
Supplementary Material 

SM.1 State-Space Model Structure 

Mathematical models with state-space structure (Schweppe, 1973) can provide decision 

support methods for developing management plans that consider the impacts of hydrologic and 

land use alterations on water temperature. State-space models for continuous time have the 

general, nonlinear form: 
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and discrete time:           
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where C() is a vector of state variables, f and   are known, nonlinear functions, u are known 

inputs with uncertainty characterized by w, and the evolution of time is described by the number 

of time steps, n, at discrete intervals, . 

In practice, linearization methods are used to obtain solutions to (2) in the form 

(Schweppe, 1973): 
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where, B[C(n)] and u(n) are the known inputs, w(n) is a zero mean uncertainty process, and 

G[x(n)] is a known function of time characterizing the uncertainty, 

When a solution exists that is reasonably close to the true system state, C(n), then (3) can 

be written, to first order, as:  
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where Cnom(n) is a state estimate for which the uncertainty is zero, (w(n) = 0.0),  B[Cnom(n), 

n and u(n) are the known inputs, and F(1)[Cnom(n), n] is a first-order model of the 

uncertainty. The nominal solution differs conceptually from the so-called “deterministic” 

solution, for which the uncertainty is also zero. Deterministic solutions consist of a single solution 

that is fully determined by the parameter values. The nominal solution is only an estimate of the 

true system state. So long as the nominal solution remains close to the true system state, 

linearization of the elements of the nominal solution can be used to estimate uncertainty 

(Schweppe, 1973), as in Yearsley (2012). 

SM.2 Stream and River Segments Dominated by Advection 

The linearized, discrete-time nominal (w(n) = 0.0) solution for a gridded river network in 

a Lagrangian frame of reference (Yearsley, 2009) having the form of (1) is given by   
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where Tnom() is water temperature (°C), ρ is the density of water (kg/m3), Cp is the specific heat 

capacity of water (J/kg/°C), FT[] is the vector transpose of the thermal energy budget components 

that are a function of the water temperature T() (W/m2), hT() is the vector transpose of the known 

inputs to the thermal energy balance that are not a function of the water temperature T(), D(n∆,xj) 

is channel depth (m) at time n and distance xj, and BT() is the vector transpose of advected 

sources of thermal energy from tributaries, groundwater point sources and hyporheic flow (°C/s), 

and (xj) is the time increment for a Lagrangian parcel to travel from the upstream (us) starting 

point, xj
us, to the boundary of the jth grid cell at xj.  
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where U(j) is the river speed in the jth grid cell (m/s), is the upstream location of a Lagrangian 

parcel (meter), is the downstream location (in meter) of a Lagrangian parcel after a time of 

travel (xj). 

Stream depth, D(n,xj), and stream speed, U(n,xj), in the particle-tracking algorithm are 

estimated with the method of Leopold and Maddock (1953), as in Chapra et al. (2003), and 

Yearsley (2012): 
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where the parameters, da, db, ua and ub  are estimated from rating tables prepared by USGS for the 

freely-flowing stream segments and Q(n,xj) is the segment streamflow and from reservoir 

geometry obtained from the US Army Corps of Engineers’ (USACE) (2016) National Inventory 

of Dams (NID) for impoundment segments.  

 For those lakes and impounded segments with shallow depths and short residence times 

we estimated the speed of the water parcel U(nxj), could be estimated from the continuity 

equation: 
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where Ax(n,xj) is the cross-sectional area of the impoundment segment.  

The solution to Equation (5) is subject to the initial conditions at time, n = 0, 
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and the headwaters conditions 
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As in previous studies (Sun et al., 2015; Wu et al., 2012; Yearsley, 2012, 2009), we estimated 

headwaters temperatures with a nonlinear regression of the logistic relationship between air 

temperature and water temperature due to Mohseni et al. (1998): 
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where Thead is daily headwaters temperature (°C), Tsmooth is smoothed air temperature (°C), and α, 

β, μ, γ are regression parameters.   

 The terms in Equation (5) for advection and the transfer of thermal energy at the air-

water interface due to incoming longwave and shortwave radiation, emitted and reflected 

radiation from the water surface, and latent and sensible heat transfer resulting from evaporation 

and conduction and uncertain processes in the thermal energy budget. Parameterization for the 

elements of FT() and hT() related to the transfer of thermal energy across the air-water interface is 

based on first principles of physics and atmospheric chemistry as well as numerous field studies 

(e.g., Tennessee Valley Authority, 1972; Boyd and Kasper, 2003). Elements of the matrices, FT() 

and hT(), are defined below. However, it is necessary to estimate other elements of the parameter 

space independently. This includes the relationships for initial conditions (Equation 7), the 

headwaters temperatures (Equation 8), and those that determine the stream hydraulic response, as 

characterized by stream speed and depth.  

For these assumptions, the nominal solutions to the thermal energy budget for those stream 

and river segments that we have assumed will stratify vertically are: 
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Hypolimnion  
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Elements of F[Tepi()], hepi() and B(Thyp()) are defined below. 

 The thermal energy budget for each stream segment is comprised of the thermal energy 

that is transferred across the air-water interface and the advected energy from tributary inflow. 



The formulation of the elements in the terms, F[T(n)] and h(n), of Equations (5), (9a) and (9b) 

is derived from previous studies (Boyd and Kasper, 2007; WEBB and ZHANG, 1997) and from 

the MTCLIM algorithms developed for purposes of forcing large scale hydrologic models (Bohn 

et al., 2013; Thornton and Running, 1999): 
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where Hcon[T(n)] is thermal energy flux due to conduction, Hback[T(n)] is the flux due to black 

body radiation from the water surface, and Hevap[T(n)] is the flux due to the latent heat loss due 

to evaporation. 

  ( ) ( ) ( )sw lwh n H T n H T n =  +   (S.15) 

where HswT(n) is the shortwave solar radiation reaching the water surface after attenuation by 

riparian vegetation and HlwT(n) is the longwave atmospheric radiation reaching the water 

surface.  

The advected thermal energy, B[T(n)], is associated with tributary inflow to the stream 

segment; 

  [ ( )] ( )[ ( ) ( )]mix tribB T n S n T n T n =   −   (S.16) 

where Smix(n) is the ratio of the volume of the tributary inflow to the segment volume and 

Ttrib(n) water temperature of the tributary inflow.  

SM.3 Stream Temperature Model Evaluation 



 

Figure S.1: Time series comparing simulated and observed three-hourly stream temperatures at 

16 CTDEEP sites in the Farmington River basin.  

 

 

 

 


