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Abstract. Anthropogenic warming is reported to increase global drought for the 21st century when 

calculated using offline drought indices. However, this contradicts observations of greening and little 

systematic change in runoff over the past few decades and climate projections of future greening with 

slight increases in global runoff for the coming century. This calls into question the drought projections 

based on offline drought indices. To resolve this paradox, here we calculate a widely-used conventional 25 

drought index (i.e., the Palmer Drought Severity Index, PDSI) using direct outputs from 16 CMIP5 

models (PDSI_CMIP5) such that the hydrologic consistency between PDSI_CMIP5 and CMIP5 models 

is maintained. Results show that the global PDSI_CMIP5 remains generally unchanged as climate 

warms, demonstrating that CMIP5 models do not actually project a general increase in PDSI drought 

(more reflecting soil moisture/agricultural drought) under future warming. Further analyses indicate that 30 

the projected increase in PDSI drought reported previously is primarily due to ignoring the vegetation 

response to elevated atmospheric CO2 concentration ([CO2]) in the offline calculations. On one hand, 

elevated [CO2] directly reduces stomatal opening; on the other hand, elevated [CO2] increases air 

temperature and thus vapor pressure deficit, which also causes partial stomatal closure. Finally, we 

show that the overestimation of PDSI drought can be avoided by directly using the relevant climate 35 

model outputs or by accounting for the effect of CO2 on evapotranspiration. Our findings refute the 

common “warming leads to drying” perception and highlight the importance of elevated CO2 in 

controlling future terrestrial hydrologic changes through vegetation responses. 

1 Introduction 

Drought is an intermittent disturbance of the water cycle that has profound impacts on regional water 40 

resources, agriculture and other ecosystem services (Sherwood and Fu, 2014). By taking meteorological 

outputs from climate model projections as the inputs to offline drought indices/hydrological impact 

models, numerous studies have projected increases in future drought, in terms of both frequency and 

severity, mainly as a consequence of warming associated with anthropogenic climate change (Cook et 

al., 2014, 2015; Dai, 2011, 2012; Dai et al., 2018; Huang et al., 2015, 2017; Lehner et al., 2017; Liu et 45 

al., 2018; Naumann et al., 2018; Park et al., 2018; Samaniego et al., 2018; Sternberg, 2011; Trenberth et 

al., 2013). The scientific basis underpinning this drying trend projected using offline drought 
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indices/hydrological impact models is that the calculated increases in evapotranspiration (E) are larger 

than the projected increase in precipitation (P) in many places (Sternberg et al., 2011), which results in 

an increasing water deficit and thus increasing future drought. However, direct climate model outputs of 50 

E exhibit a much smaller increasing trend (Supplementary Figure S1) and the global land mean P is 

actually projected to increase faster than its E counterpart (Greve et al., 2017; Milly and Dunne, 2016, 

2017; Roderick et al., 2015; Yang et al., 2018) leading to very different conclusions. 

Several recent studies have demonstrated that the drying bias in the offline calculated E trend is 

primarily due to neglecting the impact of increasing atmospheric CO2 concentration ([CO2]) on the 55 

water use efficiency of vegetation (Lemordant et al., 2018; Milly and Dunne, 2016, 2017; Roderick et 

al., 2015; Swann et al., 2016; Yang et al., 2019). In existing hydrologic impact models/drought indices, 

P and potential evapotranspiration (EP; the rate of evapotranspiration that would occur with an 

unlimited supply of water) are the two key input variables, which respectively represent water supply to, 

and water demand from, the land surface. While P is a direct climate model output, EP is neither used 60 

nor produced by climate models. The commonly adopted procedure is to calculate EP using the 

meteorological variables contained in the climate model output using an intermediate EP model. The 

calculated EP, together with the climate model projected P, are used to force an independent hydrologic 

impact model (or hydrologic calculations embedded in drought indices) that independently calculates E, 

runoff (Q), and storage change (∆S), for assessing hydrologic changes under future climate scenarios 65 

(see Figure 1). Among various EP models, the open-water-Penman model (Shuttleworth, 1993) and the 

reference crop Penman-Monteith model (Allen et al., 1998) have been most widely used in existing 

drought assessment studies, given their sound physical basis and relatively simple formulations. 

Nevertheless, both Penman-based models do not faithfully capture the biological processes embedded in 

the climate models. The open-water-Penman model was designed for water surfaces, where surface 70 

resistance (rs) is, by definition, equal to zero. The reference crop Penman-Monteith model assumes a 

constant rs at 70 s m-1, which is appropriate for an idealized reference crop in the current climate but 

contradicts the fact that rs increases with elevated [CO2] over vegetated surfaces in climate model 

projections (Yang et al., 2019). As a result, existing offline hydrologic impact models/drought indices 

calculate estimates of E, Q and ∆S that are different from those same variables in the original fully-75 
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coupled climate model output. For that reason, the consequent assessments of drought changes in 

existing offline hydrologic impact models/drought indices do not correctly represent the projections in 

the underlying fully-coupled climate models. Figure 1 illustrates the inconsistency in the hydrologic 

predictions (also see Milly and Dunne 2017) that have resulted in different trends in projected future 

drought between climate models and offline hydrologic impact models/drought indices. 80 

Here, we re-assess changes in future global drought using climate model projections from 16 Coupled-

Model-Intercomparison-Project-Phase-5 (CMIP5) models under historical (1861-2005) and 

Representative Concentration Pathway 8.5 (RCP8.5; 2006-2100) experiments (Taylor et al., 2012). The 

Palmer Drought Severity Index (PDSI; Palmer, 1965) is adopted here to quantify drought as it has been 

widely used for operational drought monitoring and is increasingly used in studies assessing drought 85 

under climate change (Cook et al., 2014, 2015; Dai, 2011, 2012; Dai et al., 2018; Lehner et al., 2017; 

Liu et al., 2018; Sheffield et al., 2012; Swann et al., 2016; Trenberth et al., 2013). To maintain 

consistency between the calculated PDSI and the CMIP5 models, we calculate PDSI using direct 

hydrologic outputs (i.e., P, E, Q, ΔS) from the CMIP5 models (PDSI_CMIP5; see Methods). This 

procedure minimizes the uncertainty in PDSI estimates caused by uncertainties in the hydrologic 90 

simulations embedded in the original PDSI algorithm (Palmer, 1965). The original PDSI using 

reference crop Penman-Monteith EP (PDSI_PM-RC), as extensively used previously (e.g., Cook et al., 

2014, 2015; Liu et al., 2018), and is also presented for comparison (the right stream shown in Figure 1). 

Additionally, to demonstrate the impact of elevated [CO2] on PDSI via vegetation feedbacks, we 

calculate PDSI forced with EP estimated from a modified Penman-Monteith equation that explicitly 95 

considers the biological effect of elevated [CO2] (the left stream in Figure 1) on rs (PDSI_PM[CO2]; see 

Methods). 

2 Data and Methods 

2.1 Climate model projections 

We used outputs from 16 climate models participating in Phase 5 of the Coupled Model 100 

Intercomparison Project (CMIP5; Supplementary Table S1) under historical (1861-2005) and RCP 8.5 
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(2006-2100) experiments (Taylor et al., 2012). We used monthly series of runoff, precipitation, soil 

moisture, sensible and latent heat flux at the land surface along with near-surface air temperature, air 

pressure, wind speed and specific humidity. All outputs from 16 CMIP5 models were resampled to a 

common 1o spatial resolution by using the first-order conservative remapping scheme (Jones, 1999).  105 

2.2 Calculation of PDSI 

The Palmer Drought Severity Index (PDSI) was used to quantify drought (Palmer, 1965). To minimize 

the impact of initial conditions on PDSI estimates, the first 40 years (1861-1900) are used for model 

spin-up with the analyses focused on the 1901-2100 period. Briefly, the PDSI model consists of two 

parts: (i) a two-stage bucket model that calculates the monthly water balance components (i.e., actual 110 

evapotranspiration (E), runoff (Q) and soil moisture changes (∆S)) using P and EP as inputs, and (ii) a 

dimensionless index that describes the moisture departure between the actual precipitation and the 

precipitation needed to maintain a normal soil moisture level for a given time (i.e., the climatically 

appropriate for existing conditions values). Detailed descriptions of PDSI can be found in Palmer 

(1965). A drought event is identified with negative PDSI values, with a more negative PDSI indicating 115 

a more severe drought, whereas moist events are associated with positive PDSI values.   

We calculated PDSI following Palmer (1965) yet calculated EP using the reference crop Penman-

Monteith model (PDSI_PM-RC). The Penman-Monteith model explicitly considers influences from 

both radiative and aerodynamic components and has been widely used in previous PDSI calculations 

(e.g., van der Schrier et al., 2011; Dai et al., 2011; Sheffield et al., 2012). In addition, we also used a 120 

modified Penman-Monteith model (PM[CO2]; detailed later in the Methods and also see Yang et al., 

2019) that accounts for the impact of elevated [CO2] on rs to calculate EP and then PDSI 

(PDSI_PM[CO2]). Applying this modified Penman-Monteith model with [CO2] adjustment in a simple 

hydrologic model satisfactorily recovered the hydrologic predictions of CMIP5 models (Yang et al., 

2019).  125 

Additionally, instead of using hydrological simulations from the simplified water balance model 

embedded in the original PDSI model, we also calculated PDSI by using direct hydrologic outputs E, Q, 
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∆S from the 16 CMIP5 models (PDSI_CMIP5). This approach ensures that PDSI_CMIP5 faithfully 

represented the CMIP5 output. As the original PDSI model depends on a two-stage ‘‘bucket’’ model of 

the soil, we correspondingly regarded the moisture in upper portion of soil column (integrated over the 130 

uppermost 10 cm) from CMIP5 models as the moisture in the first layer and the total soil moisture 

content as the available moisture in both layers. Moreover, since the estimation of the weighting factor 

that converts moisture anomalies into the PDSI index also requires knowledge of EP, we used the EP 

computed from a modified Penman-Monteith equation that explicitly considers the biological effect of 

elevated [CO2] (i.e., PM[CO2]) (Yang et al., 2019). To further assist understanding how different PDSIs 135 

were calculated, we illustrate the calculation procedures of different PDSIs in Figure 2. Additionally, 

Matlab codes with worked examples of the different PDSIs can be accessed through 

https://github.com/zslthu/Calculate-PDSI-in-Matlab. The PDSIs were calculated using outputs of each 

CMIP5 model in turn, and the ensemble PDSIs (averaging PDSIs over models) were used in the 

following analyses.     140 

2.3 Calculation of Potential Evapotranspiration 

Two potential evapotranspiration formulations were used to calculate EP. The first is the reference crop 

Penman-Monteith EP model, which computes EP (mm day-1) as (Allen et al., 1998): 

n

P

* 900
0.408

273

(1 0.34 )

uD
TE

u
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 +
+=

 + +
                (1) 

where Δ (Pa K-1) is the gradient of the saturation vapour pressure with respect to temperature,  (Pa K-1) 145 

is the psychrometric constant, Rn
* (MJ m-2 day-1) is the surface available radiation (i.e., net radiation 

minus ground heat flux), D (Pa) is the vapour pressure deficit of the air at 2 m height, u (m s-1) is the 

wind speed at 2 m height. In the reference crop Penman-Monteith model, rs is set to a fixed value of 70 

s m-1 and this parameter value is embedded into the equation. 
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In addition, we used a modified reference crop Penman-Monteith EP model (i.e., PM[CO2]) that 150 

accounts for the impact of rising [CO2] (expressed in ppm units) on rs, as derived in Yang et al. (2019). 

The PM[CO2] model calculates EP as: 
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2.4 Determining the timing of global warming target 

To demonstrate the impact of warming on drought changes, we assessed changes in PDSI_CMIP5 155 

under two future warming targets: 1.5 oC and 2 oC warming above the pre-industrial level. The 1.5 oC 

and 2 oC warming levels have been extensively discussed (Huang et al., 2017; Lehner et al., 2017; Liu 

et al., 2018; Park et al., 2018; Samaniego et al., 2018), as they are the two key warming targets set in the 

Paris Agreement on climate change (UNFCCC, 2015). The timing when the global warming targets (i.e., 

t1.5 and t2) is reached in each of the 16 CMIP5 models was computed based on the model output of the 160 

near-surface air temperature (Ta). We first selected 1986-2005 as the baseline period, which is a widely 

used reference period for climate impact assessment (Lehner et al., 2017; Liu et al., 2018; Park et al., 

2018). Then, we applied a 20-year moving average filter to the global mean annual Ta time series to 

remove the interannual fluctuations in annual Ta (Liu et al., 2018; Park et al., 2018). Each 20-year 

moving average is indexed to its final year (for example, the 20-year running mean Ta for 2080 is an 165 

average of Ta for 2061–2080). Finally, t1.5 and t2 are respectively determined at the times when global 

mean Ta reached 0.9 °C and 1.4 °C above the 1986–2005 baseline, as this period was at least 0.6 °C 

warmer than the pre-industrial level (Hawkins et al., 2017; Schleussner et al., 2016). 

3 Results 

3.1 Predicted drought changes 170 

In applications, a PDSI < -3.0 is considered to be drought conditions while a PDSI > 3.0 is considered 

exceptionally moist (e.g., Palmer, 1965; Liu et al., 2018). We examined changes in the land area subject 
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to these dry and moist extremes and find that the global drought area (i.e., PDSI < -3.0) during the 21st 

century increases by 0.2393 ± 0.0942% per year (p<0.01) for PDSI_PM-RC but only increases by 

0.1099 ± 0.0228% per year (p<0.01) for PDSI_CMIP5 and 0.1178 ± 0.0308% per year (p<0.01) for 175 

PDSI_PM[CO2], respectively (Figures 3a-c). Evident drought increases are depicted by PDSI_PM-RC 

across much of the North America, South America, central-to-south Europe, Congo Basin, southern 

Africa, southeast China and southern coastal areas of Australia (Figure 3e), as widely reported 

previously (Dai, 2011, 2012; Dai et al., 2018; Cook et al., 2014; Lehner et al., 2018; Liu et al., 2018). 

However, that trend is not identified by PDSI_CMIP5 and PDSI_PM[CO2] (Figures 3e and f). By 180 

contrast, moist areas (i.e., PDSI > 3.0) are less divergent among the three PDSIs, although the 

PDSI_PM-RC still shows the fewest wetting lands compared to the other two PDSIs. Interestingly, both 

PDSI_CMIP5 and PDSI_PM[CO2] depict the increase in drought area to be more or less the same as the 

increase in moist area (Figures 3a-c). A similar result that the increase in drought area is essentially the 

same as the increase in moist area is obtained when the PDSI thresholds are changed to PDSI < -2.0 and 185 

PDSI > 2.0 (Supplementary Figure S2). 

The above results clearly indicate an inconsistency between the PDSI_PM-RC that has been widely 

used in offline calculations for drought assessment studies and the underlying CMIP5 models, as the 

PDSI_CMIP5 used here is based on the direct hydrologic outputs (E, Q and ∆S) from CMIP5 models. 

To give a global overview, we compare the time series of the three global average PDSI in Figure 4. 190 

Not surprisingly, the three global average PDSI time series exhibit remarkably different trends since the 

year 2000, with PDSI_PM-RC showing a significant decreasing trend (-0.0130 ± 0.0059 yr-1; p<0.01) 

but PDSI_CMIP5 remains more or less unchanged over the entire period (0.0004 ± 0.0015 yr-1; not 

significant) (Figure 3). In comparison, the global average time series of PDSI_PM[CO2] (trend = -

0.0002±0.0024 yr-1; not significant) closely follows that of PDSI_CMIP5 for the entire study period 195 

(Figure 3), highlighting the importance of vegetation response to elevated [CO2] in the control of future 

surface hydrological changes. This latter comparison further confirms that the inconsistency between 

the PDSI_PM-RC and CMIP5 models is largely caused by ignoring the vegetation response to elevated 

[CO2] in the PDSI_PM-RC. A similar result that PDSI_PM-RC shows a significant decreasing trend 

while PDSI_CMIP5 and PDSI_PM[CO2] remain more or less unchanged is obtained when considering 200 
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the entire globe as one point, that is, averaging the forcing variables first and then do the PDSI 

calculation (Supplementary Figure S3).  

3.2 The effect of warming on drought changes 

Warming has been identified as the key driver of the overall future drought increase in numerous 

studies (Cook et al., 2014, 2015; Dai, 2011, 2012; Dai et al., 2018; Huang et al., 2015, 2017; Lehner et 205 

al., 2017; Liu et al., 2018). To further understand the impact of warming on drought changes, we 

assessed changes in PDSI_CMIP5 at 1.5 oC and 2 oC warming above the pre-industrial level. The 

PDSI_PM-RC is also presented for comparison. Any substantial increase in drought is identified when 

PDSI for a future warming target decreased by 1.0 compared to PDSI during the 1986-2005 baseline 

(i.e., ΔPDSI < -1). Additionally, only places where the ΔPDSI < -1.0 threshold is reached in at least 8 210 

CMIP5 model (out of the 16 CMIP5 models 50% and more) are considered to be robust projections and 

thus used herein. Based on the PDSI_CMIP5, our results show that almost nowhere on earth (only 0.06% 

of the global land area) is projected to have a substantial drought increase at the 1.5 oC warming target, 

and this number only slightly increases to 0.77% at the 2 oC warming target (Figures 5a and b). In 

comparison, substantial increase in drought is identified at 5.10 % and 13.41 % of the global land area 215 

at the two warming targets, respectively, when PDSI_PM-RC is used (Figures 5a and c). More places 

are projected to have a substantial drought increase under future warming if we relaxed the threshold of 

PDSI change to -0.5 (i.e., ΔPDSI < -0.5) (Figure 5d-f). Nevertheless, the PDSI_CMIP5 still shows a 

considerable smaller percentage of drying lands (6.2% and 10.0%) than the PDSI_PM-RC (26.32% and 

34.77%) under the two warming targets, respectively, particularly over North America, much of 220 

Amazonia, Europe, the Congo basin and southeast China.  

4 Discussion and concluding remarks 

The above results clearly demonstrate an overestimation of drought severity and extent using PDSI in 

many previous assessments of future drought (e.g., Cook et al., 2014, 2015; Dai, 2011, 2012; Dai et al., 

2018; Lehner et al., 2018; Liu et al., 2018). The overestimation is primarily caused by neglecting the 225 

impact of elevated [CO2] on rs and consequently on EP in the offline calculation of drought indices. As 
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EP is neither used nor produced by climate models, an offline intermediate EP model is required to 

estimate EP based on climate outputs of meteorological variables. However, conventional EP models, 

such as the open-water Penman model and the reference crop Penman-Monteith model, involve an 

important assumption that rs remains constant over time (Allen et al., 1998; Shuttleworth, 1993). This 230 

assumption is in general valid for water surfaces and/or wet bare soils but proved to be problematic over 

vegetated surfaces. Over vegetated surfaces, on one hand, elevated [CO2] leads to a partial stomatal 

closure that increase rs (e.g., Ainsworth and Rogers, 2007) yet on the other hand, elevated [CO2] has 

“fertilized” vegetation resulting in an increased foliage cover (e.g., Donohue et al., 2013; Zhu et al., 

2016), which also effectively suggests a reduction in rs. In addition, elevated [CO2] serves as the 235 

ultimate driver of climate warming in the CMIP5 models and consequently leads to an increase in 

atmospheric vapor pressure deficit, which also tends to increase rs (Lin et al., 2018; Novick et al., 2016).  

While the net effect of elevated [CO2] on rs is still uncertain in the real world, our results clearly 

indicate that in CMIP5 models, elevated [CO2] increases rs, which, with all else equal, results in a 

decrease of EP and thus E. A recent study further showed that over vegetated surfaces, an increase in EP 240 

caused by warming-induced vapor pressure deficit increase is almost entirely offset by a decrease in EP 

caused by the increase in rs driven by elevated [CO2] in CMIP5 models (Yang et al., 2019). This 

suggests that warming does not necessarily lead to a higher EP over vegetated surfaces and hence 

increased drought under [CO2] enrichment, which is consistent with CMIP5 model projections yet 

contradicts the perception that “warming leads to drying” in many previous studies (Cook et al., 2014, 245 

2015; Dai, 2011, 2012; Dai et al., 2018; Huang et al., 2015, 2017; Lehner et al., 2018; Liu et al., 2018; 

Park et al., 2018; Samaniego et al., 2018; Sternberg, 2011; Trenberth et al., 2013). Additionally, it is 

worthwhile mentioning that the CMIP5 models do project topsoil moisture (within 10 cm) to decline 

similar to PDSI_PM-RC (Dai, 2012; Dai et al., 2018), but that since no systematic decline in runoff or 

in vegetation indicators (e.g., leaf area index and gross/net primary production) seems to result from it 250 

(Greve et al., 2017; Milly and Dunne, 2016, 2017; Roderick et al., 2015; Swann et al., 2016; Yang et al., 

2019), it does not seem to actually matter. This is likely because root-zone or deeper soil moisture that 

is of more agricultural/ecological and/or hydrological significance, is projected to remain more or less 
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unchanged (Berg et al., 2017; Greve et al., 2017), consistent with PDSI_CMIP5 and PDSI_PM[CO2] 

(Figures 3 and 4).  255 

Here, we use PDSI as an illustrating case; similar results were also found in another commonly used 

drought index (i.e., the Standardized Precipitation-Evapotranspiration Index, or SPEI; Vicente-Serrano, 

2010) (Supplementary Figure S4). Nevertheless, both PDSI and SPEI, as well as other drought/aridity 

metrics, are secondary offline impact models. Since climate models are fully-coupled land (and ocean) 

– atmosphere models that are an internally consistent representation of the climate system (Milly and 260 

Dunne, 2016), a scientific prior of applying any offline hydrological impact models is that the adopted 

model must be able to recover the hydrological simulations in climate models (Roderick et al., 2015; 

Milly and Dunne, 2017; Yang et al., 2019). Otherwise, any inconsistency in hydrological predictions 

between offline impact models and climate models themselves would lead to inconsistent predictions in 

other components of the climate system. Unfortunately, this important scientific prior has been largely 265 

ignored in many previous drought assessment studies, leading to biased drought predictions that are 

actually inconsistent with climate model themselves.    

In summary, we have shown that climate model projections of the global drought area remains more or 

less constant over a 200-year period under different scenarios for future warming. Our results 

demonstrate that the “warming leads to drying” perception is fundamentally flawed, primarily due to the 270 

ignorance of the vegetation response to elevated [CO2] (also see Yang et al., 2019). However, despite a 

small overall trend globally, we find that both drying and wetting areas are simulated to increase 

towards the end of this century (Figures 3b-f), suggesting an increased spatial variability in surface 

hydrological conditions that will likely lead to increased droughts and/or floods at local/regional scales. 

In this light, attention should be paid to regions where droughts and/or floods are projected to most 275 

likely increase (e.g., Mediterranean Europe and Central America) and more efforts may be needed to 

mitigate the consequent impact there under climate change.   
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Figure 1: Conceptual plot illustrating the inconsistency in the hydrologic predictions between 

climate models and offline hydrologic impact models. The symbols P, EP, E, Q and ΔS represent 

precipitation, potential evapotranspiration, actual evapotranspiration, runoff and storage change, 415 

respectively. The meteorological variables used to calculate EP depend on the adopted EP model but 

mainly include net radiation, near-surface air temperature, vapor pressure and wind speed. The 

biological factor here is the response of surface resistance to elevated [CO2] over vegetated lands. 
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Figure 2: Flowchart of PDSI calculations.  
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Figure 3: Global average time series of fractional land area experiencing drought/moist 

conditions and the spatial pattern of PDSI trend. a-c, Global average time series of land area 430 

experiencing drought (PDSI < -3.0, red) and moist (PDSI > 3.0, blue) conditions for (a) PDSI_PM-RC, 

(b) PDSI_CMIP5 and (c) PDSI_PM[CO2], respectively. The solid curves represent the ensemble mean 

of 16 CMIP5 models and the shading represents plus/minus one standard deviation among models. e-f, 

spatial distribution of PDSI trends during 1901-2100 for (d) PDSI_PM-RC, (e) PDSI_CMIP5 and (f) 

PDSI_PM[CO2], respectively. Black dots represent locations where the same sign of the PDSI trend is 435 

identified in at least 8 out of the 16 CMIP5 models (i.e., >50 % of models).   
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Figure 4: Global average time series of the PDSI during 1901-2100. PDSI_PM-RC (red), 

PDSI_CMIP5 (black) and PDSI_PM[CO2] (blue). The solid curve represents the ensemble mean of the 

16 CMIP5 models and the shading represents plus/minus one standard deviation among the 16 models. 440 

The time series are averaged over global land areas excluding Greenland and Antarctica. 
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Figure 5: Areas with substantial drought increase under future warming. a, Relative land area with 

substantial drought increase (ΔPDSI < -1.0) under 1.5 oC and 2 oC warming based on PDSI_CMIP5 and 445 

PDSI_PM-RC. b-c, Spatial pattern of substantial drought increase (ΔPDSI < -1.0) under 1.5 oC and 2 oC 

warming based on (b) PDSI_CMIP5 and (c) PDSI_PM-RC. d-f, Similar with a-c but for ΔPDSI < -0.5. 
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