Assessing the influence of soil freeze-thaw cycles on catchment water storage – flux – age interactions using a tracer-aided ecohydrological model

3 Aaron A. Smith¹, Doerthe Tetzlaff^{1,2,3}, Hjalmar Laudon⁴, Marco Maneta⁵, Chris Soulsby³

- ¹IGB Leibniz Institute of Freshwater Ecology and Inland Fisheries Berlin, Berlin, Germany
- ⁵ ²Humboldt University Berlin, Berlin, Germany
- 6 ³Northern Rivers Institute, School of Geosciences, University of Aberdeen, UK
- 7 ⁴Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
- 8 ⁵Geosciences Department, University of Montana, Missoula, MT
- 9
- 10 **Correspondence:** Aaron Smith (<u>smith@igb-berlin.de</u>)
- 11

12 Abstract

Ecohydrological models are powerful tools to quantify the effects that independent fluxes may have on catchment storage 13 14 dynamics. Here, we adapted the tracer-aided ecohydrological model, EcH2O-iso, for cold regions with the explicit 15 conceptualisation of dynamic soil freeze-thaw processes. We tested the model at the data-rich Krycklan site in northern Sweden with multi-criteria calibration using discharge, stream isotopes and soil moisture in 3 nested catchments. We utilized the model's 16 17 incorporation of ecohydrological partitioning to evaluate the effect of soil frost on evaporation and transpiration water ages, and 18 thereby the age of source waters. The simulation of stream discharge, isotopes, and soil moisture variability captured the seasonal 19 dynamics at all three stream sites and both soil sites, with notable reductions in discharge and soil moisture during the winter 20 months due to the development of the frost front. Stream isotope simulations reproduced the response to the isotopically-depleted 21 pulse of spring snowmelt. The soil frost dynamics adequately captured the spatial differences in the freezing-front throughout the 22 winter period, despite no direct calibration of soil frost to measured soil temperature. The simulated soil frost indicated a maximum 23 freeze-depth of 0.25 m below forest vegetation. Water ages of evaporation and transpiration reflect the influence of snowmelt-24 inputs, with a high proclivity of old water (pre-winter storage) at the beginning of the growing season and a mix of snowmelt and 25 precipitation (young water) toward the end of the summer. Soil frost had an early season influence of the transpiration water ages, 26 with water pre-dating the snowpack mainly sustaining vegetation at the start of the growing season. Given the long-term expected 27 change in the energy-balance of northern climates, the approach presented provides a framework for quantifying the interactions 28 of ecohydrological fluxes and waters stored in the soil and understanding how these may be impacted in future.

29 1. Introduction

30 Northern watersheds are sensitive hydrologic sites where a significant proportion of the annual water balance is controlled 31 by the spring melt period (Kundzewicz et al., 2007) and can thus be key sentinels for detecting climate change impacts (Woo, 32 2013). Recent data and long-term climate projections indicate a significant increase in warming for extensive areas of boreal forests 33 currently experiencing low-energy, low-precipitation hydroclimatic regimes (Pearson et al., 2013). The limited number of long-34 term monitoring sites with high-quality data is a concern because it may prove difficult to document the anticipated hydrological 35 change in these catchments (Laudon et al., 2018; Tetzlaff et al., 2015). Within changing northern catchments, with high water loss 36 due to transpiration (~ $48 \pm 13\%$) (Schlesinger and Jasechko, 2014), and significant influence of evapotranspiration (ET) fluxes on 37 streamflow (Karlsen et al., 2016a), the long-term ecohydrological implications of vegetation adaptation, plant water use, and the 38 water sources that sustain growth are crucial to understand and quantify. Vegetation in boreal regions also exerts strong influences 39 on the energy balance of such catchments, with low leaf area index (LAI) conifer forests and shrubs affecting the surface albedo, 40 snow interception and affecting the timing and duration of the largest input fluxes of water during snowmelt (Gray and Male, 41 1981). However, the interactions between soil water storage and "green water" fluxes of transpiration and evaporation are poorly 42 constrained in northern regions, and the way in which sources of water from inputs of snowmelt and summer rainfall mix and 43 sustain plant growth is only just beginning to be understood (Sprenger et al., 2018a). Assessment of these interactions in northern 44 catchments is further complicated by large temperature variations, and the resulting stagnation of hydrological processes induced by frequent frozen ground conditions. With increasing temperatures and potential changes to the winter soil freeze-thaw dynamics 45 46 (e.g. Venäläinen et al., 2001), it is important to establish how these affect current vegetation-soil water interactions to project the 47 implications of future change.

48 The intricate complexities of changes in the land surface energy balance, temporal changes in sub-surface storage due to frost 49 conditions, and vegetation and soil water usage (transpiration and soil evaporation, respectively), are notoriously challenging to 50 continuously monitor (Maxwell et al., 2019), particularly in northern environments, where site access is typically remote and 51 extreme cold can limit in-situ monitoring devices. In these circumstances, the fusion of sparsely available data with hydrological 52 models is an effective method to quantify water fluxes and storage dynamics at different temporal and spatial scales. While the 53 calibration of such models requires significant hydrometric data inputs, recent work has shown that incorporation of stable isotopes 54 can be an effective tool for constraining the model estimations of storage - flux interactions in the absence of direct in-situ 55 measurements. Such models include (but are not limited to); the STARR (Spatially distributed Tracer-Aided Rainfall-Runoff) 56 model (van Huijgevoort et al., 2016), which was developed for tracer-aided simulations and calibration, and adapted for additional 57 cold-regions processes (Ala Aho et al., 2017a and b; Piovano et al., 2018), CRHM (Cold Regions Hydrologic Model) specific for 58 cold regions (Pomeroy et al., 2007), but not currently using tracers, the isoWATFLOOD model (Stadnyk et al., 2013), which has 59 been used to isolate water fluxes with tracer-aided modelling in large-scale applications in northern regions of Canada, and the 60 EcH₂O-iso model (Maneta and Silverman, 2013; Kuppel et al., 2018 a and b), which was developed as a process-based, coupled 61 atmosphere-vegetation-soil energy balance ecohydrologic model, and modified to incorporate isotopic tracers (stable isotopes 62 deuterium and oxygen-18, δ^{2} H and δ^{18} O, respectively). However, apart from EcH₂O-iso, which explicitly conceptualises short-63 term (diurnal and seasonal) and long-term (growth-related) vegetation dynamics and biomass productivity, most of these existing 64 models were mainly developed with a focus on runoff generation ("blue water" fluxes). Consequently, they have very simplistic representation of vegetation – soil – water interactions, estimating ET by approximating the physical transpiration controls of 65 66 vegetation (e.g. Penman-Monteith and Priestley-Taylor methods) and partitioning fluxes after estimation of actual ET (Fatichi et 67 al., 2016).

68 Currently, EcH₂O-iso, already incorporates some cold region processes, namely snowpack development, a snowmelt routine, 69 and the influence of temperature effects on vegetation productivity. While the depth of the snowpack is not directly estimated (only 70 snow water equivalent is tracked), the surface energy balance incorporates snowpack heat storage to estimate the warming phase 71 with effective snowmelt timing (Maneta and Silverman, 2013). The model additionally estimates soil temperature, however, 72 freezing temperature and soil frost development are adaptations that are needed for use in catchments with extensive freezing 73 conditions. Soil freeze-thaw has the potential to significantly influence soil moisture conditions, tracer dynamics, and the 74 magnitude and ages of all water fluxes. Soil freeze-thaw cycles have been estimated with a variety of methods, ranging from the 75 Stefan equation (i.e. cumulative freezing temperatures) to the more physically based Richards-Fourier calculations (e.g. Zhang et 76 al., 2007; Zhang et al., 2011). The simplicity of the Stefan equation is useful in many circumstances, including where computational 77 efficiency is important (as in with EcH₂O-iso) which restricts the use of small time and space steps of physically based models. 78 Additionally, the Stefan equation works well in most environments when soil latent heat is much larger than the sensible heat, and 79 there are linear gradients of soil temperature (Jumikis, 1977). The incorporation of tracer dynamics to EcH₂O-iso open 80 opportunities to strengthen the evaluation of the model processes (Kuppel et al., 2018b) and permits the use of tracers in calibration 81 (Douinot et al., 2019). Here, our overall aim was to provide a framework for assessing vegetation influences on the hydrology of 82 cold-regions by adapting the EcH₂O-iso model and testing it in the intensively monitored Krycklan catchment in northern Sweden. The specific objectives of the study are three-fold; 1) to assess the capability of a spatially distributed, physically-based 83 84 ecohydrological model to capture the influence of snow and soil freeze-thaw processes on water storage dynamics, and the resulting 85 flux magnitudes under different vegetation communities (forest vs mire), 2) To examine the influence of soil frost on the dynamics 86 and age of water fluxes within the catchment, and 3) provide a generic modelling approach for application to other frost affected 87 catchments. In the adaptation of EcH2O-iso to cold regions and the assessment of the simulated vegetation-soil water interactions 88 with frost conditions, we aim to improve the understanding and projecting the future role of vegetation in cold regions hydrology.

89 2. Model description and extensions for this paper

90 **2.1 EcH₂O-iso model**

Recent advances in hydrological modelling have included more explicit process-based conceptualisation of ecohydrological interactions (Fatichi et al., 2016) and the integration of tracer-based data (Birkel and Soulsby, 2015). The EcH₂O model (Maneta and Silverman, 2013) was developed as an ecohydrological model coupling land-surface energy balance models with a physicallybased hydrologic model. This explicitly includes the dynamics of vegetation growth and vertical and lateral ecohydrological exchanges.

96 2.1.1 EcH₂O energy balance

97 The energy balance is computed for two-layers, the canopy, and surface. The solution of the energy balance is used to calculate 98 the available energy reapportionment for transpiration, interception evaporation, soil evaporation, snowmelt, ground heat storage, 99 and canopy and soil temperature. The canopy energy balance is iteratively solved at each time step until canopy temperature 100 converges to the estimated value that balances radiative (incoming and outgoing short and long wave radiation), and turbulent 101 energy fluxes (sensible and latent heat) (Maneta and Silverman, 2013; Kuppel et al., 2018 a and b). Long- and shortwave radiation 102 transmitted through the canopy to the soil and longwave radiation emitted by the canopy toward the ground drive the surface 103 energy balance. The surface energy balance components include radiative exchanges (incoming and outgoing short and long-wave 104 radiation), sensible, latent, and ground heat fluxes, as well as heat storage in the soil and in the snowpack. Soil evaporation is 105 estimated with the latent heat, using the atmospheric conditions (air density and heat capacity), soil resistance to evaporation, and 106 the aerodynamic resistance (surface and canopy) of the evaporative surface (Maneta and Silverman, 2013). The transpiration is 107 estimated at the leaf and is dependent on the vapour pressure gradient from the leaf to the atmosphere, the canopy resistance to 108 vapour transport, vegetation properties, and the current soil saturation conditions (Maneta and Silverman, 2013). While the energy 109 balance apportions energy to each storage (i.e. soil and snowpack), when the snowpack is present, estimated surface temperatures 110 refer to the snowpack surface, and the surface temperature of the ground is assumed to be at the temperature of the snowpack, 111 which means that conductive heat transfer between soil and snowpack is 0 (no thermal gradient). Also, when the snowpack is 112 present latent heat for surface evaporation is set to 0. When no snowpack is present, the ground heat flux (and soil temperature) is 113 estimated with the one-dimensional (1D) diffusion equation with two thermal layers, where the bottom of the top thermal layer is 114 estimated with the thermal conductivity and heat capacity of the thermal layer (Maneta and Silverman, 2013). The 1D diffusion 115 equation is only used during the snow-free conditions since soil frost causes discontinuities in the estimation of the thermal layers. 116 While soil temperature is estimated within EcH₂O (at the interface of the first and second soil thermal layer), there is currently not 117 a freezing-routine for soil water below 0°C.

118 2.1.2 EcH₂O-iso tracer and water age module

119 EcH₂O has previously been adapted to incorporate the tracking of hydrological tracers including stable isotopes (Kuppel et 120 al., 2018b) and chloride (Douinot et al., submitted), and adapted to compute estimations of water age in water storage and fluxes. 121 Isotopic fractionation is simulated in soil water using the Craig-Gordon model (Craig and Gordon, 1965), and tracer mixing is 122 simulated using an implicit first-order finite difference scheme. Full details of the implementation of the isotopic module are in 123 Kuppel et al., (2018a). These adaptations do not consider fractionation of snowmelt or open water evaporation. Water ages are 124 estimated assuming complete mixing in each water storage compartment. Similar to other snowmelt tracer models (eg. Ala-aho et 125 al., 2017a), the snowmelt ages are defined as the time the snow enters the catchment, rather than the time of melt. This results in 126 older water estimations during the freshet period and a more complete estimate of the time that water has resided in the catchment.

127 2.2 Soil water freeze-thaw adaptation

Hydrology in cold regions can be greatly affected by the freeze-thaw cycles of soil water during the winter, resulting in reduced liquid water storage capacity during the spring melt and a restricted capability for infiltration due to the expansion of ice in pore spaces (Jansson, 1998). The depth of the soil frost can have a large influence on the timing of snowmelt runoff and provide an estimation of the liquid water available within a soil layer (Carey and Woo, 2005). The Stefan equation is a simple energy balance approach to estimate the progression of soil water freezing (Jumikis, 1977):

$$\Delta z_f = \left[\frac{2k_f (T_s - T_f)}{\lambda \theta}\right]^{1/2} \tag{1}$$

133 where $\Delta z_f(m)$ is the change in depth of the frost and is a function of the thermal conductivity of the frozen soil layers between the frost depth and the soil surface (k_f , W·m⁻¹·C⁻¹), the soil surface temperature below the snowpack (T_s °C), the temperature of freezing 134 135 $(T_f \circ C)$, the latent heat of freezing (λ , J·m⁻³), and the liquid soil moisture (θ , m³·m⁻³). As with previous approaches (Jumikis, 1977; 136 Carey and Woo, 2005), the progression of the soil frost is estimated by discretizing the total soil depth into smaller layers. Within 137 EcH₂O-iso, the sub-surface soil regime is discretized into three soil layers, layer 1 (near the surface), layer 2, and layer 3 138 (groundwater to bedrock), to resolve the water balance and estimate soil moisture. Here, the depths of layer 1, 2, and 3 were used 139 as the layers since they intrinsically incorporate the soil moisture estimations without additional parameterisation. The thermal 140 conductivity of frost affected layers is dependent on the moisture content of the soil:

$$k_f(i) = \left(k_{sat} - k_{dry}\right) \cdot \left(\frac{\theta(i)}{\phi(i)}\right) + k_{dry}$$
⁽²⁾

where $k_f(i)$ (W·m⁻¹·C⁻¹) is the thermal conductivity of frozen soil in layer *i*, k_{sat} (W·m⁻¹·C⁻¹) is the thermal conductivity of saturated soil, k_{dry} (W·m⁻¹·C⁻¹) is the thermal conductivity of dry soil, $\theta(i)$ (m³·m⁻³) is the soil moisture in layer *i*, and $\phi(i)$ (m³·m⁻³) is the soil porosity in layer *i*. The saturated thermal conductivity was estimated from the proportions of soil comprised of ice, liquid water, air, organic material, and mineral soil (Carey and Woo, 2005):

$$k_{sat} = \prod_{n=1}^{5} k(j)^{f(j)}$$
(3)

145 where j is the thermal conductivity of each volume proportion, f is the fraction of total soil volume, and k is the thermal

146 conductivity of volume *j*. Without proportions of soil organic and mineral material, the bulk soil thermal conductivity (k_{dry}) is

147 considered the weighted average of organic and mineral thermal conductivity (only 4 total volumes in Eqn 3). Implementation of

- Eqns 1-3 for freezing layers below the ground surface are ideal for EcH₂O as the model estimates the parameters (T_s , and θ) or
- includes parameterisation of physical properties (λ , k_{dry} , ϕ , k_{water} , k_{air}), and only requires the addition of the thermal conductivity
- of ice (2.1 W·m⁻¹·C⁻¹, Waite et al., 2006). Within EcH₂O, the estimation of surface temperature (above the snowpack) is assumed
- 151 to be isothermal with the snowpack and conduction through the snowpack is not considered. However, conduction through

- snowpack is important for the Stefan equation (Eqn 1) as the surface temperature used is below the snowpack which is generally
- thermally insulated by the snowpack. To address the conduction through the snowpack without snow depth or density, the
- estimated surface temperature above the snowpack (T_{Est}) was damped with a single unitless parameter (*D*) such that $T_s = T_{Est} D$.

To account for the reduction of the infiltration rate due to ice, models have previously adjusted the soil hydraulic conductivity (e.g. Jansson, 1998). Here, the reduction in hydraulic conductivity is estimated using an exponential function:

$$K_{wf} = 10^{fc \cdot F} K_{sat} \tag{4}$$

where K_{wf} (m·s⁻¹) is the hydraulic conductivity of the soil influenced by ice, K_{sat} (m·s⁻¹) is the saturated hydraulic conductivity of ice-free soils, *fc* is a unitless ice-impedance parameter, and *F* is the fraction of frost depth to total soil depth. Equation (4) has two

key assumptions: no ice lenses or frost heaving, and no soil volume expansion due to lower ice density (assumed 920 kg/m³ at ice temperature $0-5^{\circ}$ C).

161 **2.3** Soil frost volume, depth, and water age

162 As soil frost progresses through the layers, the proportion of liquid water is assumed to decrease at the same rate as the

proportion of unfrozen soil. Similar to other approaches estimating the moisture content of frost-affected soils (Jansson, 1998), a

minimum liquid soil moisture was retained in all frozen soils. This minimum was assumed to be the residual soil moisture (θ_r),

the minimum moisture content required for evaporation and root-uptake. Following the estimation of the soil water infiltration

and redistribution of soil water within EcH₂O, the change in soil moisture due to freezing in each layer is estimated:

$$\Delta \theta = (\theta(i) - \theta_r) \cdot \frac{\Delta z_f}{d(i) - d_F(i)}$$
⁽⁵⁾

167 where $\Delta \theta$ (m³·m⁻³) is the change in liquid water and ice content, $\theta(i)$ (m³·m⁻³) is the initial liquid content in layer i, θ_r (m³·m⁻³) is

168 the residual moisture content, d(i) (m) is the total depth of layer i, and $d_F(i)$ (m) is the depth of frost in layer i. Step-wise

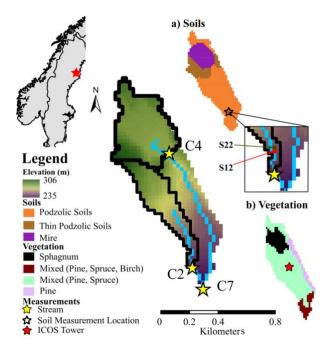
- 169 estimation of freeze and thaw for each layer is provided in more detail in Appendix A. The water age of the ice is estimated in a
- 170 similar way to the liquid water ages of the soil layers (Kuppel et al., 2018b):

$$V_{res}^{t+\Delta t}A_{res}^{t+\Delta t} - V_{res}^{t}A_{res}^{t} = q_{in}A_{in}^{t+\Delta t} - q_{out}A_{res}^{t+\Delta t}$$
(6)

where t is time (sec), Δt is the time-step (sec), V_{res} (m³) is the volume of ice in storage, q_{in} (m³) is the volume of water from the change in soil moisture during freeze-up (using $\Delta \theta$ in Eqn 5), q_{out} (m³) is the volume of water from the change in soil moisture during thaw (from. Eqn 5), and A (sec) is the water age (subscripts *res* and *in* are the water ages in storage and inflow, respectively). Similar to the isotope and vegetation modules in EcH₂O, the frost dynamics (i.e. frost depths and water ages) were implemented as an option within EcH₂O.

176 2.4 Isotope snowmelt fractionation

Isotopic fractionation of snowmelt can have a significant influence on the composition of streams (Ala-aho et al., 2018a). Previous successful applications of a simple approach equation to estimate the isotopic fractionation of snowmelt at multiple locations has shown that low-parameterised fractionation models can be used to spatially approximate snowmelt fractionation. One of the noted limitations of the simple snowmelt fractionation approach used in Ala-aho et al., (2018a), is the dependence of the snowmelt fractionation on the past snowmelt volumes (total days of melt, d_{melt}) rather than current snowmelt rate ($\delta^2 H_{melt} =$ $\delta^2 H_{pack} - M_{frac}/d_{melt}$, M_{frac} is a fractionation parameter, in Ala-aho et al., 2018a). The approach was modified to include the snowmelt rate with one additional parameter using an exponential function:


$$\delta^{2} H_{melt} = \delta^{2} H_{pack} - \left(S \cdot exp\left(-S \cdot \left(1 - \frac{SWE - M}{SWE_{max}} \right) \right) \right) \cdot C$$
⁽⁷⁾

where $\delta^2 H_{melt}$ (‰) is the isotopic composition of the snowmelt, $\delta^2 H_{pack}$ (‰) is the composition of the snowpack at the beginning 184 185 of the time-step, SWE (m) is the snow water equivalent at the current time, SWE_{max} (m) is the maximum snow water equivalent 186 before melt, M (m) is the total depth of snowmelt in the current time-step, S is a unitless slope parameter describing the shape of 187 the exponential change of the snowmelt fractionation, and $C(\infty)$ is an amplification factor. Eq (7) serves as the mass-balance for 188 the snowpack isotopes throughout the winter and spring melt period. In comparison to Ala-aho et al (2018a), the exponential form 189 works to temporally change the shape of the fractionation as a relationship to the amount of melt (i.e. replacing $1/d_{melt}$). Higher 190 values of S (10-20) result in larger early melt fractionation and limited late melt fractionation, while low values of S result in a 191 lower, but more consistent fractionation throughout the melt period. The amplification factor behaves as a simplification of atmospheric effects on the snowmelt fractionation. The isotopic composition of the snowpack is updated at the end of each time-192 193 step.

194 **3. Data and study site**

195 3.1 Study site

196 Svartberget (C7, 0.49 km²) is a small subcatchment situated in the headwaters of the Krycklan catchment (64°14'N, 19°46'E) 197 in northern Sweden. Svartberget is a well-studied site with long-term data collection including: streamflow (1991-present), stream 198 chemistry (2000-present), and hillslope transect measurements (soil moisture and water chemistry). Svartberget has two 199 subcatchments, Västrabäcken (C2, 0.12 km²) and Mire (C4, 0.18 km²) (Fig. 1). The topographic relief of C7 is 71 m (235 – 306 m 200 a.s.l.), with 57 m of relief in C2 (247 - 304 m a.s.l.) and only 26 m of relief in C4 (280 - 306 m a.s.l.) (Fig 1). The climate is 201 subarctic (in the Köppen classification index), with annual precipitation of 614 mm, evapotranspiration (ET) of 303 mm, mean 202 relative humidity of 82 %, and a 30 year mean annual temperature of 1.8 °C (Laudon et al., 2013). The relatively low topography 203 results in no observable influence of elevation on precipitation (Karlsen et al., 2016b). The catchment experiences continuous 204 snowpack development throughout the winter, accounting for approximately a third of the annual precipitation and lasting on 205 average 167 days (Laudon and Löfvenius, 2016). The large quantity of snowfall results in a dominant snowmelt-driven freshet 206 period (Karlsen et al., 2016a). Till (10 - 15 m thick) covers the majority of the downstream catchment area (C7, 92% downstream 207 of C4) with intermittent shallow soils in the headwaters of C2 (Fig. 1a). The catchment is predominantly forest covered (82% total, 208 98% downstream of C4), with Scots Pine (Pinus sylvestris), Norway Spruce (Picea abies), and Birch (Betula spp.). The Mire (Fig 209 1b) is dominated by Sphagnum mosses.

211

Figure 1: Location of the Svartberget within Sweden and its elevation profile with the channels and stream measurement locations 212 (yellow). Inset figures show (a) catchment soils with the locations of S12 and S22, and (b) catchment vegetation.

213 3.2 Input and calibration datasets

214 3.2.1 Stream discharge and isotope datasets

215 The discharge at the three streamflow locations has been measured with hourly stream stage measurements using pressure 216 transducers. V-notch weirs improve measurement accuracy, aided by monthly salt dilution gauging to validate results. Average 217 discharge in the catchment varies from 9×10^{-4} m³/s (C2) to 4×10^{-3} m³/s at the outlet (C7), with maximum discharge events up to 0.1 m³/s (C7) during spring freshets (0.02 m³/s and 0.03 m³/s at C2 and C4, respectively). The evaluation of the stable isotopes 218 δ^{2} H and δ^{18} O of stream water were carried out for the stream water samples collected every two weeks at each site. Long-term 219 220 average δ^2 H is similar between streams (-95.5, -94.5 and -95.6 % for C7, C2, and C4 respectively), with the highest isotopic 221 variability at site C4 (standard deviation (SD) of 7.9 ‰) and lowest at C2 (SD of 4.5 ‰) with C7 intermediate.

222 3.2.2 Meteorological datasets

223 Precipitation (rain and snowfall), temperature, wind speed, and relative humidity were measured daily at the Svartberg 224 meteorological station, 150 m southwest of the catchment. Radiation data, incoming longwave and shortwave radiation, were 225 obtained at 3-hourly time-steps and 0.75 x 0.75 km grid resolution from ERA-Interim climate reanalysis (Dee et al., 2011). During 226 the study, a 150 m observation tower (Integrated Carbon observation system, ICOS Tower) was installed within the catchment. 227 Data from the ICOS tower were available from 2014 to 2015. The ICOS tower measures energy fluxes, latent and sensible heat, 228 and net radiation, among other atmospheric parameters. The isotopic composition of precipitation was determined on daily bulk 229 samples following each major rain and snow event. The average precipitation $\delta^2 H$ (weighted mean -95.1 ‰) is similar to the stream 230 isotopic composition, though the isotopic variability is between 4.4 - 7.8 times larger.

231 Table 1: Datasets used for forcing, calibration and validation within the Svartberg catchment

Input Meteorological Forcing Data				
	Location	Resolution	Time-Period	
Air Temperature (minimum,	Svartberg	Daily	2005-2016	
maximum, and mean) (°C)				
Precipitation $(m \cdot s^{-1})$	Svartberg	Daily	2005-2016	

Wind speed $(m \cdot s^{-1})$	Svartberg	Daily	2005-2016
Relative Humidity (%)	Svartberg	Daily	2005-2016
Longwave Radiation	ERA-	Daily	2005-2016
$(W \cdot m^{-2})$	interim		2000 2010
Shortwave Radiation	ERA-	Daily	2005-2016
(W⋅m ⁻²)	interim		
δ^2 H Precipitation (‰)	Svartberg	Event-based	2005-2016
Calibration and Validation	Datasets		•
	Location	Resolution	Time-Period
	C7	Hourly	2005 - 2016
Discharge (m $3 \cdot s^{-1}$)	C2	Hourly	2005 - 2016
	C4	Hourly	2005 - 2016
Stream isotopes (%)	C7	Biweekly	2005 - 2016
	C2	Biweekly	2005 - 2016
_	C4	Biweekly	2005 - 2016
	S12	Hourly at depth of 5, 10, 20, 30, 40, 60 cm	2013 - 2016
Soil Moisture (m ³ ·m ⁻³)	S22	Hourly at depth of 6, 12, 20, 50, 60, 90 cm	2013 - 2016
Validation Only Datasets			
	Location	Resolution	Time-Period
Soil Isotopes (Lysimeter,	S12	9 samples: 10, 20, 30, 40, 60, and 70 cm	2012
‰)	S22	9 samples: 10, 20, 35, 50, 75, and 90 cm	2012
Soil Isotopes (Bulk Water,			2015 - 2016
‰)	S22	7 samples: 10, 20, 30, 40, 60, and 70 cm	2015 - 2016
Soil Temperature (°C)		30 min @ 4 locations at depths 5, 10, 15, 30, and 50 cm	
Net Radiation (W·m ⁻²)	ICOS	30 min	2014 - 2015
Latent Heat (W·m ⁻²)	Tower	30 min	2014 - 2013
Sensible Heat (W·m ⁻²)		30 min	

232

233 *3.2.3 Soil moisture and isotope datasets*

Soil moisture sensors were installed in 1997 and replaced at the beginning for 2013. The soil moisture sensors were installed at the hillslope transect location at 4, 12, 22, and 28 m locations from the C2 stream. The depths of the soil moisture measurements slightly differ between sites (Table 1); however, the depths encompass shallow and deep soil waters. Soil sensors have also been installed in the area surrounding the ICOS tower, measuring soil temperature at 4 locations and 6 depths (10, 20, 30, 40, 60, and 70 cm, Appendix B) (Table 1) which can provide a proxy for the depth of the frost. Soil isotopes (δ^{2} H and δ^{18} O) were measured at multiple depths (2.5 cm increments) measured via lysimeters (2012) and bulk water samples (2015 – 2016).

240 3.3 Model set-up and calibration

241 All simulations were conducted on a daily time-step between January 2005 and September 2016. The period from January 242 2005 to December 2009 was used as a spin-up period with measured hydrologic data, to stabilize $\delta^2 H$, $\delta^{18} O$ composition, and water 243 ages in each of the model storage units. Initial analysis of the measured discharge from 2000-2016 revealed the highest and lowest 244 annual discharge years were between 2010 and 2014. Consequently, calibration was carried out for the period between January 245 2010 and December 2014. The validation set used was the remaining period from January 2015 - September 2016. The C7 246 catchment was defined with a grid resolution of 25×25 m² to balance adequate differentiation of multiple locations on the soil 247 water transect while maintaining computational efficiency. The 25 m grid includes adjacent soil pixels for S12 and S22, with sites 248 S04 and S28 within the same grids as S12 and S22, respectively. Within the biomass module, the vegetation dynamics for leaf 249 growth and carbon allocation were held at steady state to minimize the parameterisation and focus on the soil freeze-thaw cycles. 250 As temperature effects and water stress are less sensitive for conifer trees, a relatively constant leaf area index and needle 251 growth/decay rate were maintained (Liu et al., 2018). Evaporative soil water fractionation was activated using similar 252 parameterisation to Kuppel et al. (2018b), as this has previously been identified as an influential summer process in the catchment (Ala-aho et al., 2017a). Soil relative humidity was estimated using Lee and Pielke's (1992) approach, and values of kinematic diffusion were estimated as presented by Vogt (1976) (0.9877 and 0.9859 for H^2/H^1 and O^{18}/O^{16} ratios, respectively). Parameterisation of the model was conducted for each soil type (3 soil types, Fig 1a) and vegetation type (4 types, Fig 1b).

A sensitivity analysis established the most sensitive parameters to be used in calibration using the Morris sensitivity analysis (Soheir et al., 2014). Parameters were assessed using 10 trajectories using a radial step for evaluating the parameter space. The parameter sensitivity was evaluated using the mean absolute error. Results of this are shown in Appendix C. Sensitive parameters were calibrated using Latin Hypercube sampling (McKay et al., 1979) with 150,000 parameter sets and a Monte Carlo simulation approach to optimize the testing of the model parameter space.

261 3.4 Model evaluation

262 The model output was constrained using measurements of stream discharge (3 sites, Fig. 1), stream δ^2 H (3 sites, Fig. 1), and 263 soil moisture (2 sites, Fig. 1a). The 8 measurement datasets were combined into a multi-criteria calibration objective function using 264 the mean absolute error (MAE) with the cumulative distribution functions (CDFs) of the model goodness-of-fit (GOF) (Ala-aho 265 et al., 2017a; Kuppel et al., 2018 a and b). The MAE moderated over-calibration of peak flow events, typical for functions like the 266 root mean square error, and Nash-Sutcliffe efficiency, as well as being consistent with previous studies in the region (Ala-aho et 267 al., 2017a). To focus on the dynamics of soil moisture, given the coarse model grid, measured and simulated values were 268 standardized by their respective mean values prior to analysis. From the CDF method, the 30 "best" simulations were selected for 269 evaluation and are presented using 95% spread of predictive uncertainty (Kuppel et al., 2018b). The parameters achieved through 270 calibration are shown in Appendix D. Model results were verified against the remaining years of discharge, soil moisture, and 271 stream flow $\delta^2 H$, as well as independent time series of soil isotopes (bulk and lysimeter), net radiation, sensible heat, latent heat, 272 and frost depth (estimated from depth-dependent soil temperatures).

The evaluation of changes to water ages due to soil frost was conducted by comparing the ages within the catchment for simulations of the 30 "best" parameter sets with and without frost. These were conducted without frost by turning frost dynamics off within the model. Freeze-thaw effects on evaporation and transpiration ages were evaluated as the difference between frost and non-frost simulations. Positive values indicate older water with the frost while negative values indicate older water with frost-free simulations. The age differences were only considered on days when both frost and non-frost simulations simulate a flux greater than 0 mm/day.

279 **4. Results**

280 4.1 Simulation results

281 Calibration captured dynamics of both high and low flow discharge periods through both the calibration period (2010 - 2014)282 and validation period (2015 - 2016), with a maximum mean stream flow MAE of 2×10^{-3} m³/s for C7, and a maximum mean stream 283 δ^2 H MAE of 5.8 ‰ at C4 (Table 2). Due to extreme high and low flow periods in the calibration period, it was unsurprising that 284 the resulting MAE was higher than in the validation. The MAE of the soil moisture calibration was also reasonable, with average 285 MAE of 0.05 and 0.09 for sites S12 and S22, respectively. With the standardization of the soil moisture, the low MAE indicates 286 that the dynamics in the model correspond well to those measured. The optimization of the GOF for 3 measures (discharge, stream 287 δ^2 H, and soil moisture) at 8 locations resulted in a compromise for all streams. Simulations yielded better (lower) MAE for 288 discharge and isotopes of individual streams.

289 Table 2: Calibration and validation efficiency criteria, shown as mean efficiency for all multi-calibration criteria

		Calibration (2010 – 2014)	Validation (2015 – 2016)
	Site	MAE	MAE
Discharge	C7	2×10 ⁻³ m ³ /s	6×10 ⁻⁴ m ³ /s

	C2	1×10 ⁻³ m ³ /s	1×10 ⁻⁴ m ³ /s
	C4	1×10 ⁻³ m ³ /s	$3 \times 10^{-4} \text{ m}^{3/\text{s}}$
δ²H	C7	4.8 ‰	4.0 ‰
	C2	4.6 ‰	3.8 ‰
	C4	5.8 ‰	3.9 ‰
Soil Moisture	S12	0.05	0.09
	S22	0.09	0.09
Latent Heat	ICOS Tower	N/A	13.1 W/m^2
Sensible Heat	ICOS Tower	N/A	29.5 W/m ²
Net Radiation	ICOS Tower	N/A	31.0 W/m ²
Soil Frost Depth	ICOS Tower	N/A	0.03 m

290 Temporal variability of δ^2 H in each of the streams was captured quite well throughout the calibration and validation periods 291 (Fig 2 a - c). The largest offsets in modelled isotopic composition occurred during the winter low flow conditions. The simulated 292 stream isotopes tended to retain a slight "memory" effect from the contributions of more enriched inflow in late summer. This was 293 likely due to the underestimation of discharge during winter (Fig 2 d - f) which slowed the flushing of the more enriched water. 294 Overall though, discharge was adequately simulated for each site, notably during the spring melt and summer months. While flows 295 were underestimated during the winter, the difference between simulations and measurements were typically $< 1 \times 10^{-3}$ m³/s. The weight-median water ages of each of the three streams were broadly similar, 2.8, 2.6, and 3.1 years for C7, C2, and C4, respectively 296 297 (Fig 2 g - i). These stream ages were generally older than previous estimates, with deeper soil layers and complete mixing in each 298 compartment tending to increase the average age. The depth of the soil layers in the peat and podzolic areas are the primary drivers 299 for water age, with a $\sim 1:1$ relationship (Appendix E). Water age decreased during the annual freshet, driven by the younger 300 snowmelt and frozen soil water ages (typically 150 - 200 days old). The rapid runoff during the freshet limited the long-term 301 influence of the younger water ages on the stream water at each of the sites as older groundwater dominated low flows. Rain on 302 snow events resulted in some rapid, yet un-sustained, influences on the soil water ages, as observed with the sudden decreases in 303 stream water age during winter months (Fig 2 g-i; log-scale with lower bound of 250 days).

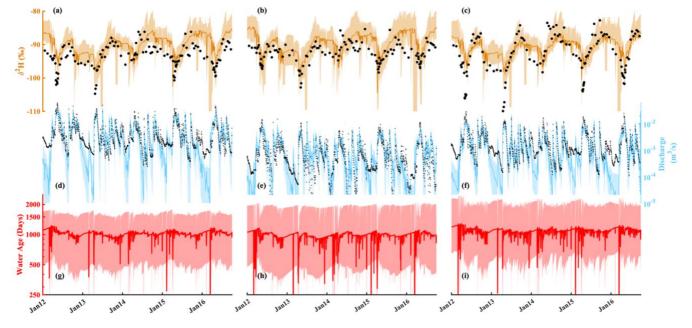


Figure 2: Calibration 95% maximum and 5% minimum bounds, median simulation (solid line), and measured data (black circles) of
 δ²H for (a) C7, (b) C2, and (c) C4; discharge for (d) C7, (e), C2, and (f) C4; and stream water age for (g) C7, (h) C2, and (i) C4.

307 4.2 Soil moisture, isotope, and water ages

308 Simulated soil water isotopes (note that the model did not use isotopes during calibration) mostly captured those measured in 309 both bulk water (2015 – 2016) and lysimeter water (2012) within the 90% simulation bounds at the S12 and S22 sites (Fig 3 a & 310 b). Isotope dynamics were best captured at site \$12, with early season depletion due to snowmelt and enrichment of the previous 311 summer. While most variability was captured within the 90% bounds, the magnitude of the intra-annual contrasts at site S22 was 312 not fully reproduced. Similar to the soil isotopes, dynamics of simulated soil moisture (calibrated) were captured at both S12 and 313 S22, with better simulation performance at S12 (Fig 3 c & d). The model struggled to simultaneously reproduce the more damped 314 soil moisture at S12 with the relatively dynamic soil moisture post-melt at S22 in the adjacent cell under the same soil 315 parameterisation. Rather, the same parameterisation resulted in balancing the conditions observed at S12 and S22. The large 316 declines in measured soil moisture during the winter months were captured with the soil frost module (Fig 3 c & d). The modelled 317 decline in the soil moisture resulted from the transition of soil water from liquid to ice. Water ages in layers 1 and 2 at each site 318 showed noticeable intra-annual variability, and gradually declined during the growing season (May - September) and increased 319 during the winter due to negligible water inflow (Fig 3 e & f). The gradual decrease in the soil water age during the summer was 320 the result of younger rainfall flushing the older snowmelt and pre-winter soil water as the growing season progressed. The 321 variability of the soil water ages in layers 1 and 2 was similar, though the ages in layer 2 were significantly older. While S12 is 322 closer to the stream, water ages in S22 were generally older in both layers 1 and 2.

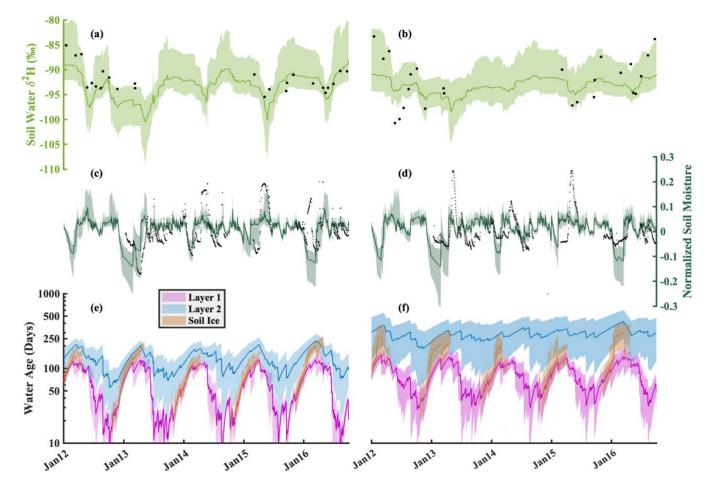
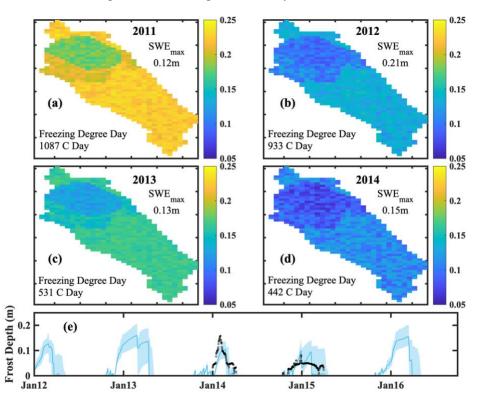



Figure 3: Simulation 90% bounds and mean simulation (solid line) for the average of layer 1 and 2 δ²H for (a) site S12, and (b) site S22;
the average of layer 1 and 2 soil moisture standardized by the mean for (a) site S12 and (b) site S22; and water ages of soil layers 1, 2 and
soil frost for (e) site S12, and (f) site S22.

327 4.3 Soil freeze-thaw simulations

328 Simulations of frost depth revealed large inter-annual variability throughout the catchment (Fig 4 a-d), depending on winter 329 temperatures, snowpack depth, and the soil moisture conditions. Wetter conditions in the mire generally show shallower frost 330 depths than the podzolic soils elsewhere in the catchment. Similar soil conditions for the podzolic and thin podzolic soils (Fig 1a) 331 resulted in negligible differences for estimated frost depth. Overall, estimated frost depth was generally limited by the total number 332 of freezing days. Colder winters (larger numbers of freezing degree days) resulted in deeper frost depths for an equivalent snowpack 333 depth (e.g. Fig 4a vs Fig 4c). Conversely, a deeper snowpack (higher maximum SWE) resulted in a shallower simulated frost depth 334 for years with similar temperatures (e.g. Fig 4 a vs c) as the deeper snowpack was a larger storage for incoming radiation. Using 335 0°C in the soil temperature probes at the ICOS tower as a proxy for the depth of the soil frost, a direct comparison of simulated 336 frost depth and the measured catchment frost depth was completed without calibration. Simulated frost depth showed good 337 agreement with observed 0°C soil temperature depth, imitating the rapid increase in frost depth in 2014 and a more gradual increase 338 in 2015 (Fig 4e). Late winter soil frost depth was estimated to be shallower and varied more rapidly than the observed 0°C soil 339 temperature depth (Fig 4e). The median estimated soil depth against the measured 0°C soil temperature depth showed that estimate 340 soil thaw was too rapid, and thaw completed too early.

341

Figure 4: Mean simulated soil frost depth during the peak soil frost depth in winter (a) 2010-2011, (b) 2011-2012, (c) 2012-2013, and (d) 2013-2014. 90% uncertainty bounds of the simulated frost depth at the ICOS Tower with the depth of the 0°C soil temperature measured at the ICOS Tower (black circles)

345 4.4 Evaporation and transpiration

While the evaporation, transpiration, and energy balance datasets were not included in the calibration, modelled energy balance components (sensible heat, latent heat, and net radiation) showed reasonable agreement to observed values in 2014-2016 at the ICOS Tower. There was an underestimation of net radiation and sensible heat throughout the growing season (Fig 5 b & c), and an underestimation of latent heat late in the year (Fig 5a). While the MAE of the latent heat was relatively small (13.1 W/m²) considering that they were not used for calibration, net radiation and sensible heat had a notable maximum bias (~30 W/m²) during summer. Simulations of total daily evaporation (soil and interception) and transpiration had a similar pattern, with transpiration accounting, on average, for 54% of total evapotranspiration. Throughout the year, the simulated proportion of transpiration to total evapotranspiration ranged from 31 - 72% except for the spring periods (Fig 5d). The late onset of evaporation resulted from the assumption that soil evaporation was negligible while the snowpack remains, which potentially lead to an underestimation of evaporation during the melt.

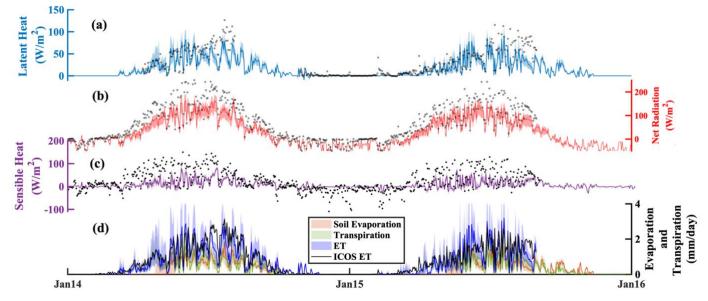


Figure 5: Energy balance component of (a) estimated latent heat (90% and mean values), (b) estimated net radiation (90% and median values), (c) estimated sensible heat (90% and median values) and (d) estimated soil evaporation, transpiration, and evapotranspiration (ET) (90% and mean values), at the ICOS Tower site with the estimated total evapotranspiration from energy fluxes at the ICOS Tower (black circles where data are available).

356

Ages of soil evaporation and transpiration decreased throughout the year (Fig 6 a and b), tracing the decline in soil water ages estimated with the addition of precipitation (age of 0 days). Older water present in evaporation and transpiration water at the start of the year was a mixture of the snowmelt water age and frozen water ages (from the previous summer). Spatial differences in evaporation and transpiration ages were evident throughout the catchment; shown by the difference between the forested ICOS tower site (blue, Fig 6 a & b), and the average for shrubs in the mire (green, Fig 6 a & b). The annual flux-weighted median water age of transpiration was 200 ± 42 and 141 ± 40 days for the ICOS tower and mire, respectively, while evaporation ages were $48 \pm$ 11 and 85 ± 36 days for the ICOS tower and mire, respectively.

368 Differences between the evaporation and transpiration ages were determined by comparing water ages with the soil frost 369 module activated, against those with the frost module deactivated. Generally, including frost in the simulations resulted in older 370 water (water age difference > 0 Fig 6c) for both evaporation and transpiration. Differences in evaporation age were not as 371 pronounced as transpiration ages due to the slight bias of the evaporation timing (always following the snowmelt). Due to the 372 estimated completion of soil thaw prior to the snowmelt period, the difference between the water ages of evaporation with the 373 influence of frozen ground was modest. Rapid flushing of the soil water due to large snowmelt inputs and spring precipitation 374 resulted in a rapid decline in the differences of transpiration water ages. Within the first month of transpiration, the difference for 375 the frost and non-frost simulations were more notable and approached 200 days when frost limited water movement. However, the 376 relatively lower transpiration rates, which occurred during the spring within these simulations, resulted in a moderate effect on the 377 overall annual transpiration water ages. The effects of soil frost on stream water ages showed little effect, with negligible 378 differences given the relatively old water bias in the stream that only shows some flashes of younger water influence (Fig 2 g - i).

379 While the soil frost increased the stream water ages throughout the year, the effect is well within the relatively large uncertainty

bounds of the stream water ages.

381

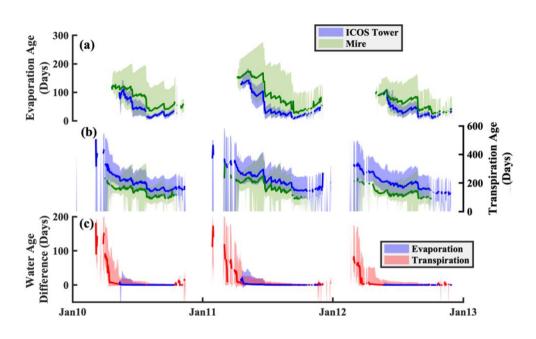


Figure 6: 90% bounds and median values of the (a) estimated soil evaporation water ages at the ICOS Tower (blue) and in the Mire (green), (b) estimated transpiration water age at the ICOS Tower (blue) and in the Mire (green), and (c) mean difference of evaporation and transpiration water ages when soil frost is not considered.

386 **5. Discussion**

387 5.1 Modelling soil freeze-thaw processes in tracer-aided models

388 Hydrologic models are powerful tools for exploring the internal functioning of catchments, particularly when intensive and 389 long-term monitoring programs are in place to help calibration and testing (Maxwell et al., 2019). Here, the development of a 390 spatially distributed, process-based tracer-aided model for northern climates produced encouraging results reproducing soil frost 391 dynamics despite the model not being directly calibrated to match frost depths observations. The use of streamflows, stream 392 isotope ratios and soil moisture dynamics in calibration proved to be adequate for estimating the dynamics of soil frost depth and 393 timing of the frost onset (Fig 4) and revealed spatial differences in frost depth due to contrasting soil types and moisture 394 conditions. However, there are limitations with the current approach that results in some uncertainty of the effect of soil freeze-395 thaw on catchment hydrology. To improve the computational efficiency of the model, the temperature of the snowpack was 396 assumed to be isothermal (Maneta and Silverman, 2013), and modified here to include only a single temperature damping 397 parameter. However, snowpacks may have a variable thermal gradient (e.g. Filippa et al., 2014), and is dependent on snow 398 density (e.g. Riche and Schneebeli, 2013), snow surface albedo, wind speed, and liquid water component, among others 399 (USACE, 1956; Meløysund et al., 2007; Sturm et al., 2010). While these additional components may contribute to an 400 improvement in the estimation of soil frost, it likely would not have a significant improvement compared to the simple 401 temperature damping used here with additional calibration to constrain snow water equivalent for more dynamic energy 402 exchange (e.g. Lindström et al, 2002). The simplistic consideration of negligible soil sensible heat storage effects on the soil freeze/thaw processes, consistent with other process-based cold region models (e.g. CHRM, Krogh and Pomeroy, 2018), may 403 404 result in dampened rates of freezing and rapid melting during the spring (Kurylyk and Hayashi, 2016). More delayed melting of 405 the soil frost may have implications for snowmelt runoff, increasing the dynamics of the streamflow isotopic compositions

406 towards more depleted isotopic compositions (Fig 2 a-c). Finally, the simplification of a single soil frost front may have some 407 implications for the snowmelt infiltration to the soil. The single front does not allow for near-surface soil thaw to occur prior to 408 deeper soils and thereby has implications for shallow root-water uptake and evaporation.

409 Energy fluxes in northern catchments can be highly sensitive to the timing of snowmelt, yielding differences in the surface 410 and canopy net radiation due to changing albedo and to turbulent fluxes due to alterations in surface temperature. Here, the under-411 estimated sensible heat flux during the spring and the growing season could be the result of many different processes. Some of 412 these processes include the aerodynamic resistance (r_a) to transpiration, an underestimated thermal gradient between the simulated 413 soil and air temperature, an overestimation of the incoming short- or long-wave radiation from the ERA-interim dataset, 414 sublimation and snowpack energy storage, or an over estimation of a heat sink of ground heat through the thermal layers of the 415 soil. An overestimated aerodynamic resistance can simultaneously reduce the transpiration (increases the surface temperature), as 416 well as decreases the sensible heat flux (Maneta and Silverman, 2013). An over estimated surface temperature can result in both a 417 decreased thermal gradient from the soil to the air used for the sensible heat flux estimation, as well as result in the shallower, and 418 earlier, simulated soil frost melt relative to the measured 0°C soil temperature depth. While the short- and long-wave radiation 419 from the dataset had no consistent deviation from the shorter measured time-series at the ICOS Tower (1:1 ratio for both short-420 and long-wave radiation, not shown), intermittent periods of under-estimated ERA-interim radiation could contribute an 421 underestimation of the net and sensible heat flux. Lastly, the lack of snowpack heat storage and sublimation could have an influence 422 on the energy balance by limiting incoming winter radiation into the soils (i.e. decreasing soil temperatures).

423 5.2 Effect of soil freeze-thaw on water ages and implications for northern catchments

424 The adaptation here of a process-based, spatially distributed model to additionally incorporate fundamental cold regions 425 processes provides both the opportunity to improve the representation of key hydrologic functions of cold catchments, and assess 426 the effect that these processes have on transit times and ages of ecohydrological fluxes. While studies in northern catchments have 427 aimed to assess the partitioning and transit or residence times of ecohydrologic fluxes (e.g. Sprenger et al., 2018a), few studies 428 have included the influence of frozen conditions on the water movement. Frozen conditions may be significant for the effective 429 transit times during the spring freshet period (Tetzlaff et al., 2018) and flow path modelling (Laudon et al., 2007; Sterte et al., 430 2018). Traditionally, isotopic tracers water at catchment outlets have been the primary metrics for assessing the water ages in 431 streams. Here, the relatively old age of stream water, and the underestimation of soil-thaw result in only slightly older water ages 432 when soil frost conditions are considered, potentially due to the smaller proportion of wetland areas (Sterte et al., 2018). The 433 limited effect of soil frost effects on stream water age was compounded from both the wide uncertainty of the stream water ages 434 (Fig 2g-i), and the late deviation of soil water frost ages from the soil water (Fig 3e & f). Generally, the uncertainty bounds of the 435 stream water ages were greater than the difference of the soil water and soil frost ages. The smaller different of soil water and soil 436 frost ages thereby resulted in small effective changes in stream water age. The deeper frost depth in the forested regions likely did 437 not reduce the spring infiltration due to the low moisture content in the soil relative to the more saturated wetlands (Laudon et al., 438 2007). Additionally, the relatively wide uncertainty bounds of stream water age estimates present difficulties in assessing the 439 relatively moderate effects of soil frost on the stream water age (Fig 2). The large dependence of the flows and stream water ages 440 at C7 on the outlet of the large mire at C4 indicates that the water age progressing through the mire will be a strong determinant of 441 long-term change. The flux-weighted median water age estimations for the streams here were estimated to be substantially older 442 than other tracer-aided hydrologic models for the catchment (Ala aho et al., 2017a), though were on the upper end of other stream 443 and hillslope transit times from transit time methods (Peralta-Tapia et al., 2016; Ameli et al., 2017). The reasons for this are largely 444 three-fold. Firstly, the model was calibrated with soil depths comparable to those observed in the catchment. The calibrated model 445 used soil depths ranging from 1.5 - 6 m, where the shallower soil depths yield stream water ages are comparable to previous

studies. Secondly, the complete mixing assumption within the model does not allow for rapid preferential movement of young water that has been observed in numerous other recent studies (e.g. Botter et al., 2010; Harman 2015). Incomplete mixing within the model framework would allow for deeper soil profiles to yield younger water fluxes, as estimated from isotopes alone, albeit at the expense of additional parameterisation. Lastly, the previous transit time estimations (Peralta-Tapia et al., 2016; Ameli et al., 2017) do not account for older water ages of the snowpack, or the immobility and aging of frozen soil water, which would increase the estimated water ages.

452 Unlike stream or soil water ages, low uncertainty of transpiration and soil evaporation ages helps bring new understanding to 453 how soil frost affects the source contributions of these ecohydrological fluxes which were the focus of the study. Ages of both 454 transpiration and soil evaporation are consistent with soil profile modelling conducted in the region using the SWIS model 455 (Sprenger et al., 2018b). However, the dynamics of the age variation are notably different due to the differences in the input water, 456 where the snowmelt input to the SWIS model assumes a water age of 0 days and does not account for the "green" water fluxes 457 during the spring months. While the transpiration ages show notable differences when frost, and the corresponding discontinuity 458 of transit times, is included in the simulation, the evaporation water ages are not greatly affected. Transpiration fluxes are 459 influenced by the frost due to the reduced liquid soil water availability and increased soil resistance to transpiration. The higher 460 soil water deficit for transpiration does not fully restrict the transpiration flux, but reduces the fluxes until soil frost thaws and 461 mixes the older frost water in the upper soil layers. The differences are reduced for both fluxes due to a few potential reasons. 462 Firstly, the timing of the soil thaw has a significant influence on age estimation of soil water available for both evaporation and 463 root-uptake. While the general timing and magnitude of the soil frost depth development seems appropriately captured by the 464 model, even without calibration, soil thaw in late winter was simulated faster than observations (Fig 4e). There are notable 465 differences between the ages of soil water, soil frost, and the snowpack, where soil frost is representative of the previous fall soil 466 water, soil water is a younger water mix of the fall soil water and newer precipitation (e.g. from rain-on-snow and early spring 467 snowmelt), and snowpack is the amount weighted age of solid precipitation. Here, shallower soil frost and early melting of soil 468 frost in the spring results in step-wise mixing, firstly of soil frost (oldest water, e.g. 200 – 300 days in Fig 3) and soil water 469 (moderate age, e.g. 100 - 125 days in Fig 3), then of the soil water mixture and snowmelt (youngest water, e.g. 70 - 90 days). 470 Since evaporation, and its corresponding age, only begins following the end of snowmelt, the greater degree of older soil frost with 471 the younger soil water and snowmelt reduces the influence of the soil frost on the evaporation ages. Delaying the simulated timing 472 of soil thaw would result in a larger influence of the soil water ages on both the evaporation and root-uptake.

473 While the influence of soil frost on stream water ages was limited in this catchment, the results have potentially significant 474 implications for modelling other catchments with frozen soils. The effect on water ages will likely be the greatest in catchments 475 where winter precipitation is limited, allowing the soil frost depth to increase from the surface, delaying the soil thaw until after 476 the primary snowmelt. For evaporation and transpiration water ages, notable spatial differences highlight an essential consideration 477 for northern climates in the influence of vegetation-type on the source of water fluxes. In many northern areas, past glaciation 478 results in significant wetlands typically dominated with shrub and herbaceous vegetation. Reductions in soil frost will result in 479 greater water availability throughout the year, aiding in vegetation growth (Woo, 2013). With increased water availability 480 throughout the year, the water use of vegetation will likely increase, and thereby limit the amount of young water percolating 481 through the rooting zone. A reduction in the amount of young water percolating through the rooting-zone will likely increase the 482 age of soil water and catchment outflows. Finally, the timing of the evaporation and root-uptake needs to be strongly considered, 483 at both seasonal and diurnal time scales. Soil frost had a strong influence on the timing of evaporation and transpiration, where the 484 magnitude of both fluxes was greater in simulations without soil frost and timing of the root-uptake and soil evaporation was 485 delayed due to ice-restricted pore spaces. While such changes are anticipated, many studies have focused on plot scale studies and 486 with estimated long-term reductions of soil frost depth, larger scale estimations of these differences are essential to understanding

487 how catchment ecosystems will respond.

488 **6.** Conclusion

489 In northern environments, with a rapidly changing climate, quantitative evaluation of vegetation interactions with catchment 490 soil water is crucial for understanding and projecting catchment responses. The process-based evaluation here of a well-monitored, 491 long-term study catchment in the northern boreal forest region using a tracer-aided, surface-atmosphere energy-balance model has 492 provided significant insights into the importance of soil freeze-thaw processes. Tracers were used, not only as a calibration tool, 493 but as validation metrics, and highlighted the effectiveness multi-criteria calibration of a model at nested scales using discharge, 494 isotopes, and soil moisture to constrain additional, un-measured, features (e.g. soil frost depth). The progressively younger ages of 495 evaporation and transpiration throughout the growing season show the dependence of both "green water" fluxes on spring 496 snowmelt, which remains in soil water towards the end of the growing season. Adaptation of the EcH₂O-iso model provided an 497 opportunity to examine spatial patterns of frost depth throughout the catchment and its ecohydrological influence. Soil frost 498 responded to both lower winter temperatures (increasing frost depths) and greater snowpack depth (decreasing frost depth). While 499 there was little influence on the overall timing of water movement at the catchment scale as stream water ages, the greatest influence 500 was observed within the ecohydrological partitioning, notably with the transpiration ages. Soil frost delays the onset of vegetation 501 growth and soil evaporation, resulting in older soil water from the previous autumn to sustain early-season transpiration rather than 502 younger snowmelt. With the implications of reduced numbers of cold days (Guttorp and Xu, 2011), and the dependence of 503 vegetation growth on the summer temperatures (Schöne et al., 2004) in northern latitudes, this assessment of ecohydrological 504 partitioning is timely in understanding the effect of climatic change.

505

506 Acknowledgements

507 This work was funded by the European Research Council (project GA 335910 VeWa). Marco Maneta recognises funding for

508 model development and applications from the US National Science Foundation (project GSS 1461576 . The work in the

509 Krycklan catchment is funded by Swedish Research Council (SITES), SKB, Formas and the KAW program Branch-Points.

510 **References**

- Ala-aho, P., Tetzlaff, D., McNamara, J. P., Laudon, H., and Soulsby, C.: Using isotopes to constrain water flux and age estimates
 in snow-influenced catchments using the STARR (Spatially distributed Tracer-Aided Rainfall–Runoff) model, Hydrol. Earth
 Syst. Sci., 21, 5089–5110, doi:10.5194/hess-21-5089- 2017, 2018a.
- Ala-aho, P., Tetzlaff, D., McNamara, J.P., Laudon, H., Kormos, P., and Soulsby, C.: Modeling the isotopic evolution of
 snowpack and snowmelt: Testing a spatially distributed parsimonious approach, Water Resources Research, 53(7), 58135830, doi: 10.1002/2017WR020650, 2018b.
- Ameli, A.A., Beven, K., Erlandsson, M., Creed, I.F., McDonnell, J.J., and Bishop, K.: Primary weathering rates, water transit
 times, and concentration-discharge relations: A theoretical analysis for the critical zone, Water Resources Research, 53, 942960, doi: 10.1002/2016WR019448, 2017.
- Birkel, C., and Soulsby, C.: Advancing tracer-aided rainfall-runoff modelling: a review of progress, problems and unrealised
 potential, Hydrological Processes. 29(25), 5227-5240, doi: 10.1002/hyp.10594, 2015.
- 522 Botter, G., Bertuzzo, E., and Rinaldo, A.: Transport in the hydrologic response: Travel time distributions, soil moisture
- dynamics, and the old water paradox, Water Resources Research, 46, W03514, doi:10.1029/2009WR008371, 2010.

- Carey, S., and Woo, M.: Freezing of Subarctic Hillslopes, Wolf Creek Basin, Yukon, Canada. Arctic, Antarctic, and Alpine
 Research. 37(1), 1-10, doi: 10.1657/1523-0430(2005)037[0001:FOSHWC]2.0.CO;2. 2005.
- Craig, H. and Gordon L. I.: Deuterium and oxygen 18 variations in the ocean and the marine atmosphere, in: Stable Isotopes in
 Oceanographic Studies and Paleotemperatures, Consiglio nazionale delle richerche, Laboratorio di geologia nucleare, Pisa.
 1965.
- 529 Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae U., Balmaseda, A.M., Balsamo, G.,
- 530 Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M.,
- 531 Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Hólm, E.V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M.,
- 532 McNally, A.P., Monge-Sanz, B.M., Morcrette, J.J., Park, B.K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.N., and
- Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Quarterly Journal of
 the Royal Meteorological Society, 137(565), 553-597, doi: 10.1002/qj.828, 2011
- Douinot, A., Tetzlaff, D., Maneta, M., Kuppel, S., Schulte-Bisping, H., and Soulsby C.: Ecohydrological modelling with EcH2O iso to quantify forest and grassland effects on water partitioning and flux ages, Hydrological Processes, doi:
 10.1002/hyp.13480, 2019.
- Fatichi, S., Pappas, C., and Ivanov, V.Y.: Modeling pant-water interactions: an ecohydrological overview from the call to the
 global scale, WIREs Water, 3, 327-368, doi: 10.1002/wat2.1125, 2016.
- 540 Filippa, G., Maggioni, M., Zanini, E., and Freppaz, M.: Analysis of continuous snow temperature profiles from automatic
- weather stations in Aosta Valley (NW Italy): Uncertainties and applications, Cold Regions Science and Technology, 104 105: 54-62, doi: 10.1016/j.coldregions.2014.04.008, 2014.
- 543 Gray, D.H.M., Male, D.H.: Snowcover ablation and runoff, in Handbook of snow. Pergamon Press. 1981.
- Guttorp, P., and Xu, J.:(2011) Climate change, trends in extremes, and model assessment for a long temperature time series from
 Sweden, Environmetrics, 22, 456-463, doi:10.1002/env.1099, 2011.
- Harman, C. J.: Time-variable transit time distributions and transport: Theory and application to storage-dependent transport of
 chloride in a watershed, Water Resources Ressearch, 51, 1–30, doi:10.1002/2014WR015707, 2015.
- Jansson, P.E.: SOIL model User's Manual: Second Edition. Swedish University of Agricultural Sciences, Department of Soil
 Sciences, Division of Agricultural Hydrotechnics, 1998.
- 550 Jumikis, A. R.: Thermal Geotechnics. New Brunswick, N.J.: Rutgers University Press. 375 pp., 1977.
- Karlsen, R. H., Seibert, J., Grabs, T., Laudon, H., Blomkvist, P., and Bishop, K.: The assumption of uniform specific discharge:
 unsafe at any time? Hydrol. Process., 30, 3978–3988, doi: 10.1002/hyp.10877, 2016a.
- Karlsen, R. H., Grabs, T., Bishop, K., Buffam, I., Laudon, H., and Seibert, J.: Landscape controls on spatiotemporal discharge
 variability in a boreal catchment, Water Resour. Res., 52, 6541–6556, doi: 10.1002/2016WR019186, 2016b.
- Krogh, S., and Pomeroy, J: Recent changes to the hydrological cycle of an Arctic basin at the tundra-taiga transition, Hydrol.
 Earth Syst. Sci., 22, 3993-4014, doi: 20.5194/hess-22-3993-2018, 2018.
- 557 Kundzewicz Z.W, Mata, L.J., Arnell, N.W., Döll, P., Kabat, P., Jiménez, B., Miller, K.A., Oki, T., Sen, Z., and Shiklomanov,
- 558 I.A.: Freshwater resources and their management, In Climate change 2007: impacts, adaptation and vulnerability.
- 559 Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,
- 660 editor, Parry, M.L., Canziani, O.F., Palutikof J.P., van der Linden, P.J., Hanson C.E., Cambridge University Press:
- 561 Cambridge, UK; 173–210, 2007.
- 562 Kuppel, S., Tetzlaff, D., Maneta, M.P., and Soulsby, C.: EcH2O-iso 1.0: water isotopes and age tracking in a process-based,
- 563 distributed ecohydrological model, Geosci. Model Dev., 11, 3045-3069, doi: 10.5194/gmd-11-3045-2018, 2018a.

- Kuppel, S., Tetlzaff, D., Maneta, M.P., and Soulsby, C.: What can we learn from multi-data calibration of a process-based eco hydrological model?, Environ. Model. Softw., 101, 301–316, doi:10.1016/j.envsoft.2018.01.001, 2018b.
- Kurylyk, B. and Hayashi, M.: Improved Stefan Equation Correction Factors to Accommodate Sensible Heat Storage during Soil
 Freezing or Thawing, Permafrost and Periglabial Processes, 27, 189-203, doi: 10.1002/ppp.1865, 2016.
- Laudon, H., Sjöblom, V., Buffam, I., Seibert, J., and Mörth, M.: The role of catchment scale and landscape characteristics for
 runoff generation of boreal streams, Journal of Hydrology, 344(3-4), 198-209, doi: 10.1016/j.jhydrol.2007.07.010, 2007.
- Laudon, H., Taberman, I., Ågren, A., Futter, M., Ottosson-Löfvenius, M., and Bishop, K.: The Krycklan Catchment Study—A
 flagship infrastructure for hydrology, biogeochemistry, and climate research in the boreal landscape, Water Resour. Res., 49,
 7154–7158, doi: 10.1002/wrcr.20520, 2013.
- Laudon, H., and Ottosson Löfvenius, M.: Adding snow to the picture providing complementary winter precipitation data to the
 Krycklan Catchment Study database, Hydrol. Process., 30, 2413–2416, doi: 10.1002/hyp.10753, 2016.
- Laudon, H., Spence, C., Buttle, J., Carey, S.K., McDonnell, J.J., McNamara, J.P., Soulsby, C., and Tetzlaff, D.: Save northern
 high-latitude catchments, Nature Geoscience, 10, 324-325, 2018.
- 577 Lee, T. J. and Pielke, R. A.: Estimating the soil surface specific humidity, J. Appl. Meteorol., 31, 480–484, 1992.
- Lindström, G., Bishop, K., and Ottosson Löfvenius, M.: Soil frost and runoff at Svartberget, northern Sweden—measurements
 and model analysis, Hydrological Processes, 16, 3379-3392, doi: 10.1002/hyp.1106, 2002.
- Liu. X, Sun, G., Mitra, B., Noormets, A., Gavazzi, M.J., Domec, J-C., Hallema, D.W., Li, J., Fang, Y., King, J.S., and McNulty,
 S.G.: Drought and thinning have limited impacts on evapotranspiration in a T managed pine plantation on the southeastern
- 582 United States coastal plain, Agricultural and Forest Meteorology, 262, 14-23, doi:10.1016/j.agrformet.2018.06.025, 2018.
- Maneta, M. P. and Silverman, N. L.: A spatially distributed model to simulate water, energy, and vegetation dynamics using
 information from regional climate models, Earth Interact., 17, 1–44, 2013.
- Maxwell, R.M., Condon, L.E., Danesh-Yazdi, M., and Bearup, L.A.: Exploring source water mixing and transient residence time
 distributions of outflow and evapotranspiration with an integrated hydrologic model and lagrangian partical tracking
 approach, Ecohydrology, 12, e2042, doi:10.1002/eco.2042, 2019.
- McKay, M., Beckman, R., and Conover, W.: A Comparison of Three Methods for Selecting Values of Input Variables in the
 Analysis of Output from a Computer Code, Technometrics, 21(2), 239-245, doi:10.2307/1268522, 1979.
- Meløysund, V., Leira, B., Høiseth, K.V., and Lisø, K.R.: Predicting snow density using meteorological data. Meteorological
 Applications, 14, 413-423, doi: 10.1002/met.40, 2007
- Pearson, R.G., Phillips, S.J., Loranty, M.M., Beck, P.S.A., Damoulas, T., Knight, S.J., and Goetz, S.J.: Shifts in Arctic
 vegetation and associated feedbacks under climate change, Nature Climate Change, 3, 673-677, 2013.
- Peralta-Tapia, A., Soulsby, C., Tetzlaff, D., Sponseller, R., Bishop, K., and Laudon, H.: Hydroclimatic influences on nonstationary transit time distributions in a boreal headwater catchment, Journal of Hydrology, 543, 7-16, doi:
 10.1016/j.jhydrol.2016.01.079, 2016.
- Piovano, T., Tetzlaff, D., Ala-aho, P., Buttle, J., Mitchell, C.P.J., and Soulsby, C.: Testing a spatially distributed tracer-aided
 runoff model in a snow-influenced catchment: Effects of multicriteria calibration on streamwater ages, Hydrological
 Processes, 32, 3089-3107, doi:10.1002/hyp.13238, 2018.
- 600 Pomeroy, J., Gray, D.M., Brown, T., Hedstrom, N.R., Quinton, W.L., Granger, R.J., and Carey, S.K.: The cold regions
- 601 hydrological model: a platform for basing process representation and model structure on physical evidence, Hydrological
- 602 Processes, 21, 2650-2667, doi: 10.1002/hyp.6787, 2007.

- Riche, R. and Schneebeli, M.: Thermal conductivity of snow measured by three independent methods and anisotropy
 considerations, The Cryosphere, 7, 217-227, doi:10.5194/tc-7-217-2013, 2013.
- Schlesinger, W.H., and Jasechko, S.: Transpiration in the global water cycle, Agricultural and Forest Meteorology, 189–190,
 115-117, doi: 10.1016/j.agrformet.2014.01.011, 2014.
- Soheir, H., Farges, J-L., and Piet-Lahanier, H.: Improvement of the Representativity of the Morris Method for Air-Launch-to Orbit Separation, IFAC Proceedings Volumes, 47(3), 7954-7959, doi: 10.3182/20140824-6-ZA-1003.01968, 2014.
- 609 Schöne, B.R., Dunca, E., Mutvei, H., and Norlund, U.: A 217-year record of summer air temperature reconstructed from
- freshwater pearl mussels (M. margarifitera, Sweden), Quaternary Science Reviews, 23(16-17), 1803-1816, doi:
 10.1016/j.quascirev.2004.02.017, 2004.
- Sprenger, M., Tetzlaff, D., Buttle, J., Laudon, H., and Soulsby, C.: Water ages in the critical zone of long-term experimental sites
 in northern latitudes, Hydrology and Earth System Sciences, 22, 3965-3981, doi:10.5194/hess-22-3965-2018, 2018a
- Sprenger, M., Tetzlaff, D., Buttle, J., Carey, S.K., McNamara, J.P., Laudon, H., Shatilla, N.J., and Soulsby, C.: Storage, mixing
 and fluxes of water in the critical zone across northern environments inferred by stable isotopes of soil water, Hydrological
 Processes, 32(12), 1720-1737, doi: 10.1002/hyp.13135, 2018b.
- Stadnyk T., Delavau, C., Kouwen, N., Edwards, T.W.D.: Towards hydrological model calibration and validation: simulation of
 stable water isotopes using the isoWATFLOOD model, Hydrological Processes, 27(25), 3791-3810, 2013.
- Sterte, E.J., Johansson, E., Sjöberg, Y., Karlsen, R.H., and Laudon, H.: Groundwater-surface water interactions across scales in a
 boreal landscape investigated using a numerical modelling approach, Journal of Hydrology, 560, 184-201,
- 621 doi:10.1016/j.jhydrol.2018.03.011, 2018.
- Sturm, M., Taras, B., Liston, G.E., Derksen, C., Jonas, T., and Lea, J.: Estimating Snow Water Equivalent Using Snow Depth
 Data and Climate Classes, Journal of Hydrometorology, 11, 1380-1394, doi:10.1175/2010JHM1202.1, 2010.
- Tetzlaff, D., Buttle, J., Carey, S. K., van Huijgevoort, M. H., Laudon, H., McNamara, J. P., Mitchell, C. P., Spence, C., Gabor, R.
 S., and Soulsby, C.: A preliminary assessment of water partitioning and ecohydrological coupling in northern headwaters
 using stable isotopes and conceptual runoff models, Hydrological Processes, 29(25), 5153-5173, 2015.
- Tetzlaff, D., Piovano, T., Ala-Aho, P., Smith, A., Carey, S.K., Marsh, P., Wookey, P.A., Street, L.E., and Soulsby, C.: Using
 stable isotopes to estimate travel times in a data-sparse Arctic catchment: Challenges and possible solutions, Hydrological
 Processes, 32(12), 1936-1952, doi: 10.1002/hyp.13146, 2018.
- US Army Corps of Engineers, North Pacific Division: Snow Hydrology; Summary Report of the Snow Investigation, Portland,
 Oregon, 1956
- van Huijgevoort, M.H.J, Tetzlaff, D., Sutanudjaja, E.H., and Soulsby, C.: Using high resolution tracer data to constrain water
 storage, flux and age estimates in a spatially distributed rainfall-runoff model, Hydrological Processes, 30, 4761-4778, doi:
 10.1002/hyp.10902, 2016.
- Venäläinen, A., Tuomenvirta, H., Heikinheimo, M., Kellomäki, S., Peltola, H., Strandman, H., and Väisänen, H.: Impact of
 climate change on soil frost under snow cover in a forested landscape, Climate Research, 17, 63-72, 2001.
- 637 Vogt, H. J.: Isotopentrennung bei der Verdunstung von Wasser, Staatsexamensarbeit, Institut für Umweltphysik, Heidelberg,
 638 Germany, 1976.
- Waite, W., Gilbert, L., Winters, W., and Mason, D.: Estimating thermal diffusivity and specific heat from needle probe thermal
 conductivity data, Review of Scientific Instruments, 77, doi:10.1063/1.2194481, 2006.
- 641 Woo, M.: Impacts of climate variability and change on Canadian wetlands, Canadian Water Resources Journal, 17(1), 63-69,
- 642 doi:10.4296/ cwrj1701063, 2013.

- 643 Zhang, X., Sun, S.F., and Xue, Y.K.: Development and testing of a frozen soil parameterization for the cold region study, Journal
- 644 of Hydrometeorology, 8(4), 690-701, doi: 10.1175/JHM605.1, 2007.
- Zhang, X, and Sun, S.F.: The impact of soil freezing/thawing processes on water and energy balances, Advances in Atmospheric
 Sciences, 28(1), 169-177, 2011