
Response to Reviewers’ comments 

We greatly appreciate the reviewers providing valuable and constructive comments on 

our manuscript HESS-2019-701. We seriously considered each comment and 

revised/improved the manuscript accordingly. The individual comments are replied 

below. In the following the reviewer comments are black font and our responses are 

blue and to assist with navigation we use codes, such as R1C2 (Reviewer 1 Comment 

2).  

To Anonymous Referee #1  

R1C1: General comments: This paper analyzes projected changes in PDSI. It 

compares PDSI estimates obtained using potential evapotranspiration with and 

without accounting for the response of vegetation to increasing atmospheric CO2 

concentration, as well as a direct estimate based on hydrological output from CMIP5 

climate models. The main point is that there is no significant global drying trend 

based on PDSI, and the reason this was previously suggested is that offline impact 

models did not account for the response of vegetation to increased CO2. As noted by 

the authors (page 3, lines 54–57), several recent studies have already pointed out this 

problem when computing ET offline. 

 

The valid point the authors make of refuting a general rule of “warming leads to 

drying” should not be interpreted as there will be no drying. The authors could try to 

make this even clearer by further emphasizing the projected increase in land area 

fraction under extreme conditions of water availability as well as the uncertainties in 

the projections.  

 

Overall, the manuscript is well-structured and clearly conveys its main point. 

Nonetheless, it would be useful to further discuss some aspects of the methodology 

and address potential caveats of the PDSI. 

Reply: Thanks for your encouraging and constructive comments. Your individual 

comments are replied below. We have changed the title and the text to avoid 

misleading the readers as “there will be no drying” and to focus on our key 

information that “we use direct climate model fluxes as inputs to PDSI and compare 

that with traditional PDSI. We find traditional PDSI overestimates projected drought. 

We also find that you can do a reasonable job using traditional PDSI but with CO2 

effects incorporated.”  

 

Specific comments  

R1C2: Although PDSI has been a widely used index, it is not exempt from caveats. 



When analyzing projected changes in drought (water availability) it would be 

beneficial to also directly show the changes in relevant variables like soil moisture 

and precipitation minus evapotranspiration. Although results for SPEI are presented in 

the supplement, a summary of trends in projected soil moisture anomalies would be a 

suitable complement to the manuscript. Particularly, maps of the trends would provide 

a more comprehensive picture as opposed to the global averages. 

Reply: The maps of trends in soil moisture and precipitation minus evapotranspiration 

have been shown in a few previous publications (e.g., Berg et al., 2017; Greve et al., 

2017; Swann et al., 2016; Yang et al., 2019); we have cited these papers and 

summarized/discussed their findings in the manuscript.  

 

An important motivation of this study is actually based on these previous findings that 

total soil moisture (and root-zone soil moisture) does not show notable changes and 

precipitation minus evapotranspiration (or runoff) shows a slightly increase but 

estimated drought increases substantially in the coming century. The current study is 

designed to solve this contradiction. Several studies have pointed out the issue of 

ignoring the CO2 effect in offline ET (and/or runoff) estimations (as noted by the 

reviewer), with the findings have important implications on drought changes. This 

study goes one step further by directly focusing on drought, using a widely used 

drought index – PDSI.  

 

The spatial patterns of PDSI trend are shown in Figure 3. The global averaged PDSI 

series was intended to give an overall comparison between different PDSIs at the 

global scale (given comments by the editor and other reviewers, we removed this 

global average PDSI series from the main text in the revised manuscript).   

 

R1C3: It appears that the climatically appropriate for existing conditions (CAFEC) 

coefficients are estimated for the entire period 1901–2100 (if this is the case, it should 

be explicitly stated). This seems counterintuitive to me when analyzing projected 

changes. Why would it not be more meaningful to estimate the soil moisture 

anomalies relative to some reference conditions from the past or present, e.g. 1901–

1960 as for SPEI in Fig. S4? 

Reply: Both PDSI and SPEI are calculated for the entire period 1901-2100 (both 

indices calculate the monthly departure from climatological means, and the 

climatological means are computed as the mean over 1901-2100). With the calculated 

SPEI series, in Fig. S4 (now supplementary Figure S3), we show the long-term SPEI 

change relative to the 1901-1960 mean to better highlight the changes.  

 

In the revised manuscript, we have made this point clear in the method section (Line 



116-117). In addition, we have removed the global average PDSI series (Figure 4 in 

the original submission) from the main text.   

 

R1C4: It would be relevant to discuss and/or provide sensitivity tests to assumptions 

underlying the calculation of PDSI. For example, what value was selected for the 

available water capacity (AWC)? Is it constant in space? Are the values model 

dependent?  

Reply: There is only one parameter (AWC) needed in PDSI calculation, and is derived 

from the Global Gridded Surfaces of Selected Soil Characteristics 

(https://webmap.ornl.gov/ogcdown/dataset.jsp?ds_id=569). We have described this in 

more detail in the revised manuscript (Line 117-119). The sensitivity of PDSI to AWC 

has been examined in a previous study (Sheffield et al., 2012), and the authors found 

that changes in AWC have only very minor impact on PDSI estimates. This is now 

mentioned in the revised manuscript (Line 119-120).  

 

R1C5: It would be insightful to know more about the variability of PDSI given that all 

data is already available. For example, maps of change in the standard deviation of 

PDSI from a future period relative to present-day can be shown in the supplement. 

Reply: Done. Revised as suggested (Supplementary Figure S4) 

 

R1C6: The manuscript concludes (page 11, lines 273–274) highlighting the increased 

spatial variability in surface hydrological conditions. In this context, it could be 

appropriate to also discuss local changes in temporal variability, see Kumar et al. 

(2013). Kumar, S., Lawrence, D. M., Dirmeyer, P. A. & Sheffield, J. Less reliable 

water availability in the 21st century climate projections. Earth’s Futur. 2, 152–160 

(2013).  

Reply: Done. Revised as suggested (Line 284), with the suggested paper now cited 

(thanks for the comment).   

 

R1C7: Page 6, lines 129–132: Potential for discussion. Differences between total soil-

depth representation in CMIP models may lead to systematic differences in PDSI 

estimates from individual models.  

Reply: Done. We now mention this point in the revised manuscript (Line 137-139). In 

addition, we would like to point out although the absolute PDSI value might be 

different, differences in soil-depth are unlikely to affect the PDSI changes (as per 

Sheffield et al., 2012, see R1C4 above).  

 

In addition, we updated our results by showing mean and range (estimates from all 

individual models) instead of standard deviation in the revised manuscript (Figure 5, 



S1-S3 in the revised manuscript). This better shows the difference between individual 

models.  

 

R1C8: It should be noted that the discussed response of vegetation to increasing CO2 

applies to transpiration, but not to evaporation from the soil and canopy as well as 

snow sublimation. In this case, increasing CO2 and temperature would have a direct 

effect towards increasing evaporation.  

Reply: We agree with this point and we add a sentence in the revised manuscript to 

explicitly state that increasing CO2 only impacts vegetation transpiration (Line 55-

58).  

Relevant text read: “This vegetation-[CO2] response only impacts transpiration, not 

soil evaporation, interception from vegetation surfaces or sublimation in snow 

environments, however it should be noted that transpiration dominates (~ 65%) global 

terrestrial evaporation (Lian et al., 2018; Zhang et al 2016).” 

 

R1C9: Fig. 3 shows that even for direct CMIP5 output there can be a considerable 

increase in the land fraction experiencing extreme drought/moist conditions. These 

areas could be even larger if we were to consider the full spread of the CMIP5 

ensemble as opposed to plus/minus one standard deviation. Is it reasonable to 

consider that differences in how individual models represent the response of 

vegetation to increasing CO2 could explain the spread in CMIP5 projections? This 

may be an important discussion point for the paper.  

Reply: We have updated our results by showing mean and range (estimates from all 

individual models) instead of standard deviation in the revised manuscript to better 

show the difference between individual models (Figures 5, S1-S3). However, it is 

beyond the scope of this manuscript to investigate how individual CMIP5 models deal 

with the response of vegetation to increasing CO2. To the best of our knowledge, most 

(if not all) CMIP5 models adopt the Farquhar photosynthesis model to estimate 

assimilation rate, which is then coupled with the Ball-Barry model to estimate 

stomatal resistance. So, the response of vegetation to increasing CO2 in most of the 

CMIP5 models is essentially the Farquhar response. So, the difference among models 

is unlikely caused by how the response of vegetation to increasing CO2 represented in 

the model but more likely caused by the simulated difference in the controlling 

environmental factors (e.g., temperature, water availability, radiation, etc.) that 

modify the Farquhar response.    

 

R1C10: What is the reason why this particular subset of 16 CMIP5 models was used 

and not all models that are available?  

Reply: These particular 16 CMIP5 models were used because these 16 models 



provide all outputs we need, in particular runoff estimations. We have explicitly stated 

this in the revised manuscript (Line 85-86). 

Relevant text read: “These 16 CMIP5 models were selected as they output all 

variables, including runoff, that are needed for the analysis performed herein.” 

 

R1C11: Trends in vegetation greening are mentioned in the abstract. The following 

reference about hidden vegetation browning could be helpful. Pan, N., Feng, X., Fu, 

B., Wang, S., Ji, F. and Pan, S.: Increasing global vegetation browning hidden in 

overall vegetation greening: Insights from time-varying trends, Remote Sens. 

Environ., 214, 59–72, doi:10.1016/J.RSE.2018.05.018, 2018. 

Reply: We have changed the relevant text as “the overall global greening”, which 

implies that there are also scattered browning trend. We highlight greening here as it 

is the very big picture. However, the main text is all about climate model projections 

(which show an even more consistent greening trend across the globe), so the 

observed browning trend is not relevant here.  

 

Technical comments  

R1C12: In Palmer (1965), equation 26 appears to use monthly recharge (R) instead of 

long-term average R. This might be worth double checking since it seemed to me the 

average is used in the provided scripts. 

Reply: The equation 26 in Palmer (1965) does not use monthly R but monthly 

climatological R: long-term mean R for each month. We follow that.  

That equation is to estimate monthly weighting factors, so each month has only one 

weighting factor.  

 

R1C13: Lines 45 and 225: Inconsistency in the reference Lehner et al., 2017 or 2018? 

There is only one reference entry.  

Reply: Apology for the typo. It is Lehner et al., 2017. We have corrected it in the 

revised manuscript.   

 

R1C14: Page 10, lines 23: I would delete the word “also” since the effects are 

opposite.  

Reply: Done. Revised as suggested (Line 241). 

 

R1C15: Page 11, line 273: Is Fig. 3b–f correct? Or Fig. 3b–c?  

Reply: Done. We have renumbered the figures and carefully checked the text to 

ensure they are correctly referenced in the text. 

 



R1C16: Figure 3: The selection criteria for where to have the black dots does not 

seem optimal. As it is now, it is showing all regions where the mean and median of 

PDSI have the same sign. I would suggest a different threshold for model agreement, 

e.g. black dots where at least 2/3 of the models agree in sign. Alternatively, it could be 

useful to include in the supplement maps of model agreement that are complementary 

to Figs. 3d–f.  

Reply: There is a typo in the caption of Figure 3. The black dots actually show the 

same sign detected in at least 13 models (so >80%). We have corrected it in the 

revised manuscript (see caption of Figure 3).  

 

R1C17: Page 8, line 194 and 196: It should be Fig. 4. 

Reply: Apology for the typo. Since we have removed the global average PDSI series 

from the main text in the revised manuscript, this sentence has been deleted too.  

 

References: 

Berg et al., Divergent surface and total soil moisture projections under global 

warming, Geophysical Research Letters, 44, 236-244, 2017. 

 

Greve et al., Simulated changes in aridity from the last glacial maximum to 4XCO2, 

Environmental Research Letters, 12, 114021, 2017. 

 

Swann et al., Plant response to increasing CO2 reduce estimates of climate impacts on 

drought severity, PNAS, 113, 10019-10024, 2016. 

 

Yang et al., Hydrological implications of vegetation response to elevated CO2 in 

climate projections, Nature Climate Change, 9, 44-48, 2019. 

  



To Anonymous Referee #2: 

R2C1: General Comments This report is a welcome contribution to the ongoing 

discussion in the literature regarding how to characterize changes in drought 

incidence under the changing climate. The paper is a follow-up to the paper by Yang 

et al (2019), which presents an equation that generally captures the variation of 

effective stomatal resistance within CMIP5 models as a function of atmospheric 

carbon dioxide concentration. In this paper, that relation is used to show how a 

popular drought index (the PDSI) can be adapted to characterize drought in our world 

of greenhouse warming. A readily available and simple offline alternative to the usual 

PDSI (and, in particular, to the Allen et al. form of the Penman-Monteith equation) 

will likely be of value to climate-change impacts analysts, many of whom may not be 

familiar enough with the biological processes in play or have the resources to model 

the processes with greater fidelity. That being said, it is important to evaluate the 

performance of the modified index carefully and to lay out clearly the assumptions 

and limitations in one place. 

 

To some extent, the literature in this area has had a certain feel of X-vs-Y to it, X 

being increase of drought, and Y being no change in drought to speak of. This paper 

moves a bit toward the middle in acknowledging increases in drought incidence, but 

the overall presentation still has the feel of Y. Some specific suggestions for 

movement toward what might be a more balanced presentation are offered below for 

the authors’ consideration.  

Reply: Thanks for your encouraging and constructive comments. Your individual 

comments are replied below.  

 

Specific Comments: 

R2C2: The title “Little Change. . .” (which echoes that of Sheffield et al.) places the 

paper in the Y category mentioned in the General Comments above. To me, and 

perhaps to other readers, “little” implies something along the lines of “nothing to 

worry about.” The authors might consider modifying the title to avoid that 

implication. 

Reply: Thanks very much for the point. We have changed the title to: Comparing 

PDSI drought assessments using the traditional offline approach with direct climate 

model outputs.   

 

R2C3: The reference to “PDSI” in the title, without qualification, is potentially 

confusing. Other publications (as well as this one) have shown that the usual PDSI 

equation applied to climate-change projections do imply increased drought. Would it 

be appropriate to change “PDSI” to “Co2-aware PDSI” or something else that 



conveys that idea?  

Reply: Please see our reply to R2C2. 

 

R2C4: In general, the paper does a good job of citing the relevant literature. However, 

it’s not clear to me that the abstract does justice to the previous literature (including 

the authors’ own works) when it uses the phrase “resolve a paradox.”  

Reply: We have removed the phrase “resolve the paradox” in the revised manuscript. 

 

R2C5: It’s not immediately apparent what it means for the abstract to say that “global 

PDSI_CMIP5” remains generally unchanged. If this refers to the global average of the 

time average of the ensemble average of PDSI, then it is possible that the element of 

variability in space, in time, and across models could be lost in translation. It’s hard to 

think about “drought” without considering variability.  

Reply: We have revised the abstract to avoid any misunderstanding and/or 

misinterpretation of such. The new abstract reads: 

“Anthropogenic warming has been projected to increase global drought for the 21st 

century when calculated using offline drought indices. However, this contradicts 

observations of the overall global greening and little systematic change in runoff over 

the past few decades and climate projections of future greening with slight increases 

in global runoff for the coming century. This calls into question the drought 

projections based on offline drought indices. Here we calculate a widely-used 

conventional drought index (i.e., the Palmer Drought Severity Index, PDSI) using 

direct outputs from 16 CMIP5 models (PDSI_CMIP5) such that the hydrologic 

consistency between PDSI_CMIP5 and CMIP5 models is maintained. We find that 

the PDSI_CMIP5-depicted drought increases (in terms of drought severity, frequency 

and extent) are much smaller than that reported when PDSI is calculated using the 

traditional offline approach that has been widely used in previous drought 

assessments under climate change. Further analyses indicate that the overestimation 

of PDSI drought increases reported previously using the traditional PDSI is primarily 

due to ignoring the vegetation response to elevated atmospheric CO2 concentration 

([CO2]) in the offline calculations. Finally, we show that the overestimation of 

drought using the traditional PDSI approach can be minimized by accounting for the 

effect of CO2 on evapotranspiration.” 

 

R2C6: The statement in the abstract that “projected increase in PDSI drought reported 

previously is primarily due to ignoring the vegetation response” seems somewhat 

overstated when I look at Figure 3, which suggests that the increase is about 50% or 

so due to ignoring the biological response, leaving another 50% that is not due to that.  

Reply: We have revised the relevant text in the abstract to avoid any misunderstanding 



and/or misinterpretation of such. In particular, in stead of saying “projected increase 

in PDSI drought reported previously”, we now use “the overestimation of PDSI 

drought increases reported previously” (Line 31).  

 

R2C7: I did not carefully evaluate what was implied by lines 138-140: “The PDSIs 

were calculated using outputs of each CMIP5 model in turn, and the ensemble PDSIs 

(averaging PDSIs over models) were used in the following analyses,” but that passage 

gave me pause. Won’t averaging across models reduce both the temporal and spatial 

variability and thereby impact drought estimates?  

Reply: We removed the global average PDSI series (Figure 4 in original submission) 

from the main text and updated (the new) Figure 5 to show the range of drought/moist 

areas projected by all individual models. In addition, results in Figure 5 are not 

ensembles but the results agreed in at least 8 models (as suggested by reviewer #3, 

i.e., R3C11).  

 

R2C8: lines 208-210. The criterion for substantial increase in drought appears to 

based on the change in the average value of PDSI rather than the change in the 

exceedance of a threshold. Is that a good measure?  

Reply: The focus here was the increase in drought (decrease in PDSI by definition). A 

place changes from extreme moist to mild moist is also considered as an indication of 

potential drought increase. The same analysis has been applied in a few previous 

studies (e.g., Liu et al., 2018) so we use the same approach to be able to compare with 

results from others.  

Changes of PDSI exceeding a certain threshold indicate changes area under drought, 

and these results are given in Figure 5. In addition, we add a figure showing trends in 

months with PDSI exceeding a certain threshold to show changes in time under 

drought (Figure 4).    

 

R2C9: lines 210-212. It was stated earlier that ensemble averages were used for the 

analysis. It’s quite possible I’ve read through the paper too quickly; the authors might 

consider taking precautions to avoid letting the casual reader get confused.  

Reply: This is not the ensemble result (Figure 6 in the revised manuscript); instead, it 

is the result that shared by at least 8 of the 16 CMIP5 models (as suggested by 

reviewer #3, i.e., R3C11). This is now made clear in the revised manuscript (Line 

217-219).  

 

R2C10: lines 233-235. I am confused by “yet on the other hand” (which by the way 

sounds redundant in itself) combined with “also,” since both effects are working in 

the same direction. The “also” seems out of place here. I get that “also” here was 



meant in the sense of “and here’s another thing it does,” but the current sentence 

structure doesn’t work for me.  

Reply: We have deleted “also” in the revised manuscript (Line 241).  

 

R2C11: line 242-247. I think this is another place where the authors could relax away 

from the “Y” position mentioned in the general comments. It seems to me that the 

dryness near the surface might be important for wildfire risk and perhaps for various 

biological processes that take place close to the surface. This idea might even be 

allowed to bubble up into the abstract. 

Reply: Following your suggestion, we have extended the discussion on possible 

impacts of surface soil moisture decline in the revised manuscript (Line 255-264).  

 

R2C12: Figures 1 and 2. The creation of these figure to convey what’s going on is 

appreciated. Figure 2 takes a while to understand. It might help if the four black 

arrows and the plus signs were removed. It also might help if there were another 

column for how Ep is computed.  

Reply: Done. Revised as suggested. The second column from the left (under 

Meteorological Inputs) shows how EP was computed for each PDSI.  

 

R2C13: Figure 3. A map of trend in PDSI doesn’t seem as useful as a map of trend in 

exceedance of some substantial value of PDSI.  

Reply: The map of PDSI trend gives a general information on how PDSI changes. Per 

your comment we now also show the trend for the area under drought (defined by the 

PDSI exceeding a nominated threshold) (Figure 5). Following your suggestion, we 

have also added a map showing time (i.e., the number of months) in each year with a 

PDSI value exceeds a certain threshold (Figure 4).  

 

R2C14: lines 435-436. “where the same sign of the PDSI trend is identified in at least 

8 out of the 16 CMIP5 models..” Taken alone, without additional explanation in the 

caption, it seems like this would be true everywhere.  

Reply: There is a typo in the caption of Figure 3. The black dots actually show the 

same sign detected in at least 13 models (so >80%). We have corrected this in the 

revised manuscript.  

 

R2C15: Figure 4. This figure averages out a lot of information. Do the benefits of its 

inclusion outweigh the possible misunderstanding that it might generate? See also 

related comment above regarding “global PDSI_CMIP5” in abstract.  

Reply: As also suggested by the editor, we removed this figure from the main text in 

the revised manuscript.  



 

R2C16: Figure 5. As mentioned elsewhere, change in (expected value of) PDSI might 

not be the best metric for change in drought. Change in exceedance of thresholds 

might be better. I wouldn’t be surprised if these were quite parallel, but to leave that 

taken for granted could weaken the overall impact of the paper.  

Reply: Please see our reply to R2C8.  

In addition, we understand this reviewer’s concern of using changes in PDSI as the 

measure. However, using changes in exceedance of thresholds may also incur other 

issues. For example, if we chose PDSI = -1 as the threshold for drought, then 

locations having a PDSI = -2 in the baseline period and a PDIS = -1.5 in the future 

period (or PDSI = -1.5 in the baseline period and PDSI = -1.51 in the future period) 

will be identified as places with a substantial drought increase.  

 

Technical Corrections  

R2C17: line 93. Delete “and”  

Reply: We have rewritten this part and this comment is not relevant in the revised 

manuscript. 

 

R2C18: line 233. Change “increase” to “increases”  

Reply: Done. Revised as suggested (Line 240). 

 

R2C19: line 270-271. Consider changing “due to the ignorance of” to “due to 

ignoring.”  

Reply: Done. Revised as suggested (Line 279). 

 

R2C20: line 285. Change semicolon to period.  

Reply: Done. Revised as suggested (Line 271). 

 

R2C21: line 433. Change “e-f” to “d-f”  

Reply: The figures have been restructured and renumbers in the revised manuscript. 

We have carefully checked all figure captions to avoid such mistakes.  

 

R2C22: line 287. Add period. 

Reply: Done. Revised as suggested (Line 296). 

 

References:  

Liu et al., Global drought and severe drought-affected population in 1.5oC and 2oC 

warmer world, Earth System Dynamics, 9, 267-283, 2018 

  



To Reviewer #3: 

R3C1: This very innovative and important study shows that when the familiar Palmer 

Drought Severity Index (PDSI) is computed directly from global Earth System Model 

output of precipitation, evaporation, runoff and soil moisture storage (rather than box-

modeling all those quantities from an offline-computed potential evaporation of 

questionable accuracy as is traditionally done), the dire projections of ubiquitous 

future global drought from those traditional studies vanish. Instead, the PDSI 

projections become both wetting and drying depending on region, consistent with the 

*direct* simulations of runoff, deep-layer soil moisture, etc. by the ESMs but not with 

the traditional PDSI studies.  

 

This is a key methodological advance and shows that the PDSI index itself is not 

flawed under climate change, rather its known problems stem from the traditional 

potential evaporation input which is inaccurate, leading to inaccurate inferred water 

flux changes. The inaccuracy of the traditional potential-evaporation input is because 

leading-order biological effects of changing CO2 and vapor pressure are taken into 

account in the ESMs but not in the potential-evaporation calculation, as the authors 

show well here. 

 

I recommend only minor revisions before publication, since I was anonymous 

Reviewer #2 on the earlier version of this study that was originally submitted to 

Environ. Res. Lett., and I already had my concerns largely addressed during that 

review process at that journal. My strongly recommended minor revisions are listed 

below. 

Reply: Thanks for your favorable evaluation of our study. Your individual comments 

are replied below.  

 

R3C2: 30: This kind of parenthetical remark/qualification is appropriate for the body 

text, but I don’t think is needed for the Abstract - it makes the Abstract too 

complicated and clunky. At least, that is how I read it. So I think you should either 

remove or greatly shorten this remark. You can put something like this in the body 

text instead. 

Reply: Done. We have removed this additional remark in the revised manuscript.  

 

R3C3: 54-57, 94-96, 122, 226, 271, 418: Should also mention the impact of 

increasing/elevated vapor pressure deficit, as you do in the Abstract. The direct effect 

of CO2 is only part of the story, as you explain well at 235-237 but the text does not 

reflect here at all. 

Reply: We have mentioned the VPD impact in Line 56 as you suggested. However, as 



we have carefully gone through other places you mentioned, we do not think they are 

biased statements. We use the term “CO2 effects on vegetation” as a lumped impact 

including both direct and indirect pathways. Since we have explained them in the 

introduction and discussion, we prefer to keep using the “CO2 effects on vegetation” 

as the overall impact to improve the flow of the manuscript.  

 

R3C4: 88-89: It should be clarified here that this corresponds to the center stream in 

Figure 1, parallel to how you point out the right stream and left stream later in the 

paragraph.  

Reply: Done. Revised as suggested (line 92). Noting that we use the word ‘column’ 

(or ‘approach’) rather than ‘stream’ to avoid any potential confusion for readers who 

are better reading languages other than English. 

 

R3C5: 117-120: Similarly, this should mention that it is the right stream in Fig 1.  

Reply: Done. Revised as suggested (line 125). 

 

R3C6: 120-123: Similarly, this should mention that it is the left stream in Fig 1.  

Reply: Done. Revised as suggested (line 130). 

 

R3C7: 126-135: Similarly, this should mention that it is the center stream in Fig 1.  

Reply: Done. Revised as suggested (line 133); and thanks for these (i.e., R3C4 to 

R3C7, inclusive) really good comments that mean Figure 1 becomes a ‘backbone’ for 

our analysis. 

 

R3C8: 178: Should be 3d, not 3e.  

Reply: Sorry for the typo. We have corrected in the revised manuscript (Line 180-

183). 

 

R3C9: 238: As stated in previous review for Environ. Res. Lett., "our results" on this 

line will be read by most readers as meaning "the current study" (even though that’s 

not what you actually mean.) Since it’s actually Yang et al (2019) that showed this 

key fact (not the current study), this needs to be rephrased to make that clear. It’s 

largely the same authors, but different study, and the distinction is important. 

Reply: Done. Revised as suggested (Line 247); thanks for the comment. 

 

R3C10: Fig 2: Caption should point out which rows respectively correspond to the 

left, right and center streams of Fig 1.  

Reply: Good suggestion; we have updated the caption of Figure 2 following your 

suggestion in the revised manuscript, noting (as per R3C4) we use the word ‘column’ 



rather than ‘streams’.  

 

R3C11: Fig 3d-f: Stippling when >50% of models agree on sign of change is trivial - 

this will almost always be true (unless exactly 8 models have increase and exactly 8 

have decrease.) Rather, you should stipple when, say, >67% or >80% of models agree 

on sign of change. This better filters out changes that are just noise.  

 

It is true that I suggested 50% threshold in previous review, but that was for models 

with dPDSI < -1, not for basic sign of change! 50% makes sense if the criterion is 

dPDSI < -1 because that’s not likely to occur by chance. But it doesn’t make sense for 

dPDSI < 0 or dPDSI > 0, since that occurs most of the time by chance (unless 

*exactly* 8 models happen to have a decrease!)  

Reply: We are sorry about this but there is a typo in the caption of original Figure 3. 

The black dots actually show the same sign detected in at least 13 models (so >80%). 

We have corrected this in the revised manuscript; again we are sorry for the 

inconvenience.  

 

R3C12: Supp Fig S1: This is greatly appreciated, but I think it would have an even 

greater impact if you reversed the color scale in panels b and c (i.e. make negative 

green/blue, and positive yellow/brown.) This is because in this context we are 

thinking of E as a loss term in the water budget, and so increasing trend of E -> more 

drying. (I know that in other contexts/purposes more E -> wetter, but here the purpose 

is clearly to indicate that panel c is not as "drying" as panel b, so the colors should 

intuitively reflect that!) 

Reply: Done. Revised as suggested; and again thanks.  
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Abstract. Anthropogenic warming has been projected to increase global drought for the 21st century 

when calculated using offline drought indices. However, this contradicts observations of the overall 

global greening and little systematic change in runoff over the past few decades and climate projections 

of future greening with slight increases in global runoff for the coming century. This calls into question 

the drought projections based on offline drought indices. Here we calculate a widely-used conventional 25 

drought index (i.e., the Palmer Drought Severity Index, PDSI) using direct outputs from 16 CMIP5 

models (PDSI_CMIP5) such that the hydrologic consistency between PDSI_CMIP5 and CMIP5 models 

is maintained. We find that the PDSI_CMIP5-depicted drought increases (in terms of drought severity, 

frequency and extent) are much smaller than that reported when PDSI is calculated using the traditional 

offline approach that has been widely used in previous drought assessments under climate change. 30 

Further analyses indicate that the overestimation of PDSI drought increases reported previously using 

the traditional PDSI is primarily due to ignoring the vegetation response to elevated atmospheric CO2 

concentration ([CO2]) in the offline calculations. Finally, we show that the overestimation of drought 

using the traditional PDSI approach can be minimized by accounting for the effect of CO2 on 

evapotranspiration.  35 

 

1 Introduction 

Drought is an intermittent disturbance of the water cycle that has profound impacts on regional water 

resources, agriculture and other ecosystem services (Sherwood and Fu, 2014). By taking meteorological 

outputs from climate model projections as the inputs to offline drought indices/hydrological impact 40 

models, numerous studies have projected increases in future drought, in terms of severity, frequency 

and extent, mainly as a consequence of warming associated with anthropogenic climate change (Cook et 

al., 2014, 2015; Dai, 2011, 2012; Dai et al., 2018; Huang et al., 2015, 2017; Lehner et al., 2017; Liu et 

al., 2018; Naumann et al., 2018; Park et al., 2018; Samaniego et al., 2018; Sternberg, 2011; Trenberth et 

al., 2013). The scientific basis underpinning this drying trend projected using offline drought 45 

indices/hydrological impact models is that the calculated increases in evapotranspiration (E) are larger 

than the projected increase in precipitation (P) in many places (Sternberg et al., 2011), which results in 
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an increasing water deficit and thus increasing simulated future drought. However, direct climate model 

outputs of E exhibit a much smaller increasing trend (Supplementary Figure S1) and the global land 

mean P is actually projected to increase faster than its E counterpart (Greve et al., 2017; Milly and 50 

Dunne, 2016, 2017; Roderick et al., 2015; Yang et al., 2018) leading to a very different conclusion. 

Several recent studies have demonstrated that the drying bias in the offline calculated E trend is 

primarily due to neglecting the impact of increasing atmospheric CO2 concentration ([CO2]) (and its 

resultant vapor pressure deficit increase) on the water use efficiency of vegetation (Lemordant et al., 

2018; Milly and Dunne, 2016, 2017; Roderick et al., 2015; Swann et al., 2016; Yang et al., 2019). This 55 

vegetation-[CO2] response only impacts transpiration, not soil evaporation, interception from vegetation 

surfaces or sublimation in snow environments, however it should be noted that transpiration dominates 

(~ 65%) global terrestrial evaporation (Lian et al., 2018; Zhang et al 2016). In existing hydrologic 

impact models/drought indices, P and potential evapotranspiration (EP; the rate of evapotranspiration 

that would occur with an unlimited supply of water) are the two key input variables, which respectively 60 

represent water supply to, and water demand from, the land surface. While P is a direct climate model 

output, EP is neither used nor produced by climate models. The traditional approach is to calculate EP 

offline using the meteorological variables in the climate model output. The calculated EP, together with 

the climate model projected P, are used to force an offline hydrologic impact model (or hydrologic 

calculations embedded in drought indices) that independently calculates E, runoff (Q), and storage 65 

change (∆S), for assessing hydrologic changes under future climate scenarios (see Figure 1). Among 

various EP models, the open-water-Penman model (Shuttleworth, 1993) and the reference crop Penman-

Monteith model (Allen et al., 1998) have been most widely used in existing drought assessment studies, 

given their sound physical basis and relatively simple formulations. Nevertheless, both Penman-based 

models do not faithfully capture the biological processes embedded in the climate models. The open-70 

water-Penman model was designed for water surfaces, where surface resistance (rs) is, by definition, 

equal to zero. Allen et al’s (1998) reference crop Penman-Monteith model prescribed a constant rs at 70 

s m-1, which is appropriate for an idealized reference crop in the current climate but does not account for 

the fact that rs increases with elevated [CO2] over vegetated surfaces in climate model projections 

(Yang et al., 2019). As a result, existing conventional offline hydrologic impact models/drought indices 75 
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calculate estimates of E, Q and ∆S that are different from those same variables in the original fully-

coupled climate model output. For that reason, the consequent assessments of drought changes in 

existing offline hydrologic impact models/drought indices do not correctly represent the projections in 

the underlying fully-coupled climate models. Figure 1 illustrates the inconsistency in the hydrologic 

predictions (also see Milly and Dunne 2017) that have resulted in different trends in projected future 80 

drought between climate models and offline hydrologic impact models/drought indices. 

Here, we re-assess changes in future global drought using climate model projections from 16 Coupled-

Model-Intercomparison-Project-Phase-5 (CMIP5) models under historical (1861-2005) and 

Representative Concentration Pathway 8.5 (RCP8.5; 2006-2100) experiments (Taylor et al., 2012). 

These 16 CMIP5 models were selected as they output all variables, including runoff, that are needed for 85 

the analysis performed herein. The Palmer Drought Severity Index (PDSI; Palmer, 1965) is adopted 

here to quantify drought as it has been widely used for operational drought monitoring and is 

increasingly used in studies assessing drought under climate change (Cook et al., 2014, 2015; Dai, 2011, 

2012; Dai et al., 2018; Lehner et al., 2017; Liu et al., 2018; Sheffield et al., 2012; Swann et al., 2016; 

Trenberth et al., 2013). To maintain consistency between the calculated PDSI and the CMIP5 models, 90 

we first calculate PDSI using direct hydrologic outputs (i.e., P, E, Q, ΔS) from the CMIP5 models 

(PDSI_CMIP5; corresponds to the centre column in Figure 1; also see Methods). This procedure 

provides a reference for the PDSI projections. We then replicate the traditional PDSI calculation by 

using only meteorological data as inputs to calculate the reference crop Penman-Monteith EP 

(PDSI_PM-RC) (the right-hand column shown in Figure 1). The inference is that this traditional offline 95 

approach that only responds to meteorological forcing will overestimate drought relative to the direct 

climate model output because it does not consider the biological effect of elevated [CO2]. To evaluate 

that inference, we again re-calculate the PDSI using an offline formulation that considers both the 

meteorological forcing and the biological effects of elevated CO2 (Yang et al., 2019) (the left-hand 

column in Figure 1). 100 
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2 Data and Methods 

2.1 Climate model projections 

We used outputs from 16 climate models participating in Phase 5 of the Coupled Model 

Intercomparison Project (CMIP5; Supplementary Table S1) under historical (1861-2005) and RCP 8.5 

(2006-2100) experiments (Taylor et al., 2012). We used monthly series of runoff, precipitation, soil 105 

moisture, sensible and latent heat flux at the land surface along with near-surface air temperature, air 

pressure, wind speed and specific humidity. All outputs from 16 CMIP5 models were resampled to a 

common 1o spatial resolution by using the first-order conservative remapping scheme (Jones, 1999).  

2.2 Calculation of PDSI 

The Palmer Drought Severity Index (PDSI) was used to quantify drought (Palmer, 1965). To minimize 110 

the impact of initial conditions on PDSI estimates, the first 40 years (1861-1900) are used for model 

spin-up with the analyses focused on the 1901-2100 period. Briefly, the PDSI model consists of two 

parts: (i) a two-stage bucket model that calculates the monthly water balance components (i.e., E, Q and 

∆S) using P and EP as inputs, and (ii) a dimensionless index that describes the moisture departure 

between the actual precipitation and the precipitation needed to maintain a normal soil moisture level 115 

for a given time (i.e., the climatically appropriate for existing conditions values; these values were 

calculated for the entire period of 1901-2100). The soil available water capacity (AWC) needed for 

PDSI calculation was derived from the Global Gridded Surfaces of Selected Soil Characteristics 

(https://webmap.ornl.gov/ogcdown/dataset.jsp?ds_id=569). While this parameter is inevitably subject to 

uncertainties, Sheffield et al (2012) demonstrated that the PDSI calculation is insensitive to AWC inputs. 120 

Detailed descriptions of PDSI can be found in Palmer (1965). A drought event is identified with 

negative PDSI values, with a more negative PDSI indicating a more severe drought, whereas moist 

events are associated with positive PDSI values.   

We calculated PDSI following Palmer (1965) yet calculated EP using the reference crop Penman-

Monteith model (PDSI_PM-RC; the right-hand column in Figure 1). The Penman-Monteith model 125 

explicitly considers influences from both radiative and aerodynamic components and has been widely 
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used in previous PDSI calculations (e.g., van der Schrier et al., 2011; Dai et al., 2011; Sheffield et al., 

2012). In addition, we also used a modified Penman-Monteith model (PM[CO2]; detailed later in the 

Methods and also see Yang et al., 2019) that accounts for the impact of elevated [CO2] on rs to calculate 

EP and then PDSI (PDSI_PM[CO2]; the left-hand column in Figure 1).  130 

Additionally, instead of using hydrological simulations from the simplified water balance model 

embedded in the original PDSI model, we also calculated PDSI by using direct hydrologic outputs E, Q, 

∆S from the 16 CMIP5 models (PDSI_CMIP5; the centre column in Figure 1). This approach ensures 

that PDSI_CMIP5 faithfully represented the CMIP5 output. As the original PDSI model depends on a 

two-stage ‘‘bucket’’ model of the soil, we correspondingly regarded the moisture in upper portion of 135 

soil column (integrated over the uppermost 10 cm) from CMIP5 models as the moisture in the first layer 

and the total soil moisture content as the available moisture in both layers (so differences between total 

soil-depth representation in CMIP5 models may lead to differences in PDSI estimates from individual 

models but are unlikely impact the PDSI changes). Moreover, since the estimation of the weighting 

factor that converts moisture anomalies into the PDSI index also requires knowledge of EP, we used the 140 

EP computed from a modified Penman-Monteith equation that explicitly considers the biological effect 

of elevated [CO2] (i.e., PM[CO2]) (Yang et al., 2019). To comprehensively document how the different 

PDSIs were calculated, we illustrate the calculation procedures of the different PDSIs in Figure 2. 

Additionally, Matlab codes with worked examples of the different PDSIs can be accessed through 

https://github.com/zslthu/Calculate-PDSI-in-Matlab. The PDSIs were calculated using outputs of each 145 

CMIP5 model in turn, and the ensemble PDSIs (averaging PDSIs over the 16 CMIP5 models) were 

used in the following analyses.     

2.3 Calculation of Potential Evapotranspiration 

Two potential evapotranspiration formulations were used to calculate EP. The first is the reference crop 

Penman-Monteith EP model, which computes EP (mm day-1) as (Allen et al., 1998): 150 
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where Δ (Pa K-1) is the gradient of the saturation vapour pressure with respect to temperature,  (Pa K-1) 

is the psychrometric constant, Rn
* (MJ m-2 day-1) is the surface available radiation (i.e., net radiation 

minus ground heat flux), D (Pa) is the vapour pressure deficit of the air at 2 m height, u (m s-1) is the 

wind speed at 2 m height. In the reference crop Penman-Monteith model, rs is prescribed as 70 s m-1 and 155 

this parameter value is embedded into the equation. 

In addition, we used a modified reference crop Penman-Monteith EP model (i.e., PM[CO2]) that 

accounts for the impact of rising [CO2] (expressed in ppm units) on rs, as derived in Yang et al. (2019). 

The PM[CO2] model calculates EP as: 
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2

*

n

900
0.408

273

{1 [0.34 2.4 10 ([CO ] 300)]}

uD
TE

u

R 

 −

 +
+=

 + + +  −
      (2) 160 

2.4 Determining the timing of global warming target 

To demonstrate the impact of warming on drought changes, we assessed changes in PDSI_CMIP5 

under two future warming targets: 1.5 oC and 2 oC warming above the pre-industrial level. The 1.5 oC 

and 2 oC warming levels have been extensively discussed (Huang et al., 2017; Lehner et al., 2017; Liu 

et al., 2018; Park et al., 2018; Samaniego et al., 2018), as they are the two key warming targets set in the 165 

Paris Agreement on climate change (UNFCCC, 2015). The timing when the global warming targets (i.e., 

t1.5 and t2) is reached in each of the 16 CMIP5 models was computed based on the model output of the 

near-surface air temperature (Ta). We first selected 1986-2005 as the baseline period, which is a widely 

used reference period for climate impact assessment (Lehner et al., 2017; Liu et al., 2018; Park et al., 

2018). Then, we applied a 20-year moving average filter to the global mean annual Ta time series to 170 

remove the interannual fluctuations in annual Ta (Liu et al., 2018; Park et al., 2018). Each 20-year 

moving average is indexed to its final year (for example, the 20-year running mean Ta for 2080 is an 

average of Ta for 2061–2080). Finally, t1.5 and t2 are respectively determined at the times when global 

mean Ta reached 0.9 °C and 1.4 °C above the 1986–2005 baseline, as this period was at least 0.6 °C 

warmer than the pre-industrial level (Hawkins et al., 2017; Schleussner et al., 2016). 175 



8 

 

3 Results 

3.1 Predicted drought changes 

Figure 3 shows the global patterns of PDSI trends for the three PDSIs. Evident drought increases are 

depicted by PDSI_PM-RC across much of the North America, South America, central-to-south Europe, 

Congo Basin, southern Africa, southeast China and southern coastal areas of Australia (Figure 3a), as 180 

widely reported previously (Dai, 2011, 2012; Dai et al., 2018; Cook et al., 2014; Lehner et al., 2018; 

Liu et al., 2018). However, those broad scale trends are not identified by either PDSI_CMIP5 or 

PDSI_PM[CO2] (Figures 3b and c). Compared with PDSI-PM-RC, both PDSI_CMIP5 and 

PDSI_PM[CO2] show much smaller changes. This result clearly indicates an inconsistency between the 

PDSI_PM-RC that has been widely used in traditional offline calculations for drought assessment 185 

studies and the underlying CMIP5 models, as the PDSI_CMIP5 used here is based on the direct 

hydrologic outputs (E, Q and ∆S) from CMIP5 models.  

To examine changes in drought frequency and extent, changes in months under drought within each 

year and changes in land area subject to dry and moist extremes are respectively shown in Figures 4 and 

5. In applications, a PDSI < -3.0 is considered to be severe drought conditions while a PDSI > 3.0 is 190 

considered exceptionally moist (e.g., Palmer, 1965; Liu et al., 2018). We find that months with 

PDSI_PM-RC < -3.0 increase substantially over areas where PDSI_PM-RC evidently decreases, 

suggesting an increased drought frequency in these regions (Figure 4a). However, when assessed with 

PDSI_CMIP5 and PDSI_PM[CO2], these drought frequency increases largely diminish (Figure 4b and 

4c). Similar results are found for drought extent changes as severe drought during the 21st century 195 

increases by 0.2393 ± 0.0942% per year (p<0.01) for PDSI_PM-RC but only increases by 0.1099 ± 

0.0228% per year (p<0.01) for PDSI_CMIP5 and 0.1178 ± 0.0308% per year (p<0.01) for 

PDSI_PM[CO2], respectively (Figures 5a-c). By contrast, moist areas (i.e., PDSI > 3.0) are less 

divergent among the three different PDSIs, although the PDSI_PM-RC still shows the fewest wetting 

lands compared to the other two PDSIs (Figures 5a-c). Interestingly, both PDSI_CMIP5 and 200 

PDSI_PM[CO2] depict the increase in drought area to be essentially equivalent as the increase in moist 

area (Figures 5a-c), which may suggest an overall unchanged PDSI_CMIP5 (PDSI_PM[CO2]) series at 
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the global scale (Supplementary Figure S2). The above results are largely retained when assessing 

changes at different thresholds (i.e., mild drought/moist events with PDSI < -1.0 and PDSI > 1.0, and 

moderate drought/moist events with PDSI < -2.0 and PDSI >2.0 (Figures 4d-4i and 5d-5i). The fact that 205 

the results based on PDSI_PM[CO2] closely follow that of PDSI_CMIP5 highlights the importance of 

vegetation response to elevated [CO2] in the control of future surface hydrological changes. This 

demonstrates the inconsistency between the PDSI_PM-RC and CMIP5 models is largely caused by 

ignoring the vegetation response to elevated [CO2] in the PDSI_PM-RC calculations. 

3.2 The effect of warming on drought changes 210 

Warming has been identified as the key driver of the overall future drought increase in numerous 

studies (Cook et al., 2014, 2015; Dai, 2011, 2012; Dai et al., 2018; Huang et al., 2015, 2017; Lehner et 

al., 2017; Liu et al., 2018). To further understand the impact of warming on drought changes, we 

assessed changes in PDSI_CMIP5 at 1.5 oC and 2 oC warming above the pre-industrial level. The 

PDSI_PM-RC is also presented for comparison. Any substantial increase in drought is identified when 215 

PDSI for a future warming target decreased by 1.0 compared to PDSI during the 1986-2005 baseline 

(i.e., ΔPDSI < -1). Additionally, only places where the ΔPDSI < -1.0 threshold is reached in at least 8 

CMIP5 model (out of the 16 CMIP5 models so 50% and more) are considered to be robust projections 

and thus used herein. Based on the PDSI_CMIP5, our results show that almost nowhere on earth (only 

0.06% of the global land area) is projected to have a substantial drought increase at the 1.5 oC warming 220 

target, and this number only slightly increases to 0.77% at the 2 oC warming target (Figures 6a and b). 

In comparison, substantial increase in drought is identified at 5.10 % and 13.41 % of the global land 

area at the two warming targets, respectively, when PDSI_PM-RC is used (Figures 6a and c). More 

places are projected to have a substantial drought increase under future warming if we relaxed the 

threshold of PDSI change to -0.5 (i.e., ΔPDSI < -0.5) (Figures 6d-f). Nevertheless, the PDSI_CMIP5 225 

still shows a considerable smaller percentage of drying lands (6.2% and 10.0%) than the PDSI_PM-RC 

(26.32% and 34.77%) under the two warming targets, respectively, particularly over North America, 

much of Amazonia, Europe, the Congo basin and southeast China.  
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4 Discussion and concluding remarks 

The above results clearly demonstrate an overestimation of drought severity, frequency and extent using 230 

PDSI in many previous assessments of future drought (e.g., Cook et al., 2014, 2015; Dai, 2011, 2012; 

Dai et al., 2018; Lehner et al., 2017; Liu et al., 2018). The overestimation is primarily caused by 

neglecting the impact of elevated [CO2] on rs and consequently on EP in the traditional offline 

calculation. As EP is neither used nor produced by climate models, an offline intermediate EP model is 

required to estimate EP based on climate outputs of meteorological variables. However, conventional EP 235 

models, such as the open-water Penman model and the reference crop Penman-Monteith model, involve 

an important assumption that rs remains constant over time (Allen et al., 1998; Shuttleworth, 1993). This 

assumption is in general valid for water surfaces and/or wet bare soils but is not valid over vegetated 

surfaces. Over vegetated surfaces, on one hand, elevated [CO2] leads to a partial stomatal closure that 

increases rs (e.g., Ainsworth and Rogers, 2007) yet on the other hand, elevated [CO2] has “fertilized” 240 

vegetation resulting in an increased foliage cover (e.g., Donohue et al., 2013; Zhu et al., 2016), which 

effectively suggests a reduction in rs. In addition, elevated [CO2] serves as the ultimate driver of climate 

warming in the CMIP5 models and consequently leads to an increase in atmospheric vapor pressure 

deficit, which also tends to increase rs (Lin et al., 2018; Novick et al., 2016).  

While the net effect of elevated [CO2] on rs is still uncertain in the real world, a recent study clearly 245 

showed that in CMIP5 models, elevated [CO2] increases rs, which, with all else equal, results in a 

decrease of EP and thus E (Yang et al., 2019). Yang et al (2019) also showed that over vegetated 

surfaces, an increase in EP caused by warming-induced vapor pressure deficit increase is almost entirely 

offset by a decrease in EP caused by the increase in rs driven by elevated [CO2] in CMIP5 models. This 

suggests that climate change does not necessarily lead to a higher EP over vegetated surfaces and hence 250 

increased drought under [CO2] enrichment, which is consistent with CMIP5 model projections yet 

contradicts the perception that “warming leads to drying” presented in many previous studies (Cook et 

al., 2014, 2015; Dai, 2011, 2012; Dai et al., 2018; Huang et al., 2015, 2017; Lehner et al., 2018; Liu et 

al., 2018; Park et al., 2018; Samaniego et al., 2018; Sternberg, 2011; Trenberth et al., 2013). 

Additionally, it is worthwhile mentioning that the CMIP5 models do project topsoil moisture (within the 255 
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top 10 cm) declines with a very similar spatial pattern to changes in PDSI_PM-RC (Dai, 2012; Dai et al., 

2018), which might be important for wildfire risk and various biological processes that take place close 

to the surface. However, since no systematic decline in runoff or in relevant vegetation parameters (e.g., 

leaf area index and gross/net primary production) seems to result from it (Greve et al., 2017; Milly and 

Dunne, 2016, 2017; Roderick et al., 2015; Swann et al., 2016; Yang et al., 2019), this decline in topsoil 260 

moisture has little influence from the vegetation and hydrological perspectives. This is likely as root-

zone or deeper soil moisture that is of more agricultural/ecological and/or hydrological significance, is 

projected to remain more or less unchanged (Berg et al., 2017; Greve et al., 2017), consistent with 

PDSI_CMIP5 and PDSI_PM[CO2] (Figures 3). 

Here, we use PDSI as an illustrating case; but note that similar results were also found in another 265 

commonly used drought index (i.e., the Standardized Precipitation-Evapotranspiration Index, or SPEI; 

Vicente-Serrano, 2010) (Supplementary Figure S3). Nevertheless, both PDSI and SPEI, as well as other 

drought/aridity metrics, are secondary offline impact models. Since climate models are fully-coupled 

land (and ocean) – atmosphere models that are an internally consistent representation of the climate 

system (Milly and Dunne, 2016), a scientific prior of applying any offline hydrological impact models 270 

is that the adopted offline model must be able to recover the hydrological simulations generated by the 

climate models (Roderick et al., 2015; Milly and Dunne, 2017; Yang et al., 2019). Otherwise, any 

inconsistency in hydrological predictions between offline impact models and climate models themselves 

would lead to inconsistent predictions in other components of the climate system. Unfortunately, this 

important scientific prior has been largely ignored in many previous drought assessment studies, leading 275 

to biased drought predictions that are actually inconsistent with the climate model outputs.    

In summary, we have shown that climate model projections of the global drought area under future 

climate change has been largely overestimated. Our results suggest that the “warming leads to drying” 

perception may be fundamentally flawed, primarily due to ignoring the vegetation response to elevated 

[CO2] (also see Yang et al., 2019). However, despite a small overall trend globally, we find that both 280 

drying and wetting areas are simulated to increase towards the end of this century (Figures 5 and 

Supplementary Figure S4), suggesting an increased variability in surface hydrological conditions that 
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will likely lead to increased droughts and/or floods and reduced reliability of available water at 

local/regional scales (e.g., Kumar et al., 2014). In this light, attention should be paid to regions where 

droughts and/or floods are projected to most likely increase (e.g., Mediterranean Europe and Central 285 

America) and more efforts may be needed to mitigate the consequent impact there under climate change.   
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Figure 1: Conceptual plot illustrating the inconsistency in the hydrologic predictions between 

climate models and offline hydrologic impact models. The symbols P, EP, E, Q and ΔS represent 425 

precipitation, potential evapotranspiration, actual evapotranspiration, runoff and storage change, 

respectively. The meteorological variables used to calculate EP depend on the adopted EP model but 

mainly include net radiation, near-surface air temperature, vapor pressure and wind speed. The 

biological factor here is the response of surface resistance to elevated [CO2] over vegetated lands. 

Figure 2: Flowchart of PDSI calculations. Note that PDSI_PM-RC, PDSI_PM[CO2] and 430 

PDSI_CMIP5 respectively follow the right-hand, left-hand, and centre columns in Figure 1.  

Figure 3: Global spatial pattern of PDSI trend. a-c, spatial distribution of PDSI trends during 1901-

2100 for (a) PDSI_PM-RC, (b) PDSI_CMIP5 and (c) PDSI_PM[CO2], respectively. Black dots 

represent locations where the same sign of the PDSI trend is identified in at least 13 out of the 16 

CMIP5 models (i.e., >80 % of models).  435 

Figure 4: Global spatial pattern of drought trends. a-c, spatial distribution of trends in the number of 

months under severe drought (PDSI < -3.0) during 1901-2100 for (a) PDSI_PM-RC, (b) PDSI_CMIP5 

and (c) PDSI_PM[CO2], respectively. d-f, spatial distribution of trends in the number of months under 

moderate drought (PDSI < -2.0) during 1901-2100 for (d) PDSI_PM-RC, (e) PDSI_CMIP5 and (f) 

PDSI_PM[CO2], respectively. g-i, spatial distribution of trends in number of months under mild drought 440 

(PDSI < -1.0) during 1901-2100 for (g) PDSI_PM-RC, (h) PDSI_CMIP5 and (i) PDSI_PM[CO2], 

respectively. 

Figure 5: Time series of the global average fractional land area experiencing drought/moist 

conditions. a-c, Global average time series of land area experiencing severe drought (PDSI < -3.0, red) 

and exceptionally moist (PDSI > 3.0, blue) conditions for (a) PDSI_PM-RC, (b) PDSI_CMIP5 and (c) 445 

PDSI_PM[CO2], respectively. d-f, Global average time series of land area experiencing moderate 

drought (PDSI < -2.0, red) and moist (PDSI > 2.0, blue) conditions for (d) PDSI_PM-RC, (e) 

PDSI_CMIP5 and (f) PDSI_PM[CO2], respectively. g-i, Global average time series of land area 
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experiencing mild drought (PDSI < -1.0, red) and moist (PDSI > 1.0, blue) conditions for (g) 

PDSI_PM-RC, (g) PDSI_CMIP5 and (i) PDSI_PM[CO2], respectively. The solid curves represent the 450 

ensemble mean of 16 CMIP5 models and the shading represents the range by individual models. The 

time series are averaged over global land areas excluding Greenland and Antarctica. 

Figure 6: Areas with substantial drought increase under future warming. a, Relative land area with 

substantial drought increase (ΔPDSI < -1.0) under 1.5 oC and 2 oC warming based on PDSI_CMIP5 and 

PDSI_PM-RC. b-c, Spatial pattern of substantial drought increase (ΔPDSI < -1.0) under 1.5 oC and 2 oC 455 

warming based on (b) PDSI_CMIP5 and (c) PDSI_PM-RC. d-f, Similar with a-c but for ΔPDSI < -0.5. 
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Figure 2: Flowchart of PDSI calculations. Note that PDSI_PM-RC, PDSI_PM[CO2] and 

PDSI_CMIP5 respectively follow the right-hand, left-hand, and centre columns in Figure 1. 
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Figure 3: Global spatial pattern of PDSI trend. a-c, spatial distribution of PDSI trends during 1901-480 

2100 for (a) PDSI_PM-RC, (b) PDSI_CMIP5 and (c) PDSI_PM[CO2], respectively. Black dots 

represent locations where the same sign of the PDSI trend is identified in at least 13 out of the 16 

CMIP5 models (i.e., >80 % of models).   
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Figure 4: Global spatial pattern of drought trends. a-c, spatial distribution of trends in the number of 

months under severe drought (PDSI < -3.0) during 1901-2100 for (a) PDSI_PM-RC, (b) PDSI_CMIP5 

and (c) PDSI_PM[CO2], respectively. d-f, spatial distribution of trends in the number of months under 

moderate drought (PDSI < -2.0) during 1901-2100 for (d) PDSI_PM-RC, (e) PDSI_CMIP5 and (f) 490 

PDSI_PM[CO2], respectively. g-i, spatial distribution of trends in number of months under mild drought 

(PDSI < -1.0) during 1901-2100 for (g) PDSI_PM-RC, (h) PDSI_CMIP5 and (i) PDSI_PM[CO2], 

respectively. 
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Figure 5: Time series of the global average fractional land area experiencing drought/moist 

conditions. a-c, Global average time series of land area experiencing severe drought (PDSI < -3.0, red) 

and exceptionally moist (PDSI > 3.0, blue) conditions for (a) PDSI_PM-RC, (b) PDSI_CMIP5 and (c) 

PDSI_PM[CO2], respectively. d-f, Global average time series of land area experiencing moderate 500 

drought (PDSI < -2.0, red) and moist (PDSI > 2.0, blue) conditions for (d) PDSI_PM-RC, (e) 

PDSI_CMIP5 and (f) PDSI_PM[CO2], respectively. g-i, Global average time series of land area 

experiencing mild drought (PDSI < -1.0, red) and moist (PDSI > 1.0, blue) conditions for (g) 

PDSI_PM-RC, (g) PDSI_CMIP5 and (i) PDSI_PM[CO2], respectively. The solid curves represent the 

ensemble mean of 16 CMIP5 models and the shading represents the range by individual models. The 505 

time series are averaged over global land areas excluding Greenland and Antarctica. 
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Figure 6: Areas with substantial drought increase under future warming. a, Relative land area with 

substantial drought increase (ΔPDSI < -1.0) under 1.5 oC and 2 oC warming based on PDSI_CMIP5 and 510 

PDSI_PM-RC. b-c, Spatial pattern of substantial drought increase (ΔPDSI < -1.0) under 1.5 oC and 2 oC 

warming based on (b) PDSI_CMIP5 and (c) PDSI_PM-RC. d-f, Similar with a-c but for ΔPDSI < -0.5. 
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