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Abstract 9 

This study assesses the usability of Weather Research and Forecasting (WRF) model simulated 10 

soil moisture for landslide monitoring in the Emilia Romagna region, northern Italy during the 10-11 

year period between 2006 and 2015. Particularly three advanced Land Surface Model (LSM) 12 

schemes (i.e., Noah, Noah-MP and CLM4) integrated with the WRF are used to provide 13 

comprehensivedetailed multi-layer soil moisture information. Through the temporal evaluation 14 

with the single-point in-situ soil moisture observations, Noah-MP is the only scheme that is able 15 

to simulate the large soil drying phenomenon close to the observations during the dry season, and 16 

it also has the highest correlation coefficient and the lowest RMSE at most soil layers. The 17 

evaluation of the WRF rainfall estimation shows there is no distinct difference among the three 18 

LSMs, and their performances are in line with a published study for the central USA. Each 19 

simulated soil moisture product from the three LSM schemes is then used to build a landslide 20 

threshold prediction model, and within each model, 17 different exceedance probably levels from 21 

1% to 50% are adopted to determine the optimal threshold scenario (in total there are 612 22 

scenarios). Slope degree information is also used to separate the study region into different groups. 23 

The threshold evaluation performance is based on the landslide forecasting accuracy using 45 24 

selected rainfall events between 2014-2015. Contingency tables, statistical indicators, and 25 
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Receiver Operating Characteristic analysis for different threshold scenarios are explored. The 26 

results have shown that, fthe slope information is very useful in identifying threshold differences, 27 

with the threshold becoming smaller for the steeper area. For landslide monitoring, Noah-MP at 28 

the surface soil layer with 30% exceedance probability provides the best landslide monitoring 29 

performance, with its hitting rate at 0.769, and its false alarm rate at 0.289.  30 

Keywords: Emilia Romagna, Weather Research and Forecasting (WRF) Model, Land Surface 31 

Model (LSM), Numerical Weather Prediction (NWP) model, landslide hazards, soil moisture. 32 

1. Introduction  33 

Landslide is a repeated geological hazard during rainfall seasons, which causes massive 34 

destructions, loss of lives, and economic damages worldwide (Klose et al., 2014). It is estimated 35 

between 2004 and 2016, there is a total number of 4862 fatal non-seismic landslides occurred 36 

around the world, which had resulted in the death of over 55,000 people (Froude and Petley, 2018). 37 

Those numbers are expected to further increase due to extreme events induced by climate changes 38 

and pressures of population expanding towards unstable hillside areas (Gariano and Guzzetti, 39 

2016;Petley, 2012). The accurate predicting and monitoring of the spatiotemporal occurrence of 40 

the landslide is the key to prevent/ reduce casualties and damages to properties and infrastructures. 41 

The One of the most widely adopted methods for real-time landslide monitoring prediction is based 42 

on the simple empiricalrainfall threshold rainfall threshold, which has been used in many countries 43 

for their national landslide early warning system (Caine, 1980). which The method commonly 44 

relies on building the rainfall intensity-duration curve using the information from the past landslide 45 

events (Chae et al., 2017). However, such a method in many cases is insufficient for landslide 46 

hazard assessment (Posner and Georgakakos, 2015), because in addition to rainfall, initial soil 47 

moisture condition is one of the main triggering factors of the events (Glade et al., 2000;Crozier, 48 
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1999;Tsai and Chen, 2010;Hawke and McConchie, 2011;Bittelli et al., 2012;Segoni et al., 49 

2018b;Valenzuela et al., 2018;Bogaard and Greco, 2018).  50 

Although some researches have recognised the significance of soil moisture information for 51 

landslide early warning, most of them only rely on the antecedent precipitation index which simply 52 

depends on the amount of total rainfall accumulated before a landslide event occurs (Chleborad, 53 

2003;Calvello et al., 2015;Zêzere et al., 2005). Such a method is not recommended by several 54 

studies (Pelletier et al., 1997;Baum and Godt, 2010;Brocca et al., 2008), because during wet 55 

seasons, soil is often already saturated, and any additional rainfall falls on the earth surface will 56 

become direct runoff (Zhuo and Han, 2016b, a). As a result, the antecedent precipitation method 57 

can sometimes significantly overestimate the soil wetness condition. On the other hand, 58 

evapotranspiration is another factor which controls the soil moisture temporal evolution, which 59 

can also influence the relationship between the actual and the estimated soil moisture. Therefore, 60 

it is important that the landslide hazard assessment should be based on the real soil moisture 61 

information. 62 

Soil moisture varies largely both spatially and temporally (Zhuo et al., 2015b). For landslide 63 

applications,  one potential soil moisture estimation method is through to accurately monitor soil 64 

moisture fluctuations in a critical zone (normally in remote regions), a dense network of soil 65 

moisture sensors is prerequisite. However, because of the complex installation and high 66 

maintenance fee especially in steep mountainous areas, such networks are normally unavailable. 67 

Several studies have found the usefulness of ground-measured soil moisture data for landslide 68 

monitoring purpose (Greco et al., 2010;Baum and Godt, 2010;Harris et al., 2012;Hawke and 69 

McConchie, 2011). However, due to the sparse distribution/no existence of in-situ sensors in most 70 

hazardous regions, alternative soil moisture data sources need to be explored.  One of the data 71 
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sources is through satellite remote sensing technologies. Although such technologies have been 72 

improved significantly over the past decade , their retrieving accuracy is still largely affected by 73 

meteorological conditions (cloud coverage and rainfall) , frozen soil conditions (Zhuo et al., 74 

2015a), and dense vegetation coverages particularly in mountainous regions (Temimi et al., 2010); 75 

furthermore, the acquired data only covers the top few centimetres of soil. Although the more 76 

recently launched satellites such as Sentinel-1 (1 km, and 3 days resolution) has shown some 77 

promising performance of soil moisture estimation, theirits coverage periodavailability only 78 

covers the recent years is currently limited (since , and their resolution is too low (e.g., 0.25 degree) 79 

for detailed regional studies (Zhuo et al., 2016). Those disadvantages restrict the full utilisation of 80 

satellite soil moisture products for landslide monitoring application as discussed in our previous 81 

study ((Zhuo et al., 2019)). In (Zhuo et al., 2019), it is discussed that both the temporal and spatial 82 

resolutions of the ESA CCI satellite soil moisture product (Dorigo et al., 2017) is too coarse for 83 

landslide applications, and its data is mostly only available after the year 2002. MoreoverMoreover, 84 

the shallow depth soil moisture observation from the satellite hinders the accuracy of landslide 85 

predictions. ThereforeTherefore, other alternative soil moisture estimation methods need to be 86 

explored.  87 

One emerging area relies on modelling. Some studies have used modelled soil moisture data for 88 

landslide applications (Ponziani et al., 2012;Ciabatta et al., 2016;Zhao et al., 2019a;Zhao et al., 89 

2019b). However, to our knowledge, there is a lack of existing study using Another soil moisture 90 

data sourceOne emerging area relies on the state-of-the-art Land Surface Models (LSMs) modelled 91 

soil moisture for landslide studies, such as the Noah LSM (Ek et al., 2003) and the Community 92 

Land Model (CLM) (Oleson et al., 2010). LSMs describe the interactions between the atmosphere 93 

and the land surface by simulating exchanges of momentum, heat and water within the Earth 94 
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system (Maheu et al., 2018).  They are capable of simulating the most important subsurface 95 

hydrological processes (e.g., soil moisture) and can be integrated with the advanced Numerical 96 

Weather Prediction (NWP) system like WRF (Weather Research and Forecasting) (Skamarock et 97 

al., 2008) for comprehensive soil moisture estimations (i.e., through the surface energy balance, 98 

the surface layer stability and the water balance equations) (Greve et al., 2013). NWP-based (i.e., 99 

with integrated LSM, thereafter) soil moisture estimations have many advantages, for instance 100 

their spatial and temporal resolution can be set at different scales depending on the input 101 

datasetsdiscretionarily  to fit different various application requirements; their coverage is global, 102 

and the estimated soil moisture data covers multiple soil layers (from the shallow surface layer to 103 

deep root-zones); as well as a number of globally-covered data products can provide the necessary 104 

boundary and initial conditions for running the models. Soil moisture estimated through such an 105 

approach has been widely recognised and demonstrated in many studies, which cover a broad 106 

range of applications from hydrological modelling (Srivastava et al., 2013a;Srivastava et al., 2015), 107 

drought studies (Zaitchik et al., 2013), flood investigations (Leung and Qian, 2009), to regional 108 

weather prediction (Stéfanon et al., 2014). Therefore, NWP-based soil moisture datasets could 109 

provide valuable information for landslide applications. However, to our knowledge, relevant 110 

research has never been carried out.  111 

The aim of this study hence is to evaluate the usefulness of NWP modelled soil moisture for 112 

landslide monitoring. Here the advanced WRF model (version 3.8) is adopted, because it offers 113 

numerous physics options such as micro-physics, surface physics, atmospheric radiation physics, 114 

and planetary boundary layer physics (Srivastava et al., 2015), and can integrate with a number of 115 

LSM schemes, each varying in physical parameterisation complexities. So far there is limited 116 

literature in comparing the soil moisture accuracy of different LSMs options in the WRF model. 117 
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Therefore, in this study, we select three of the WRF’s most advanced LSM schemes (i.e., Noah, 118 

Noah-Multiparameterization (Noah-MP), and CLM4) to compare their soil moisture performance 119 

for landslide hazard assessment. Furthermore, since all the three schemes can provide multi-layer 120 

soil moisture information, it is useful to include all those simulations for the comparison so that 121 

the optimal depth of soil moisture could be determined for the landslide monitoring application. 122 

The large physiographic variability, plus the abundance of the historical landslide events data, 123 

makes Italy a good place for this research.In order to compare with the performance of our previous 124 

study on using the satellite soil moisture data (Zhuo et al., 2019), the same study area  Here an 125 

Italian region called Emilia Romagna is used hereselected. The study period covers 10 years from 126 

2006 to 2015 to include a long-term record of landslide events. In addition, because slope angle is 127 

one of thea major factors controlling the stability of the slope, it is hence used in this study to 128 

divide the study area into several slope groups, so that a more accurate threshold landslide 129 

prediction model could be built. 130 

The description of the study area and the used datasets are included in Section 2. Methodologies 131 

regarding the WRF model, the related LSM schemes and the adopted landslide threshold 132 

evaluation approach are provided in Section 3. Section 4 shows the WRF soil moisture evaluation 133 

results against the in-situ observations, and the WRF rainfall evaluations over the whole study area. 134 

Section 5 covers the comparison results of the WRF modelled soil moisture products for landslide 135 

applications. The discussion and conclusion of the study are included in Section 6.  136 

2. Study Area and Datasets 137 

2.1 Study Area 138 
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The study area is in the Emilia Romagna Region, northern Italy (Figure 1). Its population density 139 

is high. The region has high mountainous areas in the S-SW, and wide plain areas towards NE, 140 

with a large elevation difference (i.e., 0 m to 2125 m) across 50 km distance from the north to the 141 

south (Rossi et al., 2010). The region has a mild Mediterranean climate with distinct wet and dry 142 

seasons (i.e., dry season between May and October, and wet season between November and April). 143 

The study area tends to be affected by landslide events easily, with approximately one-fifth of the 144 

mountainous zone covered by active or dormant landslide deposits (Bertolini et al., 2005). Rainfall 145 

is by far the primary triggering factor of landslides in the region, followed by snow melting: 146 

shallow landslides are mainly triggered by short but exceptionally intense rainfall, and long and 147 

moderate rainfall events over saturated conditions, while deep-seated landslides have a more 148 

complex response to rainfall and are mainly caused by moderate but exceptionally prolonged (even 149 

up to 6 months) periods of rainfalls (Segoni et al., 2015). Due to the abundant data available in the 150 

region, several studies on regional scale landslide prediction and early warning have been 151 

published (Berti et al., 2012;Martelloni et al., 2012;Lagomarsino et al., 2015;Segoni et al., 152 

2018b;Segoni et al., 2018a;Lagomarsino et al., 2013). Interested readers can refer to those studies 153 

for more information.  154 

2.2 Selection of The Landslide Events  155 

The landslides catalog is collected from the Emilia Romagna Geological Survey (Berti et al., 2012). 156 

The information included in the catalog are: location, date of occurrence, the uncertainty of date, 157 

landslide characteristics (dimensions, type, and material), triggering factors, damages, casualties, 158 

and references. Unfortunately, many pieces of the information are are missing from the records in 159 

many cases. In order to organise the data in a more systematic way so that only the relevant events 160 

are retained, a two-step event selection procedure is initially carried out based on: 1) rainfall-161 
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induced only; and 2) high spatial-temporal accuracy (exact date and coordinates). Finally, a 162 

revision of the information about the type of slope instabilities such as landslide/debris 163 

flow/rockfall and the characteristics of the affected slope (natural or artificial) is also carried out 164 

over the selected records (Valenzuela et al., 2018). The catalog period used in this study covers 165 

between 2006 and 2015, which is in accordance with the WRF’ model run. After filtering the data 166 

records, only one-fifths of them (i.e., 157 events) is retained. The retained events are shown as 167 

single circles in Figure 2, with slope information (calculated through the Digital Elevation Model 168 

(DEM) data) also presented in the background.  It can be seen the spatial distribution of the 169 

occurred landslide events is very heterogeneous, with nearly all of them occurred in the hilly 170 

regions. During the study period, the regional landslide occurrence is mainly dominated by the 171 

spatial distribution of the weak earth units and the critical rainfall periods. 172 

2.3 Datasets 173 

There is a total of 19 soil moisture stations available within the study area, however, based on our 174 

collected data, only one of them at the San Pietro Capofiume (latitude 44° 39' 13.59", longitude 175 

11° 37' 21.6") provides long-term valid soil moisture retrievals (i.e., 2006 to 2017). WWe have 176 

checked the data from all the rest of the stations, they are either absent (or have very big data gaps) 177 

or do not cover the research period at all. Therefore, only the San Pietro Capofiume station is used 178 

for the WRF soil moisture temporal evaluation. The soil moisture is measured from 10 cm to 180 179 

cm deep in the soil at 5 depths, by the Time Domain Reflectometry (TDR) instrument. Data is 180 

recorded in the unit of volumetric water content (m3/m3) and at daily timestep (Pistocchi et al., 181 

2008). The data used in this study is between 2006 and 2015. Rainfall data over the whole study 182 

area is collected from over 200 tipping-bucket rain gauges, which are used to assess the quality of 183 

the WRF model’s rainfall estimations in the study area, as well as for rainfall events selection 184 
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during the In order to select rainfall events for Year 2014 and 2015, data from 200 tipping-bucket 185 

rain gauges are collected and analysed within the region. 186 

To drive a NWP model like WRF for soil moisture simulations, several globally-coved data 187 

products can be chosen for extracting the boundary and initial conditions information, for instance, 188 

the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-Interim) 189 

and the National Centre for Environmental Prediction (NCEP) reanalysis are two of the most 190 

commonly used data products. It has been found by  (Srivastava et al., 2013b) that the ERA-Interim 191 

datasets can provide better boundary conditions than the NCEP datasets for WRF hydro-192 

meteorological predictions in Europe, which is therefore adopted in this study to drive the WRF 193 

model. The spatial resolution of the ERA-Interim is approximately 80 km. The data is available 194 

from 1979 to present, containing 6-hourly gridded estimates of three-dimensional meteorological 195 

variables, and 3-hourly estimates of a large number of surface parameters and other two-196 

dimensional fields. A comprehensive description of the ERA-Interim datasets can be found in (Dee 197 

et al., 2011) 198 

The Shuttle Radar Topography Mission (SRTM) 3 Arc-Second Global (~ 90m) DEM datasets is 199 

are downloaded and used as the basis for the slope degree calculations. SRTM DEM data has been 200 

widely used for elevation elevation-related studies worldwide due to its high quality, near-global 201 

coverage, and free availability (Berry et al., 2007).  202 

3. Methodologies 203 

3.1 WRF Model and The Three Land Surface Model Schemes 204 

The WRF model is a next-generation, non-hydrostatic mesoscale NWP system designed for both 205 

atmospheric research and operational forecasting applications (Skamarock et al., 2005). The model 206 
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is powerful enough in modelling a broad range of meteorological applications varying from tens 207 

of metres to thousands of kilometres (NCAR, 2018). It has two dynamical solvers: the ARW 208 

(Advanced Research WRF) core and the NMM (Nonhydrostatic Mesoscale Model) core. The 209 

former has more complex dynamic and physics settings than the latter which only has limited 210 

setting choices. Hence in this study WRF with ARW dynamic core (version 3.8) is used to perform 211 

all the soil moisture simulations.  212 

The main task of LSM within the WRF is to integrate information generated through the surface 213 

layer scheme, the radiative forcing from the radiation scheme, the precipitation forcing from the 214 

microphysics and convective schemes, and the land surface conditions to simulate the water and 215 

energy fluxes (Ek et al., 2003). WRF provides several LSM options, among which three of them 216 

are selected in this study as mentioned in the introduction: Noah, Noah-MP, and CLM4. Table 1 217 

gives a simple comparison of the three models. The detailed description of the models is written 218 

below in the order of increasing complexity in regards of the way they deal with thermal and 219 

moisture fluxes in various layers of soil, and their vegetation, root and canopy effects 220 

(Skamarock et al., 2008).  221 

3.1.1 Noah 222 

Noah is the most basic amongst the three selected LSMs. It is one of the ‘second generation’ LSMs 223 

that relies on both soil and vegetation processes for water budgets and surface energy closures 224 

(Wei et al., 2010). The model is capable of modelling soil and land surface temperature, snow 225 

water equivalent, as well as the general water and energy fluxes. The model includes four soil 226 

layers that reach a total depth of 2 m in which soil moisture is calculated. Its bulk layer of  canopy 227 

-snow-soil (i.e., lack the abilities in simulating photosynthetically active radiation (PAR), 228 

vegetation temperature, correlated energy, and water, heat and carbon fluxes), ‘leaky’ bottom (i.e., 229 
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drained water is removed immediately from the bottom of the soil column which can result in 230 

much fewer memories of antecedent weather and climate fluctuations) and simple snow melt-thaw 231 

dynamics are seen as the model’s demerits (Wharton et al., 2013). Noah calculates the soil moisture 232 

from the diffusive form of Richard’s equation for each of the soil layer (Greve et al., 2013), and 233 

the evapotranspiration from the Ball-Berry equation (considering both the water flow mechanism 234 

within soil column and vegetation, as well as the physiology of photosynthesis (Wharton et al., 235 

2013)).  236 

3.1.2 Noah-MP 237 

Noah-MP (Niu et al., 2011) is an improved version of the Noah LSM, in the aspect of better 238 

representations of terrestrial biophysical and hydrological processes. Major physical mechanism 239 

improvements directly relevant to soil water simulations include: 1) introducing a more permeable 240 

frozen soil by separating permeable and impermeable fractions (Cai, 2015), 2) adding an 241 

unconfined aquifer immediately beneath the bottom of the soil column to allow the exchange of 242 

water between them (Liang et al., 2003), and 3) the adoption of a TOPMODEL (TOPography 243 

based hydrological MODEL)-based runoff scheme  (Niu et al., 2005) and a simple SIMGM 244 

groundwater model (Niu et al., 2007) which are both important in improving the modelling of soil 245 

hydrology. Noah-MP is unique compared with the other LSMs, as it is capable of generating 246 

thousands of parameterisation schemes through the different combinations of “dynamic leaf, 247 

canopy stomatal resistance, runoff and groundwater, a soil moisture factor controlling stomatal 248 

resistance (the β factor), and six other processes” (Cai, 2015). The  scheme option used in the study 249 

are: Ball-Berry scheme for canopy stomatal resistance, Monin-Obukhov scheme for surface layer 250 

drag coefficient calculation, the Noah based soil moisture factor for stomatal resistance, the 251 

TOPMODEL runoff with the SIMGM groundwater, the linear effect scheme for soil permeability, 252 
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the two-stream applied to vegetated fraction scheme for radiative transfer, the CLASS (Canadian 253 

Land Surface Scheme) scheme for ground surface albedo option, and the Jordan (Jordan, 1991) 254 

scheme for partitioning precipitation between snow and rain. 255 

3.1.3. CLM4 256 

CLM4 is developed by the National Center for Atmospheric Research (NCAR) to serve as the land 257 

component of its Community Earth System Model (formerly known as the Community Climate 258 

System Model) (Lawrence et al., 2012). It is a ‘third generation’ model that incorporates the 259 

interactions of both nitrogen and carbon in the calculations of water and energy fluxes. Compared 260 

with its previous versions, CLM4 (Oleson et al., 2008) has multiple enhancements relevant to soil 261 

moisture computing. For instance, the model’s soil moisture is estimated by adopting an improved 262 

one-dimensional Richards equation (Zeng and Decker, 2009); the new version allows the dynamic 263 

interchanges of soil water and groundwater through an improved definition of the soil column’s 264 

lower boundary condition  that is similar to the Noah-MP’s (Niu et al., 2007). Furthermore, the 265 

thermal and hydrologic properties of organic soil are included for the modelling which is based on 266 

the method developed in (Lawrence and Slater, 2008). The total ground column is extended to 42 267 

m depth, consisting 10 soil layers unevenly spaced between the top layer (0.0–1.8 cm) and the 268 

bottom layers (229.6–380.2 cm), and 5 bedrock layers to the bottom of the ground column 269 

(Lawrence et al., 2011). Soil moisture is estimated for each soil layer.  270 

3.2 WRF Model Parameterization 271 

The WRF model is centred over the Emilia Romagna Region with three nested domains (D1, D2, 272 

D3 with the horizontal grid sizes of 45 km, 15 km, and 5 km, respectively), of which the innermost 273 

domain (D3, with 88 x 52 grids (west-east and south-north, respectively)) is used in this study. A 274 
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two-way nesting scheme is adopted allowing information from the child domain to be fed back to 275 

the parent domain. With atmospheric forcing, static inputs (e.g., soil and vegetation types), and 276 

parameters, the WRF model needs to be spunspin-up to reach its equilibrium state before it can be 277 

used (Cai et al., 2014;Cai, 2015).  In this study, WRF is spunspin-up by running through the whole 278 

year of 2005. After the spin-up, the WRF model for each of the selected LSM scheme is executed 279 

in daily timestep from January 1, 2006, to December 31, 2015, using the ERA-Interim datasets.  280 

The microphysics scheme plays a vital role in simulating accurate rainfall information which in 281 

turn is important for modelling the accurate soil moisture variations. WRF V3.8 is supporting 23 282 

microphysics options range from simple to more sophisticated mixed-phase physical options. In 283 

this study, the WRF Single-Moment 6-class scheme is adopted which considers ice, snow and 284 

graupel processes and is suitable for high-resolution applications (Zaidi and Gisen, 2018). The 285 

physical options used in the WRF setup are Dudhia shortwave radiation (Dudhia, 1989) and Rapid 286 

Radiative Transfer Model (RRTM) longwave radiation (Mlawer et al., 1997). Cumulus 287 

parameterization is based on the Kain-Fritsch scheme (Kain, 2004) which is capable of 288 

representing sub-grid scale features of the updraft and rain processes, and such a capability is 289 

beneficial for real-time modelling (Gilliland and Rowe, 2007).  The surface layer parameterization 290 

is based on the Revised fifth-generation Pennsylvania State University–National Center for 291 

Atmospheric Research Mesoscale Model (MM5) Monin-Obukhov scheme (Jiménez et al., 2012). 292 

The Yonsei University scheme (Hong et al., 2006) is selected to calculate the planetary boundary 293 

layer. The parameterization schemes used in the WRF modelling are shown in Table 2. The 294 

datasets for land use and soil texture are available in the pre-processing package of WRF. In this 295 

study, the land use categorisation is interpolated from the MODIS 21-category data classified by 296 
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the International Geosphere Biosphere Programme (IGBP). The soil texture data are based on the 297 

Food and Agriculture Organization of the United Nations Global 5-minutes soil database. 298 

3.3 Translation of Observed and Simulated Soil Moisture Data to Common Soil Layers 299 

Since all soil moisture datasets have different soil depths, it is difficult for a direct comparison. 300 

The Noah and Noah-MP models include four soil layers, centred at 5, 25, 70, and 150 cm, 301 

respectively. Whereas CLM4 model has 10 soil layers, centered at 0.9, 3.2, 6.85, 12.85, 22.8, 39.2, 302 

66.2, 110.65, 183.95, 304.9 cm, respectively. Moreover, the in-situ sensor measures soil moisture 303 

centred at 10, 25, 70, 135, and 180 cm. In order to tackle the inconsistency issue of soil depthsmake 304 

the datasets comparable at consistent soil depths, the simple linear interpolation approach 305 

described in (Zhuo et al., 2015b) is applied in this study, and a benchmark of the soil layer centred 306 

at 10, 25, 70 and 150 cm is adopted. 307 

3.4 Soil Moisture Thresholds Build Up and Evaluations 308 

To build and evaluate the soil moisture thresholds for landslides forecasting, all datasets have been 309 

grouped into two portions: 2006-2013 for the establishment of thresholds, and 2014-2015 for the 310 

evaluation. The determination of soil moisture thresholds is based on determining the most suitable 311 

soil moisture triggering level for landslides occurrence by trying a range of exceedance 312 

probabilities (percentiles). For example, a 10% exceedance probability is calculated by 313 

determining the 10% percentile result of the soil moisture datasets that is are related to the occurred 314 

landslides. The exceedance probability method is commonly utilised in landslide early warning 315 

studies for calculating the rainfall-thresholds, which is therefore adopted here to examine its 316 

performance for soil moisture threshold calculations.   317 
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To carry out the threshold evaluation, 45 rainfall events (during 2014-2015) are selected for the 318 

purpose. The rainfall events are separated based on at least one-day of dry period (i.e., a period 319 

without rainfall) (Dai et al., 2014;Dai et al., 2015;Dai et al., 2016). The rainfall data from each rain 320 

gauge station is firstly combined using the Thiessen Polygon method, and with visual analysis, the 321 

45 events are then finally selected. The information about the selected rainfall events can be found 322 

in Section 5. The threshold evaluation is based on the statistical approach described in (Gariano et 323 

al., 2015;Zhuo et al., 2019), where soil moisture threshold can be treated as a binary classifier of 324 

the soil moisture conditions that are likely or unlikely to cause landslide events. With this 325 

hypothesis, the likelihood of a landslide event can either be true (T) or false (F), and the threshold 326 

forecasting can either be positive (P) or negative (N). The combinations of those four conditions 327 

can lead to four statistical outcomes (Figure 3a) that are: true positive (TP), true negative (TN), 328 

false positive (FP), and false negative (FN) (Wilks, 2011). The detailed description of each 329 

outcome is covered in (Zhuo et al., 2019). Using the four outcomes, two statistical scores can be 330 

determined. 331 

The Hit Rate (HR), which is the rate of the events that are correctly forecasted. Its formula is: 332 

𝐻𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
              (1) 333 

in the range of 0 and 1, with the best result as 1.                                        334 

The False Alarm Rate (FAR), which is the rate of false alarms when the event did not occur. Its 335 
formula is: 336 

𝐹𝐴𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
                                               (2) 337 

in the range of 0 and 1, with the best result as 0. 338 

For any soil moisture product, each threshold calculated for each of the slope degree group is 339 

adopted to determine T, F, P, and N, respectively. Those values are finally integrated to find the 340 

overall scores of TP, FN, FP, TN, HR, and FAR. The threshold performance is then judged via the 341 
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Receiver Operating Characteristic (ROC) analysis (Hosmer and Lemeshow, 1989;Fawcett, 2006). 342 

As shown in Figure 3b, ROC curve is based on HR against FAR, and each point in the curve 343 

represents a threshold scenario (i.e., selected exceedance probabilities). The optimal result (the red 344 

point) can only be realised when the HR reaches 1 and the FAR reduces to 0. The closer the point 345 

to the red point, the better the forecasting result is. To analyse and compare the forecasting 346 

performance numerically, the Euclidean distances (d) for each scenario to the optimal point are 347 

computed.  348 

4. WRF Soil Moisture Analysis andModel Evaluations  349 

In this study, the evaluation is based on the daily mean soil moisture. The reason for not using the 350 

antecedent soil moisture condition plus rainfall data on the day is because the purpose of this study 351 

is to explore the relationship between different WRF simulated soil moisture and landslides solely. 352 

In general, soil moisture is a predisposing factor for slope instability, while rainfall is the triggering 353 

factor. The same rainfall may trigger or not a landslide depending on the soil moisture content at 354 

the time of the rainfall event. The mean soil moisture on the day of the landslide implicitly account 355 

for both the initial soil moisture and the effective rainfall absorbed by the ground, and can be a 356 

robust indicator of the hydrological condition of the slope. 357 

3.34.1 Soil Moisture Temporal Comparisons  358 

Although there is only one soil moisture sensor that provides long-term soil moisture data in the 359 

study region, it is still useful to compare it with the WRF estimated soil moisture. Particularly, it 360 

has been shown that soil moisture measured at a site location can reflect the temporal fluctuations 361 

of soil moisture for its surrounding region, up to 500 km in radius (Entin et al., 2000). With the 362 

WRF’s relatively high-resolution of 5 km, the temporal comparison with the in-situ observations 363 
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should provide some meaningful results. In this study, we carry out a temporal comparison 364 

between all the three WRF soil moisture products with the in-situ observations. The comparison 365 

is implemented over the period from 2006 to 2015, and the WRF grid closest to the in-situ sensor 366 

location is chosen. Figure 4 shows the comparison results at the four soil depths. The statistical 367 

performance (correlation coefficient r and Root Mean Square Error RMSE) of the three LSM 368 

schemes are summarised in Table 3. Based on the statistical results, Noah-MP surpasses other 369 

schemes at most soil layers, except for Layer 2 where CLM4 shows stronger correlation and Layer 370 

4 where Noah gives smaller RMSE error. For Noah-MP, the best correlation is observed at the 371 

surface layer (0.809), followed by the third (0.738), second (0.683) and fourth (0.498) layers; and 372 

based on RMSE, the best performance is again observed at the surface layer and followed by the 373 

second, third and fourth layers in sequence (as 0.060, 0.070, 0.088, and 0.092 m3/m3, respectively). 374 

From the temporal plots, it can be seen at all four soil layers, all three LSM schemes can produce 375 

the soil moisture’s seasonal cycle very well with most upward and downward trends successfully 376 

represented. However, both the Noah and the CLM4 overestimate the variability at the upper two 377 

soil layers during almost the whole study period, and the situation is the worst for the Noah. 378 

Comparatively, the Noah-MP can better capture the wet soil moisture conditions very well 379 

especially at the surface layer; and it is the only model of the three that is able to simulate the large 380 

soil drying phenomenon close to the observations during the dry season, except for some extremely 381 

dry days. Towards 70 cm depth, although Noah-MP is still able to capture most of the soil moisture 382 

variabilities during the drying period, it significantly underestimates soil moisture values for most 383 

wet days. Similar underestimation results can be observed for CLM4 and Noah during the wet 384 

season at 70 cm; furthermore, both schemes are again not capable of reproducing the extremely 385 

drying phenomenon and overestimate soil moisture for most of the dry season days. It is surprising 386 
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to see that at the deep soil layer (150 cm), all soil moisture products are underestimated, in 387 

particular, the outputs from the CLM4 and the Noah-MP only show small fluctuations. However, 388 

the soil moisture measurements from the in-situ sensor also get our attention as they show strange 389 

fluctuations with numerous sudden drops and rise situations observed. The strange phenomenon 390 

is not expected at such a deep soil layer (although groundwater capillary forces can increase the 391 

soil moisture, its rate is normally very slow). One possible reason we suspect is due to sensor 392 

failure in the deep zone. Therefore, the assessment result for the deep soil layer should be 393 

considered unreliable. Overall for the Noah-MP, in addition to producing the highest correlation 394 

coefficient and the lowest RMSE, its simulated soil moisture variations are the closest to the 395 

observations. The better performance of the Noah-MP over the other two models agrees with the 396 

results found in (Cai et al., 2014) (note: the paper uses standalone models, which are not coupled 397 

with WRF). Also, it has been discussed in (Yang et al., 2011), the Noah MP presents a clear 398 

improvement over the Noah in simulating soil moisture globally. However, it is noted the 399 

evaluation results are only based on one soil moisture sensor located at the plain part of the study 400 

area.  401 

4.2 Spatial ComparisonsRainfall Evaluations  402 

Since soil moisture is related to rainfall, it is useful to carry out the evaluations of WRF rainfall 403 

estimations against the observations in the study area. The spatial plot of R for the three LSMs is 404 

shown in Figure 5. It can be seen the performance of the three models are very close to each other, 405 

with only small differences over the whole study region. In general, the performance is the best in 406 

the Southeast region, with R reaches above 0.70. The poorest performance is observed in the 407 

Northeast region and some parts of the mountain zone. Based on the spatial distribution of R, there 408 

is no clear correlation between the WRF rainfall performance and the topography of the region. 409 
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The boxplot for the R performance is illustrated in Figure 6a. It can be seen again the performances 410 

of the three models are very similar. Generally, R ranges between around 0.10 and 0.80, and with 411 

the majority of the region performs around 0.40. RMSE performance is also calculated. Similar to 412 

the results of R, it has been found the RMSE spatial distributions are very similar among the three 413 

models. Therefore, the RMSE spatial distribution map is not included in this paper. The boxplot of 414 

the RMSE is shown in Figure 6b. Generally, the RMSE ranges between around 4 mm and 12 mm, 415 

with some outliers between around 12 mm and 20 mm. Majority of the region performs at around 416 

7 mm RMSE. The statistical calculations are summarised in Table 4. Based on the results of R and 417 

RMSE, the WRF rainfall estimation performance in Emilia is similar to the one found in central 418 

USA (Van Den Broeke et al., 2018). 419 

Figure 5, 6 shows the spatial distribution of soil moisture simulations (via the three WRF LSM 420 

schemes) at the four soil layers on a typical day during the dry and the wet seasons, respectively. 421 

It is clear to see on the dry season day, Noah gives the wettest soil moisture simulation amongst 422 

the three schemes, followed by CLM4 and Noah-MP. The soil moisture spatial pattern of the three 423 

schemes more or less agrees with each, that is with wetter soil condition found in the central (in 424 

line with the location of the river mainstream) and South-West part of the study region and dryer 425 

soil condition in the Southern boundary and East part of the study region. On the wet season day, 426 

Noah again produces wetter soil moisture data than the other two schemes, and it shows a distinct 427 

wet patch at the Southern boundary while both the Noah-MP and the CLM4’s simulations indicate 428 

that part as the driest of the whole region. The disagreement among the LSMs at the Southern 429 

boundary could be due to the particularly high elevation (above 2000 m) and snow existence at 430 

that region, and the three schemes use different theories to deal with such conditions. The 431 

improvement in the Noah-MP and the CLM4 is mainly attributed to the better simulation of snow, 432 
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in particular, it has been found Noah-MP can better simulate the snowmelt phenomenon over the 433 

other two schemes (Cai et al., 2014), because it has better representations of ground heat flux, 434 

retention, percolation and refreezing of melted liquid water within the multilayer snowpack (Yang 435 

et al., 2011). Furthermore, it can be seen Noah-MP has a clear spatial pattern of the soil moisture 436 

in the region, that is with drier areas found near the river mainstream, and Southern boundary, and 437 

wetter zones in the North and the South. On the contrary, Noah and CLM4 simulated soil moisture 438 

show a relatively smaller difference spatially, especially for CLM4.  439 

5. The Assessment of WRF Soil Moisture Threshold for Landslide Monitoring 440 

As introduced at the beginning of the paper, previous works have demonstrated that in complex 441 

geomorphologic settings (e.g., in Emilia Romagna), a rainfall threshold approach is too simple and 442 

more hydrologically driven approaches need to be established. This section is to assess if the spatial 443 

distribution of soil moisture can provide useful information for landslide monitoring at the regional 444 

scale. Particularly, all three soil moisture products simulated through the WRF model are used to 445 

derive threshold models, and the corresponding landslide prediction performances are then 446 

compared statistically. Here the threshold is defined as the crucial soil moisture condition above 447 

which landslides are likely to happen.   448 

Among different factors for controlling the stability of slope, the slope angle is one of the most 449 

critical ones. From the slope angle map in Figure 2, it can be seen the region has a clear spatial 450 

pattern of high and low slope areas, with the majority of the high-slope areas (can be as steep as 451 

around 40 degrees) located in the mountainous Southern part and the river valleys. Based on the 452 

analysed events data, Moreover, there is an obvious causal relationship between the slope angle 453 

and the landslide occurrence, as all the landslides happened during the study period are mainly 454 

located in the high-slope region, with a particularly high concentration around the central Southern 455 
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part. The spatial distribution of the landslide events is also in line with the overall geological 456 

characteristics of the region, i.e., the Southern part mainly constitutes outcrop of sandstone rocks 457 

that make up the steep slopes and are covered by a thin layer of permeable sandy soil, which are 458 

highly unstable (Zhuo et al., 2019). Therefore, instead of only using one soil moisture threshold 459 

for the whole study area, it is useful to divide the region into several slope groups so that within 460 

each group a threshold model is built. To derive soil moisture threshold individually under 461 

different slope conditions, all data has been divided into three groups based on the slope angle 462 

(0.4-1.86o; 1.87-9.61o; 9.52-40.43o; since no landslide events are recorded under the 0-0.39o group, 463 

the group is not considered here), as results,  all groups have equal coverage areas. There are 464 

different ways to group the slopes. In this study, three groups have been defined with similar sizes 465 

so that relatively reliable results could be achieved from the statistical point of view..  466 

In order to find the optimal threshold so that there are least missing alarms (i.e., threshold is 467 

overestimated) and false alarms (i.e., threshold is underestimated), we test out 17 different 468 

exceedance probabilities from 1% to 50%. For each LSM scheme, the total number of threshold 469 

models is 204, which is the resultant of different combinations of slope groups, soil layers, and 470 

exceedance probability conditions. The calculated thresholds for all LSM schemes under three 471 

slope groups are plotted in Figure 7. Overall there is a very clear trend between the slope angle 472 

and the soil moisture threshold, that is with threshold becoming smaller for steeper areas. The 473 

correlation is particularly more evident at the upper three soil layers (i.e., the top 1 m depth of soil), 474 

with only a few exceptions for Noah and CLM4 at the 1% and the 2% exceedance probabilities.  475 

At the deep soil layer centred at 150 cm, the soil moisture threshold difference between Slope 476 

Group (S.G.) 2 and 3 becomes very small for all the three LSM schemes. This could be partially 477 

because at the deep soil layer, the change of soil moisture is much smaller than at the surface layer, 478 
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therefore the soil moisture values for S.G. 2 and 3 could be too similar to differentiate. However, 479 

for milder slopes (S.G. 1), the higher soil moisture triggering level always applies even down to 480 

the deepest soil layer for all the three LSM schemes. In this study, It is also clear to see the 481 

difference of threshold values amongst different slope groups largely depends on the number of 482 

landslide events considered, that is with more events considered, the stronger the correlation  (e.g., 483 

1% exceedance probability means 99% of the events are included for the threshold modelling, 484 

whilst 50% exceedance probability means half of the data are treated as outliers). tThe results 485 

confirm show that wetter soil indeed can trigger shallow landslides easier in milder slopes than in 486 

steeper slopes.  487 

All the threshold models are then evaluated under the 45 selected rainfall events (Table 45) using 488 

the ROC analysis. Each threshold determined for each of the slope class during the calibration is 489 

used for the evaluation. The period of the selected rainfall events is between 1 day and 18 days, 490 

and the average rainfall intensity ranges from 5.05 mm/day to 24.69 mm/day. For each selected 491 

event, the number of landslide event is also summarised in the table. The resultant Euclidean 492 

distances (d) between each scenario of exceedance probability and the optimal point for ROC 493 

analysis are listed in Table 5 6 for all three WRF LSM schemes at the tested exceedance 494 

probabilities. The best performance (i.e., lowest d) in each column (i.e., each soil layer of an LSM 495 

scheme) is highlighted. In addition, the d results are also plotted in Figure 8 to give a better view 496 

of the overall trend amongst different soil layers and LSM schemes. From the figure, for all three 497 

LSM schemes at all four soil layers, there is an overall downward and then stabilised trend. Overall 498 

for Noah, the simulated surface layer soil moisture provides better landslide monitoring 499 

performance than the rest of the soil layers from 1% to 35% exceedance probabilities; and the 500 

scheme’s worst performance is observed at the third soil layer centred at 70 cm. The values of d 501 
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for Noah’s second and fourth layer are quite close to each other. For Noah-MP, the simulated 502 

surface layer soil moisture gives the best performance amongst all four soil layers for most cases 503 

between the 1% and 35% exceedance probability range; and the scheme’s worst performance is 504 

observed at the fourth layer. Unlike Noah, all four soil layers from the Noah-MP scheme provide 505 

distinct performance amongst them (i.e., larger d difference). For CLM4, the performance for the 506 

surface layer is quite similar to the second layer’s, and the differences amongst between the four 507 

layers are small. From the Table 65, it can be seen for Noah the most suitable exceedance 508 

probabilities (i.e., the highlighted numbers) range between 35% to 50%; for Noah-MP they are 509 

between 30% and 50%; %, and for CLM4 it stays at 40% for all four soil layers. For both Noah 510 

and Noah-MP, the best performance is observed at the surface layer (d = 0.392 and d = 0.369, 511 

respectively)., which is in line with their correlation coefficient results against the in-situ 512 

observations (i.e., the best r value for both LSM schemes is found at the surface layer). {Zhuo, 513 

2019 #31}Furthermore, the best performance for Noah and Noah-MP follows a regular trend, that 514 

is the deeper the soil layer, the poorer the landslide monitoring performance. There are several 515 

potential reasons for such an outcome. First, the simulated soil moisture accuracy at the shallower 516 

layers are better than the deeper zones. Second, although the wetness conditions at the sliding 517 

surface are important, the soil moisture above it is also important (i.e., the loading should be 518 

heavier with more water in the upper soil layer). Third, the region has very shallow landslides. 519 

Fourth, the WRF modelled soil moisture is not accurate enough in assessing the landslide events 520 

in the study region. In order to find out the extract reasons, comprehensive studies with more 521 

detailed landslide events datasets are needed in future studies. For CLM4, the best performances 522 

show no distinct pattern amongst soil layers (i.e., with the best performance found at the soil Layer 523 

3, followed by Layer 2, 1, and 4). Of all the LSM schemes and soil layers, the best performance is 524 
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found for Noah-MP at the surface layer with 30% exceedance probability (d=0.369). Based on the 525 

d results, WRF modelled soil moisture provides better landslide prediction performance than the 526 

satellite ESA-CCI soil moisture products as shown in our previous study ((Zhuo et al., 2019), i.e., 527 

d = 0.51). The ROC curve for the Noah-MP scheme at the surface layer is shown in Figure 9. In 528 

the curve, each point represents a scenario with a selected exceedance probability level. It is clear 529 

with various exceedance probabilities, FAR can be decreased without sacrificing the HR score (e.g., 530 

4% to 10% exceedance probabilities). At the optimal point at the 30% exceedance probability, the 531 

best results for HR and FAR are observed as 0.769 and 0.289, respectively.  532 

6. Discussions and Conclusion  533 

In this study, the usability of WRF modelled soil moisture for landslide monitoring has been 534 

evaluated in the Emilia Romagna region based on the research duration between 2006 and 2015. 535 

Specifically, four-layer soil moisture information simulated through the WRF’s three most 536 

advanced LSM schemes (i.e., Noah, Noah-MP and CLM4) are compared for the purpose. Through 537 

the temporal comparison with the in-situ soil moisture observations, it has been found that all three 538 

LSM schemes at all four soil layers can produce the general soil moisture’s seasonal cycle very 539 

well. However, only Noah-MP is able to simulate the large soil drying phenomenon close to the 540 

observations during the drying season, and it also gives the highest correlation coefficient and the 541 

lowest RMSE at most soil layers amongst the three LSM schemes. However, it should be noted, 542 

the soil moisture evaluation is only based on a single point-based soil moisture sensor that is 543 

available in the plain region of the study area. Therefore, the WRF soil moisture performance over 544 

the whole study region, in particular, at the mountainous zone cannot be evaluated in this study. 545 

Since soil moisture is related to rainfall, we have carried out the WRF rainfall assessments, based 546 

on the comparison with the dense rainfall network in the region. The results have shown that there 547 
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is no distinct difference between the three LSM schemes. The WRF rainfall performance is found 548 

to be similar to a study carried out over the central USA. For landslide threshold build up, slope 549 

information is useful in identifying threshold differences, with threshold becoming smaller for 550 

steeper area. In other words, dryer soil indeed can trigger landslides in steeper slopes than in milder 551 

slopes. The result is not surprising, as the slope angle is an importance element of influencing the 552 

stabilities of earth materials. Further studiesA landslide prediction model based on soil moisture 553 

and  slope angle condition is then carried outbuilt up. 17 various exceedance probably levels 554 

between 1% and 50% are adopted to find the optimal threshold scenario. Through the ROC 555 

analysis of 612 threshold models, the best performance is obtained by the Noah-MP at the surface 556 

soil layer with 30% exceedance probability. The outstanding performance of the Noah-MP scheme 557 

at the surface layer is also in accordance with its high correlation coefficient result found against 558 

the in-situ observations. 559 

It should be noted that weighting factors are not considered in the evaluation of the threshold 560 

models. Weighting factors can include both social and economic components, for instance, it can 561 

include the cost of a disaster event (e.g., both short-term and long-term impacts), the cost of the 562 

evacuation (e.g., relocation cost, business shut down), as well as the social impacts of both cases. 563 

Nevertheless, iIn real-life situations, the weighting could play important roles during the final 564 

decision making. As for instance, the damages resulted from a missing alarm event could be much 565 

more devastating than a false alarm event, or vice versa, and the situation also varies in different 566 

regions. Therefore, during operational applications, appropriate weighting factors should be 567 

considered.  568 

In this study, the WRF is modelled based on the ERA-Interim datasets, however, it has been found 569 

in some studies, the performance of using the ERA5 has surpassed the ERA-Interim. Therefore, 570 
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the ERA5 datasets will be tested in our future studies. Model-based soil moisture estimations could 571 

be affected by error accumulation issues, especially in the real-time forecasting mode. A potential 572 

solution is to use data assimilation methodologies to correct such errors by assimilating soil 573 

moisture information from other data sources. Since in-situ soil moisture sensors are only sparsely 574 

available in limited regions, soil moisture measured via satellite remote sensing technologies could 575 

provide useful alternatives. Another issue is with the landslide record data, since most of them are 576 

based on human experiences (e.g., through newspapers, and victims), a lot of incidences could be 577 

unreported. Therefore, the conclusion made here could be biased. One way of expanding the 578 

current landslide catalog can depend on automatic landslide detection methods based on remote 579 

sensing images.    580 

In summary, this study provides an overview of the soil moisture performance of three WRF LSM 581 

schemes for landslide hazard assessment. Based on the results, wWe demonstrate that the surface 582 

soil moisture (centred at 10 cm) simulated through the Noah-MP LSM scheme is useful in 583 

predicting landslide occurrences in the Emelia Romagna region. The highWith the hitting rate of 584 

0.769 and the low false alarm rate of 0.289 obtained in this study, show such valuable soil moisture 585 

information has the potential could work in addition to the  in working with rainfall data to provide 586 

an efficient landslide early warning system at the regional scalespredictions model. However, one 587 

must bear in mind that the results demonstrated in this study are only valid for the selected region. 588 

In order to make a general conclusion, more researches are needed using the methodology 589 

described in this paper. Particularly, a considerable number of catchments with a broad spectrum 590 

of climate and environmental conditions will need to be investigated.   591 
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Table 1. Comparison of Noah, Noah-MP, and CLM4.  

 Noah Noah-MP CLM4 

Energy balance  Yes Yes Yes  

Water balance Yes Yes Yes  

No. of soil layers 4 4 10 

Depth of total soil 

column 

2.0 m 2.0 m 3.802 m 

Model soil layer 

thickness 

0.1, 0.3, 0.6, 1.0 m 0.1, 0.3, 0.6, 1.0 m 0.018, 0.028, 0.045, 

0.075, 0.124, 0.204, 

0.336, 0.553, 0.913, 

1.506 m 

No. of vegetation 

layers 

A single combined 

surface layer of 

vegetation and snow 

Single layer Single layer 

Vegetation Dominant vegetation 

type in one grid cell 

with prescribed LAI 

Dominant vegetation 

type in one grid cell 

with dynamic LAI 

Up to 10 vegetation 

types in one grid cell 

with prescribed LAI 

No. of snow layers A single combined 

surface layer of 

vegetation and snow 

Up to three layers Up to five layers 
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Table 2. WRF parameterizations used in this study. 

 Settings/ Parameterizations References  

Map projection  Lambert  

Central point of domain  Latitude: 44.54; Longitude: 11.02  

Latitudinal grid length  5 km  

Longitudinal grid length 5 km  

Model output time step  Daily  

Nesting  Two-way  

Land surface model Noah, Noah-MP, CLM  

Simulation period 1/1/2006 – 31/12/2015  

Spin-up period  1/1/2005 – 31/12/2005  

Microphysics  New Thompson (Thompson et al., 2008) 

Shortwave radiation  Dudhia scheme (Dudhia, 1989) 

Longwave radiation Rapid Radiative Transfer Model (Mlawer et al., 1997) 

Surface layer Revised MM5 (Jiménez et al., 

2012;Chen and Dudhia, 

2001) 

Planetary boundary layer Yonsei University method (Hong et al., 2006) 

Cumulus Parameterization Kain-Fritsch (new Eta) scheme (Kain, 2004) 
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Table 3. Statistical summary of the WRF performance in simulating soil moisture for different 

soil layers, based on comparison with the single point in-situ observations. 

 R RMSE (m3/m3) 

 0.10 m 0.25 m 0.70 m 1.50 m 0.1 m 0.25 m 0.70 m 1.50 m 

Noah 0.728 0.645 0.660 0.430 0.123 0.125 0.141 0.055 

Noah-MP 0.809 0.683 0.738 0.498 0.060 0.070 0.088 0.092 

CLM 0.789 0.743 0.648 0.287 0.089 0.087 0.123 0.089 
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Table 4. Statistical summary of the WRF performance in simulating rainfall for the whole study 

region, based on comparison with the in-situ rainfall network. 

 R RMSE (mm) 

 Noah Noah-MP CLM4 Noah Noah-MP CLM4 

Min 0.094 0.090 0.076 4.275 4.286 4.219 

Max 0.779 0.798 0.801 19.814 19.178 19.476 

Mean 0.425 0.426 0.421 7.772 7.719 7.943 

0.25 percentile 0.147 0.130 0.154 4.579 4.297 4.438 

0.50 percentile 0.189 0.153 0.210 4.951 4.909 4.910 

0.75 percentile 0.192 0.183 0.211 5.006 4.970 5.010 
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Table 5. Rainfall events information. 
Starting date  Ending date 

Duration  

(days) 

Rainfall  

intensity 

(mm/day) 

Number of 

Landslide 

events 
Year Month Day 

 
Year Month Day 

2014 1 13  2014 1 24 12 20.50 2 

2014 1 28  2014 2 14 18 13.61 0 

2014 2 26  2014 3 6 9 13.35 0 

2014 3 22  2014 3 27 6 11.08 0 

2014 4 4  2014 4 5 2 18.98 0 

2014 4 27  2014 5 4 8 12.13 0 

2014 5 26  2014 6 3 9 5.05 0 

2014 6 14  2014 6 16 3 18.29 0 

2014 6 25  2014 6 30 6 11.39 0 

2014 7 7  2014 7 14 8 7.84 0 

2014 7 21  2014 7 30 10 15.35 0 

2014 8 31  2014 9 5 6 5.67 0 

2014 9 10  2014 9 12 3 11.84 0 

2014 9 19  2014 9 20 2 23.04 0 

2014 10 1  2014 10 1 1 14.51 0 

2014 10 10  2014 10 17 8 13.01 0 

2014 11 4  2014 11 18 15 18.28 0 

2014 11 25  2014 12 7 13 7.58 0 

2014 12 13  2014 12 16 4 6.24 0 

2015 1 16  2015 1 17 2 14.87 0 

2015 1 21  2015 1 23 3 7.13 0 

2015 1 29  2015 2 10 13 9.98 0 

2015 2 13  2015 2 17 5 6.62 1 

2015 2 21  2015 2 26 6 11.84 4 

2015 3 3  2015 3 7 5 11.69 1 

2015 3 15  2015 3 17 3 9.00 0 

2015 3 21  2015 3 27 7 12.09 2 

2015 4 3  2015 4 5 3 16.62 0 

2015 4 17  2015 4 18 2 6.99 0 

2015 4 26  2015 4 29 4 11.23 0 

2015 5 15  2015 5 16 2 8.83 0 

2015 5 20  2015 5 27 8 10.58 1 

2015 6 8  2015 6 11 4 6.47 0 

2015 6 16  2015 6 19 4 13.44 0 

2015 6 23  2015 6 24 2 6.07 0 

2015 7 22  2015 7 25 4 6.05 0 

2015 8 9  2015 8 10 2 24.69 0 

2015 8 15  2015 8 19 5 10.69 0 

2015 8 23  2015 8 24 2 7.88 0 

2015 9 13  2015 9 14 2 24.66 1 

2015 9 23  2015 9 24 2 7.50 0 

2015 10 1  2015 10 7 7 13.73 0 

2015 10 10  2015 10 19 10 9.40 0 

2015 10 27  2015 10 29 3 20.33 0 

2015 11 21  2015 11 25 5 13.78 1 

 

  



 

41 
 

Table 6. Results of Euclidean distances (d) between individual points and the optimal point for 

ROC analysis are listed. The best performance (i.e., lowest d) for each column (i.e., each soil 

layer of an LSM scheme) is highlighted. The optimal performance of all is highlighted in red.  

 Noah Noah-MP CLM4 

e.p. (%). 10 cm 25 cm 70 cm 150 cm 10 cm 25 cm 70 cm 150 cm 10 cm 25 cm 70 cm 150 cm 

1 0.942  0.971  0.962  0.947  0.857  0.937  0.897  0.963  0.942  0.939  0.978  0.975  

2 0.906  0.945  0.963  0.923  0.854  0.912  0.883  0.959  0.923  0.922  0.959  0.952  

3 0.889  0.924  0.961  0.915  0.849  0.855  0.838  0.952  0.870  0.874  0.940  0.947  

4 0.884  0.898  0.946  0.914  0.838  0.814  0.829  0.924  0.831  0.843  0.925  0.947  

5 0.860  0.875  0.924  0.896  0.820  0.793  0.812  0.908  0.791  0.822  0.915  0.921  

6 0.835  0.854  0.910  0.874  0.803  0.785  0.800  0.905  0.770  0.817  0.911  0.909  

7 0.827  0.861  0.902  0.858  0.777  0.767  0.791  0.889  0.753  0.801  0.902  0.900  

8 0.816  0.849  0.889  0.851  0.745  0.765  0.782  0.876  0.745  0.785  0.902  0.910  

9 0.790  0.827  0.878  0.834  0.706  0.732  0.766  0.871  0.742  0.777  0.864  0.904  

10 0.762  0.811  0.863  0.825  0.672  0.702  0.747  0.862  0.738  0.767  0.835  0.887  

15 0.615  0.741  0.839  0.763  0.560  0.629  0.716  0.835  0.702  0.700  0.729  0.790  

20 0.485  0.627  0.779  0.652  0.515  0.571  0.624  0.774  0.570  0.602  0.594  0.650  

25 0.432  0.544  0.728  0.512  0.403  0.465  0.574  0.736  0.509  0.522  0.471  0.509  

30 0.437  0.495  0.643  0.451  0.369  0.375  0.544  0.679  0.475  0.477  0.447  0.469  

35 0.392  0.446  0.592  0.436  0.390  0.404  0.411  0.498  0.441  0.435  0.428  0.430  

40 0.500  0.407  0.531  0.416  0.439  0.385  0.382  0.436  0.406  0.405  0.398  0.410  

50 0.552  0.425  0.404  0.411  0.489  0.417  0.416  0.429  0.437  0.435  0.408  0.437  
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Figure 1． Location of the Emilia Romagna Region with elevation map and in-situ soil moisture 

station also shown. 
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Figure 2. Landslide events with slope angle map.  
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Figure 3. a) Contingency table illustrates the four possible outcomes of a binary classifier model: 

TP (True Positive), TN (True Negative), FP (False Positive), and FN (False Negative). b) ROC 

(Receiver Operating Characteristic) analysis with HR (Hitting Rate) against FAR (False Alarm 

Rate). 
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Figure 4. Soil moisture temporal variations of WRF simulations and in-situ observations for four 

soil layers at a) 10 cm; b) 25 cm; c) 70 cm; and d) 150 cm. 
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Figure 5. Rainfall evaluation: spatial distribution of the correlation coefficient R of a) Noah, b) 

Noah-MP and c) CLM4.  
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Figure 6. Boxplots of rainfall evaluation results of a) R and b) RMSE: minimum, maximum, 

0.25, 0.50 and 0.75 percentiles, and outliers (red cross).  

  



 

48 
 

 

Figure 7. Threshold plots. For Noah (a, d, g, j), Noah-MP (b, e, h, k), and CLM4 (c, f, i, l) land 

surface schemes under three Slope angle Groups (S.G.) with S.G. 1 = 0.4-1.86o; S.G. 2 = 1.87-

9.61o; S.G. 3 = 9.52-40.43o. 
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Figure 8. d-scores.  
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Figure 9. ROC curve for the calculated thresholds using different exceedance probability levels 

(for Noah-MP at the surface layer). The no gain line and the optimal performance point (the red 

point) are also presented.  

 

 

 

 

 


