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Abstract 11 
 12 
Streamflow generation and deep groundwater recharge may be vulnerable to loss of snow, making it important to 13 

quantify how snowmelt is partitioned between soil storage, deep drainage, evapotranspiration, and runoff. Based on 14 

previous findings, we hypothesize that snowmelt produces greater streamflow and deep drainage than rainfall and 15 

that this effect is greatest in dry climates. To test this hypothesis we examine how snowmelt and rainfall partitioning 16 

vary with climate and soil properties using a physically based variably saturated subsurface flow model, HYDRUS-17 

1D. We developed model experiments using observed climate from mountain regions and artificial climate inputs 18 

that convert all precipitation to rain, then evaluated how climate variability affects partitioning in soils with different 19 

hydraulic properties and depths. Results indicate that event-scale runoff is higher for snowmelt than for rainfall due 20 

to higher antecedent moisture and input rates in both wet and dry climates. Annual runoff also increases with 21 

snowmelt fraction, whereas deep drainage is not correlated with snowmelt fraction. Deep drainage is less affected by 22 

changes from snowmelt to rainfall because it is controlled by deep soil moisture changes over longer time scales. 23 

Soil texture modifies daily wetting and drying patterns but has limited effect on annual water budget partitioning, 24 

whereas increases in soil depth lead to lower runoff and greater deep drainage. Overall these results indicate that 25 

runoff may be substantially reduced with seasonal snowpack decline in all climates, whereas the effects of snowpack 26 

decline on deep drainage are less consistent. These mechanisms help explain recent observations of streamflow 27 

sensitivity to changing snowpack and highlight the importance of developing strategies to plan for changes in water 28 

budgets in areas most at risk for shifts from snow to rain. 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 
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1 Introduction 39 

 40 

Snowmelt is the dominant source of streamflow generation and groundwater recharge in many high elevation and 41 

high latitude locations (Regonda et al. 2005; Stewart et al. 2005; Earman et al., 2006; Clow, 2010; Jefferson, 2011; 42 

Furey et al., 2012). Soils modulate the partitioning of snowmelt into subsurface storage, deep drainage, evaporative 43 

losses and surface runoff. Snow persistence, the fraction of time with snow cover, shows declines around the globe 44 

(Hammond et al., 2018b), and these snow losses may lead to changes in water input magnitude and timing (Harpold 45 

et al., 2015; Musselman et al., 2017; Harpold and Brooks, 2018). As areas of “at risk snow” become more apparent 46 

(Nolin and Daly, 2006), there is an urgent need for mechanistic studies that quantify the partitioning of snowmelt in 47 

the critical zone among vapor losses, surface flow, and subsurface flow and storage (Brooks et al., 2015; Meixner et 48 

al., 2016).  49 

 50 

Changes in precipitation phase from snow to rain can modify hydrological partitioning by altering the timing and 51 

rate of inputs. Daily snowmelt rates typically do not reach the extreme intensities of rainfall (Yan et al., 2018), 52 

meaning that most areas (i.e. the Cascades) are predicted to receive more intense water inputs with more winter 53 

rainfall, whereas some other areas (i.e. Southern Rockies) will likely experience a decline in input intensity with 54 

snow loss (Harpold and Kohler, 2017). Warmer areas like the maritime Western U.S. may experience near complete 55 

loss of snowpack as snow fully transitions to rain by the end of the 21st century (Klos et al., 2014).  Unlike rainfall, 56 

which is typically episodic, snow can accumulate over time and melt as a concentrated pulse of soil water input 57 

(Loik et al., 2004). This means that at 7- to 30-day scales snowmelt inputs are of greater magnitude than rainfall 58 

(Harpold and Kohler, 2017). Concentrated snowmelt can lead to a large proportion of runoff and deep drainage 59 

(Earman et al., 2006; Berghuijs et al., 2014; Li et al., 2017). With climate warming, future snowmelt rates may be 60 

reduced in many areas because earlier melt occurs when solar radiation is lower (Musselman et al., 2017). Along 61 

with warmer temperatures, increasing atmospheric humidity is leading to more frequent mid-winter melt events in 62 

humid regions, yet increased snowpack sublimation and/or evaporation in dry regions (Harpold and Brooks, 2018). 63 

Given the considerable heterogeneity in climate, soils, topography, and vegetation across mountain ranges, the water 64 

budgets of different locations respond unevenly to a loss of snow. 65 

 66 

Water inputs from rain or snowmelt during periods of low potential evapotranspiration and high antecedent moisture 67 

conditions are more likely to generate runoff and deep drainage (Molotch et al., 2009). Prior research has shown that 68 

near-surface soil moisture response is closely related to snow disappearance (Harpold and Molotch, 2015; Webb et 69 

al., 2015; Harpold et al., 2015) with strong links between snowmelt and soil moisture dynamics at multiple spatial 70 

and temporal scales (Loik et al. 2004; Williams et al. 2009; Blankinship et al. 2014; Kormos et al., 2014; Harpold 71 

and Molotch, 2015; Webb et al. 2015; Kampf et al. 2015).  Earlier snow disappearance can lead to lower average 72 

soil moisture conditions not as conducive to streamflow generation as later snowmelt (Kampf et al. 2015; Harpold, 73 

2016). The effects of earlier snowmelt on soil moisture dynamics may also vary with precipitation after snowmelt. 74 

Late-spring precipitation can overwrite the signal of earlier snowmelt timing on spring and summer soil moisture 75 
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(Liator et al., 2008, Conner et al., 2016), whereas a lack of spring and summer precipitation can cause effects of 76 

earlier snowmelt on soil moisture to persist longer (Blankenship et al, 2014; Harpold, 2016). A transition to earlier, 77 

slower, and lesser snowmelt may increase overall evapotranspiration losses (Kim et al., 2016; Foster et al., 2015; 78 

Trujillo et al., 2012) while simultaneously decreasing the water use efficiency of conifer forests during snowmelt 79 

(Knowles et al., 2018).  However, even at a well-studied location in Colorado the projected effects of shifts from 80 

snow to rain on tree water use and carbon uptake differ between modeling (Moore et al., 2008; Scott-Denton et al., 81 

2003) and observational studies (Hu et al., 2010; Winchell et al., 2017).    82 

 83 

Both surface runoff and deep drainage are affected by soil texture, soil depth, rooting depth (Cho and Olivera, 2009; 84 

Seyfried et al., 2005) and topography. These properties have limited variability over timespans of hydrologic 85 

analysis and can produce temporally stable spatial patterns of soil moisture, where some parts of the landscape are 86 

consistently wetter than others (Williams et al., 2009; Kaiser and McGlynn, 2018). Aspect modifies the snowpack 87 

energy balance, leading to higher sustained soil moisture content on north-facing slopes compared to south-facing 88 

slopes with the same input (in the northern hemisphere; Williams et al., 2009; Hinckley et al., 2014; Webb et al., 89 

2015; Webb et al., 2018). Landscape evolution may lead to deeper profiles and more deeply weathered rock due to 90 

wetter conditions on north-facing slopes, making these slopes more conducive to deep drainage in some locations 91 

(Hinckley et al., 2014; Langston et al., 2015). Where soils are shallow, winter precipitation may exceed the soil 92 

storage capacity, leading to both runoff generation and deep drainage (Smith et al., 2011). Deeper soil profiles have 93 

greater storage capacity, which can sustain streamflow, even with snow loss; however, given consecutive years of 94 

low input these profiles will be depleted of storage leading to lower flows (Markovich et al., 2016). Deeper soils can 95 

also help sustain transpiration during the late spring and summer, when shallow soils have dried (Foster et al. 2016; 96 

Jepsen et al., 2016).  Streamflow can be insensitive to inputs under dry conditions, but respond rapidly once a 97 

threshold soil moisture storage value is exceeded (McNamara et al., 2005; Liu et al., 2008; Seyfried et al., 2009). 98 

McNamara et al. (2005) hypothesized that when dry-soil barriers are breached, there is sudden connection to 99 

upslope soils, leading to delivery of water to areas that were previously disconnected. In their semi-arid study area, 100 

such breaching of dry-soil barriers was only observed for periods of concentrated and sustained input from high-101 

magnitude spring snowmelt. Together, the complex interactions of soil properties, antecedent conditions, water 102 

inputs, and evaporative demand make it challenging to determine how changes from snow to rain affect hydrologic 103 

response even in idealized settings.  104 

 105 

The goal of this study is to improve our understanding of how changes in precipitation phase from snow to rain 106 

affect hydrological partitioning in a one-dimensional (1-D) representation of the critical zone. Partitioning of 107 

precipitation input, P, can be into runoff, Q, defined as lateral export of water from the domain, evaporation, E, 108 

transpiration, T, deep drainage below the root zone, D, and storage within the soil root zone, Δ𝑆. Throughout this 109 

study, the term runoff refers to non-infiltrated input that exits the domain laterally due to infiltration or saturation 110 

excess mechanisms. Over a given time increment, partitioning can be tracked using the water balance (equation 1).  111 

 112 
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𝑃 = 𝑄 + 𝐸 + 𝑇 + 𝐷 +  Δ𝑆         (1) 113 

 114 

We address the questions: (1) Are snowmelt and rain partitioned differently between Q, ET, and D? and (2) How is 115 

snowmelt and rain partitioning affected by climate, soil type, and soil depth?  We use a physically-based 1-D 116 

modeling approach to address these questions and systematically test hypotheses about hydrologic response to snow 117 

loss. The 1-D modeling approach allows for isolated comparison of climatic and edaphic factors on input 118 

partitioning; it is a simplified approach that neglects lateral redistribution of water.  119 

 120 

We hypothesize that reducing the fraction of precipitation falling as snow leads to lower runoff and deep drainage 121 

because it reduces the concentration of input in time (Figure 1). Concentrated input during melt of a seasonal 122 

snowpack often saturates soils, causing saturation excess runoff and deep drainage below the root zone (Hunsaker et 123 

al., 2012; Kampf et al., 2015; Webb et al., 2015; Barnhart et al., 2016). Diffuse input over time reduces the 124 

likelihood of saturation because it allows more water redistribution and evapotranspiration between inputs. We also 125 

hypothesize that snowmelt is critical for runoff generation and deep drainage in dry climates and deep soils, where 126 

snowmelt is the dominant cause of soil saturation (McNamara et al., 2005; Tague and Peng, 2013), whereas the 127 

partitioning of rain and snowmelt may be more similar in wet climates and shallow soils, which are more frequently 128 

saturated by either rain or snowmelt inputs (Loik et al., 2004) (Figure 1). 129 

 130 

2 Methods 131 

 132 

To evaluate soil moisture response to rainfall and snowmelt over a wide range of climate and soil conditions we 133 

used HYDRUS-1D (Šimůnek et al. 1998), a physically-based finite element numerical model for simulating one-134 

dimensional water movement in variably saturated, multi-layer, porous media. 135 

 136 

2.1 Study design, site selection, and data sources 137 

 138 

We utilized daily input data from five United States Department of Agriculture Natural Resources Conservation 139 

Service (NRCS) snow telemetry (SNOTEL) sites in each of three regions that span a wide range of climate and 140 

snow conditions: the Cascades, Sierra Nevada, and Uinta mountains for a total of 15 sites. Daily rather than hourly 141 

data were chosen to limit the effects of missing and incorrect values on the analyses. The three regions were chosen 142 

to represent dominant climate types in the western U.S., and within each region, sites were selected to span a snow 143 

persistence (SP) gradient, where SP is the mean annual fraction of time that an area is snow covered between Jan 1 144 

and Jul 3 (Moore et al., 2015) (Figure 2a, Table 1).  145 

 146 

With each climate scenario we simulated vertical profiles of volumetric water content (VWC), which were depth-147 

integrated to compute soil moisture storage (S). For these simulations deep drainage (D) is any flux of water 148 

downward below the root zone. Runoff (Q) is any water that does not infiltrate into the soil, either because of 149 



 5 

saturated conditions or because input rates exceed infiltration capacity. Evaporation (E) is direct evaporation from 150 

the soil, and transpiration (T) is mediated by plant roots. For this study, these values are combined into 151 

evapotranspiration (ET) to represent the bulk loss of water to the atmosphere.   152 

Daily precipitation (P), snow water equivalent (SWE), and volumetric water content (VWC) at 5, 20, and 50 cm 153 

were obtained for each SNOTEL site using the NRCS National Weather and Climate Center (NWCC, 2016) Report 154 

Generator (Table 1). The records were quality controlled to ensure reasonable precipitation, SWE and VWC values 155 

as in Harpold and Molotch (2015). Unrealistic values were removed (i.e. negative SWE, VWC below zero or above 156 

unity); all daily VWC outside of three standard deviations from the mean were removed, and a manual screening 157 

was performed on VWC data to identify shifts and other artifacts not captured by the first two automated 158 

procedures. Daily potential evapotranspiration (PET) was extracted from daily gridMET (Abatzoglou, 2013) for the 159 

4 km pixel containing each SNOTEL site. This product uses the ASCE Penman-Monteith method to compute PET.  160 

 161 

We chose three SNOTEL sites (432 Currant Creek, 698 Pole Creek R.S., 979 Van Wyck) to represent soil profile 162 

characteristics. While 365 of the 747 SNOTEL sites in the western U.S. have soil moisture sensors, only a fraction 163 

of these sites have detailed soil profile data. The sites with soil profile data have information obtained from soil 164 

samples taken in the soil pits and processed in the NRCS Soil Survey Laboratory in Lincoln, NE for texture, water 165 

retention properties, and hydraulic conductivity. We obtained detailed soil profile data, in the form of pedon primary 166 

characterization files from the NRCS, and selected profiles (Figure 2b, Table 2) that represent the range of soil 167 

textures and hydraulic conductivity values present at SNOTEL locations. Each had detailed NRCS pedon primary 168 

characterizations to depths greater than 100 cm and >15 years of daily soil moisture records at 5, 20 and 50 cm 169 

depths. 170 

2.2 Simulations 171 

 172 

In HYDRUS-1D, we simulated water flow and root water uptake for a vertical domain 10 m deep (Figure 2b). The 173 

domain was discretized into 500 nodes with higher node density near the surface (~0.15 cm for top 5 cm to ~5 cm 174 

for the bottom of the profile). For the surface boundary, we used a time variable atmospheric boundary condition, 175 

which allows specifying input (snowmelt and rain) and potential evapotranspiration (PET) time series. Runoff can 176 

also be generated at the surface boundary. For the lower boundary, we allowed free drainage from the bottom of the 177 

soil profile at 10 m. Surface soil water input was calculated by totaling snowmelt and rainfall input at the daily time 178 

step from SNOTEL precipitation and SWE values. Melt was computed for any day when SWE decreased; if SWE 179 

decreased, and the precipitation was greater than 0, total soil water input was assumed to be melt plus precipitation. 180 

The atmospheric boundary condition requires PET, leaf area index (LAI), and a radiation extinction coefficient used 181 

in the estimation and separation of potential evaporation and transpiration. We assigned a constant LAI of three, as 182 

this value generally fits the mixed conifer forests (Jensen et al., 2011) where SNOTEL sites are installed. We 183 

assumed a radiative extinction coefficient of 0.39, which is the default value. Root water uptake in the model was 184 

estimated using Feddes parameters for a conifer forest (Lv, 2014: h1 0 cm, h2 0 cm, h3h -5,100 cm, h3l -12,800 cm, 185 
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h4 -21,500 cm, TPlow 0.5 cm/d, TPhigh 0.1 cm/d)), with roots uniformly distributed from the soil surface to the 186 

interface with a lower hydraulic conductivity layer, as we lacked any more detailed information on root distribution 187 

or soil depth at these sites.  188 

 189 

We created soil layers with depths and textures taken from the NRCS soil pedon measurements. From this 190 

information we applied the neural network capability of HYDRUS-1D, which draws from the USDA ROSETTA 191 

pedotransfer function model (Schaap et al., 2001), to determine soil hydraulic parameters. Using the NRCS pedon 192 

primary characterizations we input percent sand, silt and clay, bulk density, wilting point, and field capacity. The 193 

neural network model then estimates soil hydraulic parameters based on these inputs. Below the depth of the soil 194 

pedon measurements, we configured the simulations to have a deep “bedrock” or regolith layer with lower saturated 195 

hydraulic conductivity (Ks) but the same water retention parameters as the layer above. Any water entering this 196 

lower layer is considered deep drainage. The hydraulic conductivity of this lower layer was set at one tenth that of 197 

the layer above. This value was determined through iterative testing of Ks values (see Supplementary). We extended 198 

the “bedrock” or regolith layer to 10 m depth to allow for deep drainage to occur without boundary effects that could 199 

be caused by a shallower regolith. The initial VWC for all layers in each simulation was 0.2, and simulations were 200 

run with a year of surface boundary condition inputs to establish initial conditions. We tested the simulation 201 

configuration by comparing to observed VWC at 5, 20 and 50 cm depths for the three selected soil profile sites 202 

(Figure S1, Table S1). Rather than force-fitting, our goal was to produce simulations with similar timing of wetting 203 

and drying to observations. This approach is consistent with other studies using HYDRUS – 1D, which also started 204 

with basic soils data and application of the ROSETTA pedotransfer function (Scott et al., 2000) and then calibrated 205 

to observed water content measurements by adjusting permeability of the “bedrock” layer (Flint et al., 2008).  206 

 207 

We applied climate scenarios from each of the 15 SNOTEL sites selected (Table 1) to each of the soil profiles to 208 

examine how climate and soil type affect partitioning. We then conducted additional experiments to modify inputs 209 

using just the loam profile. First to examine whether snowmelt and rainfall are partitioned differently, we changed 210 

all precipitation to rain and compared the simulation output to those with the original climate data. Second, to 211 

examine the effects of input concentration, the temporal clustering of input through time, we artificially produced 212 

intermittent input (four five-day periods of low magnitude) and concentrated input (one twenty-day period of high 213 

magnitude) of the same annual total for one wet (559) and one dry (375) site using the loam profile (1056) for all 214 

years of data. Third, to examine how soil depth affects partitioning we altered the depth of rooting zones to 0.5, 1.5 215 

and 2 times their original depth. For 0.5 depth scenarios, we replaced soil layers deeper than 0.5 times the original 216 

depth with the bedrock/regolith layer. For 1.5x and 2x scenarios, the layer above bedrock/regolith was extended 217 

downward, and the rooting zone extended to the new soil depth.  218 

 219 

 220 

 221 

 222 
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2.3 Analysis 223 

 224 

Using the simulation results, we examined how rain and snowmelt were partitioned into soil storage (S), deep 225 

drainage (D), evapotranspiration (ET), and runoff (Q). Daily soil storage is reported as the total soil water within the 226 

rooting zone only, and D is any water passing below the rooting zone (106-127 cm depending on the soil profile). 227 

We assessed partition components both in units of length (cm) and as ratios to total input (unitless, e.g. Q/P) at both 228 

event and annual time scales.  229 

 230 

To analyze hydrologic partitioning at event time scale we defined rainfall events as days with precipitation while 231 

SWE equaled zero and snowmelt events for days with declining SWE and no simultaneous precipitation. To focus 232 

on differences between rainfall and snowmelt, only events with entirely rainfall or entirely snowmelt input were 233 

considered in this analysis; mixed events were excluded, though mixed input accounts for an average of 47% of 234 

annual input across all sites and years (Table S6). Events could last as long as the conditions were continuously 235 

satisfied, and only those followed by at least five days of no input were used in analysis. Total depths of each 236 

variable were computed for each defined event time period. Input rain and snowmelt were summed over the event 237 

time period, and response variables (Q, ET, D) also included the day after the event ended to account for lag in event 238 

response. Antecedent S for each event was determined by taking the root zone storage from the day prior to the first 239 

event input. 240 

 241 

At the annual scale, soil water input and partitioning components (rain, snowmelt, Q, ET, D) were totaled for each 242 

year, and the change in water year storage (S) determined by subtracting the values of S at the end of the year from 243 

the value at the beginning of the year. In addition to S, mean saturation (Sat) at each observed depth was calculated 244 

as the average annual VWC divided by soil porosity. We use mean saturation (Sat) as an alternative to change in 245 

water year storage (S) because mean saturation is much easier to quantify at a field site than root zone storage, and 246 

this extends the application of our study to other areas with daily VWC data. Sat also provides a measure of soil 247 

water conditions throughout the year as opposed to S, which represents only changes between the start and end of 248 

the water year. 249 

 250 

To characterize climate conditions at the mean annual scale, each site was classified as dry (precipitation deficit, 251 

PET>P) or wet (precipitation surplus, PET<P). This separation by aridity index is based on our hypothesis that the 252 

influence of concentrated snowmelt is greater in dry climates than in wet climates (Hammond et al, 2018a). We also 253 

report the maximum SWE and snowmelt fraction as the annual total snowmelt divided by annual total input. 254 

Following the methods for computing the precipitation concentration index (PCI), which represents the continuity or 255 

discrete nature of input through time (Martin-Vide, 2004; Raziei et al., 2008; Li et al., 2011), we computed the input 256 

concentration index (ICI) using snowmelt and rain input. When calculated with daily data on an annual basis, PCI 257 

commonly ranges between 0 and 100, where higher values correspond to precipitation that is irregularly spaced in 258 

time and low values correspond to precipitation evenly distributed throughout the year (Cortesi et al., 2012). Our use 259 
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of the terms input concentration and the input concentration index refer to the temporal clustering of input in time, 260 

and do not refer to the intensity of melt. Pearson correlation tests were conducted between explanatory variables (P, 261 

PET, P/PET, peak SWE, average melt rate, and ICI) and dependent variables (Q, ET, D, mean saturation at 100 cm: 262 

Sat100).  263 

 264 

Using both the event and annual results, we examined (1) whether partitioning of rainfall input differed from that of 265 

snowmelt input, and (2) how partitioning was affected by climate, soil texture, and soil depth. For question 1, we 266 

tested for differences in event partitioning between input type (rain or snowmelt) and differences in annual 267 

partitioning between historical and all rain scenarios using ANOVA. For question 2, we tested for differences in 268 

annual partitioning between climate (wet, dry) and soil depth groupings, also using ANOVA. Additionally, for 269 

question 2 we tested the pairwise difference in linear regression slopes using the regression with interaction test in 270 

JMP (SAS-based statistical software) to determine whether the rate of change between explanatory and response 271 

variable differed by climate or soil depth grouping. By comparing the slopes of regressions run on standardized data, 272 

it is possible to assess the influence of independent variables on dependent variables in different groupings. In this 273 

study, we use this test to assess the influence of snowmelt fraction of input and input concentration index on runoff 274 

and deep drainage response for all, wet and dry groupings as well as soil texture groupings. 275 

  276 

3 Results 277 

 278 

Simulations for each of the 15 climate scenarios exhibit substantial variability at the annual scale in precipitation 279 

(P), runoff (Q), and deep drainage (D) (Figure 3). All regions have a wide range of annual P, but overall the highest 280 

P was in the Cascades region and lowest in the Uinta. The wide range of climate conditions simulated allows for an 281 

evaluation of climate effects on Q, ET, D, and Sat100 (Table S3). Annual precipitation (P) is positively correlated 282 

with runoff (Q, r=0.97), deep drainage (D, r=0.92), and Sat100 (r=0.73) (Table S3). The relationship is linear for Q 283 

but nonlinear for D and Sat100. Sat100 plateaus at ~250 cm P with further P partitioned to Q instead of D. 284 

Evapotranspiration (ET) has the weakest correlations with P (r=0.08) of all partitioned components. Q/P increases 285 

with P up to around 250 cm of P, and D/P increases with P up to around 100 cm (Figure 3). ET /P decreases with 286 

precipitation, whereas S/P is unrelated to P. At values of P greater than around 300 cm, all variables have 287 

relatively consistent values even as P increases.  288 

 289 

3.1 Snowmelt vs rainfall and climatic influences on partitioning 290 

 291 

Our first research question asks whether snowmelt and rainfall are partitioned differently. At the event scale, input 292 

rates are significantly greater on average for snowmelt than for rainfall in each of the three regions and for the full 293 

dataset (ANOVA p<0.0001, mean snowmelt 1.1 cm/d, mean rainfall 0.9 cm/d, Figure 4), though rainfall events have 294 

a higher maximum input rate (maximum snowmelt 8.0 cm/d, maximum rainfall 14.7 cm/d). Snowmelt events tend to 295 

occur on wetter soils, as estimated by antecedent soil moisture storage for the rooting zone (ANOVA p<0.0001, 296 
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mean S for snowmelt 56.6 cm, mean S for rainfall 48.2 cm). Average runoff ratios (Q/P) are higher for snowmelt 297 

than for rainfall (ANOVA p<0.0001, mean Q/P snowmelt 0.20, mean Q/P rainfall 0.03), whereas ET /P is lower for 298 

snowmelt as compared to rainfall (mean snowmelt 0.24, mean rainfall 0.40). Deep drainage responses are affected 299 

by longer time scales than single events, so we did not include these in the event analysis. This event analysis only 300 

considered binary snowmelt or rainfall events. 301 

 302 

At the annual scale, input at all sites is a mixture of rain and snowmelt. To examine the importance of snow to 303 

partitioning, we used snowmelt fraction, defined as the fraction of snowmelt to total precipitation, and input 304 

concentration index (ICI). Snowmelt fraction and snow persistence are generally positively correlated with ICI at 305 

dry sites in the Uinta and Sierra, but this correlation declines with wetter sites in the Cascades (Figure S7). Q/P 306 

increases with snowmelt fraction (r=0.41), most noticeably where snowmelt fraction is >0.5, and increases with ICI 307 

(r=0.80) (Figure 5). The ranges of Q/P are higher in wet than in dry climates, though dry climates show greater rates 308 

of change with increasing snowmelt fraction and input concentration (Table S4). D/P is somewhat correlated with 309 

snowmelt fraction (r=0.20) and ICI (r=0.43). D/P ranges are higher in wet than in dry climates, and many years in 310 

dry climates do not generate D. ET /P is not related to snowmelt fraction and generally declines with ICI (r = -0.75). 311 

Ranges are lower for wet climates, where greater input is partitioned to Q and D.  312 

 313 

We then compared the hypothetical scenarios where we treated all precipitation as rain to snow-dominated historical 314 

scenarios. All rain leads to significantly lower Q/P (p<0.0001, all rain mean 0.17; historical mean 0.31) for both wet 315 

and dry sites (Table 3, Figure 6). This partly relates to lower near-surface saturation in all rain scenarios. The mean 316 

fraction of annual runoff from saturation excess is 88% when all input is rain as compared to 97% with historical 317 

rain and snow input. All rain also leads to higher ET /P for dry sites (p<0.0001, all rain mean 0.95; historical mean 318 

0.83); lower D/P for dry sites (all rain mean 0.01; historical mean 0.03), and higher D/P at wet sites (p=0.011, all 319 

rain mean 0.14; historical mean 0.12) (Table 3, Figure 6).  320 

 321 

Another effect of snow loss can be a decrease in input concentration. Experimental scenarios with constant P 322 

separated into intermittent and concentrated inputs for a wet site (375) and a dry site (559) show that increasing 323 

input concentration leads to significantly greater Q/P in the dry site (p<0.05, intermittent mean 0.54, concentrated 324 

mean 0.68, Table 3, Figure 6) but no significant difference in the wet site. In contrast, D/P is significantly greater 325 

(p<0.0001) for the concentrated input scenarios for both dry and wet sites, as no deep drainage is produced with 326 

intermittent input. ET /P is significantly lower in concentrated input scenarios, with a greater difference in dry 327 

climates (p=0.004, mean intermittent 0.80 vs. concentrated 0.66) than in wet climates (p=0.013, mean intermittent 328 

0.34 vs. concentrated 0.28).  329 

 330 

 331 

 332 

 333 
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3.2 Soil property influences on partitioning 334 

 335 

Soil stores water that may later be partitioned into Q, ET, and D. Using Sat100 as an indicator of soil moisture 336 

storage, Figure 7 displays the relationships between Q/P, D/P and ET/P vs Sat100 as separated by climate type, soil 337 

texture, and root zone depth. Sat100 has strong relationships with Q/P, D/P, and ET /P for all, wet, and dry sites 338 

(Figure 7, Table S5). Q/P is generally low (Figure 7a, <0.3) until Sat100 is greater than >0.5. D/P in the simulations 339 

also increases with Sat100, and many simulation years have limited D when Sat100 <0.5. ET /P generally decreases 340 

with saturation for Sat100 values >0.5. 341 

 342 

When these same relationships are separated by soil texture rather than wet/dry climate (Figure 7b, Table S5), the 343 

response patterns are similar between soil types except for the sandy loam profile, which displays higher Q/P and 344 

D/P than the loam and sandy clay loam profiles at similar Sat100 levels. Differences between responses by soil 345 

texture are more evident at sub-annual time scales (Figure 8a). For the example time period shown in Figure 8a, the 346 

100 cm depth in loam and sandy clay loam profiles wet up each spring during snowmelt 5 days prior to the sandy 347 

loam profile, and they generated deep drainage earlier and on more occasions than sandy loam due to higher water 348 

retention. The latter soils ultimately reached the highest annual D/P values at higher Sat100 values, leading to more 349 

runoff generation via saturation excess, whereas the drier conditions in sandy loam led to more infiltration excess 350 

runoff. While this example time period and site displays noticeable differences in cumulative response between soil 351 

textures, when the data for all sites and years are combined few significant differences in annual partitioning 352 

between soil textures emerge (Figures 6,7).  353 

 354 

To assess the influence of soil profile depths on partitioning, we altered the loam soil profile to be 0.5x, 1.5x and 2x 355 

times its original depth (Figure 6, Table 3). For historical input, Q/P and D/P are greatest for the 0.5x depth 356 

scenario, and Q/P declines significantly with deeper soils for both dry and wet sites (p<0.0001), with the greatest 357 

declines between 0.5x and 1x (original) depth. D/P declines significantly between 0.5x and 1x depth, then increases 358 

slightly for all sites with subsequent increases in depth to 1.5x and 2x (Figure 6, Table 3). Q/P and D/P differences 359 

by depth are significant between 0.5x and 1x depth, but not for all subsequent depth comparisons for all, wet and dry 360 

site classifications (Table 3). In pairwise comparisons between depth scenarios Q/P is only significantly different 361 

between 0.5x and 1x depth categories (p <0.0001). Changes in ET/P with soil depth are not significant according to 362 

ANOVA tests. 363 

 364 

Figure 8b displays daily time series of surface runoff, deep saturation, deep drainage, and cumulative deep drainage 365 

during an example period for the four different soil root zone depth scenarios. The shallowest rooting zone of 0.5x 366 

original depth produces the greatest surface runoff as well as cumulative deep drainage throughout the example 367 

period. Each depth reaches and remains at saturation for different amounts of time, with the shallowest profile 368 

reaching saturation earliest and remaining saturated longest, but also decreasing more rapidly to the lowest ending 369 

saturation. The deepest profile takes the longest to increase Sat100, not reaching as high a peak, yet remaining 370 
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higher at the end of the period. Deep drainage begins earliest for the shallowest depth scenario, though reaching a 371 

lower daily flux than the original depth. Deep drainage from the 1x 1.5x and 2x original depth scenarios lag behind 372 

the 0.5x scenario following the same succession as their Sat100 patterns. These patterns in daily Sat100 and deep 373 

drainage result in the highest cumulative deep drainage for the shallowest scenario. 374 

 375 

4 Discussion 376 

 377 

4.1 Snowmelt as an efficient runoff generator and factors accentuating snowmelt efficiency 378 
 379 

The initial hypotheses for this study were that runoff and deep drainage would be greater from snowmelt than 380 

rainfall, and that snowmelt is more important to generating runoff and deep drainage in deep soils and dry climates 381 

than in shallow soils and wet climates. Our results indicate that snowmelt is an efficient runoff generator, though not 382 

necessarily an efficient generator of deep drainage. Deep drainage is less affected by input type because it is 383 

controlled by deep soil moisture patterns over longer time scales. Soil texture modifies daily wetting and drying 384 

patterns but has limited overall effects on annual partitioning, whereas increases in soil depth decrease runoff and 385 

increase deep drainage. Overall these results indicate that runoff may be substantially reduced with seasonal 386 

snowpack decline in all climates, whereas the effects of snowpack decline on deep drainage are less consistent. We 387 

expand on these key findings in the paragraphs below and suggest that areas in dry watersheds with storage similar 388 

to peak SWE may be most likely to experience reductions in deep drainage with continued slow loss.  389 

 390 

Multiple lines of evidence confirm snowmelt as a more efficient runoff generator on average than rainfall. At event 391 

scale runoff efficiency was elevated for snowmelt because of the 22% greater input rate and 17% wetter soils than 392 

rainfall. This is consistent with previous studies showing that snowpack development and subsequent melt tend to 393 

occur when soils are at elevated moisture contents due to lower ET (Liu et al., 2008; Williams et al., 2009; Bales et 394 

al., 2011). The effects of snowmelt vs. rainfall are weaker at annual time scales (Figure 5, Table S3) because these 395 

longer time periods include a combination of snow, mixed, and rainfall inputs in contrast to the event analysis in 396 

which we analyzed only events that were exclusively snowmelt or rainfall-dominated. Forcing all input into the 397 

extreme case of all rain produces 67% declines in runoff efficiency (Dry: 0.13 vs. 0.04; Wet: 0.46 vs. 0.29) (Table 3, 398 

Figure 6), likely because the input becomes less concentrated in time for the all rain scenario, allowing more ET. We 399 

also hypothesized that the effects of changing snowpacks would be greatest in dry climates, where soil saturation is 400 

less frequent.  However, simulations suggest that both wet and dry climates are as likely to show reduced surface 401 

runoff with declining snow water inputs.  402 

 403 

The effects of snow loss on D were not as consistent across our simulations as the effects on Q. Prior research has 404 

demonstrated strong seasonality in groundwater recharge, attributable to thresholds in input intensity (Jasechko and 405 

Taylor, 2015) and seasonal differences in evapotraspiration (Jasechko et al., 2014; Jasechko et al., 2017). We had 406 

hypothesized based on additional research (Hunsaker et al., 2012; Langston et al., 2015; Barnhart et al., 2016; Li et 407 

al., 2017; Hammond et al., 2018a) that input concentration along with evapotranspiration seasonality, would be the 408 
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primary reason for elevated Q and D from snowmelt relative to rainfall. In this study, changes from snow to rain 409 

both increased and decreased D/P (Figure 6, Figure S2), and D/P was not correlated with either snowmelt fraction or 410 

ICI in wet climates. In general, Q/P was greater than D/P, and the D/P response to changing input was weaker 411 

because S mediates the connection between input and D. In the 1D model Q is affected by infiltration rate and near-412 

surface storage and can more rapidly respond to input changes. In the simulations shown here once subsurface 413 

storage is zero, D will plateau, and Q will increase with further input due to the saturation excess mechanism. 414 

Although these processes were simulated in 1-D, they are consistent with observations of saturation excess overland 415 

flow documented in the elevation bands of many SNOTEL sites (Newman et al., 2004; Eiriksson et al., 2013; 416 

Kampf et al., 2015). In wet climates, D/P is less affected by input type because conditions are more likely to be wet, 417 

regardless of whether input is snow or rain.   D/P is more affected by changes from snow to rain in dry climates, 418 

likely because of the role that concentrated snowmelt can play in allowing water to reach the base of the soil 419 

column.  420 

 421 

Soil texture and depth generally did not change partitioning at the annual time scale as much as the varying climate 422 

scenarios (Figure 6), with the exception of changes in the shallowest soils (1x depth to 0.5x depth results in 12% Q 423 

increase, 180% D increase). D/P generally increased with increasing soil depth, demonstrating the importance of 424 

lower boundary conditions to shallow versus deep partitioning. Altering soil profile depth and the associated root 425 

zone depth produced the largest effects on Q/P and D/P from 0.5x to 1x depth. The responsiveness of fluxes to 426 

changes in soil depth from 0.5-1x may relate to storage capacity relative to input. The soil depths ranged from 106-427 

127 cm, which with a porosity of 0.4 gives a storage capacity of 42-51 cm, large enough to store the mean annual 428 

precipitation in some dry watersheds. When this storage was reduced by half to 21-25 cm, it is smaller than the 429 

mean annual precipitation at the wetter sites, increasing the likelihood of soil saturation that leads to D and Q. 430 

Consequently, the change in profile depth from 0.5 m to 1 m represents a shift from annual input greatly exceeding 431 

profile storage, to storage approximately accommodating annual input. At the sites used in this study, mean annual P 432 

ranged from 0.8 to 11.3 times the storage of the 1x soil profile, and peak SWE ranges from 0.1 to 5.9 times the 433 

storage. Prior field-based studies have also documented SWE that is similar in magnitude to the maximum amount 434 

of water storage in the upper meter of soil (Bales et al. 2011) and have shown that reducing soil depth increases 435 

surface runoff and deep drainage (Smith et al., 2011).  436 

 437 

Focusing on the influence of soil texture, simulations indicate that shorter durations of deep drainage for the coarser 438 

sandy loam compared to the finer texture soils are offset by higher rates of flux during deep drainage in the coarser 439 

profile (Figure 8a). Similarly, lower likelihood of surface saturation in the sandy loam soil compared to other soils is 440 

offset by greater likelihood of infiltration excess runoff. Therefore, in this 1-D approach, soil depth exerts a stronger 441 

control on annual total input partitioning to Q and D, whereas soil texture has limited effect on annual partitioning 442 

but can affect the timing of partitioning and water availability during different times of year. In natural landscapes, 443 

texture differences can result in spatially variable soil moisture (Williams et al. 2009; Kaiser and McGlynn 2018). 444 

Combined variations in soil texture and depth within a watershed may result in significant differences in soil 445 
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moisture storage across the basin (Bales et al, 2011), resulting in substantial differences in response throughout a 446 

watershed. The distribution of soil water storage capacity across the watershed likely exerts a strong control on 447 

locations where surface runoff, streamflow generation, and deep drainage are most efficiently generated especially 448 

in dry watersheds where soil moisture is generally low except during snowmelt (Atkinson et al., 2002; Seyfried et 449 

al., 2009). Additionally, unsaturated soil water storage may be the dominant control on streamflow activation during 450 

dry periods, while total input depth is the dominant control on streamflow generation during wetter periods (Farrick 451 

and Branfireun, 2014). Combining the role of soil storage capacity in space and time, areas in dry watersheds with 452 

storage similar to peak SWE may be most likely to experience reductions in deep drainage with continued slow loss.  453 

 454 

4.2 Limiting assumptions 455 

 456 

Given the complex nature of soil water movement in heterogeneous mountain topography, this study makes several 457 

assumptions and simplifications. The simulations do not include the intricacies of vegetation water use, assuming a 458 

static leaf area index (LAI) with root uptake controlled only by PET and soil moisture, and we assume free drainage 459 

from the bottom boundary of the modeled domain. Changing static LAI has a substantial effect on soil moisture 460 

dynamics (Chen et al., 2014), though model performance to match simulated and observed soil moisture does not 461 

necessarily improve with the assimilation of dynamic LAI values (Pauwels et al., 2007). Incorporating site specific 462 

constant LAI from field measurements or remotely sensed data may have improved model performance especially 463 

during spring green up and fall senescence and is recommended for future site specific studies.  The water balance in 464 

hydrologic models can be highly sensitive to the method chosen to represent root uptake and plant water use (Gerten 465 

et al., 2004), and hydrologic models generally poorly capture or replicate the interactions between soil, vegetation 466 

and atmospheric properties that combine to control plant water use (Gómez-Plaza et al., 2001; Gerten et al., 2004; 467 

Zeng et al., 2005). In addition, we did not allow for frozen soils in our simulations, but this can be a strong influence 468 

on soil input partitioning in places where snow depth was <50 cm and incapable of insulating the soil (Slater et al., 469 

2017). 470 

 471 

Additionally, simulations are generally wetter than measured water contents; therefore, the representation of 472 

partitioning shown here displays relative response between climates and soil profiles rather than absolute 473 

quantification of these partitioned components. The profile depths we simulated represent the minimum likely soil 474 

depth, as the collection of the pedon reports was limited by the depth of refusal for sample collection. Shallow soil 475 

profiles can also lead to a wet bias in simulations, and this can artificially elevate saturation excess flow leading to 476 

our observations of greater Q/P than D/P in most site-years. Our modeled domain included an extended “bedrock” 477 

or regolith layer to 10 m depth to allow for deep drainage without lower boundary effects. The choice of lower 478 

boundary condition affects the simulation of soil moisture and water balance partitioning with free drainage 479 

generally resulting in lower soil moisture, evapotranspiration and runoff than with a no-flux boundary condition 480 

controlled by an impervious layer or fluctuating water table (Chen et al., 2018). We created a domain much deeper 481 

than the soil zone to minimize this boundary condition effect; effects of lower boundary conditions are generally 482 
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seen in deeper layers of the soil profile and during transition periods between soil water input events when capillary 483 

rise can influence transpiration and deep drainage (Leterme et al., 2012; Brantley et al., 2017). Though a no-flux 484 

boundary condition may be appropriate for sites where relatively shallow water tables exert a strong influence on 485 

soil moisture dynamics, the inclusion of a no-flux lower boundary for the sites in this study would have made 486 

simulations wetter, furthering the difference between observed and modeled VWC.  487 

 488 

Sub-daily dynamics in snow melt and ET are not captured by our use of a daily time step. We chose to model soil 489 

water response to rainfall and snowmelt at the daily time step due to better data quality, but processes affecting 490 

partitioning of these inputs take place at sub-daily scales. Comparisons of results from simulations using daily vs 491 

hourly input demonstrate similar timing of response, but greater cumulative surface runoff from hourly simulations 492 

and greater cumulative deep drainage from daily simulations (Table S2). The short hourly time period allows for 493 

higher intensity input, which causes infiltration excess overland flow, whereas daily input is of lower intensity, 494 

allowing for greater deep percolation. Additionally, SNOTEL sites do not have measured values of PET, so we 495 

relied on a modeled 4km gridded product (Abatzoglou, 2013), which may better represent some sites than others. It 496 

was beyond the scope of this study to perform a sensitivity analysis of PET data source. 497 

 498 

Hydrologic response in hillslopes and catchments is not fully captured in the 1-D modelling approach. Water 499 

partitioned into Q and D in a 1-D model may not represent the same Q and D observed at a stream: Q generated at a 500 

point location may reinfiltrate downslope; D may also emerge downslope to supply streamflow rather than 501 

remaining in the deep subsurface. Topography affects both soil moisture and snow patterns (Western et al., 2004; 502 

Liator et al., 2008; Williams et al., 2009; Brooks et al., 2015), and it leads to lateral surface or subsurface flow, 503 

which can be important in redistributing water downslope along the soil snow interface (Webb et al., 2018) and 504 

within the shallow subsurface (Kampf et al., 2015, Kim et al., 2016).  Lateral redistribution of water thus leads to 505 

spatially variable patterns of input, storage, runoff generation, and ET at the hillslope to watershed scales (Brooks et 506 

al., 2015). While simulating only vertical flow is reasonable for SNOTEL sites located in relatively flat forest 507 

openings, 1-D simulations will tend to be biased wet because they do not allow any lateral redistribution. A 508 

progression of the work shown here would be to simulate 3-D flow (ex. Weiler et al., 2007; Seyfried et al., 2009) 509 

and examine the spatial variability in effects of snow loss. For example, a decline in deep drainage near a ridge line, 510 

where flow paths are predominantly vertical could reduce subsurface flow emergence at downslope locations, and 511 

this decreased groundwater emergence may reduce ET in areas where vegetation is reliant on the emergence of 512 

deeper flow paths.  513 

 514 

The simulations used here only allow for matrix flow, excluding macropore flow, for a simplified representation of 515 

soil water movement. Preferential flow though the profile can enhance deep drainage relative to surface runoff, 516 

which is another potential reason why soil moisture simulations were biased wet. 60-80% of deep drainage has been 517 

shown to occur as preferential rather than interstitial flow (Wood et al., 1997; Jaynes et al., 2001; Sukhija et al., 518 

2003), although the amount of preferential flow varies substantially between climates and soils. The magnitudes of 519 
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fluxes in our simulations are consistent with observation studies, however, lending more confidence to the simplified 520 

modeling approach. Simulated annual D/P for dry climates (~0.05) is similar to values reported from observations 521 

(Wood et al., 1997). The simulated Q/P (~0.0-0.9) vs snowmelt fraction plots from HYDRUS-1D simulations 522 

follow the same general increasing pattern (r = 0.41) as observed Q/P (~0.0-1.0) vs SP in Hammond et al., 2018a (r 523 

= 0.39).  524 

 525 

Future work could examine the potential sensitivity of the results to these limiting assumptions, In particular, 526 

researchers could examine the extent to which adding spatially and temporally varying vegetation processes and/or 527 

preferential flow pathways would change water balance partitioning. Simulations could expand to two dimensions to 528 

examine how downslope affects partitioning from ridgelines to valley bottoms or to three dimensions to examine 529 

effects of flow convergence and exfiltration in hillslope hollows. Because of the complexity of subsurface 530 

properties, this work would also benefit from more information about the hydraulic properties of the deep subsurface 531 

below the measured soil pedons. This could be linked with model analyses examining how both subsurface 532 

properties and boundary conditions affect the simulations.   533 

 534 

5 Conclusions 535 

 536 

This study helps to explain the mechanisms that lead to greater runoff from snowmelt. At event scale snowmelt 537 

generates more runoff because it tends to have a greater input rate and occurs on wetter soils than rainfall. Seasonal 538 

snowmelt elevates runoff in both wet and dry climates. Deep drainage can also decline with loss of snow, but it has a 539 

weaker response because soil storage buffers the impacts of snow loss. Soil properties can mediate the effects of 540 

snowmelt to rainfall changes, with soil depth having a greater effect than texture on input partitioning, particularly 541 

where soil water storage is less than mean annual precipitation. Soils that are shallower than observed soil depths 542 

generate the greatest runoff and deep drainage, indicating that shallow soils may show the largest changes in 543 

partitioning as input transitions from snowmelt to rainfall. Increasing soil depth above observed depths gradually 544 

reduces surface runoff while increasing deep drainage. Soil texture modifies short-term timing of soil moisture and 545 

runoff generation, but these effects are not large enough to alter the annual response of different soil types to 546 

changes in snow. The 1-D simulations provide basic hypotheses for hydrologic partitioning under changing 547 

snowmelt that should be further explored with 2-D or 3-D hydrological models and direct observations. Although 548 

more work is necessary to translate these findings to watershed-scale streamflow response, the findings highlight the 549 

importance of precipitation phase shifts on runoff generation and groundwater recharge. 550 
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 867 

Figure 1. Conceptual illustration of study hypotheses indicating the importance of concentrated snowmelt 868 
input (bottom panels) versus intermittent input (top panels) for runoff generation. The wet climate (right-869 
hand panels) generates more runoff (Q) and deep drainage (D) and less evapotranspiration (ET) compared to 870 
the dry climate (left-hand panels). In both climates, concentrated input can increase both Q and D because it 871 
is more likely to allow soil saturation than intermittent input, which allows ET during periods of drying. The 872 
concentrated input from snowmelt leads to greater increases in Q and D in the dry climate than in the wet 873 
climate because snowmelt is the most likely cause of soil saturation in dry climates.   874 
 875 
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 876 

Figure 2. (A) SNOTEL sites utilized for climate scenarios in this study with insets displaying snow zones 877 
classified by mean annual snow persistence (Moore et al., 2015). (B) Modeling domain layout with yellow 878 
points showing 5, 20 and 50 cm depths where volumetric water content time series were used for model 879 
calibration. Deepest yellow point is the depth where time series were extracted to calculate deep saturation. 880 
Symbols in the graph above the discretized soil profile represent the range of climate scenarios used plotted 881 
by mean annual precipitation (P) and mean annual temperature (T), and the three soil profiles below 882 
represent the soil parameter sets labeled with italicized capital letters (a) loam (b) sandy clay loam (c) sandy 883 
loam. Different layers in each soil profile are represented as shades of gray, shading does not indicate any 884 
property of the soil layer.  885 
 886 

 887 
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 888 

Figure 3. A) Annual runoff (Q), mean saturation at 100 cm depth (Sat100), deep drainage (D) and 889 
evapotranspiration (ET) vs annual precipitation (P) classified by region and climate type. B) Q/P, S/P, D/P 890 
and ET /P vs P classified by region and climate type. Dry sites P/PET ≤1, Wet P/PET >1. Data from historical 891 
input scenarios for soil profile 1056, loam.  892 
 893 

 894 
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 895 

Figure 4. Boxplots of event input rate (cm/d) (top), antecedent soil moisture storage (S, cm) (middle) and 896 
event runoff ratio (Q/P, bottom) by region and event type (rain black, snowmelt red). Text in each subplot 897 
gives mean values. All ANOVA comparisons between values for rain and snowmelt have p-values <0.0001. 898 
Results from historical simulations on loam profile.  899 
 900 

 901 

 902 
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 903 

Figure 5. Ratio of runoff (Q), deep drainage (D) and evapotranspiration (ET) to input (P) vs. snowmelt 904 
fraction of input and input concentration index (ICI) at the annual time scale. Data from historical 905 
simulations on loam profile. Dry sites P/PET <1=, Wet P/PET >1. Correlation values between explanatory 906 
and dependent variables displayed in each panel colored by all (black), dry (red) and wet (blue) 907 
classifications. Correlation values also shown in Table S4. 908 
 909 
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  910 

Figure 6. Boxplots of Q/P, D/P and ET /P for four different experiments: historical vs all rain input on loam 911 
soil and constant 1x depth, intermittent vs concentrated input on loam soil and constant 1x depth, different 912 
soil textures with constant 1x depth, and different soil depths all with loam soil texture. Asterisks denote 913 
significance of ANOVA tests between groupings. P-value of ANOVA, *<0.05, **<0.01, ***<0.001. Boxplots 914 
correspond with values in Table 3. Soil texture and soil depth scenarios are compared to 1x depth and loam 915 
texture profile for ANOVAs. 916 
 917 

 918 
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 919 

Figure 7.  A) Annual surface runoff (Q), deep drainage (D) and evapotranspiration (ET) as a fraction of 920 
annual precipitation (P) vs annual mean saturation at 100 cm depth (Sat100) and classified by climate type on 921 
the loam profile, Dry sites P/PET <=1, Wet P/PET >1. B) The same variables displayed in A but classified by 922 
soil texture on three different soil profiles. C) The same variables in A but classified by root zone depth on 923 
four different profiles of differing root zone depth. All simulations use historical input.  924 
 925 

 926 

Figure 8. (A) daily time series of cumulative runoff (Q), saturation at 100 cm depth (Sat100), and cumulative 927 
deep drainage (D for SNOTEL site 698 input on SNOTEL site 515 (sandy loam), 1049 (sandy clay loam) and 928 
1056 (loam) profile. (B) daily series for the same variables plotted for four depth scenarios 0.5x, 1x 1.5x and 929 
2x original rooting zone depth. 930 
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Table 1. SNOTEL station properties including the start and end of data records, site elevation, and mean annual climatic 

characteristics: precipitation (P), temperature (T), snow persistence (SP, %), and aridity index (P/PET).  

SNOTEL ID Region State Start End 
Elevation 

(m) 
P (cm) T (C) SP P/PET 

352 Cascades WA 1981 2015 1292 90 6.3 54 0.8 

553 Cascades WA 1982 2015 1049 433 6.9 65 4.4 

375 Cascades WA 1978 2015 1405 146 4.9 69 1.8 

679 Cascades WA 1980 2015 1564 263 4.8 77 4.9 

418 Cascades WA 1981 2015 1768 158 3.6 83 1.9 

778 Sierra CA 1980 2015 1864 69 8.0 53 0.7 

697 Sierra CA 1980 2015 2358 98 3.8 63 0.6 

428 Sierra CA 1981 2015 2089 180 6.0 72 1.3 

848 Sierra CA 1978 2015 2028 197 5.9 74 1.3 

462 Sierra CA 1978 2015 2672 142 4.0 78 1 

559 Uinta UT 1979 2015 2659 74 1.4 60 0.6 

833 Uinta UT 1979 2015 2901 70 1.5 69 0.7 

396 Uinta UT 1981 2015 3228 81 -0.1 76 0.9 

567 Uinta UT 1980 2015 3342 98 0.0 86 0.9 

766 Uinta UT 1989 2015 2938 157 3.2 87 1.3 
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Table 2. Soil profile properties derived from NRCS pedon reports and ROSETTA (Ros.) neural network. Columns are SNOTEL site, soil profile 

horizon, depth range of horizon, rock percent of sample volume, organic carbon percent of sample volume, sand percent of sample weight, silt percent 

of sample weight, clay percent of sample weight, Db33 bulk density of soil sample desorbed to 33kPa, ϴ33 volumetric water content at field capacity, ϴ1500 

volumetric water content at wilting point, soil texture, residual volumetric water content ϴr, saturated volumetric water content ϴs, pore size 

distribution parameter , and Ks saturated hydraulic conductivity. The lowest horizon Ks value was calibrated. Soil textures abbreviated as follows: 

sandy loam (SL), sand (S), loamy sand (LS), sandy clay loam (SCL), loam (L). SNOTEL 515, Harts Pass, WA, SNOTEL 1049, Forestdale Creek, CA, 

SNOTEL 1056, Lightning Ridge, UT. 

Site Hor. 
Depth 

(cm) 

rock  

% vol  

organic 

C % 

vol 

sand 

% 

wt 

silt   

% 

wt 

clay 

% 

wt 

Db33 

g 

cm-3 

ϴ33  ϴ1500  Text. 
Ros. 

ϴr 

Ros. 

ϴs 
Ros.  

(1/cm) 

Ros. 

Ks 

(cm/d) 

515 A1 0-15 9 9 53.5 35.6 10.9 0.63 0.41 0.14 SL 0.06 0.62 0.009 17.4 

515 A2  13-38 8 8 57.6 35.3 7.1 0.64 0.47 0.14 SL 0.05 0.60 0.011 20.5 

515 2Bw1 38-61 27 3 73.1 22.1 4.8 0.86 0.3 0.08 SL 0.04 0.55 0.032 15.1 

515 2Bw2 61-81 55 1 81 11 8 1.46 0.16 0.09 LS 0.05 0.40 0.036 5.49 

515 Cd 81-106 7 1 91.3 4.1 4.6 1.52 0.14 0.05 S 0.05 0.38 0.033 17.4 

515 Cd 106-1000 7 1 91.3 4.1 4.6 1.52 0.14 0.05 S 0.05 0.38 0.033 1.74 

1049 A 0-9 10 7 52.6 25.2 22.2 0.94 0.40 0.14 SCL 0.08 0.55 0.014 5.17 

1049 Bt1 9-20 14 2 48.6 25.4 26 1.13 0.30 0.14 SCL 0.08 0.50 0.014 2.13 

1049 Bt2 20-43 14 1 52.9 23.8 23.3 1.24 0.32 0.12 SCL 0.07 0.47 0.016 1.74 

1049 Bt3 43-63 21 1 53.4 24 22.6 1.19 0.33 0.13 SCL 0.07 0.48 0.015 2.18 

1049 Bt4 63-77 19 1 55.5 25.9 18.6 1.39 0.32 0.12 SL 0.06 0.42 0.017 1.22 

1049 Bt5  77-110 11 0 52.4 30.2 17.4 1.21 0.39 0.13 SL 0.06 0.45 0.013 2.22 

1049 Bt5  110-1000 11 0 52.4 30.2 17.4 1.21 0.39 0.13 SL 0.06 0.45 0.013 0.22 

1056 A 0-10 11 3 36.1 48.8 15.1 1.17 0.30 0.12 L 0.06 0.44 0.010 2.41 

1056 A 10-38 7 2 35.3 49.5 15.2 1.27 0.28 0.11 L 0.06 0.41 0.006 1.47 

1056 Bt1 38-76 6 2 36 48.6 15.4 1.25 0.30 0.10 L 0.06 0.42 0.006 1.59 

1056 Bt2 76-89 16 1 39.3 46 14.7 1.26 0.34 0.09 L 0.06 0.41 0.007 1.54 

1056 2B 89-127 6 2 36.3 48.2 15.5 1.18 0.24 0.09 L 0.06 0.44 0.006 2.23 

1056 2B 127-1000 6 2 36.3 48.2 15.5 1.18 0.24 0.09 L 0.06 0.44 0.006 0.22 
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Table 3. Mean values of unitless response variables Q/P, D/P, and ET /P compared by climate type for four 

hypothetical scenarios: (1) historical vs all rain input, (2) intermittent vs concentrated input, (3) historical 

input on sandy loam, sandy clay loam, and loam profiles, (4) historical input on 0.5x, 1x, 1.5x and 2x original 

rooting zone depth. Dry sites P/PET ≤1, Wet P/PET >1. All scenarios in the table besides those explicitly 

altering soil texture use the loam profile (1056). Asterisks denote the significance of ANOVA tests between 

groupings of simulations and arrows show the direction of change relative to the base scenario: historical 

input on 1x depth profile with loam texture. P-value of ANOVA, *<0.5, **<0.01, ***<0.001. Boxplots 

correspond with values in Table 3. 
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Experiment Scenario Climate Q/P D/P ET/P 

Historical vs. 

all rain 

Historical 

All 0.31 0.09 0.66 

Wet 0.44 0.12 0.51 

Dry 0.13 0.03 0.83 

All rain 

All 0.19*** 0.12 0.73** 

Wet 0.28*** 0.14* 0.55 

Dry 0.04*** 0.01*** 0.95*** 

Intermittent 

vs. 

concentrated2 

Intermittent 

All 0.59 0.00 0.58 

Wet 0.64 0.00 0.34 

Dry 0.54 0.00 0.80 

Concentrated 

All 0.68* 0.002*** 0.48* 

Wet 0.68 0.002*** 0.28* 

Dry 0.68* 0.002*** 0.66** 

Soil texture 

Loam 

(L) 

0.31 0.09 0.66 0.31 

0.44 0.12 0.51 0.44 

0.13 0.03 0.83 0.13 

Sandy loam 

(SL) 

All 0.35** 0.09 0.63* 

Wet 0.05 0.13 0.51 

Dry 0.19* 0.05 1.01*1 

Sandy clay 

loam (SCL) 

All 0.32 0.10* 0.65 

Wet 0.48 0.14 0.52 

Dry 0.14 0.06 1.081 

Soil depth 

0.5x 

All 0.35*** 0.25*** 0.67 

Wet 0.54*** 0.28*** 0.53* 

Dry 0.17** 0.22*** 0.80* 

1x 

All 0.31 0.09 0.66 

Wet 0.44 0.12 0.51 

Dry 0.13 0.03 0.83 

1.5x 

All 0.29 0.10* 0.67 

Wet 0.46 0.16* 0.51 

Dry 0.09 0.03 0.84 

2x 

All 0.27* 0.11*** 0.66 

Wet 0.44 0.18*** 0.51 

Dry 0.09 0.04 0.84 
1Values of ET /P >1 indicate root uptake from soil storage for years with low input (Figure S5).  
2For a dry site (375) and a wet site (559). Intermittent simulations have annual total input separated into four 

five-day periods, whereas concentrated input simulations have all input in twenty-day period of high 

magnitude.  
 


