1	Novel	Keeling plot based methods to estimate the isotopic composition of ambient water	
2		vapor	
3		Yusen Yuan ^{<i>a,b</i>} , Taisheng Du ^{<i>a</i>} *, Honglang Wang ^{<i>c</i>} , Lixin Wang ^{<i>b</i>} *	
4			
5 6	^a Cente Beijin	er for Agricultural Water Research in China, China Agricultural University, g 100083, China	
7 8	^b Depa Indian	rtment of Earth Sciences, Indiana University-Purdue University Indianapolis, apolis, Indiana 46202, USA	
9 10	° Depa Indian	rtment of Mathematical Sciences, Indiana University-Purdue University apolis, Indianapolis, Indiana 46202, USA	
11			
12	* Corresponding author: Dr. Taisheng Du		
13	Fax: +86-10-62737611; Tel: +86-10-62738398		
14]	Email: <u>dutaisheng@cau.edu.cn</u>	
15			
16	-	Corresponding author: Dr. Lixin Wang	
17]	Fax: +1-1-317-274-7966; Tel: +1-317-274-7764	
18	_	Email: <u>Ixwang@jupui.edu</u>	
19			
20	Highlig	rhte	
21	1 Ingiling	Two new methods were developed to estimate the isotopic composition of ambient	
23	1.	vapor	
24	2.	Theoretical derivations were provided for these two methods.	
25	3.	Linear regression showed strong agreement between the two methods.	
26	4.	The methods provide a possibility to calculate the proportion of evapotranspiration	
27		fluxes to total atmospheric vapor using the same instrumental setup for the traditional	
28		Keeling plot investigations.	
20			

30 Abstract

31 Keeling plot approach, a general method to identify the isotopic composition of source 32 atmospheric CO_2 and water vapor (i.e., evapotranspiration), has been widely used in terrestrial 33 ecosystems. The isotopic composition of ambient water vapor (δ_a), an important source of 34 atmospheric water vapor, is not able to be estimated to date using the Keeling plot approach. 35 Here we proposed two new methods to estimate δ_a using the Keeling plots: one using 36 intersection point method and another relying on the Intermediate Value Theorem. As actual δ_a 37 value was difficult to measure directly, we used two indirect approaches to validate our new 38 methods. First, we made external vapor trackings using Hybrid Single Particle Lagrangian 39 Integrated Trajectory (HYSPLIT) model to facilitate explaining the variations of δ_a . The 40 trajectory vapor origin results were consistent with the expectations of the δ_a values estimated 41 by these two methods. Second, regression analysis was used to evaluate the relationship 42 between δ_a values estimated from these two independent methods and they are in strong 43 agreement. This study provides an analytical framework to estimate δ_a using existing facilities, 44 and provides important insights into the traditional Keeling plot approach by showing: a) a 45 possibility to calculate the proportion of evapotranspiration fluxes to total atmospheric vapor using the same instrumental setup for the traditional Keeling plot investigations, and b) 46 perspectives on estimation of isotope composition of ambient CO₂ (δ_a^{13} C). 47

48

Key words: HYSPLIT, intersection point, Intermediate Value Theorem, Keeling plot, stable
isotope

1. Introduction

52	Stable isotopes of hydrogen and oxygen (${}^{1}\text{H}{}^{2}\text{HO}$ and $\text{H}_{2}{}^{18}\text{O}$) have been widely used in
53	root water uptake source identification (Corneo et al., 2018, Mahindawansha et al., 2018,
54	Lanning et al., 2020) and evapotranspiration (ET) partitioning (Brunel et al., 1997; Wang et al.,
55	2010; Cui et al., 2020) in terrestrial ecosystems based on Craig-Gordon model (Craig and
56	Gordon, 1965), isotope mass balance and mechanisms of isotopic fractionation (Majoube, 1971;
57	Merlivat and Jouzel, 1979). With the advent of laser isotope spectrometry capable of high
58	frequency (1 Hz) measurements of the isotopic composition of atmospheric water vapor (δ_v)
59	and atmospheric water vapor content (C_v) (Kerstel and Gianfrani, 2008; Wang et al., 2009), the
60	number of studies based on high frequency ground-level isotope measurements was
61	continuously increasing. These studies generate new insights into the processes that affect $\delta_{\nu_{\tau}}$
62	including meteorological factors (Galewsky et al., 2011; Steen-Larsen et al., 2013), biotic
63	factors (Wang et al., 2010) and multiple factors (Parkes et al., 2016). Such increase in δ_{v}
64	measurements allows an isotope-enabled global circulation models (Iso-GCMs) to estimate the
65	variation of water vapor isotope parameters at a global scale (Werner et al., 2011).
66	Concomitantly, more than δ_v , several new methods using high frequency ground-level isotope
67	measurements were devised to directly estimate the isotopic composition of leaf water (Song
68	et al., 2015) and leaf transpired vapor (Wang et al., 2012).
69	Evapotranspiration is a crucial component of water budget across scales such as field
70	(Wagle et al., 2020), watershed (Zhang et al., 2001), regional (Hobbins et al., 2001) and global

71 (Jung et al., 2010, Wang et al., 2014) scales. The water isotopic composition of ET (δ_{ET}) was

72 generally estimated by Keeling plot approach (Keeling, 1958). It was first used to explain

73	carbon isotope ratios of atmosphere CO ₂ and to identify the sources that contribute to increases
74	in atmospheric CO ₂ concentration, and has been further used to estimate δ_{ET} in recent two
75	decades (Yakir and Sternberg, 2000). Keeling plot analyses can be applied using δ_v and C_v
76	output by laser based analyzer either from different heights (Yepez et al., 2003; Zhang et al.,
77	2011; Good et al., 2012) or at one height with continuous observations (Wei et al., 2015;
78	Keppler et al., 2016). Although the intercept of the linear regression line was commonly used
79	as estimated δ_{ET} , the slope of the Keeling plot was also used to estimate δ_{ET} by re-arranging the
80	Keeling plot equations (Miller and Tans, 2003; Fiorella et al., 2018). Keeling plot approach was
81	based on isotope mass balance and two-source assumption using two equations with three
82	unknowns. As a result, the isotopic composition of other potential sources (e.g., water vapor
83	not from ET), as well as isotopic composition of ambient water vapor (δ_a), were not able to be
84	estimated directly using the Keeling plot approach. That is one of the reasons why field scale
85	moisture recycling is difficult to estimate to date.
86	In this study, we proposed two new methods to estimate δ_a , one based on the intersection
87	of two Keeling plots of two continuous observation moments and the other based on the
88	Intermediate Value Theorem. Proposition and proof were provided, and the new methods were
89	tested using field observations. As direct observations of δ_a rarely exist (Griffis et al., 2016),
90	we tested our methods by (a) making an external water vapor tracking investigation according
91	to HYSPLIT model to explain the variations of estimated $\delta_a,$ and (b) making a regression
92	analysis on daily scale and point to point scale using δ_a estimated by these two independent
93	methods.

2. Materials and Methods

95 2.1 Theory

The atmospheric vapor concentration in an ecosystem reflects the combination of ambient vapor that is already exist in the atmosphere and the vapor that is added through evaporation (E) and transpiration (T) (Yakir and Sternberg, 2000). Keeling plot approach is based on the combination of a bulk water mass balance equation and an isotope mass balance equation:

$$101 C_{\nu} = C_a + C_{ET} , (1)$$

102
$$C_{\nu}\delta_{\nu} = C_a\delta_a + C_{ET}\delta_{ET} \quad , \tag{2}$$

103 where δ_a , δ_{ET} and δ_v are isotope composition of ambient water vapor, ET, and atmospheric water 104 vapor, respectively, and C_a , C_{ET} and C_v are the corresponding concentrations of water vapor. 105 Note that all quantities here are time dependent, and δ_v and C_v also depend on heights.

106 Combining Eq. (1) and Eq. (2), we have the following traditional linear Keeling plot 107 relationship between δ_v and $1/C_v$ with intercept δ_{ET} and slope $C_a(\delta_a - \delta_{ET})$,

108
$$\delta_{\nu} = C_a (\delta_a - \delta_{ET}) / C_{\nu} + \delta_{ET}$$
(3)

For a given time, with various measurements of δ_v and C_v collected at different heights, we are able to estimate the intercept δ_{ET} and slope $k = C_a(\delta_a - \delta_{ET})$ for this moment from regression analysis (Zhang et al., 2011; Wang et al., 2013). Here we focus on the estimation of δ_a using two new methods proposed below.

113 Intersection point (IP) method. Note that for two nearby time points t_1 and t_2 , we could 114 use local constant approximation to estimate δ_a within this time interval since it remains 115 relatively constant over a short period of time. By assuming local constant for C_a and δ_a within 116 this time interval, we have

117
$$k_1 = C_a(\delta_a - \delta_{ET_1}) \qquad , \tag{4}$$

118
$$k_2 = C_a(\delta_a - \delta_{ET_2}) \qquad , \tag{5}$$

119 where k_i and δ_{ET_i} represent the value at t_i for i=1, 2. From (4) and (5), we can solve δ_a as:

120
$$\delta_a = \frac{k_1 \delta_{ET_2} - k_2 \delta_{ET_1}}{k_1 - k_2} \quad . \tag{6}$$

Algebraically, δ_a and C_a are solutions in Eq. (4) and Eq. (5). Geometrically, point (δ_a , 1/C_a) is 121 122 the intersection of two Keeling plots at t_1 and t_2 . That is the reason the method was named IP 123 method. The local constant approximation idea was first described in Yamanaka and Shimizu

124 (2007) as an assumption to quantify the contribution of local ET to total atmospheric vapor.

125 Intermediate Value Theorem (IVT) method. Denote the slope as
$$k = C_a(\delta_a - \delta_{ET})$$
.
126 Since $C_a < C_v = C_a + C_{ET}$, we have $C_a = \frac{k}{(\delta_a - \delta_{ET})} < C_v$. We can rearrange $\frac{k}{(\delta_a - \delta_{ET})} < C_v$

127 to attain
$$\delta_a$$
: $\delta_a < \frac{k}{c_v} + \delta_{ET} = \delta_v$ when $k < 0$, and $\delta_a > \frac{k}{c_v} + \delta_{ET} = \delta_v$ when $k > 0$.

For the smooth function $\delta_a(t)$ defined on the interval $[t_1, t_2]$ with the two time points 128 satisfying $k(t_1) k(t_2) < 0$, depending on the sign of the slopes $k(t_1)$ and $k(t_2)$ and the order 129 of $\delta_{v_1} = \delta_v(t_1)$ and $\delta_{v_2} = \delta_v(t_2)$ at the two time points t_1 and t_2 , it will correspond to one 130 131 of the situations in Fig. 1. For all of the situations, by the Intermediate Value Theorem, there exists a sub-interval $[t_1', t_2'] \subset [t_1, t_2]$ such that the whole range of $\{\delta_a(t): t \in [t_1', t_2']\}$ is 132 133 within $[min(\delta_{\nu_1}, \delta_{\nu_2}), max(\delta_{\nu_1}, \delta_{\nu_2})]$. Proof details of this proposition is shown in the 134 appendix. Thus for the two nearby time points t_1 and t_2 with k_1 and k_2 having different signs, δ_a 135 will be between δ_{ν_1} and δ_{ν_2} . This provides a prerequisite for estimating the parameter of 136 interest δ_a based on Intermediate Value Theorem, which leads to approximation of δ_a within the 137 time interval between t_1 and t_2 using δ_{v_1} and δ_{v_2} :

138
$$\delta_a \approx \frac{\delta_{\nu_1} + \delta_{\nu_2}}{2} \tag{7}$$

Using this method, we are able to compute δ_a using data points when the slopes of
Keeling plots change signs between two adjacent time points.

- 141 2.2 Field observations
- 142 2.2.1 Study site

143 A field measurement was conducted over a maize field (39 ha) from 1st May 2017 to 30st 144 September 2017 at Shiyanghe Experimental Station of China Agricultural University, located 145 in Wuwei of Gansu Province, northwest China (37°85'N, 102°88'E; altitude 1581m). The 146 region belongs to temperate continental climate and is in the oasis within the Shiyang river 147 basin. The annual mean temperature of the study area is about 8.8°C with pan evaporation of 148 2000 mm, annual precipitation of 164.4 mm, mean sunshine duration of 3000 h, and frost-free 149 period of more than 150 d. The local crops are irrigated using groundwater with electrical conductivity of 0.62 dSm⁻¹. The groundwater table is 30-40 m below the surface. Maize was 150 151 sowed on April and harvested on September 2017, with row spacing of 40 cm and plant spacing of 23 cm. The maize growing stage was divided into seedling stage (April 21st –May 20th), 152 jointing stage (May 21st-July 10th), heading period (July 11th-July 31st), pustulation period 153 (August 1st-August 31st) and mature period (September 1st-September 20th). 154

- 155
- 2.2.2 Instrument setup and measurement design

A 24-meter flux tower, located in the middle of maize field, was used to measure ET flux and isotopic composition of water vapor at different heights. The field is approximately 600 m long and 240 m wide, with a 10% slope decreasing from southwest to northeast. Five gas traps were installed on the flux tower at heights of 4 m, 8 m, 12 m, 16 m and 20 m, respectively. An iron pillar was placed 20 m away from the flux tower. Three gas traps were installed on the iron
pillar, one was close to the canopy, and the other two were 2 m and 3 m above the ground.
Canopy gas trap was adjusted weekly according to the height of maize.

163 In situ $\delta_{\rm v}$ and $C_{\rm v}$ collected by the eight gas traps were monitored by a water vapor isotope 164 analyzer (L2130-i, Picarro Inc., Sunnyvale, CA, USA), which was a wavelength scanned cavity 165 ring down spectroscope (WS-CRDS) instrument. Vapor specifications include a measurement range from 1000 to 50000 ppm, the precision is 0.04% to 0.25% for δ^{18} O (Zhao et al., 2019). 166 Interfacing with the gas trap and the isotope analyzer, teflon tube was wrapped by thermal 167 168 insulation cotton to avoid vapor condensation during transmission. The measurement of δ_v and C_v were conducted from May to September, which should have 153 days of data. Forty-nine 169 170 days among them were complete with 24-hour continuous datasets. There were missing data 171 for either a whole day or several hours of a day for other days due to the calibration and 172 maintenance of the analyzer. These 49 days were chosen in our study for data analysis.

173 2.2.3 Calibration of δ_v and C_v

174 Our calibration procedure mainly followed the study by Steen-Larsen et al. (2013) with 175 some modifications to fit our specific experimental setup. The water vapor from eight inlets 176 were sampled continuously over a 24-hour-period. Since only one analyzer was used to measure 177 the δ_v and C_v , the values of eight sampling inlets were recorded in turn every 225s in a 30 mins cycle. The switch procedure was automatic. As the analyzer makes a measurement every 0.9-178 179 1s, approximately 259-264 values for each inlet was recorded within the cycle. For each 225s 180 measurement period, No. 195 to No. 253 data points were used to avoid memory issue and 181 influence of transient pressure variation. The absolute value of coefficient of variations (|CV|)

182 of δ_v and C_v were no more than 0.016 and 0.002, respectively, which was far below the critical 183 value of 15% (Lovie, 2005). The mean value of the selected data points was regarded as the 184 measured δ_v and C_v in a specific inlet. Measured C_v was used directly as actual C_v , while 185 measured $\delta_{\rm v}$ was calibrated to minimize the influence of isotopic concentration dependence. 186 The C_v in our measurement ranged from 5386 ppm to 30255 ppm. Thus, C_v gradients of 10000 187 ppm, 20000 ppm and 30000 ppm were selected as calibration concentrations to improve the 188 precision of δ_{v} . As we need continuous data, the observation should last uninterrupted as long 189 as possible. As a result, the calibration was made in every 5-10 days, which is consistent with 190 the frequency of calibration by other researchers such as Steen-Larsen et al. (2013). According 191 to our calibration data on standards, the average drift (absolute value) was about 0.16‰ 192 between two adjacent calibrations.

193 2.3 Data quality control for δ_a estimation

With a 30-min interval for 49 days, we should in theory produce $2352 \delta_a$ values for both 194 IP method and IVT method. However, because of the precondition of k1k2<0 required for the 195 196 IVT method, 166 δ_a values was able to be calculated using the IVT method ($\delta_{a(IVT)}$). δ_a values 197 using the IP method ($\delta_{a(IP)}$) was not restricted by this precondition. Furthermore, a filter 198 $(\delta_{ET} < \delta_v < \delta_a \text{ or } \delta_{ET} > \delta_v > \delta_a)$ was used for both methods because δ_v was a mixture of δ_{ET} and δ_a . 199 Therefore, δ_a values that meet both precondition $k_1k_2 < 0$ and the condition of $\delta_{ET} < \delta_v < \delta_a$ or 200 $\delta_{ET} > \delta_v > \delta_a$ were considered satisfying the criteria for the IVT method; δ_a values that meet the 201 condition of $\delta_{ET} < \delta_v < \delta_a$ or $\delta_{ET} > \delta_v > \delta_a$ were considered satisfying the criteria for the IP method. 202 In the end, we obtained 1264 and 103 δ_a values using IP and IVT methods, respectively (**Table** 203 1). Eighty eight time points were overlapped between the IP and IVT based δ_a results. These 88

204 time points were selected to test the reliability of two methods at point to point scale. During 205 the 49 days, there were 21 days when more than one $\delta_{a(IVT)}$ was attained for each day. These 21 206 days was also used to investigate the time series of daily scale δ_a variations and other isotopic 207 variations. Further analysis in section 2.4 in the following was made on these 21 days. 208 2.4 Explanations of δ_a using backward trajectories To explain the variations of estimated δ_a , air mass backward trajectories were calculated 209 210 using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model (Draxler 211 and Hess, 1997; Draxler, 2003; Stein et al., 2015; Kaseke et al., 2018) and meteorological data from the Global Data Assimilation System 0.5 Degree (GDAS0p5) with 0.5°×0.5° spatial 212 resolution and 3-hour time resolution for the 21 days mentioned in section 2.3. Five hundred 213 214 meters height was selected in the modeling. Each backward trajectory was initialized from the 215 station (37°85'N, 102°88'E) at 12:00 pm (local time), and calculated backward for 72 hours. 216 Eighteen trajectories were computed, except for June 21st, August 18th and September 29th when vertical velocity data were missing. Finally, we used these 18 trajectories representing the vapor 217 218 origin in the corresponding 18 days.

219 3. **Results**

220 3.1 Time series variations of δ_{ET} , δ_v , δ_a and k

221 Time series of isotopic variations were shown in **Fig. 2**. The δ_v here is the average value

222 of eight heights. The average δ_{ET} , δ_v , $\delta_{a(IP)}$ and $\delta_{a(IVT)}$ were -11.04‰, -13.00‰, -13.60‰ and -

- 223 13.29‰, respectively in those 21 days when more than one $\delta_{a(IVT)}$ was attained for each day.
- 224 Daytime (7:00am-7:00pm) average δ_{ET} , δ_v , $\delta_{a(IP)}$ and $\delta_{a(IVT)}$ were -10.73‰, -13.33‰, -14.08‰
- and -13.63‰, respectively. While at nighttime (7:00pm-7:00am the next day), average δ_{ET} was

226	lower than that at daytime, which was on the contrary with δ_v , $\delta_{a(IP)}$ and $\delta_{a(IVT)}$. The trend of $\delta_{a(IP)}$
227	and $\delta_{a(IVT)}$ were similar to $\delta_v.$ In majority of circumstances, δ_{ET} is the largest of those four
228	isotopic parameters, except on May 19th, June 4th and June 9th. About 76% of k values were
229	negative, and most positive k values occurred at nighttime (60%). The percentage of positive k
230	values were 33%, 34%, 24%, 34% and 10% in May, June, July, August and September,
231	respectively. Standard deviation was used here to evaluate the constancy among isotopic
232	parameters at daily scale. The standard deviation of δ_{ET} , δ_v , $\delta_{a(IP)}$ and $\delta_{a(IVT)}$ were 6.08‰, 0.91‰,
233	1.38‰ and 0.59‰, respectively. Therefore, the constancy of δ_a was similar to the constancy of
234	δ_v at daily scale.
235	3.2 Daily variations of HYSPLIT backward trajectories and δ_a using two methods
236	The 500 m height water vapor backward trajectories revealed that water vapor was from
237	outside the study regions for ten days (Fig. 3a), and water vapor was from local ET for eight
238	days (Fig. 3b).
239	As for the IP method, 53.7% of $\delta_{a(IP)}$ values met the criteria, and 49.4% of $\delta_{a(IP)}$ values
240	meeting the criteria were during the daytime (7:00am-7:00pm). The range of $\delta_{a(\mathrm{IP})}$ values
241	meeting the criteria were between -16.79‰ and -12.95‰ for the ten days with external origins
242	(Fig. 3a). The range of $\delta_{a(IP)}$ values meeting the criteria were between -12.77‰ and -9.51‰
243	for the eight days with local origins (Fig. 3b).
244	As for the IVT method, only 4.4% of δ_a values met the criteria, and 35.9% of δ_a values
245	meeting the criteria were during the daytime (7:00am-7:00pm). The range of $\delta_{a(\mathrm{IVT})}$ values
246	meeting the criteria were between -16.31% and -13.93% for the ten days with external origins
247	(Fig. 3a). The range of $\delta_{a(IVT)}$ values meeting the criteria were between -12.67% and -9.12%

for the eight days with local origins (Fig. 3b).

249	3.3 Linear	regression	between	$\delta_{a(IP)}$ and	$\delta_{a(IVT)}$
		- 0			

250 Method comparison was made at both daily scale (Fig. 4a) and point to point scale (Fig. 251 4b). The 21 days (see method section 2.3) in Fig. 3a and Fig. 3b were selected to figure out the 252 daily scale relationship between $\delta_{a(IP)}$ and $\delta_{a(IVT)}$. Point to point scale data was based on the 88 253 point of overlapped $\delta_{a(IP)}$ and $\delta_{a(IVT)}$ (see method section 2.3) among all 49 days, which 254 accounted for 7.0% of δ_a values using IP method and 85.4% of δ_a values using IVT method. 255 Linear regression between $\delta_{a(IP)}$ and $\delta_{a(IVT)}$ was significant at both daily scale and point to point 256 scale. The degree of agreement was less for the daily time scale than point to point scale and 257 the RMES between these two methods at daily scale and point to point scale were 0.618‰ and 258 0.167‰, respectively.

259 4. Discussion

260 4.1 The reliability of δ_a estimating methods

261 The IP method was based on the assumption that the ambient sources were the same 262 between two continuous observation moments. This is a reasonable assumption for short time 263 intervals. For the IVT method, δ_a was derived from δ_v in two continuous moments when their 264 Keeling plot slopes were opposite. The opposite slopes of the Keeling plots were the only 265 requirement. As δ_v was almost constant in two continuously moments, $\delta_{a(IVT)}$ was able to be 266 constrained into small The derivation supported the range. was by а Intermediate Value Theorem. Therefore, both methods of estimating δ_a were theoretically 267 268 sound.

269 The δ_a results were also examined by HYSPLIT backward trajectories to identify the

270 different sources of water vapor, which assesses the reliability of both methods indirectly. Based 271 on the trajectory analysis, water vapor in the study area came from westerlies, northern polar 272 region and local recirculation. Water vapor from southwest monsoon and northwest Pacific 273 were not detected in this study. Based on the isotope variation of meteoric water (Fricke et al., 1999), water vapor from westerlies and northern polar was more ¹⁸O depleted than local 274 275 recycled moisture through ET. It was also reported that the water vapor from outside the study 276 regions will lower δ_v values (Ma et al., 2014; Chen et al., 2015). The calculated δ_a values of the 277 ten days with external sources (Fig. 3a) based on the IP method and IVT approach were lower 278 than those of eight days with local origin (Fig 3b), which was consistent with our expectation. 279 The results indicate that quantifying δ_a using both the IP method and IVT approach was reliable. 280 The reliability of two methods at point to point scale were also supported by the close 281 relationship of δ_a using these two independent methods. Daily time scale result is less reliable 282 than point to point scale.

283 4.2 The application of δ_a for moisture recycling

When δ_a was estimated, moisture recycling (e.g., f_{ET} , the contribution of ET fluxes to the total water vapor) can be estimated using the following equations with known δ_a , δ_{ET} , δ_{v} , C_{ET} and C_v :

287
$$C_{ET} = C_v \cdot \frac{\delta_a - \delta_v}{\delta_a - \delta_{ET}}$$
(8)

$$f_{ET} = \frac{c_{ET}}{c_{\nu}}$$
(9)

According to Eq. (8) and Eq. (9), f_{ET} was only related to δ_a , δ_v , and δ_{ET} . These three parameters were obtained for relatively small temporal and spatial scales in this study, making it possible to estimate f_{ET} at a tower scale. The f_{ET} estimate will provide a baseline value for

292	rainfall recycling ratio calculations. Previous studies quantified the contribution of recycled
293	vapor to annul or monthly precipitation in river basins using two-element mixture model (Kong
294	et al., 2013) and three-element mixture (Peng et al., 2011). At the watershed scale, recycled
295	vapor rate refers to the contributions of moisture from terrestrial ET to annul or monthly
296	precipitation (Trenberth, 1999). It is a key part of local water cycle and the atmospheric water
297	vapor balance (Seneviratne et al., 2006; Aemisegger et al., 2014). In our study, the role of f_{ET}
298	to regional vapor is similar to the role of recycled vapor rate to annul or monthly precipitation,
299	but f_{ET} was calculated with fine temporal (e.g., hourly) and spatial (i.e., field scale) scales. At
300	the watershed scale, assumption was made that no isotopic fractionation between transpiration
301	and source water (Flanagan et al., 1991); advected vapor was assumed to be the precipitation
302	vapor of the upwind station (Peng et al., 2011). However, the isotope composition of plant
303	transpired vapor is variable in a day especially under non-steady-state conditions (Farquhar and
304	Cernusak, 2005; Lai et al., 2008; Song et al., 2011). In addition, sometimes it is difficult to
305	select an upwind station without precipitation events. In this study, a field site was selected to
306	calculate the proportion of ET fluxes to total atmospheric vapor and f_{ET} was only related to $\delta_a,$
307	δ_v , and δ_{ET} according to Eq. (8) and Eq. (9). This indicates that f_{ET} calculations is possible for
308	fine temporal and spatial scales after estimating δ_a using the methods we proposed.
309	If we assumed that the parameter δ_v in Eq. (8) is the average δ_v value measured from all
310	the eight heights. f_{ET} in this study was 23.3% and 12.7% from May to September 2017 based
311	on daily $\delta_{a(IP)}$ and daily $\delta_{a(IVT)}$, respectively. It was reported that recycled vapor rate in all

- 312 Shiyang river basin, oasis region, mountain region and desert region were 23%, 28%, 17% and
- 313 15%, respectively (Li, et al., 2016; Zhu, et al., 2019). The f_{ET} based on daily $\delta_{a(\text{IP})}$ in our study

was close to these earlier studies. The deviation of f_{ET} based on daily $\delta_{a(IVT)}$ from previous studies may be because 64.1% of point to point $\delta_{a(IVT)}$ was observed at nighttime. Normally, ET at nighttime is lower than that of daytime. f_{ET} may be underestimated using daily $\delta_{a(IVT)}$. It could also be inferred that f_{ET} estimation using Eq. (9) may be more reliable using daily $\delta_{a(IP)}$ than daily $\delta_{a(IVT)}$.

319 4.3 Implications of δ_a

320 The signature of δ_E and δ_T was first introduced by a hypothetical graph shown on **Fig.** 321 **5a** (Moreira et al., 1997). Line 1 and line 2 was idealized Keeling plot with pure T and pure E, 322 and Line 3 was the Keeling plot with mixed T and E. The IVT method in this study provided a 323 general explanation of this figure. As T is a major component of ET in the daytime in non-arid 324 region (Wang et al., 2014), the slope is generally negative. When E dominates ET in an 325 ecosystem, such as in the nighttime in non-arid region or in arid region, the slope should be 326 positive. Mathematically, negative slope is due to $\delta_{ET} > \delta_a$ and positive slope is due to $\delta_{ET} < \delta_a$. 327 It also reflected that IVT method could only be used in non-arid ecosystems to ensure the 328 occurrence of sign switch (e.g., from negative to positive) in Keeling plot slopes. On the 329 contrary, IP method may not be restricted by the type of ecosystems. Yamanaka and Shimizu (2007) used the assumption that δ_a of an area of 219.9 km² was represented by the intersection 330 331 point of two Keeling plot lines in different sites with synchronous measurements and they used 332 the intersection value as an approximate value of δ_a . This study was conducted in a maize field 333 using 30-min interval measurements. The results verified Yamanaka and Shimizu's (2007) assumption in such fine spatial and temporal scale, and indicate that accurate $\delta_{a(IP)}$ could be 334 335 estimated from the intersection of two Keeling plots regardless the slope being positive or 336 negative, while the $\delta_{a(IVT)}$ should be restricted in the area between two dotted lines as shown in 337 Fig. 5b (i.e., between the minimum value of δ_v in positive slope and the maximum value of δ_v 338 in negative slope). Although IVT method relies on more stringent precondition for data filtering, 339 this method requires a very simple expression, which only needs two parameters to be measured 340 according to Eq. (7).

341 While this study is about water vapor ¹⁸O, the "Keeling plot" was first used by Keeling (1958, 1961) to interpret carbon isotope ratios of mixed CO₂ and to identify the sources that 342 343 contribute to increases in atmospheric CO₂ concentrations on a regional basis. Compared with 344 ET in water vapor which consists of E and T, net ecosystem CO₂ exchange is comprised of soil respiration (R) and gross primary productivity (GPP). As ¹³CO₂ isotopic Keeling plot reveals a 345 346 positive slope during both daytime and nighttime (Yakir and Wang, 1996; Unger et al., 2010), the IVT method may not be able to estimate ambient ¹³CO₂ isotopic composition (δ_a^{13} C) since 347 348 there are no opposite slopes in a day. In such case, the IP method may be implemented in two continuous moments to estimate δ_a^{13} C and may consequently further calculate the contribution 349 350 of Net Ecosystem Exchange (NEE) to atmospheric CO₂.

351

5. Conclusions

352 In this study, we established two methods to quantify δ_a using intersection point method 353 and the Intermediate Value Theorem method. The IVT method was used under the condition of 354 opposite slope of Keeling plots in two continuously moments. The results of estimated $\delta_{a(IP)}$ and 355 $\delta_{a(IVT)}$ were consistent with the expectation whether it was local origin or external origin using 356 external vapor tracking investigation by HYSPLIT model. The linear regression between $\delta_{a(IP)}$ and $\delta_{a(IVT)}$ was highly significant at both daily time scale and point to point scale. 357

This study provided insights into the underexplored traditional Keeling plots and provided two methods to estimate δ_a using the same instrumental setup for the traditional Keeling plot investigations. The estimated δ_a will make it possible to calculate the ET contribution to regional vapor at a 30 min interval at field scale. The results also indicate that using similar framework, δ_a^{13} C may also solvable by the IP method.

363

6. Acknowledgements

364 We acknowledge support from the National Natural Science Foundation of China 365 (51725904, 51621061, 51861125103), National Research the Key Program (2016YFC0400207), the Discipline Innovative Engineering Plan (111 Program, B14002), the 366 367 Graduate International Training and Promotion Program of China Agricultural University (31051521), and the President's International Research Awards from Indiana University and 368 369 the Division of Earth Sciences of National Science Foundation (EAR-1554894). We thank Dr. 370 Qianning Liu from Jiangxi University of Finance and Economics and Dr. Zhengxiang Chen 371 from Capital Normal University for checking the validity of the Intermediate Value Theorem 372 method.

373 7. Code and Data availability

374 Code and data are available on request.

375 8. Author contribution

376 YY, TD and LW conceptualized the main research questions. YY collected data
377 and performed the data analyses. YY and LW wrote the first draft. HW contributed to
378 additional data analyses. All the authors contributed ideas and edited the manuscript.

379 9. Competing interests

380 There authors declare no competing interests.

381 10. References

382 Aemisegger, F., Pfahl, S., Sodemann, H., Lehner, I., Seneviratne, S. I., and Wernli, H.:

383 Deuterium excess as a proxy for continental moisture recycling and plant transpiration,

384 Atmospheric Chemistry and Physics, 14, 4029–4054, doi: 10.5194/acp-144029-2014, 2014.

385 Brunel, J. P., Walker, G. R., Dighton, J. C., and Monteny, B.: Use of stable isotopes of water to

386 determine the origin of water used by the vegetation and to partition evapotranspiration. A

387 case study from HAPEX-Sahel, Journal of Hydrology, 188–189, 466–481,

388 doi:10.1016/s0022-1694(96)03188-5, 1997.

389 Chen, F. L., Zhang, M. J., Ma, Q., Wang, S. J., Li, X. F., and Zhu, X. F.: Stable isotopic

390 characteristics of precipitation in Lanzhou city and its surrounding areas, Northwest China,

391 Environmental Earth Sciences, 73, 4671–4680, doi: 10.1007/s12665-014-3776-6, 2015.

392 Corneo, P. E., Kertesz, M. A., Bakhshandeh, S., Tahaei, H., Barbour, M. M., and Dijkstra, F. A.:

393 Studying root water uptake of wheat genotypes in different soils using water δ^{18} O stable

394 isotopes, Agriculture, Ecosystems & Environment, 264, 119-129, doi:

395 10.1016/j.agee.2018.05.007, 2018.

396 Craig, H. and Gordon, L. I.: Deuterium and oxygen 18 variations in the ocean and marine

397 atmosphere, in: Stable Isotopes in Oceanographic Studies and Paleotemperatures, p. 9,
398 1965.

399 Cui, J., Tian, L., Wei, Z., Huntingford, C., Wang, P., Cai, Z., Ma, N., and Wang, L.: Quantifying

400 the controls on evapotranspiration partitioning in the highest alpine meadow ecosystems,

401 Water Resources Research, 56, doi: 10.1029/2019WR024815, 2020.

402 Draxler, R. R., and Hess, G.: Description of the HYSPLIT4 modeling system, NOAA Tech

403 **Memo ERL ARL-224**, Dec, 24p., 1997.

404 Draxler, R. R.: Evaluation of an ensemble dispersion calculation, Journal of Applied

405 **Meteorology**, 42, 308-317, doi: 10.1175/1520-0450(2003)042<0308:EOAEDC>2.0.CO;2, 2003

406 2003.

407 Farquhar, G. D., and Cernusak, L. A.: On the isotopic composition of leaf water in the non-

408 steady state, **Functional Plant Biology**, 32(4), 293-303, doi: 10.1071/FP04232, 2005.

409 Fiorella, R. P., Poulsen, C. J., and Matheny, A. M.: Seasonal patterns of water cycling in a deep,

410 continental mountain valley inferred from stable water vapor isotopes, Journal of

411 **Geophysical Research: Atmospheres**, 123, 7271-7291, doi: 10.1029/2017JD028093, 2018.

412 Flanagan, L. B., Comstock, J. P., and Ehleringer, J. R.: Comparison of modeled and observed

413 environmental influences on the stable oxygen and hydrogen isotope composition of leaf

414 water in Phaseolus vulgaris L, **Plant Physiology**, 96, 588-596, doi:

415 https://doi.org/10.1104/pp.96.2.588, 1991.

416 Fricke, H. C., O'Neil, J. R. J. E., and Letters, P. S.: The correlation between ¹⁸O/¹⁶O ratios of

417 meteoric water and surface temperature: its use in investigating terrestrial climate change over

418 geologic time, Earth and Planetary Science Letters, 170, 181-196, doi: 10.1016/S0012-

419 821X(99)00105-3, 1999.

- 420 Galewsky, J., Rella, C., Sharp, Z., Samuels, K., and Ward, D.: Surface measurements of upper
- tropospheric water vapor isotopic composition on the Chajnantor Plateau, Chile, Geophysical
 Research Letters, 38, 1-5, doi: 10.1029/2011GL048557, 2011.
- 423 Good, S. P., Soderberg, K., Wang, L., and Caylor, K. K.: Uncertainties in the assessment of the
- 424 isotopic composition of surface fluxes: A direct comparison of techniques using laser-based
- 425 water vapor isotope analyzers, Journal of Geophysical Research: Atmospheres, 117, doi:
- 426 10.1029/2011JD017168, 2012.
- 427 Griffis, T. J., Wood, J. D., Baker, J. M., Lee, X., Xiao, K., Chen, Z., Welp, L. R., Schultz, N. M.,
- 428 Gorski, G., and Chen, M.: Investigating the source, transport, and isotope composition of
- 429 water vapor in the planetary boundary layer, Atmospheric Chemistry and Physics, 16,
- 430 5139-5157, doi: 10.5194/acp-16-5139-2016, 2016.
- 431 Hobbins, M. T., Ramirez, J. A., and Brown, T. C.: The complementary relationship in estimation
- 432 of regional evapotranspiration: An enhanced advection-aridity model, Water Resources
 433 Research, 37, 1389-1403, doi: 10.1029/2000WR900359, 2001.
- 434 Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., Bonan, G.,
- 435 Cescatti, A., Chen, J., and De Jeu, R.: Recent decline in the global land evapotranspiration
- 436 trend due to limited moisture supply, **Nature**, 467, 951-954, doi: 10.1038/nature09396, 2010.
- 437 Kaseke, K. F., Wang, L., Wanke, H., Tian, C., Lanning, M., and Jiao, W.: Precipitation origins
- 438 and key drivers of precipitation isotope (¹⁸O, ²H, and ¹⁷O) compositions over windhoek,
- 439 Journal of Geophysical Research: Atmospheres, 123, 7311-7330, doi:
- 440 10.1029/2018JD028470, 2018.
- 441 Keeling, C. D.: The concentration and isotopic abundances of atmospheric carbon dioxide in
- 442 rural areas, Geochimica et Cosmochimica Acta, 13, 322-334, doi: 10.1016/0016-
- 443 7037(58)90033-4, 1958.
- 444 Keeling, C. D.: The concentration and isotopic abundances of carbon dioxide in rural and marine
- 445 air, Geochimica et Cosmochimica Acta, 24, 277-298, doi: 10.1016/0016-7037(61)90023-0,
 446 1961.
- Keppler, F., Schiller, A., Ehehalt, R., Greule, M., Hartmann, J., and Polag, D.: Stable isotope and
 high precision concentration measurements confirm that all humans produce and exhale
- 449 methane, **Journal of Breath Research**, 10, 016003, doi: 10.1088/1752-7155/10/1/016003,
- 450 2016.
- 451 Kerstel, E., and Gianfrani, L.: Advances in laser-based isotope ratio measurements: selected
- 452 applications, **Applied Physics B**, 92, 439-449, doi: 10.1007/s00340-008-3128-x, 2008.
- 453 Kong, Y., Pang, Z., and Froehlich, K.: Quantifying recycled moisture fraction in precipitation of
- 454 an arid region using deuterium excess, Tellus B: Chemical and Physical Meteorology, 65,
- 455 19251, doi: 10.3402/tellusb.v65i0.19251, 2013.
- 456 Lai, C.T., Ometto, J. P., Berry, J. A., Martinelli, L. A., Domingues, T. F., and Ehleringer, J. R.:
- 457 Life form-specific variations in leaf water oxygen-18 enrichment in Amazonian vegetation,
- 458 **Oecologia**, 157, 197-210, doi: 10.1007/s00442-008-1071-5, 2008.
- 459 Lanning, M., Wang, L., Benson, M., Zhang, Q., and Novick, K. A.: Canopy isotopic
- 460 investigation reveals different water uptake dynamics of maples and oaks, Phytochemistry,
- 461 175, 112389, doi:10.1016/j.phytochem.2020.112389, 2020.
- 462 Li, Z., Feng, Q., Wang, Q., Kong, Y., Chen, A., Song, Y., Li, Y., Li, J., and Guo, X.:
- 463 Contributions of local terrestrial evaporation and transpiration to precipitation using δ^{18} O and

- 464 D-excess as a proxy in Shiyang inland river basin in China, Global and Planetary Change,
- 465 146, 140-151, doi: 10.1016/j.gloplacha.2016.10.003, 2016.
- 466 Lovie, P.: Coefficient of variation, Encyclopedia of Statistics in Behavioral Science, doi:
 467 10.1002/0470013192.bsa107, 2005.
- 468 Ma, Q., Zhang, M., Wang, S., Wang, Q., Liu, W., Li, F., and Chen, F.: An investigation of
- 469 moisture sources and secondary evaporation in Lanzhou, Northwest China, Environmental
- 470 **Earth Sciences**, 71, 3375-3385, doi: 10.1007/s12665-013-2728-x, 2014.
- 471 Mahindawansha, A., Orlowski, N., Kraft, P., Rothfuss, Y., Racela, H., and Breuer, L.:
- 472 Quantification of plant water uptake by water stable isotopes in rice paddy systems, Plant
- 473 and Soil, 429, 281-302, doi: 10.1007/s11104-018-3693-7, 2018.
- 474 Majoube, M.: Fractionnement en oxygene 18 et en deuterium entre l'eau et sa vapeur, Journal
- 475 **de Chimie Physique**, 68, 1423-1436, doi: 10.1051/jcp/1971681423, 1971.
- 476 Merlivat, L., and Jouzel, J.: Global climatic interpretation of the deuterium-oxygen 18
- 477 relationship for precipitation, Journal of Geophysical Research: Oceans, 84, 5029-5033,
- 478 doi: 10.1029/JC084iC08p05029, 1979.
- 479 Miller, J. B., and Tans, P. P.: Calculating isotopic fractionation from atmospheric measurements
- 480 at various scales, **Tellus B**, 55, 207-214, doi: 10.1034/j.1600-0889.2003.00020.x, 2003.
- 481 Moreira, M., Sternberg, L., Martinelli, L., Victoria, R., Barbosa, E., Bonates, L., and Nepstad,
- 482 D.: Contribution of transpiration to forest ambient vapour based on isotopic measurements,
- 483 **Global Change Biology**, 3, 439-450, doi: 10.1046/j.1365-2486.1997.00082.x, 1997.
- 484 Parkes, S., McCabe, M., Griffiths, A. D., Wang, L., Chambers, S., Ershadi, A., Williams, A. G.,
- 485 Strauss, J., and Element, A.: Response of water vapour D-excess to land-atmosphere
- 486 interactions in a semi-arid environment, Hydrolgy and Earth System Sciences, 21, 533–548,
- 487 doi:10.5194/hess-21-533-2017, 2016.
- 488 Peng, T. R., Liu, K. K., Wang, C. H., and Chuang, K. H.: A water isotope approach to assessing
- 489 moisture recycling in the island-based precipitation of Taiwan: A case study in the western
- 490 Pacific, Water Resources Research, 47, W08507, doi: 10.1029/2010WR009890, 2011.
- 491 Seneviratne, S. I., Lüthi, D., Litschi, M., and Schär, C.: Land-atmosphere coupling and climate
- 492 change in Europe, **Nature**, 443, 205-209, doi: 10.1038/nature05095, 2006.
- 493 Song, X., Barbour, M. M., Saurer, M., and Helliker, B. R.: Examining the large-scale
- 494 convergence of photosynthesis-weighted tree leaf temperatures through stable oxygen isotope
- analysis of multiple data sets, **New Phytologist**, 192: 912–924, doi: 10.1111/j.1469-
- 496 8137.2011.03851.x, 2011.
- 497 Song, X., Simonin, K. A., Loucos, K. E., and Barbour, M. M.: Modelling non-steady-state
- 498 isotope enrichment of leaf water in a gas-exchange cuvette environment, Plant, Cell &
- 499 Environment, 38, 2618-2628, doi: 10.1111/pce.12571, 2015.
- 500 Steen-Larsen, H. C., Johnsen, S. J., Masson-Delmotte, V., Stenni, B., Risi, C., Sodemann, H.,
- 501 Balslev-Clausen, D., Blunier, T., Dahl-Jensen, D., and Ellehøj, M. D.: Continuous monitoring
- 502 of summer surface water vapor isotopic composition above the Greenland Ice Sheet,
- 503 Atmospheric Chemistry and Physics, 13, 4815-4828, doi:10.5194/acp-13-4815-2013, 2013.
- 504 Stein, A., Draxler, R. R., Rolph, G. D., Stunder, B. J., Cohen, M., and Ngan, F.: NOAA's
- 505 HYSPLIT atmospheric transport and dispersion modeling system, Bulletin of the American
- 506 Meteorological Society, 96, 2059-2077, doi: 10.1175/BAMS-D-14-00110.1, 2015.
- 507 Trenberth, K. E.: Atmospheric moisture recycling: Role of advection and local evaporation,

508 Journal of Climate, 12, 1368-1381, doi: 10.1175/15200442(1999)012<1368:AMRROA>2.0.

- 509 CO;2, 1999.
- 510 Unger, S., Máguas, C., Pereira, J. S., Aires, L. M., David, T. S., and Werner, C.: Disentangling
- 511 drought-induced variation in ecosystem and soil respiration using stable carbon isotopes,
- 512 **Oecologia**, 163, 1043-1057, doi: 10.1007/s00442-010-1576-6, 2010.
- 513 Wagle, P., Skaggs, T. H., Gowda, P. H., Northup, B. K., and Neel, J. P.: Flux variance similarity-
- 514 based partitioning of evapotranspiration over a rainfed alfalfa field using high frequency eddy
- 515 covariance data, Agricultural and Forest Meteorology, 285, 107907, doi:
- 516 10.1016/j.agrformet.2020.107907, 2020.
- 517 Wang, L., Caylor, K. K., and Dragoni, D.: On the calibration of continuous, high-precision δ^{18} O
- 518 and δ^2 H measurements using an off-axis integrated cavity output spectrometer, **Rapid**
- 519 **Communications in Mass Spectrometry**, 23, 530-536, doi: 10.1002/rcm.3905, 2009.
- 520 Wang, L., Caylor, K. K., Villegas, J. C., Barron-Gafford, G. A., Breshears, D. D., and Huxman,
- 521 T. E.: Partitioning evapotranspiration across gradients of woody plant cover: Assessment of a
- 522 stable isotope technique, Geophysical Research Letters, 37, L09401, doi:
- 523 10.1029/2010GL043228, 2010.
- 524 Wang, L., Good, S. P., Caylor, K. K., and Cernusak, L. A.: Direct quantification of leaf
- transpiration isotopic composition, Agricultural and Forest Meteorology, 154-155, 127-
- 526 135, doi: 10.1016/j.agrformet.2011.10.018, 2012.
- 527 Wang, L., Niu, S., Good, S. P., Soderberg, K., McCabe, M. F., Sherry, R. A., Luo, Y., Zhou, X.,
- 528 Xia, J., and Caylor, K. K.: The effect of warming on grassland evapotranspiration partitioning
- 529 using laser-based isotope monitoring techniques, Geochimica et Cosmochimica Acta, 111,
- 530 28-38, doi: 10.1016/j.gca.2012.12.047, 2013.
- 531 Wang, L., Good, S. P., and Caylor, K. K.: Global synthesis of vegetation control on
- evapotranspiration partitioning, Geophysical Research Letters, 41, 6753–6757,
- 533 10.1002/2014GL061439, 2014.
- 534 Wei, Z., Yoshimura, K., Okazaki, A., Kim, W., Liu, Z., and Yokoi, M.: Partitioning of
- 535 evapotranspiration using high-frequency water vapor isotopic measurement over a rice paddy
- 536 field, Water Resources Research, 51, 3716-3729, doi: 10.1002/2014WR016737, 2015.
- 537 Werner, M., Langebroek, P. M., Carlsen, T., Herold, M., and Lohmann, G.: Stable water isotopes
- 538 in the ECHAM5 general circulation model: Toward high-resolution isotope modeling on a
- 539 global scale, Journal of Geophysical Research: Atmospheres, 116, D15109,
- 540 doi:10.1029/2011JD015681, 2011.
- 541 Yakir, D., and Wang, X.F.: Fluxes of CO2 and water between terrestrial vegetation and the
- atmosphere estimated from isotope measurements, Nature, 380, 515-517, doi:
- 543 10.1038/380515a0, 1996.
- 544 Yakir, D., and Sternberg, L.: The use of stable isotopes to study ecosystem gas exchange,
- 545 **Oecologia**, 123, 297-311, doi: 10.1007/s004420051016, 2000.
- 546 Yamanaka, T., and Shimizu, R.: Spatial distribution of deuterium in atmospheric water vapor:
- 547 Diagnosing sources and the mixing of atmospheric moisture, **Geochimica et Cosmochimica**
- 548 Acta, 71, 3162-3169, doi: 10.1016/j.gca.2007.04.014, 2007.
- 549 Yepez, E. A., Williams, D. G., Scott, R. L., and Lin, G.: Partitioning overstory and understory
- 550 evapotranspiration in a semiarid savanna woodland from the isotopic composition of water
- vapor, Agricultural and Forest Meteorology, 119, 53-68, doi: 10.1016/S0168-

- 552 1923(03)00116-3, 2003.
- 553 Zhang, L., Dawes, W., and Walker, G.: Response of mean annual evapotranspiration to
- vegetation changes at catchment scale, Water Resources Research, 37, 701-708, doi:
- 555 10.1029/2000WR900325, 2001.
- 556 Zhang, Y., Shen, Y., Sun, H., and Gates, J. B.: Evapotranspiration and its partitioning in an
- 557 irrigated winter wheat field: A combined isotopic and micrometeorologic approach, Journal
- **of Hydrology**, 408, 203-211, doi: 10.1016/j.jhydrol.2011.07.036, 2011.
- 559 Zhao, L., Liu, X., Wang, N., Kong, Y., Song, Y., He, Z., Liu, Q., and Wang, L.: Contribution of
- 560 recycled moisture to local precipitation in the inland Heihe River Basin, Agricultural and
- 561 **Forest Meteorology**, 271, 316-335, doi: 10.1016/j.agrformet.2019.03.014, 2019.
- 562 Zhu, G., Guo, H., Qin, D., Pan, H., Zhang, Y., Jia, W., and Ma, X.: Contribution of recycled
- 563 moisture to precipitation in the monsoon marginal zone: Estimate based on stable isotope
- 564 data, Journal of Hydrology, 569, 423-435, doi: 10.1016/j.jhydrol.2018.12.014, 2019.
- 565

- 568 Table 1. The number of estimated isotope composition of ambient vapor meeting the criteria
- using the intersection point method ($\delta_{a(IP)}$) and the Intermediate Value Theorem method ($\delta_{a(IVT)}$)

among all 49 days.

Date	number of $\delta_{a(IP)}$ values meeting the criteria	number of $\delta_{a (IVT)}$ values
Date	meeting the criteria	meeting the criteria
	e	meening the childra
	in a whole day	in a whole day
5/19	27	8
5/27	13	3
5/28	30	3
5/31	25	5
6/4	38	5
6/5	28	0
6/7	29	6
6/9	32	5
6/10	26	2
6/11	21	4
6/12	22	4
6/15	32	0
6/16	33	0
6/17	24	1
6/18	26	0
6/21	26	3
6/22	22	0
6/26	22	0
6/27	29	3
7/4	23	0
7/5	23	1
7/7	30	0
7/8	29	0
7/14	28	4
7/16	28	0
7/18	25	1
7/19	28	6
7/20	27	6
7/21	29	0
7/22	19	0
8/3	18	1
8/4	22	3
8/5	25	3
8/6	28	1
8/12	13	8
8/18	19	3
8/19	30	0
8/28	23	0
8/29	22	1
8/30	27	1
8/31	27	0
9/20	25	0
9/21	24	1
9/22	31	1
9/23	28	1
9/27	28	2
9/28	25	1
9/29	30	5
9/30	25	1

Fig. 1 Theoretical diagrams of all possible combinations of the relationships between isotope composition of ambient vapor (δ_a) and observed isotope composition of atmospheric vapor (δ_v) of two continuous moments t_1 and t_2 , ($t_1 < t_2$). δ_{a1} and δ_{a2} represent δ_a value in t_1 and t_2 , respectively. δ_{v1} and δ_{v2} represent δ_v value in t_1 and t_2 , respectively. t_1 ' and t_2 ' represent the time of two specific moments between t_1 and t_2 with $t_1 < t_1' < t_2' < t_2$. For all of the six situations, there exists some sub-intervals $[t_1', t_2'] \subset [t_1, t_2]$ such that the whole range of $\{\delta_a(t): t \in$ $[t_1', t_2']\}$ is within $[min(\delta_{v_1}, \delta_{v_2}), max(\delta_{v_1}, \delta_{v_2})]$.

586 **Date** 587 Fig. 2 The daily average values of the isotope composition of evapotranspiration vapor (δ_{ET}), 588 the isotope composition of atmospheric vapor (δ_v), the estimated isotope composition of 589 ambient vapor using the intersection point method ($\delta_{a(IP)}$) and the Intermediate Value Theorem

590 method ($\delta_{a(IVT)}$) in the 21 days (see method section 2.3).

594 Fig. 3 The daily average values of the estimated isotope composition of ambient vapor using 595 the intersection point method ($\delta_{a(IP)}$) and the Intermediate Value Theorem method ($\delta_{a(IVT)}$) after 596 filter. Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) backward trajectory 597 showed external origin (a) and local origin (b), respectively.

Fig. 4 Linear regression between the estimated isotope composition of ambient vapor using the intersection point method ($\delta_{a(IP)}$) and the Intermediate Value Theorem method ($\delta_{a(IVT)}$) on daily scale (a) and point to point scale (b), respectively.

Fig. 5 Hypothetical graph of the idealized Keeling plots of the isotope composition of evaporation vapor (δ_E) (line 1), the isotope composition of transpiration vapor (δ_T) (line 2) and the isotope composition of evapotranspiration vapor (δ_{ET}) (area 3) (a), and hypothetical graph of idealized δ_E , δ_T lines and the interval of possible the isotope composition of ambient vapor (δ_a) in the Keeling plots (b).