
We thank Dr. Conway for their insightful review. Our responses can be found in blue 
throughout the following text. Please note, tables and figures specific to this response 
document are given with the prefix R (for example, Table R1 in the comment below). 
Tables and figures in the manuscript are referred to by numbers only. 

Review of paper hess-2019-82 “The sensitivity of modeled snow accumulation and 
melt to precipitation phase methods across a climatic gradient” by Keith S. Jennings 
and Noah P. Molotch  

Jono Conway  

This paper presents a systematic evaluation of the impact of precipitation phase 
partitioning on modelled snowfall and snowpack evolution. Multi-year datasets from 11 
stations across 5 locations in the western United States are used to drive simulations with 
a sophisticated snowpack physics model. The effect of parameter and algorithm choice 
are assessed for a range of commonly used parameterisations. The authors relate the 
modelled sensitivity to average climate characteristics. Snowfall and maximum 
accumulated snow in warmer maritime locations with high precipitation and winter 
temperatures between 0 and 4 degrees Celsius are found to be most sensitive to 
precipitation partitioning, while snowfall in colder inland locations are found to be less 
sensitive.  

The manuscript is well written and with good figures and a clear systematic structure. It 
addresses a topic of high interest and relevance internationally. However, there are some 
areas that should be addressed before the paper could be accepted for publication.  

Major comments  

While the paper is framed as a comparison of methods used to partition precipitation, the 
results mainly reflect the range of Ta thresholds used (0 to 3 C) rather than the choice of 
parameterisation. This is in part due to the use the range metric on results that are 
generally are bounded by the two extreme Ta thresholds. The abstract and conclusions 
should reflect this (i.e. being explicit about choice of parameter values and/or 
parameterisation rather than using the ambiguous term “method”. If the authors wish to 
make general statements, then using “precipitation partitioning” would be more 
appropriate. It is well established the Ta alone is a poor predictor of precipitation phase, 
so to really compare methods, those that perform poorly against observed SWE (e.g. Ta0 
and Ta3) should be removed from the analysis. This would highlight the differences 



induced by using different parameterisations that have a sound physical basis. If the Ta0 
and Ta3 options are to be retained, then further justification for their inclusion should be 
given in the methods section. The dependence of the results (especially the range of Ta 
with a large range in modelled snow) on the range of Ta thresholds used should also be 
discussed. Perhaps the use of a standard deviation or similar metric rather than a range 
metric would put the focus on the choice of parameterisation. Further specific comments 
address this issue.  

We should note here that at YOS-DAN, NWT-C1, and NWT-SDL, the Td1 threshold 
produced greater annual snowfall fractions than Ta3. Thus, although Ta3 produced higher 
snowfall fractions at the remaining sites, this effect was by no means universal. 
Additionally, as mentioned in the Introduction (p. 3 lines 17-18) and further highlighted 
in our response to Dr. Schaefli, a 3°C Ta threshold is appropriate in upland continental 
areas of the western US (e.g., NWT) where snowfall is more common at warmer 
temperatures than in other locales. Our concern is that many land surface and hydrologic 
models use spatially uniform air temperature thresholds to partition precipitation phase, 
so we argue that it is essential to incorporate thresholds that cover the range of observed 
rain-snow partitioning air temperatures for our study sites (1°C to 3°C). And, despite 
decades of evidence showing its inefficacy, the Ta0 threshold and Tar0 range are still 
commonly employed to partition precipitation phase. For example, the widely used VIC 
macroscale hydrologic model assigns precipitation phase with a default -0.5°C to +0.5°C 
temperature range, centered on 0°C (https://github.com/UW-Hydro/VIC/; accessed 2019-
05-20). We therefore included this method, if only to provide more evidence that it 
underpredicts snowfall, snow accumulation, and snow cover duration. 

In order to further address the need to use the whole range of air temperature thresholds, 
we have added new text to the Methods (Sect. 3.2): 

“Ta thresholds were chosen to represent the spatial variability of rain-snow partitioning 
in the western United States, where values of approximately 1°C are common near the 
Pacific Coast, increasing towards 3°C in the Rocky Mountains (Jennings et al., 2018). 
Additionally, despite significant literature showing its poor performance (e.g., Jennings 
et al., 2018; Marks et al., 2013), we included a 0°C Ta threshold in the analysis because 
it is still widely used in observational and model-based hydrologic studies.” 

In an early draft of this manuscript, we analyzed standard deviations in addition to the 
ranges presented in the submitted version. The story remained the same: warm maritime 



sites were greatly impacted by precipitation phase method choice, while cold sites were 
not. This is illustrated in Figure R1 below: 

 

Figure R1. The annual standard deviation (left column) and range (right) in simulated peak SWE (ai,aii), peak 
SWE date (bi,bii), snow-off date (ci,cii), snow cover duration (di,dii), and melt rate (ei,eii) due to precipitation 
phase method selection at the study stations.  
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Regarding the semantics of “method” versus “precipitation partitioning” versus 
“parameterization,” “precipitation phase method” is commonly used to describe modeling 
and empirical approaches to discriminating between rain and snow (e.g., Harder and 
Pomeroy, 2014; Harpold et al., 2017). We will leave as is. 

Timing and magnitude of SWE ranges seem mainly related to snowfall and 
accumulation, whereas as range of melt rate does not have high sensitivity or clear 
relation to climate. This should be clearer in the abstract and conclusions.  

We added to text to the abstract noting this finding: 

“Average ranges in snowmelt rate were typically less than 4 mm d-1 and exhibited little 
relationship to seasonal climate.” 

And to the conclusion: 

“In contrast to the marked differences in peak SWE, melt onset, and snow cover duration 
between the warm and cold stations, ranges in snowmelt rate exhibited little relationship 
to seasonal climate.” 

The abstract and conclusions need to highlight the novel aspects of the results presented 
here and provide clearer recommendations for future research. While the analysis is 
comprehensive, the result is not entirely new and, in my opinion, there are other results in 
the paper that could (and should) be highlighted in addition to the main result that the 
relative differences are largest in maritime snowpack. For example, the fact that using 
threshold or ranges for Ta (for the same 50% crossover) do not produce large differences 
in the snowpack, or that partitioning choice has little effect on snowmelt rate and the 
effects are dominated by snowfall. At present, the authors recommendations for future 
researchers are unclear.  

For the ranges, we added text to Discussion Sect. 5.1: 

“In the course of this work we found negligible differences between Ta0 and Tr0 as well as 
between Ta1 and Tr1 in terms of annual snowfall fraction (Fig. 5) and model performance 
(Fig. 3). This suggests the ranges and the mixed-phase precipitation they produced 
provided little further information on precipitation phase at the hourly model time scale 
relative to the thresholds. However, it should be noted there is relatively little 



quantitative data on the frequency and solid-liquid proportions of mixed-phase events 
(e.g., Yuter et al., 2006). Work from the Torino region of Italy showed mixed-phase 
events are relatively few compared to all-rain and all-snow events (Avanzi et al., 2014), 
while research in a maritime climate indicated mixed-phase events can be quite frequent 
(Wayand et al., 2016). Thus, future work would benefit from further explorations of the 
frequency of mixed-phase events and model representations thereof at multiple time 
scales.” 

For snowmelt rate, it is not that the effect is small (Table 5 shows relative differences 
between 11.5% and 235.5%), it is that the metric showed no relationship to seasonal 
climate. Please see our response to the comment above for the extra material we added on 
snowmelt rate. 

For novelty/implications, we changed the final line of the abstract to: 

“This study shows care should be taken when selecting a precipitation phase method as 
the variability introduced to snow accumulation and melt will likely propagate into 
simulated streamflow and land surface albedo, particularly at the warmer fringes of the 
seasonal snow zone.” 

Regarding future directions, suggestions were given in the original manuscript (p. 8 lines 
15-16, p. 20 lines 25-27, p. 21 lines 1-3, p. 22 lines 16-19, p. 23 lines 13-16). Given the 
multiple lines devoted to this topic and the further additions noted in this response, we 
find no further recommendations are needed.  

The use of multiple linear regression is probably not appropriate here, but if retained 
should be presented and discussed more fully.  

Please see our response to the specific comment below on this topic. 

Specific comments (page-line)  

1-15 please be clear the study modelled non-vegetated snowpacks only.  

We have reconfigured the abstract to note these were point simulations with no canopy 
cover. 

4-3 Given that they form a key part of the results, please include average values for Tw 
and Td in Table 1.  



Added to Table 1 

7-26 The large bias in LWin is concerning – perhaps the influence of vegetation on the 
measurements whereas LWin is modelled for non-vegetated location? This should be 
discussed when presenting the validation results in Figure A2.  

We added more text expanding upon the bias in Sect. 3.1: 

“At the HJA stations, we bias-corrected the LWin estimate based on one year of LWin 
observations from HJA-VAN that showed a -56.9 W m-2 wintertime bias, which may have 
been related to site vegetation conditions. This was significantly larger in magnitude than 
the bias found in the Unsworth and Monteith (1975) estimate by Flerchinger et al. 
(2009), suggesting its performance is more spatially variable than previously noted. This 
finding also underscores the need for enhanced monitoring of the radiation budget at 
snow modeling sites (Lapo et al., 2015; Raleigh et al., 2015, 2016).” 

17-8 “80.1% of the variance in annual snowfall fraction standard deviation” – the figure 
caption and methods describes this as the “range in annual snowfall fraction” – please 
clarify which it is and correct.  

Yes, good catch. We have changed the text to “…annual snowfall fraction range” to 
match the figure. 

18-1 Figure 6 and 7 – given that the range in snowfall fraction is driven primarily by the 
two extreme air temperature threshold methods (Ta0 and Ta3) these results are 
presumably quite sensitive to the choice of the Ta thresholds? Please discuss and if 
possible show the sensitivity of the results to the choice of threshold.  

Yes, Figure 6 is designed to illustrate the effect of threshold/method choice on daily 
snowfall fraction. The data presented are standard deviations, which minimizes the effect 
of the extreme Ta thresholds. However, we were curious how removing Ta0, Tar0, and Ta3 
would affect the analysis and we found it made little difference (Figure R2 is nearly 
identical to Figure 6 in the submitted manuscript). Except for 1 outlier at -19.5% all 
differences in the standard deviations for the Ta and RH bins are between -7% and +5%, 
with a mean difference of -1.3% (computed by subtracting the SD for the analysis with 
all methods included from the analysis with Ta0, Tar0, and Ta3 removed).  



 

Figure R2. Same as Figure 6 in submitted manuscript but with Ta0, Tar0, and Ta3 removed from the analysis. 

Given this analysis held up to the removal of the three least physically representative 
thresholds, we find the inclusions of Figures 6 and 7 along with the associated text to be 
appropriate. 

18-6 Looking at the figure, it seems that a multiple linear regression may not be 
appropriate. There seems to be two groupings – highly sensitive warm and wet locations, 
less sensitive drier locations that span both warm and cold locations. Also, given that the 
equation is not presented nor used further, and the issues discussed with extrapolating the 
equations, please consider removing the regression. If it is retained, please present the 
equation and display contours of predicted values on Figure 8 so that the reader can 
visualise the predicted relationships.  

We have decided use a loess function to create a smooth surface presented behind the 
station data (new Fig. 10 shown below). This, we believe, more clearly shows the 
clustering of low peak SWE ranges at the colder and/or low precipitation sites and high 
peak SWE ranges at the maritime sites without introducing the statistical pitfalls of 
multiple linear regression. We also edited the text to remove the linear regression 
statements. 



“We next evaluated how sensitivity in peak SWE was related to seasonal climate. In this 
case, warmer Ta and increased PPT were both associated with greater ranges in the peak 
SWE simulated by the different precipitation phase methods (Fig. 10). This meant the 
maritime sites HJA and SSC had the greatest sensitivity to precipitation phase method 
due to their relatively warm Ta and high PPT values. Conversely, moderate PPT values 
and lower Ta led to minimal sensitivity at the cold continental NWT stations and the cold 
maritime YOS-DAN station. Again, the effect of Ta on sensitivity was manifest in the data. 
In high snowfall years at NWT-SDL, Dec–May PPT approached that of the low Dec–May 
PPT years at HJA and SSC. However, despite the increased PPT at NWT-SDL, the range 
in peak SWE predicted by the different precipitation phase methods remained low.” 

 

 

Figure 10. Range in annual peak SWE as simulated by the different precipitation phase methods at the 11 study 
stations. Each point represents one simulation year at a given station and larger points correspond to larger 
differences in maximum minus minimum peak SWE. The background shading corresponds to ranges in peak SWE 
predicted by a loess function fit to the station data. [Please note, this figure has changed from 8 in the submitted 
manuscript to 10 in the revised version because we moved the validation figures from the appendix to the results 
as per the recommendation below.] 

 

19-10 The validation results presented in the appendix should be included in the results or 
methods section, especially as they form part of the discussion, rather than simply an 
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intermediate methodological step.  

We have moved this from the Appendix to be the first results section: 

We have also added material in the Methods detailing how validation was performed 
(appended to the end of Sect. 3.1): 

“To validate model output, we compared simulated SWE and snow depth to observations 
at our study stations. SWE was observed at all HJA stations, SSC-UPR, YOS-DAN, and 
both NWT stations, while snow depth was observed at all HJA stations, both SSC 
stations, and all JD stations. All SWE data were derived from automated snow pillow 
measurements except for NWT-SDL, which was acquired through manual snow pit 
observations (Williams, 2016). Similarly, automated ultrasonic snow depth sensors 
produced all snow depth data. Comparisons were made at the daily time scale when 
either simulated or observed SWE or snow depth were > 0 mm. This was done to prevent 
artificial enhancement of objective function values during periods when snow cover was 
absent.” 

We have also edited discussion Sect. 5.1 to reflect these changes and to incorporate 
feedback from the two subsequent comments. 

“In this work we showed that the selection of a precipitation phase method produces 
varying degrees of variability in modeled snow accumulation and melt at our study 
stations. The different methods also expressed variable performance relative to 
observations of SWE and snow depth, with the binary regression models, RegBi and 
RegTri, as well as the Ta1 threshold producing the lowest biases (Fig. 3). Previous 
observational work has shown that, in general, methods incorporating humidity 
information outperform Ta-only methods when it comes to predicting precipitation phase 
(Harder and Pomeroy, 2013; Jennings et al., 2018; Marks et al., 2013; Ye et al., 2013). 
The RegBi method, which predicts phase as a function of Ta and RH, exceeded all other 
methods in partitioning rain and snow in a Northern Hemisphere precipitation phase 
method comparison (Jennings et al., 2018). Our study showed that RegBi also typically 
produced simulations of SWE and snow depth that had low biases relative to 
observations (Fig. 3) and led to snow cover evolution metrics that were neither extremely 
high nor low compared to the other methods examined in this work. This finding is 
complemented by the performance of other humidity-based metrics, which produced 
average SWE and snow depth biases between -19.2 mm and 25.1 mm, and -64.1 mm and 



45.0 mm, respectively. 

This is in contrast to the Ta thresholds and ranges, which produced the largest magnitude 
biases. Notably, the four worst performers were the Ta0, Tar0, Ta2, and Ta3 methods, with 
the former two underpredicting snow accumulation and the latter two overpredicting. 
Across our study sites, the only Ta methods that performed well relative to observations 
were the Ta1 threshold and Tar1 range. These modeling results confirm again that 
including humidity information, whether it be in the form of a binary logistic regression 
model. Tw, or Td, offers advantages over a Ta-only method. It is important to note again 
that we chose methods that covered the range in rain-snow partitioning Ta values across 
our study domain or that included humidity information. The only methods not falling 
into this category were Ta0 and Tar0, which were chosen because they are still employed 
as default methods in some models and studies. Although there are some small 
geographic regions where such a threshold or range may be appropriate (Jennings et al., 
2018), they are unsuitable for many locations and should not be used for large-scale 
studies.  

In the course of this work we found negligible differences between Ta0 and Tr0 as well as 
between Ta1 and Tr1 in terms of annual snowfall fraction (Fig. 5) and model performance 
(Fig. 3). This suggests the ranges and the mixed-phase precipitation they produced 
provided little further information on precipitation phase at the hourly model time scale 
relative to the thresholds. However, it should be noted there is relatively little 
quantitative data on the frequency and solid-liquid proportions of mixed-phase events 
(e.g., Yuter et al., 2006). Work from the Torino region of Italy showed mixed-phase 
events are relatively few compared to all-rain and all-snow events (Avanzi et al., 2014), 
while research in a maritime climate indicated mixed-phase events can be quite frequent 
(Wayand et al., 2016). Future work would therefore benefit from further explorations of 
the frequency of mixed-phase events and model representations thereof at multiple time 
scales. 

Despite the analyses presented in this work, it is important to note that uncertainties in 
forcing data, model structure and parameters, as well as a lack of precipitation phase 
observations prevent this research from being able to unequivocally identify a “best” 
precipitation phase method for snow modeling. However, as noted above, including 
humidity information improves the prediction of precipitation phase relative to 
observations and generally increases model performance. Our primary aim in this 
research was to quantify how snow simulations were affected by the choice of 



precipitation phase method across a climatic gradient. We did not create optimized 
model setups at each site, but rather kept model setup consistent in order to compare the 
sensitivity of phase partitioning without introducing other uncertainties. Thus, the low r2 
and higher bias values at HJA-VAN, NWT-SDL, and JD-124 (Fig. 4) could likely be 
improved with model tuning, but we did not pursue such an approach.” 

 

20-3 “In that context, one can consider the RegBi model as a baseline given its top rank 
in a Northern Hemisphere precipitation phase method comparison”. Please describe and 
discuss the results presented here (figure A1) that seem to show similar performance for a 
range of methods that incorporate humidity information. The discussion as it is not 
balanced and does not accurately reflect the results presented. Please revise.  

Please see edited discussion Sect. 5.1 above. 

20-11 “a referendum.” This does not seem an appropriate term – please revise. You could 
either give an expert view based on the results presented here, or cite others work.  

Please see edited discussion Sect. 5.1 above. 

20-24 “Therefore, our use of a single model may overestimate or underestimate the 
sensitivity of snow cover evolution to precipitation phase method at certain sites and 
points in time.” This statement is very broad - more effort is needed to quantify and 
discuss the uncertainty of the model simulations.  

This statement is broad because model intercomparisons say little about the effect of 
precipitation phase method selection. For example, SnowMIP2 used different 
precipitation phase methods at different sites (Rutter et al., 2009). Thus it is still unknown 
how model selection and phase partitioning methods interact (i.e., would a temperature 
index model be more affected than a physics-based model?). We stand by our statement 
but have clarified with some extra text: 

“Given this variable performance and differences in snow model structure and physics, it 
is possible that some models may be more or less sensitive to the choice of a precipitation 
phase method. Our use of a single model may overestimate or underestimate the 
sensitivity of snow accumulation and melt to precipitation phase method selection. Future 
research should therefore focus on how model choice affects the sensitivity of simulated 



snow cover evolution to precipitation phase method.” 

21-23 “These large variations in snow cover evolution were likely due to the combined 
effect of reduced frozen mass entering the snowpack and subsequent changes to the 
snowpack energy balance”. More detailed results are needed to support this statement. 
For example, the change in snowfall mass and albedo could be shown to illustrate the 
importance of the direct and indirect effects on snowpack mass balance.  

There are 10 citations in the previous lines detailing how rain vs. snow affects the 
snowpack energy balance. We include this as a discussion because a full treatment of the 
energy balance data is outside of the scope of this already fairly long manuscript. 

22-3 “In this context, the precipitation phase methods that produced more rainfall 
affected snow cover evolution not just through reduced frozen mass but also through 
changes to the snowpack energy budget.” These results are not shown here (they could 
be?) so this statement is speculation. Please revise.  

See response to comment above. We also added a qualifier to the sentence and followed 
it with a future research line: 

“In this context, the precipitation phase methods that produced more rainfall likely 
affected snow cover evolution not just through reduced frozen mass but also through 
changes to the snowpack energy budget. Further observational and modeling research is 
warranted to evaluate how rain versus snow affects snowpack energetics.” 

22-25 “winter and spring average Ta values (0°C–4°C) that lead to the greatest 
uncertainty in rain- snow partitioning,” I would argue that the uncertainty is not in the 
actual rain-snow partitioning, but rather due to the use of an inappropriate 
parameterisation (only Ta) which requires a wide range of parameter tuning. Please 
revise.  

As we showed in our response to a comment above, the range of uncertainty stays the 
same when removing Ta0, Tar0, and Ta3. Furthermore, the difficulty of predicting 
precipitation phase and the resulting uncertainty at temperatures slightly above freezing is 
a well known phenomenon in both hydrology (Ding et al., 2014; Harpold et al., 2017; 
Jennings et al., 2018) and atmospheric science (Ralph et al., 2005; Stewart et al., 2015).  

23-1 Please mention that no clear relationship was found for snowmelt rate in the 



conclusions – this is still a key result and an important caveat to the earlier statement that 
“precipitation phase method introduced significant variability into simulated snow 
accumulation and melt”.  

Added per recommendation on an earlier comment. 

23-30 How was the r2 calculated here? the average r2 of hourly SWE/snowdepth or 
something else? Please include in the text and figure caption.  

Added to Methods Sect. 3.1 as noted above. 

24-1 Given the poor performance of some methods (Ta0 ,Ta3, Tr0) should they be 
excluded from the analysis? If not, further discussion is needed.  

Please see earlier comments on the Ta0, Tar0 and Ta3 methods.  

24-6 “at all stations.” Given that SWE and snowdepth are only presented for some sites in 
Figure A2, I presume not all sites contribute to averages here? Please list the sites that 
contribute to each of the SWE and snowdepth validation statistics in the text or caption.  

Please see new results text above. 

Figure A2 – why is the snowdepth bias 0 for the JD sites?  

That is an artifact of the data at JD. The low overall snow depth produced low absolute 
biases. We added this text to the figure caption (please note, this figure and section has 
been moved to Results 4.1 per recommendation on an earlier comment): 

“Note: in panel (c) the low mean biases for JD snow depth are due to small observed 
snow depth values at the site. Mean relative biases at these stations were 35.4% (JD-
125), 3.8% (JD-124b), and 35.7% (JD-124).” 

Editorial comments:  

10-6 “daily Ta and RH” do you mean ”daily average Ta and RH”?  

Yes, line changed to “daily average Ta and RH” 

16-5 “not computed because for” -> “not computed for”  

Redundant “because” has been removed.  
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