
We thank Dr. Schaefli for their thoughtful review. Our responses can be found in blue 
throughout the following text. Please note, tables and figures specific to this response 
document are given with the prefix R (for example, Table R1 in the comment below). 
Tables and figures in the manuscript are referred to by numbers only. 

This well written paper analyzes a key question for snow hydrology, which is the im- 
pact of precipitation phase algorithms on snow water equivalent (SWE) modelling in 
different climates. The paper studies four more or less different methods of precipita- tion 
phase computation (each with different portioning parameters) and assesses the impact of 
the methods on different snow accumulation and melt metrics, obtained with the model 
SNOWPACK at five different locations in the US. The methods are based on temperature 
thresholds and on bilinear regression. The analysis gives an answer to the general 
question of how important it is to carefully choose the precipitation phase method for 
different climates.  

A drawback of the study is that it is purely simulation-based and does not use observed 
SWE data to push the study further. In fact, with the observed SWE data and SNOW- 
PACK, it might have been possible to estimate actual daily or hourly snow accumulation 
amounts and compute best parameter values for the studied precipitation phase meth- ods 
at the selected stations. This way, it would have been possible to judge how critical 
deviations from these best estimates would be at the different sites. In other words, this 
would allow to answer questions like “how critical is it to have a 1◦C error in the air 
temperature threshold at a warm site as opposed to a cold site”? “How important is it to 
use dew point or wetbulb temperature at warm sites versus at cold sites?”  

We agree this is a drawback of both this study and many other snow modeling research 
projects. There are, unfortunately, scant direct observations of precipitation phase in 
mountain regions. One of the few studies we are aware of that uses observations of 
precipitation phase—in this case snow board measurements—showed rain-snow 
partitioning errors can lead to significant biases in modeled snow accumulation at a site 
with a maritime climate similar to the HJ Andrews and Southern Sierra (Wayand et al., 
2017). There is also evidence suggesting an optimized air temperature threshold varies 
throughout the snow season (Storck et al., 2002), meaning no single air temperature 
threshold (or range) would be applicable across sites and times. 

At our study sites, there are no direct observations of precipitation phase, but we were 
interested in pursuing your question further. Table R1 below shows the optimized rain-
snow air temperature threshold using four different data sources for each station. The 
second and third columns (Map and Obs.) correspond to data from earlier work that 



examined the spatial variability of rain-snow partitioning across the Northern Hemisphere 
(Jennings et al., 2018). The methods, quoted from the paper, are as follows: 

“To construct a spatially continuous 50% rain–snow Ts [air temperature] 
threshold product across the Northern Hemisphere, we applied the optimized 
bivariate model to the MERRA-2 gridded reanalysis dataset63,64. Hourly 2 m Ts, 
specific humidity (q), Ps, and precipitation data were accessed from 1980 through 
2007 and summarized to a daily time step. RH was calculated from the MERRA-2 
data using an empirical equation as a function of q, Ps, and Ts. Daily snowfall 
probability was then simulated for each grid cell using the bivariate model when 
precipitation was greater than 1 mm and Ts fell within the range of −8 to 8 °C. 
We then calculated the 50% rain–snow Ts threshold by fitting the hyperbolic 
tangent to binned estimates of snowfall frequency per MERRA-2 grid cell using 
Eq. 1.” 

“We classified precipitation reports as either rain or snow using the World 
Meteorological Organization precipitation phase categories described in detail in 
Dai40,61. Precipitation amounts were not included in the dataset and we removed 
sleet as well as potential mixed-phase observations from the analysis because the 
relative proportions of solid and liquid precipitation during such events were not 
reported (i.e., it was impossible to quantify the amount of precipitation falling as 
snow versus rain). The classification of precipitation events was then used to 
quantify the rain–snow frequency per 1 °C Ts bin from –8 to 8 °C at each station. 
In other words, if there were 100 total precipitation observations from 1 to 2 °C, 
75 of which were snow, the snowfall frequency in that bin would be 75.0%. We 
then calculated the 50% rain–snow Ts threshold for each station using the 
approach of Dai40, where a sigmoidal curve is fit to observations of snowfall 
frequency per 1 °C Ts bin from –8 to 8 °C using a hyperbolic tangent function:  
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where T50 equals the 50% rain–snow Ts threshold (°C), F equals snowfall 
frequency (in this case 0.5, dimensionless), and a, b, c, and d are the fitting 
parameters (dimensionless).” 

The fourth and fifth columns in Table R1 use changes in SWE and snow depth to 
estimate a rain-snow air temperature threshold. We used a modified version of the 
approach of Rajagopal and Harpold (2016) to predict precipitation phase by designating a 



daily increase of SWE or snow depth as snowfall and a zero change or decrease as 
rainfall when precipitation was greater than 2.54 mm and SWE or snow depth was 
greater than 0 mm. As with the Map and Obs. methods detailed above, we then binned 
snowfall frequency per 1°C air temperature bin (Figures R1 and R2) and computed the 
rain-snow air temperature threshold using Eq. 1 above. The SWE approach yielded 
values that approximated the Map and Obs. methods, but the depth-derived values were 
significantly lower. We would thus argue that this method was not appropriate for our 
purposes, although previous work has shown it to reasonably estimate precipitation phase 
at subdaily time scales (e.g., Marks et al., 2013; Zhang et al., 2017). 

Table R1. Optimized rain-snow air temperature thresholds for each station in the study using four different 
data sources: 1-Map) The spatially continuous threshold map from Jennings et al. (2018) created using 
reanalysis data from MERRA-2 and the bivariate binary logistic regression model; 2-Obs.) The observed 
threshold from the closest meteorological station (Jennings et al., 2018); 3-SWE) The threshold inferred 
from changes in SWE at each study station (Fig. R1); 4-Depth) The threshold inferred from changes in 
snow depth at each study station (Fig. R2). An NA indicates there were insufficient data to estimate the 
threshold from SWE and/or snow depth. 

 
Optimized rain-snow air temperature threshold (°C) 

Station Map Obs. SWE Depth 
HJA-CEN 1.19 1.12 1.29 -0.24 
HJA-VAN 1.19 1.12 0.8 -0.84 
HJA-UPL 1.19 1.12 -0.4 -0.81 
SSC-LWR 1.7 1 NA 0.14 
SSC-UPR 1.7 1 0.87 -0.34 
YOS-DAN 2.21 2.78 NA NA 
JD-125 2.25 1.25 NA -0.97 
JD-124b 2.25 1.25 NA -1.91 
JD-124 2.25 1.25 NA 0.41 
NWT-C1 2.84 2.34 3.57 NA 
NWT-SDL 2.84 2.34 NA NA 

 



 

Figure R1. Snowfall frequency per 1°C air temperature bin as computed from SWE data. On days with 
precipitation > 2.54 mm, an increase in SWE was designated as a snowfall event, while a zero change or decrease 
in SWE was designated as rainfall. 

 

Figure R2.  Snowfall frequency per 1°C air temperature bin as computed from snow depth data. On days with 
precipitation > 2.54 mm, an increase in snow depth was designated as a snowfall event, while a zero change or 
decrease in snow depth was designated as rainfall. 

 



Returning to the question of “how critical is it to have a 1◦C error in the air temperature 
threshold at a warm site as opposed to a cold site,” we analyzed the effect of deviating by 
1°C from the mean threshold as calculated from the Map and Obs. columns in Table R1. 
In this context we rounded to the nearest integer degree to be consistent with our 
thresholds, giving the HJA stations a 1°C threshold, SSC a 1°C threshold, YOS a 2°C 
threshold, JD a 2°C threshold, and NWT a 3°C threshold. Because we did not include a 
4°C air temperature threshold in our phase methods, we could only analyze a negative 
deviation at NWT. In Table R2 below, we present the mean peak SWE, peak SWE day of 
water year (DOWY), and snow cover duration (SCD) using the optimized air temperature 
threshold (center column, abbreviated Thresh.), the optimized threshold minus 1°C (left 
column, Thresh - 1°C), and the optimized threshold + 1°C (right column, Thresh + 1°C). 
Consistent with our findings in the paper, the warm maritime HJA and SSC stations are 
profoundly affected by deviations from the optimized threshold. Differences at these sites 
produced by deviating by ±1°C from the optimized thresholds range between 141 and 
403 mm for peak SWE, 1 and 16 d for peak SWE DOWY, and 9 and 29 d for SCD. 
Compare this to 1 to 10 mm for peak SWE, 0 to 1 d for peak SWE DOWY, and 1 to 5 d 
for SCD at the YOS and NWT stations. The consistent story is again that threshold 
choice makes a much larger impact at a warm site relative to a cold one. 

Table R2. Mean peak SWE, peak SWE DOWY, and SCD at the study stations using an optimized air temperature 
threshold as well as -1°C and +1°C deviations from the threshold.  

	
Mean peak SWE (mm) Mean peak SWE DOWY (d) Mean SCD (d) 

Station 
Thresh 

- 1°C Thresh. 
Thresh 
+ 1°C 

Thresh 
- 1°C Thresh. 

Thresh 
+ 1°C 

Thresh 
- 1°C Thresh. 

Thresh 
+ 1°C 

HJA-CEN 414.2 528.9 611.8 128 142 144 144 159 172 
HJA-VAN 564.3 645.3 726.6 132 134 145 164 173 184 
HJA-UPL 984.2 1165.5 1387.3 160 166 173 190 202 210 
SSC-LWR 401.5 535.6 624.6 154 161 162 137 146 151 
SSC-UPR 508.4 585.4 649.7 154 155 155 142 147 151 
YOS-DAN 668.8 677.8 678.8 169 169 170 206 209 209 
JD-125 77.2 89.6 99.9 116 116 116 75 83 97 
JD-124b 180.2 191.7 203.8 124 126 127 122 131 134 
JD-124 72.3 81.5 87.3 128 115 115 78 81 92 
NWT-C1 400.1 406.7 NA 204 204 NA 224 229 NA 
NWT-SDL 914 914.6 NA 225 225 NA 240 241 NA 

 

For the final question, “How important is it to use dew point or wetbulb temperature at 
warm sites versus at cold sites?”, we would argue the best practice is to use a humidity-
based temperature metric at all sites. Such methods better represent precipitation and 



produce better model outcomes (e.g., Ding et al., 2014; Harder and Pomeroy, 2013, 2014; 
Harpold et al., 2017; Jennings et al., 2018; Marks et al., 2013). The bivariate binary 
logistic regression model, which performed best relative to other methods when 
compared to precipitation phase observations in a previous study (Jennings et al., 2018), 
produced snow cover metrics similar to the optimized threshold at most stations. It 
produced mean peak SWE, peak SWE DOWY, and SCD biases (relative to the optimized 
threshold) of -18.0 mm, 0.5 d, and -1.9 d, respectively.  

Please note, we have not added the above material to the manuscript yet because it is 
consistent with the findings already presented in the submitted document. If you find this 
material worthy of inclusion, please let us know and we can add it as either 
supplementary material or as an appendix.  

This having said, the study is nevertheless worth publishing and interesting for the 
readers of HESS. Below some general and detail comments.  

General comments  

I would not say that a study tests 12 different methods if only a few methods are tested 
with different parameter values; this oversells the study in the abstract. I would in fact say 
that the study tested four different methods: based on air temperature (with different 50% 
thresholds and different transition ranges, some of the ranges being 0), based on dew 
point and wet bulb temperature and based on binary regression.  

Fair point. We have updated the text (see response to detailed comments below) to say 
we tested 5 different methods (counting the range as a different method than the threshold 
because the former produces mixed precipitation and the latter does not).  

A key analysis of the paper is the one of “Climatic controls on precipitation phase 
method sensitivity”.(section 4.4); it analyzes how the results vary with air temperature. 
Air temperature sensitivity is, however, built into each method in a different way. In the 
case of daily snowfall fraction: the fact that it shows the highest standard deviation for air 
temperatures between 0 and 4 C simply expresses the fact that several methods use 
thresholds in this range. The result would look different if the thresholds were between -2 
and 2 C. This should be better reflected in the discussion of of the results.  

Correct, the variability is tied to the methods themselves. However, we think it is 
important to present this information because the methods we used are based on 
empirical relationships (air temperature thresholds and ranges, dew point temperature 
thresholds), physical principles (wet bulb threshold to approximate hydrometeor 



temperature (Harder and Pomeroy, 2013)), and statistical relationships (the binary logistic 
regression models). A threshold of -2°C would likely widen the range of variability but it 
would have no empirical, physical, or statistical relationship to precipitation phase 
partitioning except in some extremely rare, unique cases. Furthermore, this comment was 
similar to the feedback from Dr. Jono Conway, who noted the range in variability was 
likely produced by the extreme air temperature thresholds and ranges (Ta0, Tar0, and Ta3). 
To respond to his comment, we removed these methods and re-performed the analysis 
and the finding was the same (please see Figure R2 in our response to Dr. Conway). Even 
limiting the analysis to the most representative methods, the variability stays highest 
between 0°C and 4°C.  

Additionally, it is essential to point out this air temperature range of variability for two 
reasons: 

1. Areas most “at risk” to the snow-rain transition due to climate warming have 
seasonal air temperatures near and slightly above freezing (e.g., Nolin and Daly, 
2006) 

2. 0°C to 4°C is also the air temperature range where precipitation phase methods 
perform the worst (Ding et al., 2014; Jennings et al., 2018). 

Thus, we have a compounded problem in that we are concerned with snow-to-rain shifts 
in areas with seasonal air temperatures where precipitation phase partitioning is most 
uncertain and our available methods exhibit downgraded performance. Given that we 
showed these areas (i.e., winter and spring air temperatures above freezing) also express 
the greatest sensitivity in terms of peak SWE magnitude and timing, plus snow cover 
duration, we think it is necessary to include this information. 

In general, the conclusion that precipitation falling in the range 0 – 4 C explains much of 
the variation observed across the methods comes from the choice of the threshold values. 
Without actual comparison to observed data, the results are hard to generalize. Why is 
there no comparison to actual SWE-derived thresholds?  

Please see our responses above. 

Furthermore, when reading the results section where actual SWE curves are presented for 
the first time, it is a little disappointing to see that all studied sites show a typical seasonal 
snow cover with significant accumulation over many weeks. The most sen- sitive sites 
would typically be the ones where the snow cover might build up several times during the 
winter.  



We should note here that the SWE curves as presented are daily averages (Fig. 4 in 
submitted manuscript), which has the affect of obscuring transience. As we mentioned in 
the Study sites and data section, the HJA and JD stations are sometimes transient (p. 4 
lines 9-10 through p. 5 line 1, and p.5 lines 21-22) and they are most sensitive to phase 
method choice in terms of peak SWE magnitude (HJA only) as well as peak SWE timing 
and SCD (Fig. 5 in submitted manuscript).  

Detailed comments  

• The abstract does not mentioned what types of methods have been tested nor whether 
they have been compared to reference data or which method performed best   

Yes, that is an oversight on our part. We have changed the abstract to note:  

“The methods in this study included different permutations of air, wet bulb, and dew 
point temperature thresholds, air temperature ranges, and binary logistic regression 
models.”  

We have also added a line saying:  

“Compared to observations of snow depth and SWE, the binary logistic regression 
models produced the lowest mean biases, while high and low air temperature thresholds 
tended to respectively overpredict and underpredict snow accumulation.” 

• Introduction: it would have been interesting to shortly discuss how /where pre- 
cipitation phase is actually observed; as far as I am aware of, actual precipitation 
phase observations are crucially missing at most places.   

Good point. We have added a line to the first paragraph of the Introduction: 

“Complicating matters is the fact precipitation phase is rarely observed in mountain 
regions on a continuous bases over long time scales.” 

• Introduction: the manuscript focuses its discussion on snow-hydrological models. How 
do meteorological forecast models determine the limit (elevation) of snow fall? 
Completing the literature review with this respect would complete the picture   

This is covered in discussion (p. 21 lines 4-17) and not necessary for the Introduction as 
we do not utilize any atmospheric model methods in this work. 



• P. 2: “In general, warmer sites are more sensitive to precipitation phase method 
selection in terms of annual snowfall fraction variability, though it is less certain 
how this variability translates into divergences in simulated snow accumulation 
and melt. “ This statement is given without reference. In what is the apparently 
previously known result different from your own findings?   

Text changed to: “This previous work has shown, in general, warmer sites are more 
sensitive…” in order to clearly connect the statement with the published literature in the 
previous line.  

• Study sites: It might be useful to know the variability of the daily air temperature 
around the seasonal mean (ie. the anomalies, obtained e.g. by fitting a sine curve 
to air temperature as in the work of Woods, 2009. It is this variability that will tell 
something about the probability of switching from accumulation to melting 
conditions and about a site sensivitiy to the chosen temperature threshold.   

This sounds similar to the point raised by Nayak et al. (2010), who showed the effects of 
switching from sub-freezing to freeze-thaw diurnal cycles on snowpacks at Reynolds 
Creek. It is clear fluctuations above and below freezing having important effects on snow 
cover energetics. However, we are unclear as to what new, relevant information such data 
would provide to the current study. Perhaps we are misunderstanding the comment, so 
please clarify if so.  

• Methods: it is not clear at this stage that all stations always show a seasonal snow cover 
(significant accumulation over several weeks), which is important for the concept 
of “peak SWE” to be meaningful   

It is noted in the Study sites and data section (p. 4-5) for each location whether seasonal 
snowpacks develop or not. 

• the current definition of snowmelt rate is probably over sensitive to spurious shifts 
from a primary to a secondary SWE peak, which could reduce the melt dura- tion 
sensibly; how could this measure be made more robust? Similar comment applies 
to the peak SWE date that is discussed in the results section. Is this measure 
useful? Minor modifications of SWE accumulation can switch the SWE peak date 
between a spurious primary or secondary peak (Figure 4 suggest that stations with 
two peaks might exist, but I might be mistaken).   

We noted on p. 15 (lines 3-6): “We found the greatest differences in peak SWE dates 



were generally simulated on years with low/transient snow cover. In these cases, 
late-season precipitation was simulated as rain by the low Ta thresholds and snow 
by the high Ta thresholds, meaning an early SWE maximum was recorded as the 
peak in the former case and a late SWE maximum in the latter case.” Given that 
peak SWE timing is an important measure of melt onset in the western US, we 
find it is necessary to highlight the variability in this metric as produced by 
different phase methods. Our finding indicates research on future changes to 
snowmelt timing is affected by modeling decisions on assigning precipitation 
phase. 

Regarding snowmelt rate, we present the seasonal melt rate or ablation slope (e.g., 
Trujillo and Molotch, 2014) because of the importance of the spring snowmelt 
freshet to streamflow generation in many mountainous areas of the western US. 
However, we admit this overlooks the important winter contributions of snowmelt 
to groundwater and streamflow in maritime and transient snow environments. 
Switching the analysis to include all days when snowmelt was > 0 mm, we found 
marginal differences across the precipitation phase methods (mean differences 
were all less than 2.2 mm d-1, which is less than the nominal precision of the 
SNOTEL snow pillows in the western US). Looking at daily average melt rate 
differences between the Ta0 and Ta3 thresholds helps illustrate why. Figure R3 
below shows that generally Ta0 produces higher melt rates than Ta3 early in the 
snow cover season, while the reverse is true later in the season. Although annual 
average melt rates exhibit few differences, this figure shows the timing of 
terrestrial water inputs is important. 



 

Figure R3. The difference in daily average snowmelt rate between Ta3 and Ta0. 

• P. 14 “meaning a significant proportion of water was simulated to have run off using 
one precipitation phase method versus being stored in the snowpack”. This not 
well formulated since rainfall does not necessarily run off. It can infiltrate and 
recharge the groundwater.   

We agree this was imprecise wording. We have changed this to, “meaning a significant 
proportion of water was simulated to have infiltrated or run off using one precipitation 
phase method versus being stored in the snowpack…” 

• Section 4.4: Here, standard deviations are calculated across the results of all 12 
computation methods. Standard deviation does not seem to be a good measure to 
quantify the variability of values that do not come from an actual sample of a 
given process but of values pertaining to different methods. (Besides: how are 
standard deviations obtained? First per method and then averaged over all 
methods?)   

The standard deviation values presented in Section 4.4 and Figure 6 are computed per air 
temperature and RH bin across all stations and methods as noted in the text. Although 
standard deviation is an appropriate metric of variability in this context, we redid the 



analysis using the uncertainty formulation from Harder and Pomeroy (2014). We 
modified it to be per RH and temperature bin. The result was the same (Figure R4): 
 

 
Figure R4. Same as Figure 6 in submitted manuscript, but standard deviation is replaced with the uncertainty 
metric from Eq. 1 in Harder and Pomeroy (2014). 

 
Screenshot of text from Harder and Pomeroy (2014) showing the uncertainty metric 
equation: 
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