330 

three soil layers to represent the subsurface. While each soil layer can have various physical soil 331 

parameters (e.g., saturated hydraulic conductivity, bulk density), each layer is assumed to be 332 

uniform across the entire grid regardless of the vegetation type variability in that grid. The VIC 333 

model assumes a tile vegetation implementation within each grid similar to the mosaic approach 334 

of Koster and Suarez (1992) with bio-physical formulations for transpiration (Jarvis et al., 1976). 335 

To account for spatial variability in vegetation, the VIC model allows for root depths to be adjusted 336 

for every vegetation type. The vegetation parameters (e.g., stomatal resistance, LAI, albedo) are 337 

often identical for each land cover across the modeling domain. The VIC model can account for 338 

different elevation zones to account for temperature lapse rate given elevation difference in a grid 339 

cell, and also for the distribution of precipitation over the identified elevation zones.  340 

Moved (inser1on) [12]

Moved (inser1on) [13]

Forma&ed: Font color: Accent 1

Forma&ed: Heading 3, Space AKer:  0 pt, Line spacing:  single

Deleted: Land model and the routing model¶341 

Forma&ed: Font color: Accent 1

Forma&ed: Heading 3, Space AKer:  0 pt, Line spacing:  single

Forma&ed: Font color: Accent 1

Deleted:  (VIC-5, Hamman et al., 2018). The key features of 342 
VIC are: (i) traditionally, the VIC model (version 4 and 343 
earlier) simulates sub-daily energy variables with daily 344 
forcing of minimum and maximum temperature, precipitation 345 
and wind speed. This enables the VIC model to be easily 346 
forced with hydrological available data sets worldwide while 347 
being able to solve the energy fluxes over sub-daily time 348 
periods. (ii)349 

Deleted: ) with bio-physical formulations for transpiration 350 
(Jarvis et al., 1976).¶351 

Deleted: ).352 

Deleted: fixed353 

Deleted: every354 

Deleted: various355 



 

Page 11 of 38 
 

In the experiments for this study, we calibrate a subset of VIC parameters namely binf, Eexp, Ksat, 356 

d2,forested, d2,non-forested, Kslow, and Sroughness (names are mentioned in Table-1). Following the concept 357 

of GRU, Kouwen et al., 1993, we assume the computational units with similar geophysical 358 

characteristics (soil and land cover) possess similar parameter values. We make sure that the d2, 359 

forested is larger than the d2,non-forested as the root depth are deeper for forested regions (constraining 360 

relative parameters). For the sake of simplicity, we limit the root zone to the upper soil layers and 361 

replace the 5-parameter VIC baseflow1 with a linear reservoir (refer to Gharari et al., 2019 for 362 

further explanation). We also assume that the two top soil layers possess homogeneous soil 363 

characteristics. 364 

3.3.2 mizuRoute, a vector-based routing scheme 365 

In this study, we make use of the vector-based routing model mizuRoute (Mizukami et al., 2016). 366 

Vector-based routing models can be configured for different computational units than the land 367 

model uses (e.g., configuring routing models using sub-basins derived from existing 368 

hydrologically conditioned DEMs such as HydroSHEDS, Lehner et al., 2006, or MERIT Hydro, 369 

Yamazaki et al., 2019). This removes the dependency of the routing on the grid size or 370 

computational unit configurations and eliminates the decisions that are often made to represent 371 

routing-related parameters at grid scale. Therefore, we can ensure that two model configurations 372 

with different geospatial configurations are routed using the same routing configuration. The 373 

intersection between the computational units in the land model and the sub-basins in the routing 374 

model defines the contribution of each computational units from the land model to each river 375 

segment.  376 

The Impulse Response Function (IRF) routing method (Mizukami et al., 2016) is used for this 377 

study. IRF, which is derived based on diffusive wave equation, includes two parameters – wave 378 

velocity and diffusivity. The diffusive wave parameters are set to 1 m/s and 1000 m2/s respectively 379 

and remain identical for all the river segments. The river network topology, assuming 380 

approximately 25 km2 starting threshold for the sub-basin size, is based on a 92-segment river 381 

network depicted in Figure-3d. 382 

 
1 The VIC baseflow parameters are: Dsmax, maximum rate of baseflow; Ds, fraction of Dsmax where non-linear 
baseflow begins; Ws, fraction of maximum soil moisture where non-linear baseflow occurs; c, exponent used for the 
non-linear part of the baseflow; and depth of the baseflow layer d3. 
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Table-1 the VIC model parameters that are subjected to perturbation for model calibration for the 546 

designed experiments. 547 

Parameter 

symbol 

Parameter 

name 

Minimum 

value 

Maximum 

value 

Unit Explanation 

binf Variable infiltration 

parameter 

0.01 0.50 [-]  

Eexp The slope of water retention 

curve 

3.00 12.00 [-]  

Ksat Saturated hydraulic 

conductivity 

5.00 1000.00 [mm/day]  

d1 The depth of topsoil layer 0.2 0.2 [m] Fixed at 20 cm for both forested 

and non-forested computational 

units 

d2,forested The depth of the second soil 

layer for forest 

computational units 

0.2 2 [m]  

d2,non-forested The depth of the second soil 

layer for non-forested 

computational units 

0.2 d2,forested [m] The maximum is bounded by the 

d2,forested 

Droot The distribution of root in 

the two soil layers 

0.5 0.5 [-] Fixed at 50% for the top and 

lower soil layers. 

Kslow Slow reservoir coefficient 0.001 0.9 [1/day]  

Sroughness Snow roughness 0.5 3 [mm]  

 549 

3.4 Experimental design: 550 

In this study, we configure the VIC model in a flexible vector-based framework to understand how 551 

model simulations depend on the spatial configuration. We consider four different methods to 552 

discretize the landscape for seven different spatial forcing grids (see Table 2). The landscape 553 

discretization methods include (1) simplified land cover and soils; (2) full detail for land cover and 554 

soils; (3) full detail for land cover and soils, including elevation zones; and (4) full detail for land 555 

cover and soils, including elevation zones and slope and aspect. The different spatial forcing 556 

resolutions are 4-km, 0.0625o, 0.125o, 0.25o, 0.5o, 1o, and 2o. This design enables us to separate 557 
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discretization of the landscape based on geo-spatial data from the spatial resolution of the forcing 561 

data. 562 

Table – 2- The numbers of computational units for the Bow River at Banff, given different spatial 563 

discretization of land cover, soil type, elevation zones and slope and aspects forced with various 564 

forcing resolutions.  565 
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4 km 6631 1508 941 479 

0.0625°  [~6.25 km] 5224 1098 663 290 

0.125°  [~12.50 km] 3079 515 283 94 

0.25°  [~25.00 km] 2013 306 154 39 

0.5° [~50.00 km] 1332 184 93 21 

1.0° [~100.00 km] 917 116 56 12 

2.0° [~200.00 km] 767 89 42 6 
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3.4.1 Experiment-1: How does the spatial configuration affect model performance? 584 

As the first experiment, we focus on how well the various configurations simulate observed 585 

streamflow for Bow River at Banff. We calibrate the parameters for the different configurations in 586 

Table 2. Model calibration is accomplished using the Genetic Algorithm implemented in the 587 

OSTRCIH framework (Mattot, 2005; Yoon and Shoemaker, 2001), maximizing the Nash-Sutcliffe 588 

Efficiency (ENS, Nash and Sutcliffe 1970) using a total budget of 1000 model evaluations given 589 

the available resources limited by the most computationally expensive model (Case-4-4km). 590 

3.4.2 Experiment-2: How well do calibrated parameter sets transfer across different model 591 

configurations? 592 

As the second experiment, we focus on how various configurations can reproduce the result from 593 

the configuration with highest computational units for a given parameter set. In other words, this 594 

experiment evaluates accuracy-efficiency tradeoffs – i.e., the extent to which spatial 595 

simplifications affect model performance under the assumption that similar computational units 596 

possess identical parameters across various configurations. This is important as it enables modelers 597 

to understand accuracy-efficiency tradeoffs, given the available data and the purpose of the 598 

modelling application. This experiment is based on perfect model experiments using the model 599 

with the highest computational unit as synthetic case (Case-4-4km). Synthetic streamflow for 600 

every river segment is generated using a calibrated parameter set for Case-4-4km. The models with 601 

lower number of computational units are then simulated using the exact same parameter set used 602 

for generating the synthetic streamflow. The differences in streamflow simulation, quantified using 603 

ENS, provide an understanding of how the simulations deteriorate when the spatial and forcing 604 

heterogeneities are masked or upscaled. This also will bring an understanding on how sensitive 605 

the changes are along the river network and at the gauge location at which the models are calibrated 606 

against the observed streamflow data. Similarly, we compare the spatial patterns of snow water 607 

equivalent for the different spatial configurations. 608 
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4 Results 616 

4.1 Experiment-1  617 

The various model configurations are compared with respect to the Nash-Sutcliffe performance 618 

metric (ENS). Results show that all the models, including the ones that are configured with coarser 619 

resolution forcings, can simulate streamflow with ENS as high as 0.70 (Table-3). It is noteworthy 620 

to mention that the configuration of Case-4-1˚ has higher ENS value compared to the cases with 621 

highest computational units, Case-4-4km for example. This might be due to various reasons 622 

including: (1) compensation of forcing aggregation on possible forcing bias at finer resolution; (2) 623 

compensation of forcing aggregation on model states and fluxes and possible adjustment for model 624 

structural inadequacy and hence directing the optimization algorithm to different possible solutions 625 

across configurations. 626 

Table-3 – The highest calibrated Nash-Sutcliffe performance metric (ENS) for the different model 627 

configurations. Details on the geospatial cases are provided in Table 2. 628 

Forcing resolution Case 4 
4 aspect groups; 

5 slope groups; 

19 classes of land cover; 

500-meter elevation 

zones; 

Case 3 
no aspect groups; 

no slope groups; 

19 classes of land cover; 

500-meter elevation 

zones; 

Case 2 
no aspect groups; 

no slope groups; 

19 classes of land cover; 

no elevation zones; 

Case 1 
no aspect groups; 

no slope groups, 

3 classes of land cover, one dominant soil 

type 

no elevation zones; 
4 km 0.80 0.81 0.78 0.75 

0.0625˚ [~6.25 km] 0.79 0.79 0.77 0.75 

0.125˚ [~12.50 km] 0.82 0.81 0.75 0.75 

0.25˚ [~25.00 km] 0.81 0.83 0.77 0.76 

0.5˚ [~50.00 km] 0.79 0.82 0.76 0.76 

1.0˚ [~100.00 km] 0.83 0.81 0.79 0.78 

2.0˚ [~200.00 km] 0.77 0.77 0.77 0.80 

 629 

We use a single objective calibration algorithm for model calibration, however and for 630 

investigating the parameter uncertainty, we check the behavioral parameter sets with ENS higher 631 

than 0.7 (an arbitrary values). These parameter sets may have very different soil parameters 632 
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combinations. Figure-3a illustrates the possible combinations of behavioral parameter sets for 751 

Case-2-4km (ENS> 0.7). As a specific example, saturated hydraulic conductivity, Ksat, and slope of 752 

water retention curve, Eexp, have very different combinations of values within the specified 753 

parameter ranges for calibration. The result indicates the two parameters that are often fixed or a 754 

priori allocated based on look up tables can exhibit significant uncertainty and non-identifiability. 755 

It is also noteworthy to mention that among the parameters, Kslow seems to be the most identifiable 756 

parameter while it is set to the upper limit range. There might be two explanation for this behavior: 757 

(1) this might be related to the Nivo-glacier regime of the basin of study that has strong yearly 758 

cycle due to snow accumulation and snow melt (2) and the lack of macropore water movement to 759 

the baseflow component which results in dampen input to this component and in return result in 760 

Kslow to be higher than expected for a baseflow reservoir (for further reading refer to Gharari et al., 761 

2019). Overall, the results indicate that calibrating the VIC model parameters using a sum-of-762 

squared objective function at the basin outlet does not constrain the VIC subsurface parameters. 763 

Additionally, we examine the difference between the fluxes, in this case transpiration, for all the 764 

parameter sets presented in Figure-3a. Figure 3-b illustrates differences between the yearly 765 

transpiration flux for the computational units of case-2-4km. This difference can be as high as 250 766 

mm per year indicating the internal uncertainty of fluxes and related states in reproducing similar 767 

performance metric. This difference can be the basis of model diagnosis to understand which 768 

computational units are causing the internal uncertainty and perhaps the underlying reasons. 769 
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  778 

Figure-3 – (a) The normalized values for the parameters of Case-2-4km that have ENS, Nash-779 

Sutcliffe efficiency, values of higher than 0.7. (b) The difference of largest and smallest yearly 780 

simulated transpiration for parameter sets with ENS above 0.7. 781 

 782 

4.2 Experiment-2 783 

The second experiment compares the performance of a parameter set from the Case-4-4km across 784 

the configurations with degraded geophysical information and aggregated spatial information. 785 

Here we choose a parameter set that has ENS of above 0.7 (this can be any other parameter sets). 786 

Figure-4 shows the evaluation metric, ENS, for the streamflow of every river segment across the 787 

domain in comparison with the synthetic case (Case-4-4km). From Figure-4, it is clear that the ENS 788 

is less sensitive for river segments with larger upstream area (i.e. segments that are located more 789 

downstream). This result has two major interpretations (i) the parameter transferability across 790 

various configurations is dependent on the sensitivity of simulation at the scale of interest meaning 791 

that as long as good performance is achieved in the context of modeling, for example for the 792 

streamflow at the basin outlet, the parameters can be said to transferable for that scale and (ii) often 793 

inferred parameters at larger scale may not guarantee good performing parameters at the smaller 794 
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scales (read upstream areas) as the changed in the performance metric varies significantly across 802 

scale for the smaller modeling elements. 803 

 804 
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Figure 4 – Differences of the simulated streamflow at river segments in comparison with the 807 

synthetic case, Case-4-4km, expressed in performance metric, ENS. 808 

 809 

To understand the spatial patterns of model simulations for all the configurations, we evaluate the 810 

distribution of the snow water equivalent, SWE, for the computational units on 5th of May 2004 811 

(Figure-5). In general, the SWE follows the forcing resolution and its aggregation. Although 812 

coarser forcing resolutions results in coarser SWE simulation, the geospatial details such as 813 

elevation zones and slope and aspects result in more realistic representation of SWE as the snow 814 

layer is thinner for south facing slopes where more melt can be expected to occur, and thicker for 815 

higher elevation zones (compare SWE simulations for Case-4-2˚ and Case-3-2˚ in Figure-5) which 816 

is consistent with higher precipitation volumes and slower melt at higher elevation. Another 817 

observation from Figure-5 is the unrealistic distribution of SWE for configurations without 818 

elevation zones (Case-2 and Case-1). The lack of elevation zones results in both valley bottom and 819 

mountain tops to be forced with the same temperature. Snow is more durable in the forested areas 820 

as the result of model formulation, which are at lower elevation, while SWE is less for higher 821 

mountains, which is unrealistic. We remind the reader that the various spatial pattern of SWE 822 

across different configurations are from the simulations that results in rather similar performance 823 

metric, ENS, for the streamflow at the outlet of the basin. 824 
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 825 

Figure 5- Comparison of the snow water equivalent for 5th of May 2004 for various configurations. 826 
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Figure-6a shows the performance of the streamflow across various configurations for the most 827 

downstream river segment (the gauged river segment which is used for parameter inference 828 

through calibration). Figure 6a illustrates that most of the configurations have similar scaled ENS 829 

at the basin outlet. We compared the maximum snow water equivalent across different 830 

configurations for a computational unit located in the Bow Valley Bottom (an arbitrary location of 831 

-116.134˚W and 51.382˚E) for the year 2004 (Figure-6b). The result indicates that the SWE is 832 

higher for configurations with coarser forcing resolutions (almost triple). This is due to the reduced 833 

temperature as a result of masking warmer valley bottom by cooler and higher forcing grids over 834 

the Rockies. Such analyses can provide insights on the appropriate model configurations for 835 

different applications. Also and as an example, if model configurations of different complexity are 836 

known to show similar performance for a given parameter set, uncertainty and sensitivity analysis 837 

can be done initially on the models with fewer computational units and the results of the analysis 838 

can be applied to models with a higher number of computational units. This analysis can be 839 

repeated for different parameter sets, e.g., poorly performing parameter sets or randomly selected 840 

parameter sets, to better understand accuracy-efficiency tradeoffs of the model within its specified 841 

parameters ranges. 842 

 843 

Figure -6 (a) The relative performance of model simulation across various configurations with a 844 

single parameter set. (b) Maximum of snow water equivalent for an arbitrary location of -845 

116.134˚W and 51.382˚E located in Bow Valley Bottom across various model configurations for 846 

the year 2004. 847 
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 861 

5 Discussion 862 

In this study, we proposed a vector-based configuration for land models and applied this setup to 863 

the VIC model. We used a vector-based routing scheme, mizuRoute, which was forced using 864 

output from the land model (one-way coupling). Unlike the grid-based approach, there is no 865 

upscaling of land cover percentage or soil characteristics to a new grid size. This enables us to 866 

separate the effects of changes in forcing from changes in the spatial configurations. As mentioned 867 

earlier in Section 2, the vector-based configuration of land models may help avoiding unrealistic 868 

configuration of soil type, land cover or elevation zones that may happen in traditional grid-based 869 

implementation and hence increase the model fidelity. As an example, VIC configuration at grid 870 

scale assumes equal distribution of land cover over different elevation zones. Figure-7b illustrates 871 

how the traditional VIC configuration at grid-scale wrongly considers forested land cover above 872 

tree line. This issue is avoided in vector-based configuration as the set up will only include two 873 

computational unit of forested area below tree line and bare soil above the tree line (Figure 7a). 874 

The vector-based setup also provides more flexibility in comparing the model simulations across 875 

computational units (as an example, refer to Figure 5), and also comparing model simulations with 876 

point measurements, such as snow water equivalent. Moreover, the vector-based routing results in 877 

complete decoupling of the land model computational units’ spatial extent from routing sub-basins. 878 

For the grid-based configuration of land models, it is often the case that in land model grid and 879 

routing grids are identical which result in further decision on upscaling of the routing direction to 880 

the land model grid scale. 881 
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Figure-7 – (a) The realistic configuration of a natural system with land cover consist of 50% Bare 978 

soil and 50% forest within a grid located in two different elevation zones above and below the tree 979 

line which is preserved with vector-based configurations and (b) the traditional VIC configurations 980 

for the given system at the grid for the two elevation zones and 2 land cover which results in 981 

unrealistic combination of forested land cover above the tree line and bare soil below the tree line. 982 

 983 

Our results illustrate various vector-based spatial configuration of the VIC model generates similar 984 

large-scale simulations of streamflow when the setups are calibrated by maximizing the Nash-985 

Sutcliffe score at the basin outlet. Similarly, we have shown that often behavioral parameter sets 986 

yield similar ENS and can be significantly uncertain (Figure-3a) or have significant differences for 987 

their internal behavior which may be very well masked by aggregation of the result at the grid 988 

scale or basin scale (Figure-3b and Figure-5). Generally, both parameter and states and fluxes 989 

uncertainties are not often evaluated or reported for land models (Demaria et al., 2007) or is 990 

ignored by tying parameters, linking specific hydraulic conductivity to the slope of water retention 991 

curve, for example, so that the possible combination of parameters are reduced. Moreover, the 992 

behavior of Kslow parameter can be revealing of the VIC model structural deficiencies which are 993 

not often explored for land models. The recession coefficient obtained from recession analysis on 994 

the observed hydrograph is approximately 0.01 1/day while the calibrated Kslow has much higher 995 

values of around 0.90 1/day. This can be due to damped response from the two top soil layers and 996 

lack of macropore water movement to the baseflow component. Similarly, and due to lack of 997 

macropore water movement in the VIC model, and land models in general, it is impossible to infer 998 

the Kslow based on recession analysis on the observed hydrograph (for further reading on this and 999 

also recession analysis refer to Gharari et al., 2019).  This finding can be generalized to the 5-1000 

parameter VIC baseflow, highlighting the need to properly evaluate the often not observable but 1001 

calibrated baseflow parameters for the VIC model and if it is possible to identify 5 parameters 1002 

based on the recession limps of a hydrograph. 1003 

Land models are often applied at large spatial scales. The results clearly show that the deviation 1004 

of streamflow is much lower in river segments with larger upstream area (Figure 4 and 6a). It is 1005 

often the case that the model parameters and associated processes are inferred thought calibration 1006 
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on the streamflow at the basin outlet or over a large contributing area. We argue that this may not 1019 

be a valid strategy for process understanding at the smaller scale (read computational units), given 1020 

the large uncertainty exhibited by the parameters. Therefore, hyper-resolution modeling efforts, 1021 

Wood et al. 2011, may suffer from poor process representation and parameter identification at the 1022 

scale of interest (Beven et al., 2015). What is needed instead of efficiency metrics that aggregate 1023 

model behavior across both space (e.g. at the outlet of the larger catchment) and time (e.g. 1024 

expressing the mismatch between observations and simulations across the entire observation 1025 

period as a single number), is diagnostic evaluation of the model’s process fidelity at the scale at 1026 

which simulations are generated in case of available observations (e.g. Gupta et al., 2008; Clark et 1027 

al., 2016). 1028 

One might argue that the spatial discretization is important for realism of model fluxes and states. 1029 

Moving to significantly high number of computational units may result in computational units that 1030 

are similar in their forcing and geo-spatial fabric (such as soil and land cover types). Based on the 1031 

result of this study for snow water equivalent (Figure-5), we can argue that the snow patterns are 1032 

fairly similar for the configurations that have elevation zones and finer resolution of forcing (case3 1033 

and 4 and forcing resolution less than 0.125 degree). It can be further explored if the model 1034 

simulation at finer resolutions can be approximated by interpolating result of a model with coarser 1035 

resolution (!(#̅|&)~!(#|&))))))))))), in which m is the model, x is forcing and * is the model parameter 1036 

set).  1037 

The analysis on the accuracy-efficiency tradeoff presented in this study, Figure-6, can be used in 1038 

model analysis such as sensitivity and uncertainty. One can assume a configuration with fewer 1039 

computational units can be a surrogate for a model with more computational units, under the 1040 

condition that both models are known to behave similarly for a given parameter set. The calibration 1041 

can be done on the model configuration with less computational unit and the parameters can be 1042 

transferred directly to the model with more computational units or can be used as an initial point 1043 

for optimization algorithm to speed up the calibration process. Similarly, the sensitivity analyses 1044 

can be done primarily on the model with less computational units. 1045 

In this study and following the concept hydrological similarity, we assume the parameters of 1046 

computational units are identical for computational units with similar soil and land cover. The 1047 
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observations. Although in this study we only focus on the 1065 
processes and parameters that are often used to calibrate for 1066 
the VIC model such as subsurface processes, it is possible to 1067 
repeat the same analysis on wider range of processes such as 1068 
snow processes or routing parameters. ¶1069 
It is often computationally expensive to evaluate the 1070 
uncertainty and sensitivity of land models. Following the 1071 
results presented in Figure-6, one1072 
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degree of validity of hydrological similarity concepts is debatable. For example, at the catchment 1108 

scale, Oudin et al. (2010) have shown that the overlap between catchments with similar 1109 

physiographic attributes and catchments with similar model performance for a given parameter set 1110 

is only 60%. Physiographic similarity (in our case expressed through GRUs) does thus not 1111 

necessarily imply similarity of hydrologic behavior, even though this is the critical assumption 1112 

underlying GRUs. The VIC parameters can be linked to many more characteristics such as slope, 1113 

height above nearest drainage (HAND, Renno et al., 2008), or Topographical Wetness Index 1114 

(Beven and Kirkby, 1979) as has been done by Mizukami et al. (2017) and Chaney et al. (2018). 1115 

Techniques such as multiscale parameter regionalization (MPR, Samaniego et al., 2010) can be 1116 

used to scale parameter values for different model configurations. However, the functions that are 1117 

used to link computational units and physical attributes to model parameters remains mostly based 1118 

on inference, (i.e., calibration), and the reproducibility of those relationships are not very well 1119 

explored. However, applying these techniques, such as in this case that has significant parameter 1120 

and process uncertainty and significance accuracy-efficiency tradeoff, should be put through 1121 

rigorous tests (Merz et al., 2020, Liu et al., 2016). 1122 

A key outstanding challenge is for models to provide the right results for the right reasons 1123 

(Kirchner, 2006). Thoughtful strategies to formulate parameter and process constraints based on 1124 

expert knowledge can reduce the plausible range of behavioral parameter sets. In this study, we 1125 

imposed a simple parameter constraint that the root zone moisture storage of forested area should 1126 

be larger than the non-forested area (Table-1). Additional process constraints, if available, can be 1127 

increasingly difficult to satisfy. More rigorous parameter estimation methods that satisfy the 1128 

fidelity constraints based on expert knowledge are required (e.g., Gharari et al., 2014).  1129 

6 Conclusions 1130 

The vector-based configuration of land models can provide modelers with more flexibility, e.g. 1131 

representing the impact of various forcing resolution or geospatial data representation. The 1132 

conclusions from this study can be summarized as follows: 1133 

1) The land model configuration with the highest number of computational units may not 1134 

result in improved performance and better spatial simulation, in terms of obtained 1135 

Deleted: the concept of GRU, 1136 

Deleted: basd on physical attribute similarities,1137 

Deleted: Although the GRUs in this study include slope and 1138 
aspect, these characteristics were not translated into the 1139 
model parameters and was only used for forcing 1140 
manipulation. 1141 

Deleted: Cheney1142 

Moved (inser1on) [24]

Deleted: linked the attribute1143 

Deleted: characteristics 1144 

Deleted: assumptions rather than1145 

Deleted: them1146 

Moved (inser1on) [25]

Deleted:  (if possible1147 

Forma&ed: Font: Times New Roman

Deleted: In this study, the vector-based routing configuration 1148 
does not include lakes and reservoirs. This is often a 1149 
neglected element of land modeling efforts and has only 1150 
attracted limited attention compared to the its impact on 1151 
terrestrial water cycle (Haddeland et al., 2006, Yassin et al., 1152 
2018). The presence of lakes and reservoirs and their 1153 
interconnections reduces the, already limited, ability of 1154 
inference of land model parameter based on calibration on the 1155 
observed streamflow because streamflow variability is 1156 
reduced. ¶1157 
Although not primary the result of this study, however, the 1158 
Nivo-glacial regime of the Bow River Basins is mostly 1159 
dominated by snow melt that contributes to streamflow 1160 
through baseflow (slow component of the hydrograph). The 1161 
high Nash-Sutcliffe Efficiency, ENS, is partly due to the fact 1162 
that it is rather easy for the land model to capture the yearly 1163 
cycle of the streamflow only with snow processes while rapid 1164 
subsurface water movement, such as macropore, are largely 1165 
missing in the land models but do not lead to notably 1166 
increased efficiency scores when they are included in the 1167 
model structure. More caution is needed for use of the land 1168 
model for flood forecasting (Vionnet et al., 2019) for this 1169 
region and all the Nivo-glacial river systems in western 1170 
Canada, McKenzie, Yukon and Colombia River Basins.¶1171 

Deleted: setup for the1172 

Deleted: model1173 

Deleted: , while avoiding decisions that are often taken for 1174 
model configuration at grid level.1175 

Deleted: conclusion and messages1176 

Deleted: <#>Regardless of observations at the scale of 1177 
modeling, a model configuration with lower computational 1178 
units, coarser resolution and less geospatial information, 1179 
can produce model simulations with similar efficiency 1180 
scores as configurations with higher computational units. 1181 
The choice of model set up should be tested within the 1182 
context and purpose of modeling for every different case.¶1183 
<#>The model1184 



 

Page 26 of 38 
 

efficiency scores, while the internal model state and fluxes can show significant 1185 

uncertainty. 1186 

2) There is significant parameter and structural uncertainty associated with the land model (in 1187 

this case, the VIC model). This uncertainty poses challenges for the process and parameter 1188 

inference when the model is calibrated by minimizing the sum-of-squared differences 1189 

between simulated and observed streamflow. Any parameter regionalization efforts should 1190 

take these uncertainties into account. Our results emphasize that more attention is needed 1191 

on the topic of parameter and process inference at finer modelling scales. 1192 

3) A model configuration with lower computational units, coarser resolution and less 1193 

geospatial information, may reproduce model simulations with similar efficiency scores as 1194 

configurations with higher computational units. Less computationally expensive 1195 

configurations can be used instead for primary uncertainty and sensitivity analysis. 1196 

A key scientific challenge is hydrological scaling. i.e., how do small-scale heterogeneities shape 1197 

large-scale fluxes. Addressing this challenge requires a mix of both explicit representations of 1198 

spatial heterogeneity (enabled through spatial discretization of the landscape) and implicit 1199 

representations of heterogeneity (enabled through sub-grid parameterizations). The contribution 1200 

in this paper is to advance flexible spatial configurations for land models – our approach improves 1201 

the explicit representation of spatial heterogeneities, at least compared to traditional approaches 1202 

that simply drape a grid over the landscape. Much more work is required across all spatial scales 1203 

to carefully evaluate how a mix of implicit and implicit representations of spatial heterogeneity 1204 

can improve process representations.We encourage the community to develop tools which can 1205 

enable easier and more flexible configuration of land models that can be used to explore the above-1206 

mentioned research questions. 1207 
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7 Appendix 1227 

7.1 Appendix – A 1228 

This appendix reflect on the method and equations that have been used to calculate the ratio of the 1229 

solar radiation on a surface with slope and aspect to a flat surface. Please note that the angles in 1230 

the equations are in radian but for better communication we express angles in degree in the text. 1231 

Declination angle: declination angle can be calculated for each day of year and is the same for 1232 

the entire Earth (Ioan Sarbu, Calin Sebarchievici, in Solar Heating and Cooling Systems, 2017): 1233 

+ = 23.45 !
"#$ sin	 6

%!
&'$

&'$
&'( (284 + 9):        (A-1) 1234 

in which + is declination angle in radian and d is the number of day in a year starting from 1st of 1235 

January. 1236 

Hour angle: hour angle is the angle expressed the solar hour. The reference of solar hour angle is 1237 

solar noon (hour angle is set to zero) when the sun is passing the meridian of the observer or when 1238 

the solar azimuth is 180° (north direction with azimuth of 0°). The hour angle can be calculated 1239 

based on the: 1240 

sin; = )*+,-)*+ . )*+ ∅
01) . 01) ∅ 	          (A-2) 1241 

In which α, ϕ and + are the altitude angle, latitude of the observer and declination angle. The sunset 1242 

and sunrise hour can be calculated as (when sun is at horizon and solar altitude angle is zero): 1243 

cos;2 = − tan∅ tan +          (A-3) 1244 

More caution is needed using equation A-3 for latitude above and below 66.55° north and south 1245 

respectively where it can be always day or night with no sunrise or sunset during part of the year. 1246 

The number of daylight hours that can be split before and after the solar noon equally can be 1247 

calculated based on (assuming 15° for every 1 hour): 1248 

B = %3!
"(

"#$
!            (A-4) 1249 
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And therefore, hour angle can be easily calculated for time before and after solar noon the 1269 

(relationship between the 15° equals to an hour). Hour angle is negative for the time before solar 1270 

noon and positive for the time after solar noon. Note the solar noon does not often coincide with 1271 

12 pm of the local time zone. There are relationships to find the local time of solar noon. 1272 

Solar altitude angle: Solar altitude angle is the angle of sun rays with the horizontal plane of an 1273 

observer. This angle is maximum at solar noon and 0° for subset and sunrise. The altitude angle 1274 

can be calculated based on the: 1275 

sin C = sin + sin ∅ + cos + cos; cos ∅        (A-5) 1276 

For the solar noon when ω, hour angle, is zero the question simplifies to: 1277 

sin C = sin + sin ∅ + cos + cos ∅ = cos(∅ − +) = sin	(!% − ∅ + +)    (A-6) 1278 

Solar Azimuth: The solar azimuth angle, D456 reflect on the angle of the sun on the sky from the 1279 

north with clockwise rule. The azimuth angle can be calculated as: 1280 

sin D456 = )*+3 01) .
01),           (A-7) 1281 

The solar azimuth angle for the solar noon is set to be 180°. 1282 

The azimuth at the sunset and sunrise can be calculated: 1283 

sin D456,892: = −sin;2 cos +         (A-8) 1284 

sin D456,2:; = sin;2 cos +         (A-9) 1285 

Surface Azimuth (a.k.a. aspect): The surface azimuth angle, D458<=>:reflect the direction of the 1286 

any tilted surface to the north direction. This azimuth is fixed for any point while the solar azimuth 1287 

changes over hours and seasons. 1288 

Angle of incidence E: this angle represents the angle between a sloped surface and the sun rays. 1289 

The model angle of the incidence for a slope surface β, and aspect of D458<=>: over latitude of ∅ 1290 
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can be calculated as (Kalogirou, in Solar Energy Engineering, 2009, in the reference formulation 1310 

the Azimuth is from south which is corrected here for North): 1311 

cos & = sin + sin ∅ cos F + sin + cos ∅ sin F cos D458<=>: + cos + cos ∅ cos F cos; −1312 

cos + sin ∅ sin F cos D458<=>: cos; − cos + sin F sin D458<=>: sin;    (A-10) 1313 

For the flat surface, both D458<=>: and β, is set to 0°, the incident angle can be calculated for the 1314 

flat surface as 1315 

cos &<?=; = sin + sin ∅ + cos + cos ∅ cos;        (A-11) 1316 

In case where the angle of incident is larger than 90° the surface shades itself. 1317 

Correction of short-wave radiation based on slope and aspect. In this study we correct the 1318 

WRF short wave radiation based on the surface slope and aspect. We first back calculated the 1319 

incoming short-wave radiation by dividing the provided short wave radiation by the cosine of the 1320 

incident angle of the flat surface. Then we can calculate the solar radiation of the sloped surface 1321 

multiplying this value to the cosine of the incident angle of the slope surface. Basically, this ratio 1322 

is: 1323 

G = 01) @
01)@"#$%

            (A-12) 1324 

The effect of the atmosphere is considered in the WRF product itself. However, and for incident 1325 

level close to 90 degrees the ratio, R, might be very high values which result in the surface 1326 

receiving unrealistically high value of radiation even higher than the solar constant, 1366 W/m2, 1327 

at the top of the atmosphere. For cases with cosine values of incident angle lower than 0.05 we set 1328 

the ratio to 0 to avoid this unrealistic condition. 1329 
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 1343 

Figure A-1 Short wave radiation for (top left) not corrected for slope and aspect and (bottom left) 1344 

corrected for slope and aspect for 21st June 2020 and (top right) not corrected for slope and aspect 1345 

and (bottom right) corrected for slope and aspect for 21st December 2020. 1346 

 1347 
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