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Abstract 

There is a growing interest globally in the spatial distribution of intermittently flowing streams and rivers, and how their spatial 15 

extent varies in relation to climatic factors. However, deriving consistent information on the extent of flow intermittency within 

river networks is hampered by the fact that streamflow gauges are often sparsely distributed and more often be located within 

the most perennial parts of the river network. Here, we developed an approach to quantify catchment-wide streamflow 

intermittency over long timeframes and in a spatially explicit manner, using readily accessible and spatially contiguous daily 

runoff data from a national-scale water balance model. We examined the ability of the water balance model to simulate 20 

streamflow in two hydro-climatically distinctive (subtropical and temperate) regions in Australia, with a particular focus on 

low flow simulations. We also evaluated the effect of model time step (daily vs. monthly) on flow intermittency estimation to 

inform future model selection. The water balance model showed better performance in the temperate region characterised by 

steady baseflow than in the subtropical region with flashy hydrographs and frequent cease-to-flow periods. The model tended 

to overestimate low flow magnitude mainly due to overestimation of gains (e.g. groundwater release to baseflow) during low-25 

flow periods. Modelled patterns of flow intermittency revealed highly dynamic behaviour in space and time, with cease-to-

flow events affecting between 29 % and 80% of the river network over the period of 1911-2016, using a daily streamflow 

model. The daily flow model did not perform better than the monthly flow model in quantifying flow intermittency at a monthly 

time step, and model selection should depend on the intended application of the model outputs. Our general approach to 

quantifying spatio-temporal patterns of flow intermittency is transferable to other parts of the world, and can inform hydro-30 

ecological understanding and management of intermittent streams where limited gauging data are available. 
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1 Introduction 

Intermittent streams that cease to flow for some period of most years are prevalent within river networks globally (Acuña et 

al., 2014; Datry et al., 2014). Their spatial extent is projected to increase in regions experiencing drying trends related to 35 

climate change and water extraction for human uses (Larned et al., 2010). Intermittent streams have seen increasing research 

interest over the past decade (e.g. Costigan et al., 2016; Fritz et al., 2013; Gallart et al., 2017; Leigh et al., 2016), and there is 

a growing interest in conserving these unique ecosystems. The scarcity of spatially-explicit information on flow intermittency 

has been identified as one of the key issues confronting intermittent stream management (Acuña et al., 2017). Flow 

intermittency exerts primary control on the transfer of energy, materials and organisms by surface water through river networks 40 

(Jaeger et al., 2019) and is a key driver of riverine ecosystems (Datry et al., 2017; Poff et al., 1997; Stanley et al., 1997). 

Therefore, improved understanding of temporal and spatial patterns in flow intermittency is fundamentally important for 

effective river management.  

Previous studies have predominantly relied on the use of gauged streamflow data to make inferences about the distribution of 

intermittent streams in many regions, including France (Snelder et al., 2013), Australia (Bond and Kennard, 2017; Kennard et 45 

al., 2010b), Spain and North America (de Vries et al., 2015). However, spatial biases in the distribution of stream gauges used 

in such studies may give misleading impressions of spatial patterns and extent of streamflow intermittency (Snelder et al., 

2013). Alternative methods for quantifying the extent of intermittent flow include citizen-observation networks supported by 

regular reports from trained volunteers (Datry et al., 2016; Turner and Richter, 2011), the use of electrical arrays by measuring 

the electrical conductivity of the streambed (Jaeger and Olden, 2012), development of predictive models for intermittent 50 

streams (González-Ferreras and Barquín, 2017), and deployment of unmanned aerial systems (Spence and Mengistu, 2016). 

These alternatives are generally appropriate over small spatial extents and short time frames but are difficult to scale up to 

larger areas to quantify flow intermittency in space and time. Satellite remote sensing-based quantification of flow 

intermittency (Hou et al., 2019) can cover larger spatial extents, but for now, remains applicable only to relatively large rivers 

(> 30 m in the case of Landsat imagery) and can be affected by factors such as vegetation and cloud obstruction. 55 

Spatially contiguous runoff data derived from water balance models provide another potential alternative to quantify spatio-

temporal variations in flow intermittency. For example, Yu et al. (2018) used runoff simulations obtained from a water balance 

model WaterDyn (Raupach et al., 2009) to generate spatially explicit and catchment-wide estimates of streamflow 

intermittency, but only at a relatively coarse monthly time step. Depending on the application, flow simulations at a finer 

temporal scale (e.g. daily) may be necessary to capture the dynamic aspects of hydrological processes. These kinds of 60 

simulations are important to better understand the causes of flow intermittency at multiple spatial scales and enable 

ecologically-relevant characterisation of streamflow properties such as the magnitude, frequency, duration, and rate of change 

in high or low flow events. However, there are few examples of studies quantifying spatial and temporal variation in flow 

intermittency across river networks using spatially contiguous daily flow data. That is partly because streamflow simulation is 
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more challenging at a daily versus monthly time step due to higher uncertainties in input data at this finer temporal scale (Wang 65 

et al., 2011). 

Water balance models at a daily time step have been increasingly developed around the world (Bierkens et al., 2015; Lin et 

al., 2019). One prominent regional example is the Australian Water Resource Assessment Landscape (AWRA-L) model (van 

Dijk, 2010). The AWRA-L model has been developed by the Commonwealth Scientific and Industrial Research Organisation 

(CSIRO) and the Australian Bureau of Meteorology (BoM) to simulate the terrestrial water balance across Australia at a daily 70 

time step (Frost et al., 2016; van Dijk, 2010). The model yields spatially contiguous daily water availability values gridded at 

a spatial resolution of 0.05 arc-degree spatial resolution (approximately 5 × 5 km) (Frost et al., 2016). The development of 

such water balance models in Australia and other parts of the world provides the potential to quantify spatial and temporal 

variation in runoff, and hence flow intermittency, at a daily time step. However, this requires an effective and efficient 

conversion process to translate gridded runoff estimates to accumulated streamflow estimates down the river network. This is 75 

especially challenging for large study areas due to lags in runoff, which can influence the timing of flow peaks and rates of 

recession. Additionally, many national-scale water balance models, including AWRA-L, were calibrated on a large domain 

that covers multiple climate conditions (Viney et al., 2015), providing a best "average" response but potentially inconsistent 

accuracy of runoff simulations within particular climate domains. As the predictive performance for ungauged basins strongly 

depends on climate settings, this compromise raises the question as to whether such models can be used to quantify flow 80 

intermittency over multiple climate conditions. Although substantial efforts have been made in evaluating hydrological models 

in different climate conditions (Do et al., 2019; Gudmundsson et al., 2012; Lin et al., 2019; Zaherpour et al., 2018), a limited 

number of such studies have focused particularly on model performance during low flow conditions, which is particularly 

important for flow intermittency quantification. 

In this study, we sought to apply spatially contiguous daily runoff outputs from the AWRA-L water balance model to quantify 85 

the spatial extent and temporal patterns of flow intermittency. To assess the accuracy of the AWRA-L model for daily flow 

simulations, we first developed a simple but effective technique to convert runoff to streamflow for two hydro-climatically 

distinctive regions. The translation of gridded runoff to aggregated streamflow/discharge on vector river flow lines make 

AWRA-L outputs more accessible to fluvial geomorphologists and ecologists, who may intend to relate daily hydrologic 

characteristics of rivers to a broad range of physical and ecological phenomena. We further assessed the uncertainty of the 90 

AWRA-L model in capturing patterns of flow intermittency. Lastly, we evaluated the effect of time step (daily vs. monthly) 

on the relative performance of the model in replicating observed patterns of cease-to-flow periods at reference gauges. A 

previous study conducted at the monthly time step (Yu et al., 2018) was used to benchmark flow intermittency estimated from 

the AWRA-L model. 
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2 Study areas 95 

This research was conducted in two hydro-climatically distinctive regions: South-east Queensland and the Tamar River 

catchment in Tasmania (Fig. 1). The South-east Queensland (SEQ) region is located in the eastern part of Australia (Fig. 1a) 

and comprises five major coastal river basins with a total area of 21,331 km2 (Fig. 1b) (Australian Bureau of Statistics, 2011). 

SEQ has 7,229 stream segments and their corresponding sub-catchments according to the Australian Hydrologic Geospatial 

Fabric (Geofabric), with the minimum upstream drainage area of 1.5 km2. SEQ is a region of transitional temperate to 100 

subtropical climate (Fig. 1a) with substantial inter- and intra- annual variation in rainfall. The majority of rainfall and 

streamflow usually occur in the summer months of January to March, often followed by a second minor discharge peak 

between April and June, but high and low flows may occur at any time of year (Kennard et al., 2007). Thus, there are a range 

of flow regimes with many streams being intermittent to varying degrees. The Tamar River catchment (Tamar) is located in 

Tasmania, an island state off Australia's south coast (Fig. 1a, c). It drains a catchment area of approximately 11,215 km2, 105 

comprising over one-fifth of Tasmania's land mass and is located in north-east and central Tasmania. According to climate 

data from BoM (http://www.bom.gov.au/climate/data), Tamar is characterised by a temperate climate condition, of which 

rainfall is relatively evenly distributed throughout the year and most months receive very similar averages. 

[Figure 1 is about here] 

3 Data and Methodology 110 

3.1 Streamflow gauge data 

Gauged daily streamflow data were sourced from the BoM water data website (http://www.bom.gov.au/waterdata) and were 

used to assess accuracy of AWRA-L modelled streamflow (Section 3.3) and to estimate an appropriate zero flow threshold of 

modelled streamflow data for quantifying patterns of streamflow intermittency (Section 3.4). A total of 25 gauges in SEQ and 

15 gauges in Tamar were selected (Fig. 1b, c) to assess modelled streamflow accuracy. These gauges had less than 0.5 % 115 

missing values over the period from 01/01/2005 to 31/12/2017 and had minimal hydrologic modification due to human 

activities. A larger set of 43 gauges in SEQ (including 21 of the 25 gauges used by us for streamflow validation) was used to 

estimate the zero-flow threshold for this region (see Yu et al., 2018 for details of stream gauges). The gauges were widely 

dispersed throughout each study area and encompassed a range of stream sizes, catchment areas (22 – 3,881 km2 in SEQ; 33 

– 3,294 km2 in Tamar) and flow regime types, ranging from highly intermittent to perennial streams (see results). However, 120 

the set of stream gauges used in our analyses under-represented the frequency of small low-order streams in both regions. 

Therefore, we regard the selected gauges to be representative of the range of environmental and hydrological conditions in the 

regions, except for extremely small catchments with an area < 22 km2 that likely have higher cease-to-flow occurrence. 

http://www.bom.gov.au/climate/data
http://www.bom.gov.au/waterdata
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3.2 Conversion from spatially contiguous runoff to streamflow 

AWRA-L is a daily 0.05° grid-based distributed water balance model that is conceptualised as a small catchment. It simulates 125 

the water flow through the landscape from the rainfall entering the grid cell through the vegetation and soil and then out of the 

grid cell through evapotranspiration, surface water flow or lateral flow of groundwater to the neighbouring grid cells (Viney 

et al., 2015). AWRA-L was calibrated and validated at the national scale during its development by CSIRO and BoM, with 

301 gauges used for calibration and a different set of 304 gauges used for validation (Zhang et al., 2013). Simulated daily 

runoff from the AWRA-L model (version 5) was downloaded from BoM (http://www.bom.gov.au/water/landscape). These 130 

data are in gridded format and require conversion to streamflow for each sub-catchment by aggregating the gridded runoff data 

with a hierarchically nested catchment to simulate streamflow throughout river networks. The conversion process may or may 

not need to use a river routing model to propagate streamflow through river networks, partly depending on the size of the 

catchment of interest (Robinson et al., 1995). If streamflow simulated with a routing model shows little difference to that 

without a routing model, then the conversion process is more efficient without a routing model, and the readily available runoff 135 

data can be more accessible for potential applications, such as flow characterisation for ungauged stream segments. In addition, 

a conversion process involving a routing model can be computationally-intensive and usually requires parallel computing to 

speed up the calculations (David et al., 2011b). Therefore, in this study, we applied two approaches to determine an effective 

and efficient runoff-streamflow conversion. The first approach coupled a river routing model to the water balance model, and 

its effects on flow simulations are compared to the model performance of a lumped model, which was operated without any 140 

river routing (Fig. 2). As the conversion process was achieved using the "catchstats" package 

(https://github.com/nickbond/catchstats) in the R programming language (R Development Core Team, 2017), so the second 

approach was to speed up the conversion process by incorporating parallel algorithm to exiting functions of that package. The 

conversion process was run on a Griffith University High-Performance Computing node with 12 cores and RAM 12 GB. 

[Figure 2 is about here] 145 

The hierarchically nested catchment dataset used in this study was sourced from the Geofabric dataset (Stein et al., 2014), 

which provides a fully connected and directed stream network derived from the national 9 arc-second DEM and flow direction 

grid (~250m resolution), and associated catchment hierarchy at the national scale. The routing model applied in this study was 

the Routing Application for Parallel computatIon of Discharge (RAPID) model (David et al., 2011b). RAPID solves the matrix-

based Muskingum equation to route flow through each stream of the river network and performs streamflow computation for 150 

every stream segment of a river network, including ungauged streams. Various water balance models have been used in 

combination with RAPID (Follum et al., 2017; Lawrence et al., 2011; Lin et al., 2019). 

To test the effects of river routing, we first calculated a series of flow metrics (Table 1) for flow simulations from both the 

lumped and coupled models. The calculated flow metrics are commonly used to describe the critical components of flow 

http://www.bom.gov.au/water/landscape
https://github.com/nickbond/catchstats
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regimes across average, high, and low flow conditions, including flow magnitude and variability, the timing, frequency and 155 

duration of high and low flows, and rates of changes in flow events (Olden and Poff, 2003; Poff et al., 1997). Calculation of 

these streamflow characteristics allows a comprehensive assessment of the effects of river routing on streamflow simulations 

in the two regions. We then applied Wilcoxon rank sum test for each flow metric to determine whether the inclusion of river 

routing can improve model accuracy based on a significance level of 5 %. We used the 10th and 90th percentiles of daily flows 

to respectively describe low-flow and high-flow thresholds (Gudmundsson et al., 2019; Leigh and Datry, 2016). The 160 

calculation process was conducted with the "hydrostats" package in the R language (Bond, 2016). 

[Table 1 is about here] 

3.3 Accuracy assessment of modelled streamflow 

To evaluate overall model performance in streamflow simulations, we calculated the modified Kling-Gupta efficiency (KGE; 

Kling et al, 2012) between the observed and modelled streamflow for all gauges in SEQ and Tamar (Eq. (1)). KGE is an 165 

integrated skill metric, which measures the Euclidean distance between a point and the optimal point that has the maximum 

correlation coefficient, zero variability error and zero bias error between the simulated and observed streamflow (Gupta et al., 

2009; Kling et al., 2012). KGE takes values from -1 to 1: KGE = 1 indicates perfect agreement between simulations and 

observations, and KGE < -0.41 indicates that the mean of observations provides better estimates than simulations (Knoben et 

al., 2019). To evaluate model performance in different components of flow regimes, we also calculated each summary flow 170 

metric (Table 1) for observed and modelled streamflow data at all gauges in SEQ and Tamar and visually compared their 

frequency distributions. The use of KGE provides an overall assessment of AWRA-L model performance and the flow metrics 

in Table 1 are used to comprehensively evaluate the model accuracy for various components of flow regimes, including the 

flow metrics related to low flows. Only six of the 25 gauges in SEQ and three of the 15 gauges in Tamar were the same as 

those used to calibrate the AWRA-L water balance model. This small overlap between the AWRA-L calibration gauge set 175 

(n=301) and the streamflow model validation gauge set (n=25 in SEQ and 15 in Tamar) means that potential overestimation 

of streamflow model performance is likely to be minimal. 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2                                          (Equation 1) 

𝛽 =
𝜇𝑠

𝜇𝑜

;  𝛾 =
𝐶𝑉𝑠

𝐶𝑉𝑜

=

𝜎𝑠
𝜇𝑠

⁄
𝜎𝑜

𝜇𝑜
⁄

 

where 𝐾𝐺𝐸 is the modified KGE-statistic (dimensionless), 𝑟 is the correlation coefficient between simulated and observed 180 

runoff (dimensionless), 𝛽 is the bias ratio (dimensionless), 𝛾 is the variability ratio (dimensionless), 𝜇 is the mean runoff in 
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m3s-1, 𝐶𝑉 is the coefficient of variation (dimensionless), 𝜎 is the standard deviation of runoff in m3 s-1, with subscripts 𝑠 and 𝑜 

referring to simulated and observed runoff values, respectively. 

Furthermore, considering that this study aims to apply flow simulations to quantify flow intermittency, the model accuracy of 

low flow simulation is particularly important. The study period (01/01/2005-31/12/2017) was considered sufficient to assess 185 

low flows. The 13 year study period is close to a discharge record length of 15 years which Kennard et al. (2010a) concluded 

is sufficient to enable accurate estimation of low flow metrics. In addition, our study period begins in the middle of the 

Australian Millennium Drought (2001-2009), and includes a significant low-flow period. A preliminary analysis showed that 

AWRA-L modelled streamflow was sensitive to rainfall events, relative to the response of observed flow (Fig. 3). This finding 

indicates that over-responsiveness of AWRA-L to rainfall may potentially contribute to overestimation of low flow. We 190 

hypothesised that this over-responsiveness is partly due to overestimation of "in situ" gains to low flow discharge (e.g. 

groundwater release to baseflow) as well as underestimation of transmission losses (e.g. depression filling and 

evapotranspiration) during water movement through various flow paths in the stream network (Davison and van der Kamp, 

2008). Given that we do not have access to the AWRA-L model to directly adjust model parameters, we instead compared the 

observed and modelled low flow magnitude at all gauges in the two study areas along the gradient of their catchment areas 195 

(22-3,881 km2 in SEQ; 33-3,294 km2 in Tamar) to test this hypothesis. We expect that 1) if the difference in low flow 

magnitude occurs at all gauges, then low flow overestimation can be at least attributed to the overestimation of gains to low 

flow discharge. Alternatively, 2) if the difference in low flow magnitude occurs towards the downstream of the catchment, 

then low flow overestimation may be related to underestimation of transmission losses. 

[Figure 3 is about here] 200 

3.4 Quantifying flow intermittency using spatially contiguous flow simulations 

Given the fact that water balance models often over-predict the magnitude of very low flows due to the difficulties of 

quantifying hydrological processes influencing low flow discharge (Smakhtin, 2001; Staudinger et al., 2011; Ye et al., 1997), 

we adopted the same method used in Yu et al. (2018) to estimate a threshold of zero flow from the model that related measured 

zero-flow duration at each gauge to catchment environment variables. We used linear regression to model the mean annual 205 

zero flow duration (daily time step) at each gauge as a function of catchment environment variables. This regression analysis 

was only conducted in SEQ as most gauges in the Tamar catchment had perennial flow. The environmental variables were the 

same as those in Yu et al. (2018), and included variables related to climate (annual daily maximum temperature), catchment 

geology topography (catchment area, catchment average slope, and catchment average elevation), and catchment soil 

properties (catchment average saturated hydraulic conductivity). Regression models were developed using all possible 210 

predictor variable combinations and we selected the “best” model for predicting zero flow duration based on corrected Akaike’s 

Information Criterion (AICc) (Hurvich and Tsai, 1989). To estimate the prediction error of the selected model, we applied 
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leave-one-out cross validation on the selected 43 gauges and reported prediction error (R2) to estimate the model prediction 

performance. Regression model development and cross-validation were conducted with the MuMIn and boot packages in R 

(R Development, 2017). Regression analyses were performed on all combinations of predictor variables and the best model 215 

with the lowest AICc (-54.2) retained five covariates, including annual daily maximum temperature, catchment area, slope, 

average elevation, and average saturated hydraulic conductivity. The developed predictive model showed a good model fit 

with an adjusted R2 of 0.71, and the leave-one-out cross validation on the regression model showed relatively good model 

performance with an average R2 of 0.64. We checked for spatial autocorrelation of the regression model residuals (as 

recommended by Dormann et al., 2007) and found they were not significantly autocorrelated (Moran’s I = -0.06, p = 0.69). 220 

Examination of spatial residual maps further supported this conclusion, with no spatial trends in model residuals apparent.   

Next, we used the predictive models to extrapolate estimates of overall flow intermittency (in terms of the proportion of days 

with zero flow) to each segment throughout the river network. Finally, for each segment, the time-series of daily runoff was 

truncated (flows below the threshold were set to "0") by adopting an appropriate threshold of "zero flow" that preserved the 

proportion of days with flow as estimated in the previous step. The adopted thresholds ranged from 0 – 1.668 m3/s, with a 225 

median value of 0.002 m3/s.  We recognise several sources of uncertainty in our approach to estimating the zero flow 

thresholds.  The unexplained variation in the predictive model may be due to the limited number of environmental attribute 

covariates used in the model and hence ability to adequately represent the range of environmental processes that influence 

streamflow intermittency. Additional uncertainty in model predictions may arise because the distribution of stream gauges 

used for model calibration under-represented the frequency of extremely small catchments that likely had higher cease-to-flow 230 

occurrence.   

Based on the modelled daily streamflow from AWRA-L, we calculated annual flow intermittency as the number of zero-flow 

days per year over the period of 2005-2016. To evaluate the effect of time step (daily vs. monthly) on the relative performance 

of AWRA-L in replicating observed patterns of cease-to-flow periods, we compared model outputs with those derived from a 

monthly water balance model – the WaterDyn model (Fig. 2). Monthly flow intermittency estimated from WaterDyn was thus 235 

used to benchmark results from the monthly AWRA-L. To do this, we aggregated daily outputs to a monthly time step (termed 

"monthly AWRA-L" hereafter, Fig. 2). We tried two different aggregation methods. One considered that the flows for a month 

were zero when at least one day in that month had zero flow (termed "monthly AWRA-L_01" hereafter), and the other 

considered that all days in a month must have zero flow for that month to be zero (termed "monthly AWRA-L_30" hereafter). 

These two methods together should provide both upper and lower bounds of comparing daily and monthly models in estimating 240 

flow intermittency. The WaterDyn model was developed to provide monthly spatially contiguous water balance data at the 

Australian continental scale by CSIRO and BoM with a similar model structure to AWRA-L (Raupach et al., 2018), and has 

been used to quantify the spatial and temporal patterns of flow intermittency in SEQ following similar methods to this study 

(Yu et al., 2018). Modelled flow intermittency from all three sources (i.e. daily and monthly AWRA-L, and monthly 
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WaterDyn) was also tested against the measured flow intermittency derived respectively from daily and monthly observed 245 

streamflow data at gauged locations in SEQ. 

Taking advantage of the modelled long-term runoff data from AWRA-L over the period of 1911-2016, we further quantified 

spatial and temporal dynamics of flow intermittency for every stream segment within SEQ, and compared the results with 

those from the WaterDyn model over the same period (Yu et al., 2018). The spatial pattern of flow intermittency was 

represented by the mean annual number of zero flow days across the period of 1911-2016 for AWRA-L and by the mean 250 

annual number of calendar months for WaterDyn. The temporal pattern of flow intermittency was expressed as the proportion 

of streams with flow intermittency > 30 days or 1 month (termed "intermittent streams" hereafter) for AWRA-L and WaterDyn, 

respectively. 

4 Results 

4.1 Negligible effects of river routing on daily flow simulations 255 

The lumped and coupled (i.e. with routing) models using AWRA-L simulated runoff were run in both SEQ and Tamar, and 

produced similar values for various flow metrics between the lumped and coupled in both regions (Fig. 4; p values were greater 

than 0.50 for most flow metrics based on Wilcoxon test results). There were noticeable but not statistically significant 

differences for two flow metrics related to low flows (the variability in timing, and the frequency of low flow spells), and only 

the duration of low flow spells was statistically significant  (p = 0.03). These results suggested that the routing algorithm has 260 

nearly negligible effects on flow simulations in our study areas, which is reasonable because of the small size of the two 

watersheds. Therefore, in the subsequent analysis, we only used the results from the AWRA-L lumped model as it is relatively 

less computationally intensive and was able to maintain a comparable model performance to that of the coupled model taking 

into account the routing effect. 

[Figure 4 is about here] 265 

4.2 Accuracy assessment of modelled streamflow in SEQ and Tamar 

The overall accuracy of streamflow estimated by AWRA-L lumped model (referred to as "modelled streamflow" in this 

section) was evaluated for 25 gauges in SEQ and 15 gauges in Tamar. Results suggested a fair to good explanatory value 

across all gauges (Fig. 5). The KGE values varied across the 25 gauges in SEQ, ranging from -0.19 (Gauge No. 145103) to 

0.76 (143901), with a median value of 0.42, while the model generally performed better in Tamar and the KGE values ranged 270 

from 0.11 (18219.1) to 0.71 (852.1) across 15 gauges, with a median value of 0.47 (Fig. 5). However, no significant difference 

was found in the overall model performance between the two hydro-climatically distinctive regions, according to Wilcoxon 

test (w = 247, p = 0.10). 
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[Figure 5 is about here] 

Concerning model performance in simulating different components of flow regimes, the modelled streamflow in SEQ revealed 275 

a generally good match with the observed streamflow across all high-flow metrics and the magnitude of average flow, but the 

model tended to overestimate the variation in the magnitude of average flow (almost two times higher on average), report 

earlier timing of low flows, overestimate the frequency (48 % higher), and underestimate the duration (74 % lower) of low 

flows (Fig. 6). Compared to the model performance in SEQ, the flow simulations in Tamar showed slightly better performance, 

predicting well not only for the high-flow metrics but also for the metrics related to average flows (Fig. 6). However, flow 280 

simulations in Tamar also exhibited slightly earlier estimations for the timing of low flow spells (13 % earlier), overestimations 

for low flow spell frequency (92 % lower on average) and underestimation for low flow spell duration (58 % lower) (Fig. 6). 

[Figure 6 is about here] 

Varying degrees of difference in the magnitude of low flow between the observed and modelled were found among the gauges. 

There appeared to be a tendency toward larger differences with increasing catchment area in SEQ but not in Tamar (Fig. 7). 285 

The models appeared to over-estimate "in situ" gains to low flow in some reaches in both regions, while under-estimating 

transmission losses in SEQ, suggesting that over-estimation of "in situ" gains in AWRA-L likely contribute to the overall 

overestimation of low flow in downstream catchments. 

[Figure 7 is about here] 

4.3 Quantifying flow intermittency using flow simulations 290 

We calculated annual flow intermittency at gauged locations in SEQ using three sources of modelled flow (daily and monthly 

AWRA-L, and monthly WaterDyn). Annual flow intermittency calculated using daily AWRA-L flow (i.e., the average number 

of cease-to-flow days per year) was tested against annual flow intermittency estimated using observed data (Fig. 8a). The 

AWRA-L model displayed the potential to be used to estimate flow intermittency at a daily time step, with a fair match with 

the observed flow intermittency (R2= 0.56) in SEQ. Nonetheless, the model tended to overestimate flow intermittency for 295 

gauges located in relatively wet areas (e.g. ≤ 40 days of flow intermittency per year) while underestimating for gauges located 

in relatively dry areas (e.g.  40 days of flow intermittency per year). 

Figure 8b shows annual flow intermittency calculated using monthly AWRA-L flow and monthly WaterDyn flow. In this case, 

annual flow intermittency was defined as the average number of months characterized with zero flow. The WaterDyn model 

showed much more accuracy than the two aggregation methods based on the monthly AWRA-L model in estimating flow 300 

intermittency (R2 = 0.53, 0.43 and 0.32 respectively for monthly WaterDyn, monthly AWRA-L_01 and monthly AWRA-

L_30). More specifically, the WaterDyn model displayed a similar estimation pattern as the daily AWRA-L model: 
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overestimation in relatively wet areas while underestimation in relatively dry areas. By contrast, not surprisingly, the two 

aggregation methods showed the upper and lower bounds of flow intermittency estimates from the monthly AWRA-L model: 

monthly AWRA-L_01 overestimated flow intermittency and monthly AWRA-L_30 underestimated flow intermittency at 305 

nearly all gauges (Fig. 8b). 

[Figure 8 is about here] 

The spatial patterns of flow intermittency derived from the daily AWRA-L and monthly WaterDyn flow simulations aligned 

well for the main stems and some coastal streams, which were predicted to flow for most of the time (Fig. 9a, b). There were 

noticeable spatial differences between model predictions of streamflow intermittency for low order inland streams. For 310 

example, in the western Brisbane River catchment and the South Coast River catchment, most inland streams were predicted 

by the daily model to flow for longer period than by the monthly model; while in the Pine River catchment and the Logan-

Albert River catchment, many inland streams were predicted by the daily model to flow for a shorter period (Fig. 9a). 

Compared to the monthly WaterDyn model, fewer streams were predicted by the daily AWRA-L to experience extremely long 

dry events as well as less than one month of zero flows (Fig. 9c, d). However, more streams on average (60 % vs. 49 % for the 315 

AWRA-L and WaterDyn model, respectively) were predicted to flow intermittently (> 30 days or > 1 month) to varying 

degrees in SEQ, which suggests that flow intermittency was prevalent in SEQ, irrespective of the water balance model used.  

[Figure 9 is about here] 

Temporally, the daily model estimated that the proportion of intermittent streams in SEQ varied from 29 % to 80 % over the 

study period (1911-2016), while the monthly model estimated the range to be from 3 % to 80 % estimated during the same 320 

time span (Fig. 10). The two temporal patterns were temporally correlated (r = 0.71) and similar predictions with higher 

proportions of intermittent streams were estimated for the dry years by both models. Compared to dry years, the two models 

exhibited greater differences in predictions for the wet years, where the daily model tended to predict more proportion of 

intermittent streams. Overall, the daily model suggested a drier history in SEQ in terms of flow intermittency than the monthly 

model. The models successfully identified the extensive drying associated with severe drought periods. Notably, the 325 

Widespread drought (1914-1920), WWII drought (1939-1946) and Millennium drought (2001-2009) were all visible in both 

two sets of model predictions. 

[Figure 10 is about here] 

5 Discussion 

The scarcity of information on the spatial and temporal extent of flow intermittency has been identified as a major barrier for 330 

ecologists and managers to understand and protect intermittent stream ecosystems (Acuña et al., 2017). This barrier has been 
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partly overcome in previous studies by using statistical models relating flow intermittency to surrounding environmental 

variables (Bond and Kennard, 2017; González-Ferreras and Barquín, 2017; Jaeger et al., 2019; Snelder et al., 2013), but most 

of these studies focused on only the spatial variations in flow intermittency, except for Jaeger et al. (2019), overlooking its 

temporal aspects. This issue becomes particularly urgent in the time when flow regimes of streams are changing worldwide, 335 

mainly in response to climate change and water extraction for human uses (Chiu et al., 2017; Jaeger et al., 2014). Monthly 

runoff data have been recently used to quantify flow intermittency for entire river networks (Yu et al., 2018), and the current 

study takes one step further to use daily runoff data in flow intermittency estimation, which is especially needed for studies 

aimed at quantifying ecological responses to short term flow events (e.g. frequent zero flow events within a month). In this 

study, we comprehensively examined the ability of a daily water balance model to simulate streamflow, with a particular focus 340 

on low flow simulations. We also investigated how to better choose water balance models to estimate flow intermittency by 

answering the question that whether daily flow models outperform monthly flow models at both daily and monthly scales. Our 

study can not only inform the estimation of the spatial distribution of intermittent flow but also reveal the temporal dynamics 

of intermittent streams over long timeframes. 

5.1 Efficient runoff-streamflow conversion for eco-hydrological research 345 

Effects of river routing on daily flow simulations were found negligible in SEQ and Tamar, most probably due to the relatively 

small size of the two catchments and the relatively short length of even the longest streams (Cunha et al., 2012). This can be 

verified with the concept of time of concentration, which is commonly used to measure the time needed for water to flow from 

the most remote point in a catchment to the catchment outlet. By following the formula for calculating the time of concentration 

proposed by Pilgrim and McDermott (1982) that has been widely used in Australia, we found the time of concentration in SEQ 350 

is around 33 hours, only slightly more than a daily time step (24 hours). This illustrates why it is difficult for a daily time-step 

routing model to effectively capture routing lags in our study domain. Negligible effect of river routing on flow simulations 

was also observed in previous studies (David et al., 2011a). Robinson et al. (1995) found that catchment size is a primary 

factor to determine which process, the hillslope or the channel network transport component, characterise lags in catchment 

runoff down the river network. In areas such as SEQ and Tamar that have a relatively small catchment size, the inclusion of 355 

channel network transport contributes little to the improvement of flow simulations. The negligible effect of river routing in 

SEQ and Tamar allowed us to simplify the simulation of daily flows without coupling with a river routing model. Hence we 

were able to use existing runoff outputs from the daily AWRA-L model. Arguably, similar opportunities exist in other small 

catchments. 

5.2 Accuracy assessment of modelled daily streamflow in two hydro-climatically distinctive regions 360 

Daily streamflow estimates showed a fair to good overall alignment with the observed flows in both SEQ and Tamar, with all 

gauges showing that flow simulations were better estimates than the mean of observations (KGE ≥ -0.41 at all gauges). 

Interestingly, although streamflow was more accurately simulated in the Tamar than in SEQ (the median values of KGE were 
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0.47 and 0.42, respectively), the differences between the two hydro-climatically distinctive regions were relatively small. 

Despite ongoing efforts to calibrate AWRA-L against a set of reference scales distributed across the continent (Viney et al., 365 

2015), this finding was reassuring given the much higher variability in rainfall and soil moisture in SEQ, factors that typically 

can lead to a more nonlinear streamflow response to rainfall (Poncelet et al., 2017), which possibly undermines the ability of 

water balance models to reliably predict runoff (Sheng et al., 2017). These results hence bode well for the application of 

AWRA-L outputs across diverse hydroclimatic regions. 

When looking into the model performance for specific components of the flow regime, average- and high-flow metrics were 370 

both modelled well in Tamar, while only high-flow metrics were modelled well in SEQ. However, in both regions, the AWRA-

L model showed poor performance in low flow metrics: overestimating the frequency and underestimating the duration of low 

flows, consistent with previous studies (Costelloe et al., 2005; Ivkovic et al., 2014; Staudinger et al., 2011; Ye et al., 1997). 

This suggests that the AWRA-L model is a generally robust model in predicting average- and high-flows, but still needs some 

improvement to better simulate low flows. Runoff generation processes can vary substantially through space and time due to 375 

such factors as variations in soil depth, antecedent soil moisture and groundwater connectivity, and this can influence spatio-

temporal variations in low flow characteristics, including streamflow intermittency (Zimmer and McGlynn, 2017). However, 

it is unknown the extent to which this contributed to uncertainty in the simulation of low flows and estimation in streamflow 

intermittency in this study. The uncertainty of AWRA-L in low flow simulations can be linked to its over-responsiveness to 

rainfall, partly caused by overestimation of "in situ" gains and underestimation of transmission losses to low flow discharge, 380 

as shown in SEQ. Previous studies found that lateral flow exchange between grid cells of land surface models (e.g. AWRA-

L) plays a significant role in redistributing soil water (Kim and Mohanty, 2016), and thus may improve "in situ" 

surface/subsurface runoff simulations (Lee and Choi, 2017). On the other hand, hydrological processes involved in 

transmission losses have been extensively discussed (Jarihani et al., 2015; Konrad, 2006), and studies have developed methods 

to calculate transmission losses for better flow simulations (Costa et al., 2012; Lange, 2005). Therefore, low flow simulations 385 

by AWRA-L can possibly be improved by incorporating lateral flow exchange algorithms and better accounting for 

hydrological process such as evapotranspiration from riparian vegetation and infiltration into channel beds. This improvement 

is made more likely as AWRA-L has been released as a Community Modelling System 

(https://github.com/awracms/awra_cms), which allows co-development by the research community. 

5.3 Choose appropriate water balance model to quantify spatio-temporal dynamics of flow intermittency 390 

Our results suggest that the temporal resolution of analysis should be dictated by the resolution of input streamflow data. More 

specifically, the daily AWRA-L flow showed promise for estimating flow intermittency at a daily time step, while the monthly 

WaterDyn model was better than the monthly AWRA-L model in flow intermittency estimation at a monthly time step. This 

suggests that monthly flow models can sometimes outperform daily flow models in quantifying flow intermittency, depending 

on the intended temporal resolution of the analysis. For example, daily flow models may be appropriate for studies aimed at 395 

https://github.com/awracms/awra_cms
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quantifying ecological responses to short term flow events, while monthly flow models are more suitable for research requiring 

the average degree of flow intermittency at a large spatial or temporal scale, such as examining the effect of flow intermittency 

on aquatic/streamside vegetation or species distributions (Stromberg et al., 2005). In addition, our study also suggested that 

the suitability of a monthly model (WaterDyn) for monthly resolution of analysis was not challenged by a daily model (AWRA-

L) simply through aggregating daily streamflow simulations to a monthly time step. The aggregation methods used here applied 400 

one day or 30 days as a threshold and, respectively, either substantially overestimated or underestimated flow intermittency.  

Spatially contiguous runoff data were used in this study to quantify spatial and temporal dynamics of flow intermittency, 

shedding light on the temporal aspect of flow intermittency that has been often overlooked in previous studies. Annual flow 

intermittency in SEQ was shown to vary significantly from year to year, ranging from 29 % to 80 % of total stream length for 

the AWRA-L model. However, given the limited spatial resolution of the Geofabric stream network data (9 arc-second 405 

longitude-latitude resolution, with the minimum upstream drainage area of 1.5 km2) and hence ability to resolve the smallest 

streams, and that small streams are more likely to be intermittent, the proportion of predicted intermittent streams in SEQ may 

be under-estimated in our study. Although there are differences in the temporal patterns of estimated flow intermittency 

between the AWRA-L and WaterDyn models, neither model estimated intermittency to have a clear trend over the past century. 

However, there is still the concern about the potential shift of some perennial streams to intermittent streams due to climate 410 

change and intense human activities, as it has been evident in several regions where the number of low-flow and/or no-flow 

days is increasing (King et al., 2015; Ruhí et al., 2016; Sabo, 2014). Jaeger et al. (2014) investigated the effect of climate 

change on flow intermittency patterns and found that annual zero-flow days frequency were projected to increase by 27 % by 

mid-century in the Lower Colorado River Basin of United States. Research looking into projected changes in regional climate 

regimes can provide insights into future scenarios people may face, but such research is still scarce. 415 

The approach developed here to generate spatially continuous estimates of streamflow characteristics (including flow 

intermittency) throughout stream networks has potential applicability to other regions of Australia and globally. All the data 

used in this study are available for the Australian national scale, and similar datasets also exist in other countries. For example, 

similar to the Geofabric data (Stein et al., 2014) used here, the National Hydrography Dataset Plus (NHDPlus) and 

HydroATLAS (Linke et al., 2019) provide hydrographic datasets and hydro-environmental attributes for national (USA) and 420 

global scales, respectively. In addition, similar to the daily flow model AWRA-L used in this study, other global and national-

scale hydrologic models are also available, such as the global WaterGAP model (Döll et al., 2003), the community Noah land 

surface model (Noah-MP) (Niu et al., 2011) in the US and the HYPE model (Lindström et al., 2010) in Sweden. 

6 Conclusions 

In this study, we presented an approach to quantifying spatially explicit and catchment-wide flow intermittency over long 425 

timeframes based on spatially contiguous daily runoff data from a readily accessible water balance simulation. This research 
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builds upon previous studies using monthly runoff data, and paves the way for ecological research looking for metrics of flow 

intermittency at a daily time step. By testing this approach in eastern Australia, we not only confirmed our previous finding 

that intermittent flow conditions prevailed in the majority of streams, but also provided more detailed information on their 

spatio-temporal variability at a daily time step. The proposed approach has potential applicability to other catchments globally, 430 

but our results also highlighted some complexities that future research should address to help improve the reliability of model 

outputs. 
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Figure 1. Locations of the two climatically and hydrologically distinctive regions in Australia (a): South-east Queensland (SEQ) (b) 

and the Tamar River catchment (Tamar) (c) with Geofabric river networks and selected stream gauges (25 and 15 gauges for SEQ 

and Tamar, respectively). The climate classification in (a) is based on the Köppen classification system (Australian Bureau of 620 
Meteorology, 2014). 
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Figure 2. Model configurations and their applications in this study. AWRA-L runoff outputs are translated to accumulated 625 
streamflow estimates with river routing algorithm (coupled model) and without (lumped model). These two model configurations 

are applied to test the effect of river routing on streamflow simulation accuracy. Based on the lumped model, we simulate daily 

streamflow throughout river networks (Daily AWRA-L) and further convert the daily stimulations to monthly outputs (Monthly 

AWRA-L). Both simulations are used to quantify streamflow intermittency, while results from a different monthly model (Monthly 

WaterDyn) are used to benchmark the flow intermittency estimates from Monthly AWRA-L. 630 
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Figure 3. Comparison of the observed and modelled hydrograph with the rainfall time series at gauges 143010 in SEQ and 181.1 in 

Tamar. The over-responsiveness of the model to rainfall is illustrated in the noticeable increase in modelled streamflow when a 

rainfall event occurred, while there is no obvious increase in observed streamflow. Rainfall data were sourced from the AWRA-L 635 
input. 
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Figure 4. Comparison of hydrological characteristics between the lumped and coupled models in SEQ and Tamar. Refer to Table 1 640 
for measurement description for each flow metric. Metrics are grouped according to average (Avg), high (H) and low (L) flow 

conditions. The values of w statistic and associated p values are also shown to indicate whether there is any significant difference 

between the coupled and lumped simulations. 
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 645 

 

Figure 5: Scatter plots of the measured and modelled (lumped) streamflow for each gauge station in SEQ and Tamar. The modified 

Kling-Gupta efficiency (KGE) is presented in each panel. The x and y axes are log-transformed (log10(x+1)) to aid interpretation. 

 



24 

 

 650 

 

Figure 6. Variation in observed and modelled (lumped) hydrologic characteristics in SEQ and Tamar (n= 25 and 15 gauge 

locations, respectively). Refer to Table 1 for measurement description for each flow metric. Metrics are grouped according to 

average (Avg), high (H) and low (L) flow conditions.    The y-axis is on a log scale for better interpretation.  
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 655 

Figure 7. Scatter plot of gauged catchment areas and percentage difference in low flow magnitude between the observation and 

simulation in SEQ (solid grey triangle) and Tamar (black cross). The regression line for each region is also shown as solid line (grey 

line for SEQ and black line for Tamar) with the regression function and R2 value. 
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 660 

Figure 8. Scatter plots of the observed and modelled flow intermittency by the two models (AWRA-L and WaterDyn model) for 

SEQ. daily AWRA-L and monthly WaterDyn are derived from the original data from the two models, while AWRA-L monthly_01 

and monthly_30 are flow intermittency estimates using the two different aggregation methods with different thresholds (one day vs. 

30 days) to classify a month as zero-flowing. The solid line represents the regression line for each model. The 1:1 line (dashed line) 

is plotted for reference. 665 
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Figure 9. Comparison of the spatial pattern of average annual flow intermittency in SEQ derived from (a) daily flow simulations 

from the AWRA-L model and (b) monthly flow simulations from the WaterDyn model. Stream segments in both figures are coloured 670 
using the same frame but different units. Line thicknesses show the stream orders. Frequency distributions of variations in the total 

stream length for each of twelve flow intermittency classes are also shown for (c) the AWRA-L model and (d) the WaterDyn model. 
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Figure 10. Comparison of intra-annual variation of the proportion of intermittent streams in length from 1911-2016 across SEQ, 675 
derived from stream flow simulations from the daily flow model (lumped, solid grey line) and monthly flow model (grey dash line). 

Three severe droughts in Australia were also presented as transparent grey rectangles: Widespread drought (1914-1920), WWII 

droughts (1939-1946) and Millennium droughts (2001-2009). The time series of annual mean precipitation is shown for reference. 

 



29 

 

Table 1. Flow metrics used to describe average-, high- and low-flow conditions across key components of hydrological variation. 680 
Note that a spell independence criteria of 5 days was applied to regard periods between spells of less than 5 days as "in spell". 

Conditions Component Abbreviation Definition Units 

Average flow Magnitude Avg.magnitude Mean daily flow for entire period  m3 s-1 

 Variability Avg.magnitude.cv Coefficient of variation in mean daily flow % 

High-flow Magnitude H.magnitude The average annual maximum flow  m3 s-1 

 Timing H.timing The mean Julian date of annual maximum unitless 

 
Variability H.timing.cv Coefficient of variation in Julian date of annual maximum 

flow 
% 

 Frequency H.frequency Mean of annual count of spells above the 90th percentile 

flow 
unitless 

 Duration H.duration Mean duration of all spells above the 90th percentile flow days 

 
Rate of rise H.rise Mean rate of positive changes in flow from one day to the 

next 
m3 s-2 

 
Rate of fall H.fall Mean rate of negative changes in flow from one day to the 

next 
m3 s-2 

Low-flow Magnitude L.magnitude The average annual minimum flow m3 s-1 
 Timing L.timing The mean Julian date of annual minimum unitless 

 
Variability L.timing.cv Coefficient of variation in Julian date of annual minimum 

flow 
% 

 Frequency L.frequency Mean of annual count of spells below the 10th percentile 

flow 
unitless 

 Duration L.duration Mean duration of all spells below the 10th percentile flow days 

 


