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Abstract. Reservoirs significantly affect flow regimes in watershed systems by changing the magnitude and timing of 10 

streamflows. Failure to represent these effects limits the performance of hydrological and land surface models (H-LSMs) in 

the many highly regulated basins across the globe and limits the applicability of such models to investigate the futures of 

watershed systems through scenario analysis (e.g., scenarios of climate, land use, or reservoir regulation changes). An adequate 

representation of reservoirs and their operation in an H-LSM is therefore essential for a realistic representation of the 

downstream flow regime. In this paper, we present a general parametric reservoir operation model based on piecewise linear 15 

relationships between reservoir storage, inflow, and release, to approximate actual reservoir operations. For the identification 

of the model parameters, we propose two strategies: (a) a “generalized” parameterization that requires a relatively limited 

amount of data; and (b) direct calibration via multi-objective optimization when more data on historical storage and release 

are available. We use data from 37 reservoir case studies located in several regions across the globe for developing and testing 

the model. We further build this reservoir operation model into the MESH modelling system, which is a large-scale H-LSM. 20 

Our results across the case studies show that the proposed reservoir model with both of the parameter identification strategies 

leads to improved simulation accuracy compared with the other widely used approaches for reservoir operation simulation. 

We further show the significance of enabling MESH with this reservoir model and discuss the interdependent effects of the 

simulation accuracy of natural processes and that of reservoir operation on the overall model performance. The reservoir 

operation model is generic and can be integrated into any H-LSM. 25 

1 Introduction 

1.1 Background and Motivation 

Human interventions in natural hydrologic systems, through damming and storing water, diversion, surface and 

groundwater abstraction, irrigation, and land use change, have significantly altered the natural river flow regimes and the 

terrestrial water cycle of many river basins (Vörösmarty et al., 1997, 2003; Oki and Kanae, 2006; Wisser et al., 2010; 30 
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Haddeland et al., 2014; Biemans et al., 2011). These interventions are to fulfil different types of demands such as domestic, 

industrial, irrigation, and hydropower demands, and to meet other needs such as flood control and conservation of aquatic 

habitats. With a total storage volume of more than 8000 km3 (ICOLD, 2003; Vörösmarty et al., 2003; Hanasaki et al., 2006), 

more than 50,000 dams have been constructed globally to regulate more than half of the world’s large river systems (Nilsson 

et al., 2005). The aggregate storage volume of these dams is greater than 20% of the global mean annual runoff (Vörösmarty 5 

et al., 1997) and is three times the annual average water storage in world’s river channels (Hanasaki et al., 2006).  

Despite the benefits in terms of enhancing water availability in support of food security, power supply, etc., dams 

result in several negative environmental and social consequences. Adverse environmental effects include changes in natural 

river dynamics in terms of water temperature, sediment and nutrient transport, etc. and the fragmentation and loss of 

biodiversity (Vörösmarty et al., 2010). Reservoirs can also intensify evaporation, by increasing the surface area of water 10 

exposed to direct sunlight and air, and through water supply for irrigation (de Rosnay et al., 2003; Pokhrel et al., 2012). Other 

environmental impacts of dams include the alteration of landscape due to dam construction and changes to land-atmosphere 

interaction that can have a profound impact on local/regional climate (Hossain et al., 2012; Degu et al., 2011). Adverse social 

effects include the displacement of people living near the dam site, changes to fishing patterns, and downstream erosion (Strobl 

and Strobl, 2011, p. 449). There are research gaps remaining in evaluating both positive and negative social impacts of dams 15 

(Kirchherr et al., 2016). Such gaps have been the subject of many studies in both academia and industry for years, and recently, 

have led to the formalization of this study area of “socio-hydrology” (Sivapalan et al., 2012; Sivakumar, 2012). 

Dams and reservoirs change the natural flow regimes in rivers, both in terms of magnitude and timing of flows. As a 

result, for rivers that contain large or small dams and reservoirs, flow regimes are a combination of natural and managed flows. 

Various modeling communities manage this mix of natural and managed flows differently. Archfield et al. (2015) compare 20 

three families of models that can be used at continental scales: catchment models (CM), global water security models (GWSM), 

and land-surface models (LSM). CMs generally ignore water management and focus on unmanaged headwater catchments. 

GWSMs have been utilized in global-scale streamflow simulations and generally focus on large-scale water management 

issues, which are made difficult by a lack of data on large-scale water management and operational decisions. LSMs have 

traditionally focused on providing lower boundary conditions for atmospheric models, but are increasingly being used for 25 

hydrological applications in which they are referred to as Hydrologic Land Surface Models (H-LSMs). LSMs generally ignore 

water management (Clark et al., 2015; Davison et al., 2016), with a few exceptions (e.g., Voisin et al. 2013a, 2013b). A fourth 

family of water models, that is relevant to the work presented here, are water management models (WMM) (Labadie, 1995; 

Yates et al., 2005). Water modellers who know how the water is managed within their basins of interest generally use WMMs 

(Lund and Guzman, 1999; Labadie, 2004; Kasprzyk et al., 2013). These models contain very detailed representations of water 30 

management decisions, but often consider natural flow processes in a much more rudimentary fashion than CMs.  

Modeling the many managed basins around the world using the current generation of CMs or LSMs can result in 

models with limited fidelity and question the credibility of their predictions of future water resources in basins with dams and 

reservoirs. Therefore, there is a pressing need for better characterization and integration of the operation of dams and reservoirs 
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into hydrological modelling frameworks using CMs and LSMs (Nazemi and Wheater, 2015a and 2015b; Pokhrel et al., 2016; 

Wada et al., 2017). This need motivated the objectives of this study, described in Section 1.2, and some previous research, 

outlined in Section 2. The integration of reservoir regulation into hydrological modeling frameworks will improve our ability 

to simulate highly regulated basins around the globe, leading to better understanding of historical conditions of water resource 

systems and improved assessment and prediction of their future vulnerability to climate and environmental change. 5 

1.2 Objectives 

Building upon previous research, this study aims to: 

 Develop and test an improved reservoir operation model that can be integrated into any CM and LSM at any scale, 

but in particular at large scales. Of interest is a simple but effective parametrization that can be adjusted to varying 

levels of data availability. 10 

 Integrate the developed reservoir operation model into an LSM and evaluate its performance when working in 

combination of other processes in the model. Also of interest is to assess the potential conceptual and technical issues 

in this integration. 

. Another potentially very fruitful, but largely unexplored approach would be to couple CMs and LSMs with WMMs, but 

that approach is not examined here due to the fact that WMMs generally require extensive information on how water is 15 

managed within a basin, whereas we are particularly interested in the more generic case when this information is likely to be 

limited or unavailable. 

The organization of the remainder of the paper is as follows. Section 2 reviews different existing approaches in the 

literature for the representation of reservoir operation in hydrologic models. Section 3 presents the proposed reservoir operation 

model and the metrics used to evaluate it, in comparison with other existing models. Section 4 provides a description of the 20 

reservoir dataset used for the developments and testing. Section 5 presents the assessment results and comparisons. Section 6 

ends the paper with a summary of the main findings and conclusions. 

2 Existing Reservoir Models in Catchment Models and Land Surface Models 

An adequate representation of human interventions in Earth systems models is a major challenge. Systematic 

approaches towards full integration are needed as outlined in the recent studies of Nazemi and Wheater (2015a and 2015b), 25 

Wada et al. (2017), and Pokhrel et al. (2016). In this work, our focus is on the representation of dam and reservoir operation 

in catchment models (CMs) and Land Surface Models (LSMs), particularly when used at large scales. While there has been 

tremendous progress in the last decades in modelling the operation and management of reservoir systems at local to regional 

scales (e.g., Castelletti et al., 2010; Chang et al., 2010; Fraternali et al., 2012; Razavi et al. 2012; Asadzadeh et al. 2013; Guo 

et al., 2013), a gap still exists between the methodologies applied for local/regional-scale reservoir operation and management 30 

and the representation of reservoir operation in Earth systems models, particularly in LSMs. This gap is due to a two-fold 
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challenge. First, the upscaling of methodologies used at smaller scales to larger scales is non-trivial; and second, the availability 

of data on reservoir operation and water use is often limited in many parts of the world. For example, the reservoir purpose 

and operational details are not always known and large reservoirs typically serve several purposes (Wisser et al., 2010). As a 

result, most current hydrological modeling activities with CMs and LSMs, if not all, offer only a limited capability in 

simulating reservoir operations, whereas reservoir operation in practice involves a complex set of human-driven processes and 5 

decisions.  

The existing reservoir operation methods in hydrologic models can be categorized roughly into three groups, based 

on their level of complexity in representing flow regulation; (I) natural lake methods, (II) inflow-and-demand based methods, 

III) artificial neural network techniques, and IVII) target storage-and-release based methods.  

2.1 Natural lake methods 10 

The most primitive methods use formulations developed for the simulation of natural lakes or uncontrolled reservoirs. 

In these methods, the downstream release is calculated as a function of reservoir storage characterized by some empirical 

parameters (Meigh et al., 1999; Döll et al., 2003; Pietroniro et al., 2007; Rost et al., 2008). For instance, Meigh et al. (1999) 

calculate the release by 𝑄
𝑡

= 𝑆𝑡
1.5 where 𝑄

𝑡
 and 𝑆𝑡 are release and reservoir storage, respectively. Their method was later 

modified by Döll et al. (2003) such that 𝑄
𝑡

= 𝑏1(𝑆𝑡 − 𝑆𝑚𝑖𝑛)(
𝑆𝑡−𝑆𝑚𝑖𝑛

𝑆𝑚𝑎𝑥−𝑆𝑚𝑖𝑛

)
𝑏2

 where 𝑏1 and 𝑏2 are release coefficients, and 𝑆𝑚𝑖𝑛 15 

and 𝑆𝑚𝑎𝑥 are minimum and maximum allowable reservoir storages. The advantage of this method, as shown in Döll et al. 

(2003), is its minimal data requirement, which supports its global applicability to model lakes, reservoirs and wetlands. 

However, it has limited functionality to adequately represent managed reservoirs due to not accounting for reservoir operation 

policies to constrain or increase releases at different phases of reservoir storage dynamics. Such simplistic methods ignore the 

fact that the operation of a reservoir depends on the reservoir purpose and the seasonal pattern of the mismatch between the 20 

demands it supports and the inflow it receives.  

2.2 Inflow-and-demand based methods 

The inflow-and-demand based methods include reservoir water balance models that determine reservoir release using 

a function that accounts for inflow or a combination of inflow and demands. The simplified method in this group is the method 

used in Wisser et al. (2010), it estimates the release as a function of mean annual inflow and a set of empirical parameters that 25 

can be calibrated in the absence of information on the actual operation of a reservoir.  

Hanasaki et al. (2006) pioneered the development of inflow-and-demand reservoir models and laid the foundation for 

many subsequent developments. The method of Hanasaki et al. (2006) simulates reservoir release at a monthly time step within 

a global routing model, and accounts for water withdrawals for reservoirs categorized as irrigation reservoirs. They grouped 

reservoirs serving all others purposes as non-irrigation reservoirs. This approach first estimates a provisional total annual 30 
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release at the beginning of the water year based on the long-term mean annual inflow adjusted by an annual release coefficient. 

Then, a monthly provisional release is estimated based on the purpose of the reservoir (irrigation or non-irrigation). 

Downstream demands are accounted for in irrigation reservoirs only. The provisional monthly release for large reservoirs is 

then modified by the annual release coefficient to calculate the actual monthly release, and the provisional monthly release for 

small reservoirs is additionally adjusted based on the monthly inflow to calculate the actual monthly release. The release 5 

coefficient is estimated as a function of the reservoir storage at the beginning of the operational year and the reservoir capacity 

(the formulation of Hanasaki et al. (2006) is briefly explained in section 3.4). The release coefficient reduces the current year 

release if the storage at the beginning is low and vice-versa. Thus, the release coefficient accounts for inter-annual variability 

and facilitates the representation of strategies to overcome reservoir depletion in dry years and flood overtopping in wet years. 

The implementation of the release coefficient is one of the limitations of Hanasaki et al. (2006), because it depends 10 

only on the year’s initial storage and does not account for the actual inflow of the current operational year, i.e. it does not use 

foresight. The initial storage reflects the recent past of the operation of the reservoir, while the actual inflow could be 

considerably different than the long-term mean annual inflow. For instance a sequence of low flow years would result in a low 

initial storage while the current year inflow (which is not known yet) could be high, and vice versa. Additionally the 

simplification of complex reservoir operation in Hanasaki et al. (2006) by using the mean annual inflow and a release 15 

constraining coefficient produces errors. However, the method is generic and has low data requirements which are 

advantageous. The results showed that the reservoir algorithm improved monthly discharge simulation compared to the natural 

lake method (Hanasaki et al., 2006). The approach is effective and has found wide applicability in several global hydrological 

and land surface models. 

The original Hanasaki et al. (2006) reservoir model has been modified in subsequent studies to address some of it 20 

limitations. For example, it has been modified for water extraction and other reservoir functions such as fulfilling 

environmental flows (Hanasaki et al., 2008a, b; Pokhrel et al., 2012a), and been adjusted to address direct precipitation over 

and evaporation from the reservoir (Döll et al., 2009).  

Biemans et al. (2011) added new functionalities to the Hanasaki et al. (2006) reservoir model related to irrigation 

water demand and supply distribution and ran it at a daily time step. Their contributions include: 1) modifying irrigation 25 

withdrawals to account for conveyance losses and irrigation efficiency, 2) adjusting the minimum release to 10% of the mean 

monthly inflow, 3) prioritizing irrigation over flood control, 4) using regulated flow instead of natural flow, to estimate mean 

annual inflow, 5) storing the “flow to be released” for five days in the reservoir – to mimic the storage within the conveyance 

system – before it is released to the river. Voisin et al. (2013a) further modified the reservoir model of Hanasaki et al. (2006) 

to include multipurpose functionalities (irrigation and flood control) by changing the operation to release more before the onset 30 

of snowmelt-flood season so that there will be sufficient room to store flood waters form snowmelt in the reservoir. The 

modification requires the specification of a flood control period. Voisin et al. (2013a) have also evaluated the uncertainty of 

reservoir simulation by comparing withdrawal vs. consumptive demands, and natural vs. regulated flow for configuring 

operating rules. The results of Voisin et al. (2013a) demonstrated that adding flood control in reservoir operation, along with 
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a parametrization using mean annual natural inflow, and mean monthly withdrawals, improves the reservoir storage and flow 

simulation.  

Haddeland et al. (2006) developed another pioneering generic reservoir model that has been implemented in a routing 

model at a daily time step to study the impact of reservoir and irrigation water withdrawals on continental surface water fluxes. 

The model is retrospective, i.e., it assumes full knowledge of the upcoming operation year reservoir inflow. The reservoir 5 

operation is conducted using an optimization scheme to determine the optimal release to satisfy different sectoral demands and 

targets that are defined in the form of objective functions. In the case of a multipurpose reservoir, the model gives priority to 

irrigation demand, followed by flood control and hydropower production. Minimum flow is estimated using natural flow based 

on seven-day consecutive low flows with a ten year recurrence period. The flood protection objective function is minimizing 

reservoir release above the bankfull discharge, which is estimated using the long-term mean of annual maximum discharge. 10 

Irrigation is optimized to satisfy downstream irrigation demand, while hydropower is optimized to increase power production. 

Predicting inflows for the current operational year, if possible, would allow the method to optimize the release while accounting 

for the whole operational year, otherwise to optimize day to day release without accounting for the remaining operational year 

would require several constraints. The maximum daily release is set based on the reservoir water balance that sets the storage 

at the end of the operational year to vary between 60 to 80% of the maximum capacity. 15 

Similar to Hanasaki et al. (2006), the model of Haddeland et al. (2006) is favourable due to its generic formulation 

and capability to operate multipurpose reservoirs, and to extract water for irrigation from reservoir. These make the model 

applicable for large-scale hydrologic models, when data on operational policies are limited (Adam et al., 2007; Van Beek et 

al., 2011). One limitation of Haddeland et al., (2006) is that it requires knowledge of the future inflow for each reservoir so 

that the optimization can be conducted to determine the optimal release. Another limitation is that the release can deviate from 20 

the actual value because of simplifications of the objective function and errors from irrigation demand calculation. The 

algorithm does not represent reservoirs with multi-year operational policies (Adam et al., 2007) and also requires to run the 

model many times to optimize the reservoir release.  

Adam et al. (2007) modified the Haddeland et al. (2006) reservoir model parameterization to include: 1) estimated 

minimum flow based on observed mean winter flow, 2) reservoir filling phase, 3) storage-area-depth relationship following 25 

the regular shape approximation of Liebe et al. (2005), 4) a seasonally varying hydropower production economic value that 

can be calibrated for hydropower production instead of a constant one. van Beek et al. (2011) further modified the retrospective 

inflow assumption to prospective model by approximating the upcoming operational year inflow based on previous years’ 

inflow (requires historical inflow observation) and then adjusting the release and demand every month using the actual inflow 

as estimated from a hydrologic model.  30 

Solander et al. (2015) tested and compared six generic equations to represent reservoir release and storage simulations. 

The complexity of equations tested varies from the simplest case that assumes reservoir outflow equals inflow (no-reservoir 

assumption), to a more complex representation using separate linear functions during reservoir filling and release periods. 

While the reservoir filling and release seasons were identified using long-term mean temperature, their respective release 
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equations are configured as a function of reservoir inflow, storage, and optimized seasonal empirical parameters. Their results 

on California reservoirs showed that the equation dependent on inflow is best for recharge season, while release during the 

drawdown season was better represented as a function of storage. Despite failing for highly regulated reservoirs, their study 

demonstrated the possibility of generalizing the seasonal empirical parameters as a function of the ratio between winter inflows 

to storage capacity. However, further testing is required to examine the usefulness of Solander et al. (2015)’s in different 5 

region, such as cold regions, with different filling and release seasonality. 

Although the inflow-and-demand based models provide improved results compared to the natural lake approach, 

these models do not accurately reproduce observed flows (Adam et al, 2007; Haddeland et al., 2006; Coerver et al., 2018). 

Overall, while the above methods have better flexibility for coupling with global hydrological and land surface models, the 

methods have limitations in accounting for details of reservoir operation. For an adequate representation of reservoirs, 10 

particularly multi-purpose reservoirs and/or those with multi-year carry-over capacity, it is important to consider reservoir 

zoning and adjust reservoir release formulations for different storage levels. The absence of this consideration may limit the 

capability of this group of methods in representing complex reservoir operations. 

2.3 Neural network-based methods 

Artificial neural network (NN) models have been applied to establish data-driven rules that relate reservoir storage, 15 

inflow and release data. This type of models (1) extensive data on reservoir release, storage, inflow, but minimal prior expert 

knowledge of the reservoir operation, and (2) extensive training of a model for each individual reservoir to deduce the reservoir 

operation rules. Neural network techniques have been widely used beyond reservoir operation applications (e.g., flood 

forecasting, streamflow simulation, water quality (Maier and Dandy, 2001; Razavi and Karamouz, 2007)) and more recently 

has shown promise in reproducing historical reservoir operations (Coerver et al., 2018).  20 

The study of Coerver et al. (2018) provides detailed background on NN applications for deduction of reservoir 

operation rules, and also demonstrates the performance of NN-based fuzzy rules to describe the reservoir release decisions. 

The analysis of Coerver et al. (2018) involves different levels of input complexity for the neural network setups, such as the 

importance of accounting for inflow prediction and time of the season on the reservoir operation performance. Another similar 

application was shown by Ehsani et al. (2016) who demonstrated a general reservoir operation scheme that uses an NN 25 

technique to map the general input/output relationships to actual operating rules of seventeen dams. Ehsani et al. (2016) 

demonstrated the possibility of aggregating multiple reservoirs that are closely located, so that their integrated effect can be 

accounted for in large-scale hydrological modeling studies. In a subsequent study, Ehsani et al. (2017) integrated the reservoir 

model of Ehsani et al. (2016) into a global water security model to study reservoir operations under climate change. 

While these studies demonstrated that, the NN-based models can reproduce historical reservoir operation data and 30 

possibly outperform the widely used reservoir simulation models such as those of Hanasaki et al. (2006) and Wisser et al. 

(2010), the user of such models may have to deal with a fundamental limitation, i.e., their “black-box” nature. This limits their 

ability to provide insight into the underlying mechanisms of reservoir operation, and might masks possible shortcomings in a 
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derived NN model. Further, the credibility of their performance in extrapolation beyond the historical data can be in question, 

as they fully ignore the expert knowledge available on the actual physical and socio-economic processes that govern reservoir 

operations. Together, these limit the interpretation of results and their applicability in a changing environment. There has been 

some recent research efforts to reformulate neural networks such that they can overcome these limitations (e.g., see Razavi 

and Tolson, 2011). 5 

2.4 Target storage-and-release based methods 

The target storage-and-release based methods aim to emulate actual rule curves (i.e., reservoir target storage and 

release for different times of the year) that guide reservoir operators to decide on downstream releases (Burek et al., 2013; 

Yates et al., 2005; Neitsch et al., 2005). The target levels of storage divide the total reservoir storage capacity into multiple 

zones. For example, in the SWAT model (Arnold et al., 1998), a reservoir model is available in which the total storage of a 10 

reservoir is divided into sediment, principal, flood control, and emergency flood control zones where each zone is either 

specified by the user or as a function of soil moisture wetness (Neitsch et al., 2005). Wu and Chen (2012) modified this 

approach by changing the reservoir zoning model and developed a reservoir release simulation strategy that uses a decision-

based parameterization to better fit both storage and release of multi-purpose reservoirs. However, they reported only one 

application of this strategy to a local-scale reservoir, and its comprehensive evaluation needs to be performed on other 15 

reservoirs in other regions with different climates, levels of regulation, and allocation objectives.  

Zhao et al. (2016) integrated a reservoir regulation module into a hydrology model, requiring user-specified (based 

on observed data) values to divide the reservoir into inactive, conservation and flood control zones. In their module, the release 

from the conservation zone is determined using water demand, which includes multi-sectorial demand and environmental flow. 

The release from the flood storage zone is decided as a function of inflow (classified as flood inflow or non-flood inflow), 20 

downstream channel current discharge and downstream maximum discharge. At the time of flood, if the downstream discharge 

is below the maximum limit, release from flood storage zone is estimated using available storage above conservation zone, 

multiplied by a weight parameter which allows to release more water. If the downstream discharge is at maximum capacity 

there is no release from flood storage zone. Finally, any storage above the flood storage zone is automatically released. 

Additionally, Zhao et al. (2016) added the possibility to operate reservoirs conjunctively by giving release priorities to 25 

immediate downstream demands and by limiting the release if the downstream reservoir is within flood storage zone. The 

results of reservoir integration showed improved capability of the hydrological model to simulate storage and release for Lake 

Whitney and Auilla Lake in Texas. The limitation of Zhao et al. (2016) for wider application is that there is no generic 

formulation of reservoir zoning (requires user specification) and evaluation was only performed on two reservoirs.  

Similarly, Burek et al. (2013) divided the total reservoir storage into conservative, normal and flood zones within the 30 

LISFLOOD model, and defined release in accordance with these storage zones using multiple-linear regression. Zajac et al. 

(2017) showed the applicability of this method to capture the effects of lakes and reservoirs globally using a parameterization 

that depends on naturalized inflow and maximum storage. Their results showed that the inclusion of reservoirs and lakes in a 

https://www.sciencedirect.com/science/article/pii/S0022169407007755#bib28
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hydrologic model through this method helped improve streamflow simulation for many stations, but the performance in 

replicating observed storage dynamics was not reported.  

Overall, the primary advantage of methods in this category is that they allow approximation of reservoir-release policy 

and have the potential of making use of detailed data on a reservoir when available. Their main limitation, however, is their 

relatively high data demands. When data are available, methods under this category have the potential to enhance the 5 

representation of dams and reservoirs in terms of both reservoir storage and release, while adapting to the seasonality and 

change in operations on different time scales from daily to seasonal. These methods seem advantageous to NN-based models 

as their functioning are transparent, accounting for the governing processes, while requiring similar data.  

Given the advances in the field and the growing availability of data sources, the target storage-and-release methods 

seem to be the most promising, as they can better simulate the reservoir operation dynamics (the dynamics of both storage and 10 

release). The data requirement includes data on observed inflow, observed release, observed storage (level) and reservoir 

physical characteristics. Reservoir level data are available for most lakes and reservoirs in the public domain, particularly in 

North America. These data can be converted to reservoir storage using reservoir elevation-area-volume relationships or by 

using area-volume relationships approximated by regular geometric shapes (Yigzaw et al., 2018; Liebe et al., 2005; Lehner et 

al., 2011).  Inflows to and releases from a reservoir can be approximated by streamflow stations located upstream and 15 

downstream of the reservoir, respectively. Further, satellite missions such as MODIS (Savtchenko et al., 2004) and satellite 

radar altimetry are providing information on lake and reservoir surface area dynamics and reservoir water elevation for some 

large reservoirs. The combination of MODIS and satellite radar altimetry allows to derive storage-area-depth relationships 

(Gao et al., 2012; Andreadis et al., 2007; Zhang et al., 2014; Yoon and Beighley, 2015). The planned SWOT (2021) mission 

(Garambois and Monnier, 2015) will increase the availability of water level data for smaller rivers (with widths going down 20 

to 100m) that can be potentially converted to discharge to estimate reservoir inflows and downstream reservoir releases.  

3 Material & Methods 

This study aimed to develop an improved reservoir model that better emulates reservoir operation for large-scale 

hydrologic modelling application in terms of both reservoir storage and release, following the previous advances in target-

storage-and release-based methods reviewed in Section 2.4. In this section, we present the characteristics and formulation of 25 

our reservoir model. The reservoir water balance is maintained using the continuity equation, as shown in finite difference 

form in Equation 1. The aim is to estimate unknown storage 𝑆𝑡 and release 𝑄
𝑡
 at the current time step based on the storage at 

the previous time step 𝑆𝑡−1 and precipitation (P) over the reservoir, evaporation (E) from the reservoir and inflows (I) during 

the current time step. When integrated within an H-LSM model, the inflow will be the modelled value of the upstream 

catchment that would account for delays in the precipitation-runoff generation and routing. This equation is solved in 30 

conjunction with the parametrization equations presented in the next section for reservoir releases to compute 𝑆𝑡 and 𝑄
𝑡
. 
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𝑆𝑡−𝑆𝑡−1

∆𝑡
 = 

𝐼𝑡+𝐼𝑡−1

2
 − 

𝑄𝑡+𝑄𝑡−1

2
 + 

𝑃𝑡+𝑃𝑡−1

2
 −  

𝐸𝑡+𝐸𝑡−1

2
                                                  (1) 

3.1 Proposed Reservoir Operation Model 

A detailed description of our proposed target storage-and-release model (or target-release model for brevity) is 

provided here. This model is formulated in the form of parametric piecewise linear functions that approximate the reservoir 

release rules that may be used by reservoir operators. This model can be set up on any time scale; in the case studies reported 5 

here, we define the target levels to dynamically change over time. We call the model the “Dynamically Zoned Target Release 

(DZTR)” Model. Piecewise linear function-based reservoir operation models have already been used to solve complex 

reservoir operation and water resources management problems (e.g., Razavi et al., 2013; Asadzadeh et al., 2014). A systematic 

integration of such models into large-scale hydrological modeling has been reported in Burek et al. (2013) as implemented in 

the LISFLOOD hydrological model, and in Neitsch et al. (2005) as implemented in the SWAT model. Our DZTR model is a 10 

generalization of the method developed by Razavi et al. (2013), which may also be viewed as a modification to the model 

proposed by Burek et al. (2013) in terms of parametrization and reservoir zoning. Fig. 1 shows the schematic representation 

of DZTR; Fig. 1a shows the reservoir zoning and Fig. 1b shows the piecewise-linear functions to estimate the release for each 

zone based on DZTR.  

The DZTR model divides reservoir storage into five zones in a similar fashion to Wu and Chen (2012) and Burek et 15 

al. (2013), namely dead storage, critical storage, normal storage, flood storage, and emergency storage. Whenever storage is 

below the emergency storage zone, release only occurs through the bottom outlet, but when the storage is within that zone, 

release happens through both of bottom outlet and the spillway. In the absence of data, the dead storage (Zone 0) is assumed 

to be 10% of the maximum storage after Döll et al. (2009). To estimate the remaining storage zones in cases where no 

operational information on a reservoir is available, we propose two alternative strategies: (1) setting the zones based on 20 

suggested exceedance probabilities on historical reservoir storage time series, (2) optimizing these zones to reproduce the 

observed storage and release time series. Target releases for each zone can be obtained in a similar fashion. These target 

storages and releases are allowed to vary each month (or on any other arbitrarily selected time resolution) to allow a better 

representation of the seasonality of reservoir operation. 

When reservoir storage is within the dead storage zone (Zone 0), the reservoir release is zero (equation 3). In Zone 1 25 

(critical storage zone), the reservoir release is a function of storage at a given time step and the critical release target value 

(equation 4). In this zone, the reservoir operates to avoid storage depletion while trying to support environmental flow 

requirements defined as a critical (or minimum) release. In Zone 2 (normal storage zone), the reservoir release is purely 

governed by reservoir storage and varies between critical and normal release targets (equation 5). In this zone, the downstream 

release is greater for higher levels of storage. In Zone 3, the release decision considers both reservoir storage and inflow in 30 

that time step as well as the normal and maximum release targets (Equation 6). When in this zone, two scenarios may occur: 

(A) the amount of inflow in a time step is equal to or less than the normal release rate; (B) the amount of inflow in this time 
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step is greater than the normal release rate. As formulated in Equation 6, in the case of scenario B, the inflow rate comes to 

play to augment the release in an attempt to keep the reservoir level within the normal storage zone. Scenario B is expected to 

occur more frequently in smaller reservoirs that only have “within-year” storage capacity, while scenario A should be more 

commonly seen with larger reservoirs that have “multi-year” carry over capacity. Hanasaki et al. (2006) suggested that 

reservoirs that have a ratio of storage capacity to mean annual inflow (referred to as c) of less than 0.5 be assumed as within-5 

year reservoirs and the ones with a ratio of 0.5 and above be considered as multi-year reservoirs. Other values for this threshold 

were also suggested in the literature; e.g., Wu and Chen (2012) used a c value of 0.3. In this study, scenario A is used for 

reservoirs that have multi-year capacity (c>0.5) and scenario B for reservoirs that have within-a-year capacity (c<0.5). Lastly, 

in Zone 4 (emergency storage zone) the reservoir algorithm operates to avoid reservoir overtopping by releasing the larger of 

the maximum release target or all excess storage above the maximum storage value (the flood storage) constrained to the 10 

downstream channel capacity 𝑄
𝑚𝑐

. If not specified, a rough estimate of the downstream channel capacity value could be the 

99 percentile of non-exceedance probabilities of discharges from historical data. 

 

Zone 0   𝑸𝒕 = 𝟎            [𝑺𝒕 < 𝟎. 𝟏𝑺𝒎𝒂𝒙] (2) 

Zone 1 𝑄𝑡 = 𝑚𝑖𝑛 (𝑄𝑐𝑖 ,
𝑆𝑡−0.1𝑆𝑚𝑎𝑥

∆𝑡
)                                                    [0.1𝑆𝑚𝑎𝑥 < 𝑆𝑡 ≤ 𝑆𝑐𝑖]   (3) 

Zone 2 𝑄𝑡 = 𝑄𝑐𝑖 +  (𝑄𝑛𝑖 − 𝑄𝑐𝑖)
(𝑆𝑡 −𝑆𝑐𝑖)

(𝑆𝑛𝑖−𝑆𝑐𝑖)
   [𝑆𝑐𝑖 < 𝑆𝑡 ≤ 𝑆𝑛𝑖] (4) 

Zone 3A 
𝑄𝑡 = 𝑄𝑛𝑖 + (𝑄𝑚𝑖 − 𝑄𝑛𝑖)

(𝑆𝑡  − 𝑆𝑛𝑖)

(𝑆𝑚𝑖 − 𝑆𝑛𝑖)
 

[𝑆𝑛𝑖 < 𝑆𝑡 ≤ 𝑆𝑚𝑖] (5A) 

Zone 3B 
𝑄𝑡 = 𝑄𝑛𝑖 + 𝑚𝑎𝑥{(𝐼𝑡 − 𝑄𝑛𝑖), (𝑄𝑚𝑖 − 𝑄𝑛𝑖)}

(𝑆𝑡  − 𝑆𝑛𝑖)

(𝑆𝑚𝑖 − 𝑆𝑛𝑖)
  

[𝑆𝑛𝑖 < 𝑆𝑡 ≤ 𝑆𝑚𝑖] (5B) 

Zone 4 
𝑄𝑡 = 𝑚𝑖𝑛([𝑚𝑎𝑥 (

(𝑆𝑡  − 𝑆𝑚𝑖)

∆𝑡
, 𝑄𝑚𝑖)] , 𝑄𝑚𝑐) 

[𝑆𝑚𝑖 < 𝑆𝑡] (6) 

 

where 𝐼𝑡 , 𝑄𝑡 and 𝑆𝑡 are inflow, release and storage at time step 𝑡. 𝑆𝑐𝑖  , 𝑆𝑛𝑖  and 𝑆𝑚𝑖  are critical, normal and maximum storage 15 

targets for month 𝑖. 𝑄𝑐𝑖  , 𝑄𝑛𝑖  and 𝑄𝑚𝑖  are critical, normal and maximum release targets for month 𝑖. 𝑄𝑚𝑐  is maximum channel 

capacity parameter.  

3.2 Evaluation Criteria 

We evaluated the performance of the proposed reservoir operation model in emulating the outflow and storage data 

collected for many reservoirs around the world. As this model was intended to be integrated into large-scale H-LSMs, we 20 

further evaluated it when embedded in the MESH model (Modélisation Environmentale–Surface et Hydrologie) (Pietroniro et 

al., 2007). For all of these evaluations, we used Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970) and Kling-Gupta 
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Efficiency (KGE) (Gupta et al., 2009) as the metrics to assess the goodness of fit of the model to observed reservoir outflow 

and storage data. 

3.3 Identification of Reservoir Operation Model Parameters 

As demonstrated in Section 3.1, the proposed reservoir operation model has six parameters (𝑆𝑐𝑖, 𝑆𝑛𝑖 , 𝑆𝑚𝑖, 𝑄𝑐𝑖
, 𝑄𝑛𝑖 

and 𝑄
𝑚𝑖

) that can vary for different times of the year. We recommend varying these parameters on a monthly basis, while other 5 

time resolutions are also possible. To normalize the parameters and their ranges across different types and sizes of reservoirs, 

for every reservoir, we use cumulative distribution functions (CDFs) of historical storage and release values; see Fig. 2 for 

example CDFs of the Lake Diefenbaker reservoir (Gardiner dam) in the Saskatchewan River Basin, Canada. Our preliminary 

analysis indicated that target storage and release values corresponding to 10%, 45%, and 85% non-exceedance probabilities 

generally perform reasonably well. We call these our ‘generalized parameterization’.   10 

However, optimal values of parameters for a given reservoir can be identified, when data are available, through 

optimization and parameter identification techniques (Maier et al., 2019; Guillaume et al., 2019). For this purpose, we used a 

bi-objective optimization approach, as follows, that begins with the generalized parameter values as the starting point and 

optimizes the model fit to both storage and release data simultaneously: 

maximize
𝑥∈Ω

        𝐹(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥))                                                 (9) 15 

where x is a vector of decision variables (parameter values),  Ω is decision space, 𝑓1(𝑥) is NSE(flow) measuring the goodness-

of-fit in reproducing observed release, and 𝑓2(𝑥) is NSE(Storage) measuring the goodness-of-fit in reproducing observed 

storage dynamics. 

For parameter identification on a monthly basis, a total of 72 decision variables were used in the optimization. We chose rather 

arbitrarily the storage and release target intervals that correspond to [5-35%], [35-75%], [75-95%] non-exceedance 20 

probabilities as the ranges of variation for critical, normal, and maximum (flood) storage and release, respectively. 

 

The bi-objective optimization problem to calibrate 72 reservoir target release and storage parameters was conducted 

using the AMALGAM evolutionary multi-objective optimization algorithm (Vrugt and Robinson, 2007). AMALGAM was 

selected because it provides effective and reliable solutions for multi-objective optimization using multiple search operators 25 

(genetic algorithm, particle swarm optimization, adaptive metropolis search, and differential evolution) and self-adaptive 

offspring creation. Vrugt et al. (2009), Wöhling and Vrugt (2011); Zhang. (2011); Raad et al. (2009); Dane et al. (2010) and 

others showed that the performance of AMALGAM model parameter calibration was better than or equivalent to some other 

calibration algorithms across different complex response surfaces.  AMALGAM was run using an initial population size of 

100, resulting in a total of 15,000 model evaluations to estimate final Pareto solutions for every single reservoir. 30 
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3.4 Comparison of reservoir operation models 

We compared the performance of our DZTR model against those of Hanasaki et al. (2006) and Wisser et al. (2010) 

using NSE and KGE performance metrics defined on both storage and release simulations. The comparisons were made only 

for selected non-irrigation reservoirs because their irrigation reservoir formulation requires additional data on water demands. 

For the method of Wisser et al. (2010), reservoir release was estimated under two conditions as shown in Equation 10.  5 

𝑄
𝑡

=  {
𝜅𝐼𝑡                                                𝐼𝑡 ≥ 𝐼𝑚

𝜆𝐼𝑡 + (𝐼𝑚 −  𝐼𝑡)                         𝐼𝑡 < 𝐼𝑚

                                                             (10) 

where 𝜅 and 𝜆 are empirical constants set to 0.16 and 0.6 respectively and 𝐼𝑚 is the mean annual inflow (m3/s) and 𝐼𝑡 is inflow 

to the reservoir (m3/s) at time t.  

In the method of Hanasaki et al. (2006), the release from non-irrigation reservoirs was estimated by multiplying the 

mean annual inflow by release constraining coefficients (Equation 11). The release constraining coefficients for every given 10 

operational year were estimated by dividing the initial storage of that year by the maximum storage (equation 12). The start of 

the operational year was considered to be the month when the mean monthly inflow shifts from being greater to being lower 

than the mean annual inflow. 

𝑟𝑚,𝑦 =  {
𝑘𝑟𝑙𝑠,𝑦 ∗ 𝑟𝑚,𝑦

′                                                                           (𝑐 ≥ 0.5)

(
𝑐

0.5
)

2

∗ 𝑘𝑟𝑙𝑠,𝑦 ∗ 𝑟𝑚,𝑦
′ +  (1 − (

𝑐

0.5
)

2

) ∗ 𝑖𝑚,𝑦                   (0 ≤ 𝑐 < 0.5)
           (12) 

𝑘𝑟𝑙𝑠,𝑦 =  
𝑆𝑓𝑖𝑟𝑠𝑡,𝑦

𝛼∗𝑆𝑚𝑎𝑥

                                                                                                                  (13) 15 

where 𝑐 is the ratio of maximum reservoir storage to the mean total annual inflow; and 𝑘𝑟𝑙𝑠,𝑦 is the release coefficient; 𝑟𝑚,𝑦
′  is 

the provisional monthly release (m3/s) which is equal to mean annual inflow (m3/s); 𝛼 is a dimensionless constant set to 0.85. 

Equation 12 differentiates between multi-year and single year storage reservoirs based on a threshold value of 0.5 for c.  

3.5 MESH Modelling System 

MESH is Environment and Climate Change Canada’s Land Surface-Hydrology Modelling System (Pietroniro et al., 20 

2007) and has been widely used in different parts of Canada (Davison et al., 2016; Haghnegahdar et al., 2017; Yassin et al., 

2017; Sapriza-Azuri et al., 2018; Berry et al., 2017). MESH is a grid-based modelling system composed of three components: 

(1) the Canadian Land Surface Scheme (CLASS) (Verseghy, 1991; Verseghy et al., 1993), (2) lateral movement of surface 

(overland) runoff and sub-surface water (interflow) to the channel system within a grid cell and (3) hydrological routing using 

WATROUTE from the WATFLOOD hydrological model (Kouwen et al., 1993).  25 

Currently, the reservoir representation in MESH model is rudimentary. MESH offers two approaches to account for 

reservoir operation. In the first approach, the observed reservoir release rate at the reservoir location is provided as input to the 

model. In this approach, the flow from the catchment upstream of the reservoir is discarded as the release is replaced by 
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observations, a process referred to as “streamflow insertion”, which limits the utility of the model to simulate future scenarios 

for which releases are not yet known. This approach violates the water conservation law in the model and also creates 

discontinuities within the model setup, especially if there are reservoir cascades. Nevertheless, streamflow insertion could be 

used when coupling water management models with MESH, and these coupled models could be used to formulate scenarios 

for reservoir operations. As mentioned in the objectives, however, model coupling is not the focus of this study as we are 5 

looking to examine the internal representation of reservoir operations within CMs and LSMs. The second approach is a natural 

lake or uncontrolled reservoir representation model similar to that of Döll et al., (2003), which was shown to be unsuitable for 

highly managed reservoirs. To improve the reservoir representation in MESH, this study aims to incorporate the DZTR model 

for controlled reservoirs into the MESH framework and evaluate its performance.  

3.6 Case Studies and Data 10 

The data set required to build and evaluate a reservoir operation model includes (1) reservoir physical characteristics 

such as the volume-level-area relationship and maximum capacity, which are static (in the absence of sedimentation or dam 

heightening), (2) time series of hydrologic variables such as inflow, release, and water level (or storage), and (3) environmental 

flows. In this study, we assembled such a dataset for 37 reservoirs located in several regions across the globe (Fig. 3) to test 

the model. These dams represent a wide range of storage sizes, from 0.132x109 m3 to 162x109 m3, spanning multiple orders of 15 

magnitudes. Most of these are located in the Western US and Western Canada, while some are located in Vietnam, central 

Asian countries and Egypt. Table 1 provides a summary of reservoir locations, construction years, main purposes, data periods, 

and other dam characteristics. Measured inflow, release, and storage time series were collected from different sources. For 

reservoirs located in Canada, the data were acquired from Water Survey Canada, Alberta Environment and Parks, and the 

Saskatchewan Water Security Agency. Data for the High Aswan dam were acquired from the Nile Basin Encyclopaedia via 20 

the Nile Basin Initiative. The data for other reservoirs were provided by the authors of previous studies (Hanasaki et al., 2006 

and Coerver et al., 2018). Additional information about the degree of regulation, dam height, and catchment area were obtained 

from GRanD database (Lehner et al., 2011). Reservoir operation simulations were performed on daily and monthly bases with 

simulation periods varying from 8 to 62 years. The choice of simulation period and time scale was based on data availability 

(Table 1). The first year of the reservoir simulations was used for spin-up, while the first half of the remaining data periods 25 

were used for calibration and the second half for model validation. 

We also evaluated the integration of our reservoir model into the MESH model on six reservoirs in two major basins 

in Western Canada. Six of the test reservoirs (Gardiner, St Mary, Waterton, Oldman, Ghost and Dickson dams) are located 

within the heavily regulated Saskatchewan River basin (SaskRB) an done reservoir (Bennet dam) is located in the Mackenzie 

River Basin (MRB). For both of the basins, the MESH model was set up on a grid resolution of 0.125° and the data required 30 

to build the MESH model were obtained from different sources. The topographic data are based on the Canadian Digital 

Elevation Data (CDED) at a scale of 1:250,000 and were obtained from the GeoBase website (http://www.geobase.ca/). The 

data on seven climate forcing variables at a 30-min temporal resolution were obtained from Global Environmental Multi-scale 
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(GEM) NWP model (Côté et al., 1998) and Canadian Precipitation Analysis (CaPA) (Mahfouf, et al., 2007). The land cover 

data used are based on 2005 land-cover map from the Canada Centre for Remote Sensing (CCRS). Soil texture data were 

obtained from Soil Landscapes of Canada (SLC) data of Agriculture and Agri-Food Canada. The MESH parameter values 

were taken from previous studies for calibration to streamflow at major subbasins of SaskRB and MRB. 

4 Results and Discussion 5 

4.1 Evaluation of the dynamically zoned target release (DZTR) model with generalized parameters 

Individual reservoir simulations were conducted by the DZTR model with generalized monthly storage and release 

parameter values set at non-exceedance probabilities recommended in Section 3.3 for representing the reservoir storage zones 

and their respective target releases. The evaluation of the DZTR model was based on the performance metrics and a comparison 

with the other reservoir operation approaches and a base case where the existence of a reservoir was ignored in a model, 10 

referred to as the “no-reservoir assumption”. Under the no-reservoir assumption, the release was considered equal to inflow, 

and storage was considered constant, and as such, the performance metrics were computed by directly comparing inflow with 

observed release.  

Fig. 4 shows performance metrics results of the DZTR model in terms of NSE and KGE for storage and release 

simulations compared to those of the base case. As shown in Fig. 4a, both NSE (Flow) and NSE (Storage) results are greater 15 

than 0.25 and 0.5 for 90% and 50% of reservoirs, respectively. Although NSE (Flow) results are greater than zero for all 

reservoirs, 1% of reservoirs resulted in a negative NSE (Storage) values. The no-reservoir assumption resulted in NSE (base-

case) values of greater than 0.25 and 0.5 for 45% and 30% of reservoirs respectively, which, in general, are much lower than 

those of the DZTR model. Under the no-reservoir assumption, 48% of the reservoirs resulted in a negative NSE (base-case). 

Almost all positive NSE (base-case) results were observed on reservoirs with c<0.5 such as Dickson, E.B. Campbell, 20 

Kayrakkum, Oldman and Tyuyamuyun (as explained in Section 3, c is the ratio of storage capacity to annual inflow volume). 

However, for reservoirs with c>0.5 such as Bhumibol, Flaming Gorge, Fort Peck, High Aswan, W.A.C. Bennett, the NSE 

(base-case) is negative, which indicates the significant influence of their regulations on the hydrograph shape. Similarly, Fig. 

4b shows the evaluation of the different reservoir models based on the KGE metric (Gupta et al., (2009). The values of KGE 

(Flow) and KGE (Storage) are greater than 0.25 and 0.5 for 100% and 86% of the reservoirs, respectively. The KGE (base-25 

case) values of 21% of reservoirs are less than 0, while those of 57% and 49% of the reservoirs are greater than 0.25 and 0.5, 

respectively. The NSE and KGE results show that the DZTR with the generalized parameter values is capable of simulating 

flow and storage simulation well.  

Fig. 5 shows scatter plots between KGE, NSE, and the regulation level represented by c. These plots orientation of 

the scatter plot between NSE and KGE on flow and storage show a strong positive correlation between the evaluation metrics 30 

which indicates that both metrics provide somewhat similar evaluation information. Fig. 5a and 5b show that both no-reservoir 

assumption and DZTR estimate the release more accurately for lower levels of regulation. As expected, the degradation of 
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performance was pronounced for no-reservoir assumption as the regulation level increased, while DZTR performance reduced 

by a much smaller extent (still positive values). Almost all low regulation level reservoirs (c<0.5) showed positive performance 

metrics which means the reservoir regulation does not strongly modify the flow regime, whereas the opposite case is true for 

highly regulated reservoirs (c>0.5) in which the reservoir regulation strongly changes the reservoir release. Coerver et al. 

(2018) also noted that low regulation level reservoirs are more dependent on the current time step inflow knowledge because 5 

their smaller influence on the flow regime. The method of Hanasaki et al. (2006) also recognizes the strong dependence of 

c<0.5 reservoirs on inflow to determine the release by configuring the release as a function of monthly mean inflow. 

Conversely, the relationship between the regulation level and the storage simulation performance (in terms of both KGE 

(Storage) and NSE (Storage)) did not show a strong correlation (Fig. 5c).  

Fig. 6 compares the reservoir simulation and observation time series for the whole simulation period, while Fig. 7 10 

shows the long-term average of these simulations. Inflows are also included in Fig. 6 and Fig. 7 to show the regulation pattern 

and changes caused by reservoir operation. Both figures indicate that the DZTR model captures both release and storage 

dynamics well, reproducing the daily and monthly seasonality as well as the magnitude and timing of storage and releases for 

almost all reservoirs, especially for reservoirs with high regulation (multipurpose, multiyear reservoirs) such as American 

Falls, Bhumibol, High Aswan, Sirikit, Trinity, and Bennett dams. However, the simulations also show some systematic over- 15 

and under-estimations; for example, the simulations of Bhumibol, Fort Peck, High Aswan, Int. Falcon, Navajo, Bennet, and 

Int. Amistad reservoirs show continuous underestimation and overestimation of reservoir storage. Some reservoirs such as 

Trinity, Palisades, Kayrakkum, Flaming Gorge, and Garrison show underestimation and overestimation of reservoir storage 

only for some seasons. A closer look at American Falls, Flaming Gorge, Fort Peck, Glen Canyon, Navajo dams in Fig. 6 

indicates that the DZTR model reliably captured storage and release seasonality, inter-annual trends, and release pattern shifts 20 

during consecutive wet years 1982-1986 followed by consecutive dry years 1987-1993. Similar patterns can be observed for 

the Gardiner dam with good simulation during both dry years (1984-1986, 1988-1989, 1999-2004) and wet years (1993, 2005, 

2010-2011). Furthermore, as expected, Fig. 7 shows that lowly-regulated reservoirs (c <0.5) have less impact on the flow 

regime, but with fairly significant storage seasonality (Oldman, E.B. Campbell, Palisades, Andijan). In general, the DZTR 

model with the generalized parameterization of reservoir zones and releases showed an improved performance and can be 25 

applied to any hydrological model (CM or H-LSM) that involves reservoir simulation. 

It is important to note that for the case of a cascade of reservoirs, the parametrization of the DZTR model implicitly 

accounts, to some extent, for the upstream regulation effects by the upstream cascade reservoirs. This is because the regulated 

inflow is used for parametrizing downstream reservoirs, which reflects the regulation information of upstream reservoirs in 

the cascade. In reality, the operation of some cascade reservoirs are highly interlinked, particularly during the flood season. 30 

The decision regarding the release from one reservoir accounts for the (forecasted) state of other reservoirs. Such dual- or 

multi-linked operation is however not accurately accounted for in the presented algorithm, because it assumes that each 

reservoir operates using its own storage state, inflow and target storage and releases. Such systems require detailed modelling 
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of operations that is not usually attainable in large scale hydrological models. Depending on the purpose of the model, the 

modeller may decide to lump those reservoirs together to improve simulations downstream as in e.g., Ehsani et al. (2016).  

4.2 Comparison with previously developed reservoir operation models 

To further illustrate the reliability of DZTR model in representing reservoir simulation, a comparison with the 

methods of Hanasaki et al. (2006) and of Wisser et al. (2010) was conducted as shown in Fig. 8. The comparison shows that 5 

the DZTR model provides a considerable improvement according to all of the performance criteria, notably NSE (Storage) 

and NSE (Flow), except in the case of the E.B. Campbell dam where Hanasaki et al.’s method showed similar performance to 

DZTR.  Also, the method of Hanasaki et al. (2006) outperformed that of Wisser et al. (2010). Out of the thirteen reservoirs 

compared, the DZTR resulted in positive values for both NSE (Storage) and NSE (Flow) for all except for E.B. Campbell 

storage. The method of Hanasaki et al. (2006) and Wisser et al. (2010) resulted in eight and five reservoirs with positive NSE 10 

(Flow) respectively (Fig. 8a), while both produced negative values for NSE (Storage) for all the reservoirs compared (Fig. 8c). 

A similar performance pattern was observed for KGE metrics for flow and storage. In addition, we compared the DZTR result 

shown in Fig. 7 and 8 with the results reported in Coerver et al. (2018) who applied a fuzzy-neural network model to extract 

11 operating rules. This comparison showed that the performance of our generalized parameterization is comparable to that 

Coerver et al. (2018) in simulating reservoir release; note that performance on storage is not reported in Coerver et al. (2018). 15 

This indicates that the simple parameterization applied in the DZTR model can provide a solution that is at least as effective 

as that of a neural network-based model. Equally importantly, the DZTR model is transparent, as opposed to neural network 

methods that are often criticized as being a “black box”. 

The above comparisons were conducted for non-irrigation reservoirs because water demand data is needed to use the 

Hanasaki et al. (2006) method for irrigation reservoirs. In the case of the DZTR approach, the idea is that the DZTR model 20 

operates in such a way to infer existing operational rules which cater for those demands. Thus, the release from DZTR accounts, 

implicitly, for downstream demands as per the intended purpose of the reservoir whether it is for flood control, irrigation, 

hydropower, etc. or any combination of these. The case study dams in our study include reservoirs with different purposes as 

shown in Table 1. The DZTR approach showed good performance for reservoirs with different purposes.  

If the reservoir purpose is irrigation, the target releases from DZTR are to satisfy irrigation demands because the 25 

parameterization is optimized based on observed releases. The release from an irrigation dam will be available for abstraction 

at the predefined abstraction points downstream of the dam. The abstraction and distribution can be implemented as separate 

modules as done within the MESH land surface model (Yassin et al., 2019). In such an implementation, MESH takes care of 

(1) calculation of actual irrigation demand for a configured irrigation area, (2) water abstraction from defined abstraction point 

along the river below the dam and (3) distribution across the irrigation fields. Regarding the return flow, the excess water flows 30 

from the irrigation areas are assumed to join the nearest stream within the model grid cell.  

The DZTR model can in principle handle multi-purpose reservoirs, e.g., a reservoir that is used simultaneously for 

hydropower generation, irrigation water supply, and flood control (e.g., High Aswan Dam in Egypt which is one of the studied 
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reservoirs), the DZTR provides the release based on the inflow, and storage conditions and that will be available for irrigation 

downstream. Hydropower does not consume water but returns it back to the river (except in rare cases where it returns to a 

different channel). Flood control is directly accounted for in the scheme and becomes relevant when storage is within the flood 

storage zone. Further, the flexible formulation of DZTR allows to implicitly change the priorities in operation for selected time 

periods (e.g., months or seasons) by changing the target storage values during flood periods (e.g., the storage target before the 5 

onset of snowmelt). During these flood months, lowering the target storage would increase the buffer for flood control. 

Conversely increasing the target storage during other months would be desirable to store water and release during irrigation 

months. When the scheme is optimized using inflow, release, and storage data, the parameterizations capture these priorities 

implicitly as expressed in the data. When inflow data are lacking, the generalized parametrization will set the storage zones 

based on the suggested exceedance probabilities (that were deduced based on all reservoirs used in the study) and the priorities 10 

can be assumed as pre-defined.  

4.3 Initial storage and inflow sensitivity test 

The initial storage at the beginning of the simulation is an input that needs to be specified to the model. The initial 

values can be prescribed from the observations if available. However, the simulation of a hydrological/land surface model 

could start at any point in time when there is no observation to prescribe (e.g., some time in far past, a future scenario 15 

simulation, or a hypothetical scenario). Additionally, in a long-term simulation, the initial storage may result from a previous 

model simulation, which may not be as close to observations as desired. The aim of the experiment is to examine and show to 

what extent the initial storage value affects the simulation performance.  

To test the effect of initial storage used in the reservoir simulation performance, two experiments were conducted on 

three reservoirs with different scale of regulations 1) Charvak (c=0.28), 2) Gardiner (c=1.46), and 3) High Aswan (c=2.84). In 20 

the first experiment, the initial storage was allowed to vary between ten percent of maximum storage (0.1 ∗ 𝑆𝑚𝑎𝑥)  to maximum 

storage ( 𝑆𝑚𝑎𝑥). In the second experiment, the initial storage range was narrowed to starting simulation month minimum and 

maximum historical observations. In both tests, 150 simulations were conducted by sampling the initial storage using uniform 

random sampling from the defined storage range.  

Fig. 9 and Table 2 show the results of these initial storage perturbation experiments. For both experiments the 25 

simulations on the Charvak dam showed a similar range for NSE (Flow) [0.79, 0.83] and NSE (storage) [0.61, 0.74]. Using 

one year as a spin-up period on Charvak dam simulations stabilized the initial storage effects, resulting in NSE (Flow) of 0.82 

and NSE (Storage) of 0.74. The simulations on Gardiner dam in the first experiment showed a range of [0.35, 0.51] for NSE 

(Flow) and [-0.43, 0.88] range for NSE (storage), while in the second experiment the ranges were narrowed to [0.44, 0.49] for 

NSE (Flow) and [0.87, 0.88] for NSE (storage). For a one year spin-up period on the Gardiner dam this simulation converged 30 

the NSE (Flow) range to [0.49, 0.51] and the NSE (Storage) range to [0.76, 0.87] in the first experiment and to 0.49 NSE 

(Flow) and 0.87 NSE (Storage) for the second experiments. On the other hand, the simulation on the High Aswan dam showed 

a range of [-0.28, 0.85] for NSE (Flow) and [0.38 0.91] for NSE (storage) for the first experiment and [0.52, 0.85] for NSE 
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(Flow) and [0.42 0.91] for NSE (storage) for the second experiment. Excluding a one year spin-up period from the metric 

calculation on the High Aswan dam simulation narrowed the NSE (Flow) range to [0.62, 0.85] and the NSE (Storage) range 

to [0.58 0.91] for both experiments. Overall, as expected, the experiments suggest that the effect of initial storage on reservoir 

simulation performance depends on the regulation scale. Starting from observed storage values and using a one-year warm-up 

period allows stabiliztion of the initial storage effect for low and medium regulated reservoirs. However, for highly regulated 5 

reservoirs, as in the case of High Aswan, longer spin-up periods are needed to stabilize the simulations. For example, a five-

year spin-up period was required to fully stabilize the performance for the High Aswan dam simulations.  

The existence of inflow bias is inevitable in any hydrological modeling practice. To understand the behaviour of the DZTR 

model under biased inflow conditions, we conducted a sensitivity experiment on the Charvak, Gardiner and High Aswan 

reservoirs. To do so, the DZTR model performance was tested using five simulations in which the entire inflow time series 10 

was changed by -50%, -25%, 0%, +25%, and +50%. The sensitivity of simulations to bias in inflow was evaluated using the 

NSE (Flow) and NSE (Storage) performance metrics. 

Fig. 10 and Table 3 show the results of the inflow bias test and that the reservoir simulation performance significantly 

changes as a result of this bias. Reducing the inflow by 50% considerably reduced the reservoir storage and release and led to 

negative values of NSE (Flow) and NSE (Storage) for all reservoirs. For such a large negative inflow bias, the reservoir 15 

operation tries to recover the storage to the target (observed) level by releasing a low as possible. Conversely, the positive 

inflow bias increased simulated storage and releases for all reservoirs, which led to negative performance metrics for all 

reservoirs except on Gardiner NSE (Storage). As shown in Fig. 10, with large positive inflow bias, storage quickly moves 

towards flood and maximum storage targets resulting in insufficient storage left to attenuate flood peaks and the operation 

model starts discharging large releases through the spillway to maintain the storage at the maximum storage target. Inflow bias 20 

of -25% and +25% showed similar behaviour as -50% and +50% bias for all reservoirs, but the simulation performance metrics 

during -25% and +25% provide significant positive NSE values for the Charvak and Gardener dams except for the Gardiner 

NSE(Flow) for +25% which resulted a negative NSE value. However, on the highly regulated High Aswan dam, the ±25% 

inflow bias significantly reduced the performance to negative values.  

4.4 Parameter calibration and validation of the DZTR model 25 

We tried to improve upon the generalized parameterization by calibrating the DZTR parameters via bi-objective 

optimization for two objective functions, Nash Sutcliffe on reservoir storage (NSE (Storage)) and Nash Sutcliffe on reservoir 

release (NSE (Flow)). This is an important step when the data and computational resources for optimization are available, to 

enhance reservoir simulation and consequently hydrological modeling of the region of interest. Fig. 11 shows the multi-criteria 

reservoir calibration (yellow circles) and validation (red circles) Pareto solutions for all reservoirs. The Pareto solutions show 30 

strong tradeoffs between fitting observed reservoir storage versus downstream release, which also reflects the fact that the 

problem is multi-objective by nature and it is required to consider both storage and release, instead of fitting one at the cost of 

degrading the other. The generalized parameterization solution for the calibration (Yellow Square with blue border) and 
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validation periods (red square with blue border) is also added in Fig. 11 for each reservoir to show the improvement gained 

through parameter calibration. Relative to the generalized solution for the calibration period, reservoir parameter calibration 

improved both NSE (Flow) and NSE (Storage) for all reservoirs with a median improvement of 0.11 and 0.21, respectively. 

The NSE (Flow) improvement ranged from 0.017 to 0.575, and NSE (Storage) improvement ranged from 0.02 to 0.66. The 

Parameter calibration has shown significant improvement on reservoirs that have lower performance with generalized 5 

parameterization. The best examples of this case are Fort Randall, Int. Amistad, Trinity, Int. Falcon, and E.B. Campbell, as 

shown in Fig. 11. Small improvements in performance have also been observed on reservoirs that have greater performance 

with generalized parameterization such as American Falls, Andijan, Nurek, High Aswan, Waterton, and Charvak. The 

validation of calibrated solutions improved the NSE (Flow) and NSE (Storage) for 56% of the reservoirs with a median 

improvement of 0.035 and 0.092, respectively. The NSE (Flow) improvement in the validation period ranged from 0.001 to 10 

0.335, and NSE (Storage) improvement ranged from 0.004 to 1.02. During validation, the remaining reservoirs (44% of them) 

resulted in NSE (Flow) and NSE (Storage) reductions with a median reduction of 0.032 and 0.089, respectively. The reductions 

of NSE (Flow) ranged from 0.001 to 0.073, and those of NSE (Storage) ranged from 0.001 to 0.257.  

Overall, considerable improvement was achieved for both calibration and validation periods for several reservoirs 

such as the Dickson, Gardiner, Ghost, Int. Amistad, Int. Falcon, Kayrakkum, Sirikit, Yellowtail, and Glenmore. However, as 15 

shown in Fig 11, the improvements of DZTR model performance during calibration do not usually guarantee performance 

improvement in validation. This is because, as for any other types of model as well, the properties of the calibration and 

validation periods might differ significantly. In particular, the calibrated Pareto solution does not show the same trade-off or 

level of performance during validation when there is considerable change in inflow properties as a result of consecutive wet 

or dry years. Examples of this condition are shown for Glen Canyon (similarly Bhumibol, Fort Randall, and Fort Peck) where 20 

the calibration period had more wet and high inflow years than the validation period. Such considerable changes of inflow, 

storage, and release results in performance degradation during the validation period. In general, a small change in inflow, 

storage, or release for the validation period can change the shape of the trade-off. However, the calibrated parameters in most 

cases were still capable of producing good performance during validation close to or better than that of the generalized 

parameterization for the same period.  25 

To further test the role of the calibration period, we calibrated all reservoirs using the whole observational record. 

The result of this test is shown in Fig. 12 which demonstrates the strong role of the calibration period. All reservoirs showed 

trade-off between storage and release fitting. The solution resulted in a consistent Pareto pattern similar to the split-sample 

calibration results. The median NSE (Flow) and NSE (Storage) improvement when using the whole observational record for 

calibration are approximately 0.1 and 0.12 respectively, while the maximum improvement reached 0.45 and 0.55 for some 30 

reservoirs. High improvements on storage and flow simulations in the case of whole-period-calibration are mostly observed 

on reservoirs that have considerable shift of observed storage and flow across the period of observation period. Fig. 13 shows 

some example reservoirs that had considerable improvements such as Bhumibol, Canyon Ferry, Int. Amistad, Int. Falcon, 
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Navajo, and Trinity dams, compared to generalized parameters (Fig. 6). Similarly, for the remaining reservoirs, calibrating the 

whole period showed (Fig. 13) better agreement of daily and monthly simulations with the observations, even for years with 

extreme deviations that are most likely associated with extreme dry and wet conditions. Additionally, the long-term average 

simulations (Fig. 14) showed that calibrating using the whole period reduced the deviation between simulations and 

observations, and in most cases the Pareto simulation range encompasses the observation. Overall, the calibration period test 5 

indicates the benefit of using long-term observation for parametrization (even for generalized parameterization) to allow the 

parametrization to represent behaviour in extreme periods. Thus, we recommend using as much data as available to 

parameterize the model for a specific reservoir so that all information on reservoir operation will be accounted for.  

The DZTR scheme introduces more parameters to the host land surface model. However, its parameters are external 

to those of land surface model and are determined a priori using storage and release data. The decision of the time scale to use 10 

for specifying the parameters is left to the modeller. The user has the ability to investigate the seasonal patterns in the storage 

and release data and decide whether a monthly or a coarser time scale (e.g., quarterly) would be sufficient. In fact, the 

configuration of DZTR is also flexible to use any user-specified zoning that are available from observation, reservoir 

information or zoning values specified in other studies such as Zhao et al. (2016). 

4.5 DZTR model test within the MESH model 15 

Finally, the generalized parametrization of the DZTR model was integrated into the MESH model and tested to 

simulate six reservoirs in the Saskatchewan River Basin (Gardiner, St Mary, Waterton, Oldman, Ghost and Dickson dams) 

and one reservoir (Bennet dam) in the Mackenzie River Basin, both in Western Canada. The reservoir simulation was run 

using MESH modelled inflows at a half-hourly time step, the usual MESH time step, and the performance metrics were 

calculated at a daily time step. The MESH modelled inflows are considered to represent the base-case scenario, and the inflow 20 

can be assumed as regulated or natural depending on whether there are dams upstream or not. 

Fig. 15 illustrates that the generalized DZTR model generally improves upon having no representation of the 

reservoirs in the model. This improvement is apparent in the NSE values of the flow, which increase with the DZTR model. 

The only exception is Dickson dam with a small reduction in NSE. The importance of integration of the DZTR model was 

predominant for the Gardiner and Bennett dams, which are highly regulated reservoirs (c>0.5) when compared to the other 25 

reservoirs tested in MESH.  

This general improvement of flow simulation when comparing a reservoir model to the no-reservoir assumption is, 

of course, not surprising. What is important to note, however, is that the improvement in NSE can be dramatic without 

calibration of the DZTR parameters. This is important for many LSM applications where calibration is generally not performed. 

Hanasaki et al. (2006) illustrated that their method is superior to the natural lake (or unregulated reservoir) method applied in 30 

many CMs and H-LSMs, and this paper shows that the DZTR model improves upon the results of Hanasaki et al. (2006). 

Therefore, it is natural to assume that the DZTR model would also be an improvement in uncalibrated H-LSM applications. 
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However, calibration is very common in CM or H-LSM applications in which the DZTR model would likely be employed. A 

full comparison of calibrated results between a no-reservoir case, natural lake (or unregulated reservoir), and the DZTR model 

(and the other reservoir models) is beyond the scope of this paper. Again, given the improvements shown with the uncalibrated 

DZTR model when compared with other uncalibrated models, and the general improvements shown here when calibrating the 

DZTR model, it is assumed that calibrating the DZTR model within a CM or H-LSM would improve upon calibrating an 5 

unregulated reservoir model, or the other reservoir models compared in this paper. 

The storage simulation showed low NSE (Storage) value for St. Mary and Waterton dams and negative NSE (Storage) 

for Oldman and Ghost dams. However, the simulation showed a reasonable representation of storage variability, but with 

considerable underestimation. This underestimation in storage in Fig. 15 is attributable to the fact that the modelled inflow is 

underestimated. It is expected that calibration of the land-surface parameters in conjunction with the DZTR parameters in 10 

MESH would improve the modelled inflows and resulting modelled reservoir storage. 

It is worth mentioning again that H-LSMs, such as MESH, can also be used for the original purpose of LSMs, which 

is to represent fluxes from the land-surface to the atmosphere. If the approach improves modelled flows where reservoirs 

operate, it could result in a better parameterization of the LSM, which should in-turn improve land-surface fluxes and feedbacks 

to the atmosphere.  15 

4.6 Uncertainties in reservoir operation and DZTR parameterization 

Reservoir operation on its own involves considerable uncertainties that is attributed to several factors. One major 

source of uncertainty in reservoir operation is future inflows (long-term and short-term inflow forecast). The forecast contains 

errors rooted in the forecast method, the driving climate forecast, snowpack measurements, timing of snowmelt and the 

statistical (stationarity) assumptions to generate inflows based on historical inflows. The inflow forecast uncertainty is more 20 

significant during flood seasons because it involves subjective decisions of operators to avoid the risk of dam overtopping and 

downstream flooding. Other sources of uncertainty in reservoir operation include changes in demand over time because of 

increases in demand for irrigation, power, water supply, etc. The purpose of the reservoir can also change from its initial 

intended purpose (e.g., adding a hydropower station to an irrigation dam). These changes are only implicitly captured by the 

DZTR scheme as implied in the storage and release time series used for parameterizing it for a specific reservoir.  25 

Given the above uncertainties, even the actual reservoir operation may deviate from the designed reservoir operation 

rule curve. Some of the decisions of reservoir operators are spontaneous, ad-hoc, and depend on experiences that are not 

usually documented. Thus, there are difficulties to accurately represent the historical operation or to establish accurate 

relationships between reservoir storage, inflow, and release. These relationships typically contain considerable noise e.g., 

different release values for the same storage level during the same season. As a result, these uncertainties considerably 30 

influence the parameterization of the model derived to represent the reservoir operation based on historical observations of 

each reservoir. This is particularly true for the algorithm presented because of two main factors. Firstly, the presented reservoir 

algorithm assumes that the relationship between reservoir storage and releases follow piecewise linear functions. There is a 
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chance that other functional forms represent such relationship better for some reservoirs. Secondly, in the case of the 

generalized parameterization, the bending points in the piece-wise linear functions (zone classification points) are estimated 

based on fixed probabilities of exceedance extracted from historical data for all reservoirs. A different dataset (of reservoirs 

and/or time periods) could result in different quantiles. The assumption of having similar bending points of the piecewise linear 

functions for all reservoirs cannot provide optimal zones for each reservoir. However, we showed that the generalized 5 

parameterization performs better compared to other widely used algorithms.  

Optimizing storage and release parameters allows to overcome the limitation of generalized bending points of the 

piecewise linear function by adjusting the bending points so that the best fit can be identified. However, optimization usually 

does not provide a perfect storage release relationship (i.e., in general, the trade-off between objectives never converges to 

single point), because the perfect representation only happens in the case of a perfect reservoir model and perfect data. The 10 

proposed model, like many other types of models is not an exception because of the uncertainties highlighted in the previous 

point. Thus, the trade-off between storage and release objectives can be viewed as a measure of the limitation of the reservoir 

algorithm (piece-wise linear functions, fixed number of zones, etc.) and observation errors. To examine the level of uncertainty 

of the trade-off, it is important to look at the shape and range of the trade-off on each objective function axis.  

As shown in Fig. 11 and Fig. 12, except for few reservoirs, the range of Pareto solutions for each objective function 15 

is generally narrow with good NSE values. In such cases, the associated uncertainties are less and the trade-off between 

improving simulated releases and improving simulated storage is minimal. Conversely, in some cases, an extended spread of 

the tread-off along one of the axes (objective function) was observed, indicating a higher uncertainty of the algorithm for the 

process that the axis represent, i.e., reservoir storage or release. This requires further investigations of the datasets and 

parameterization for those reservoirs and their history of operations. Shifts in operational management of reservoirs do occur 20 

and these may obscure the parameterization. These may be detected by careful examination of the available records as well as 

metadata records of the reservoir history if accessible. The level of noise when determining the parameters could be an indicator 

of changes in operation. 

4.7 Implementation strategies to overcome data limitation 

The data requirement is the main limitation of the DZTR model for application at continental and global scales. One 25 

approach to overcome data limitations is to integrate our proposed method in land surface/catchment models along with other 

reservoir operation methods (e.g., Hanasaki et al., 2006). Then, within the land surface/catchment models, identifier flags can 

be used to indicate which method applies to which reservoirs. The DZTR approach can only be activated for reservoirs with 

data support, while the remaining reservoirs can use other approaches as dictated by data availability. We have been following 

such an implementation within the MESH model.  30 

As shown in our results, reservoir regulation has a huge impact on downstream flows if the reservoir is highly 

regulated and/or is of multi-year type (c>0.5). Thus, more emphasis can be put on those reservoirs with c>0.5. At the moment, 

such methods will be more effective at the regional than global scale (for example for Saskatchewan River Basin in our case), 
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because modellers at regional scale have better access to inflow-storage-outflow data and have better understanding of the 

system to acquire the necessary reservoir data. In a land surface hydrologic model, important reservoirs are those causing large 

changes to the downstream flows and those tend to be the larger ones with generally better data availability.  

Data on reservoir storage, inflow and release exist for most reservoirs but sometimes they are not made publically 

available. Storage data can be obtained from water level data which is generally available for major reservoirs and can be 5 

converted to storage. Release data can be deduced from the nearest downstream station. In addition, new initiatives are needed 

to gather and archive such reservoir datasets and move beyond information on reservoir characteristics that is currently 

available in databases (e.g., GRanD database - Lehner et al., 2011). One of our recommendation is that the target release and 

storage data be archived for public use at least for highly regulated and multi-year type dams (c>0.5).  

The possibility of estimating storage and release data from different satellite data products is promising; such new 10 

data sources will potentially improve the use of methods like the presented reservoir operation (optimized or generalized). 

More recently, Busker et al. (2019) showed an estimation of volume for 130 reservoirs using surface water dataset and satellite 

altimetry, which is encouraging. 

5 Summary and Conclusions 

Human interventions in hydrologic systems through dams and reservoirs significantly change the flow regime of many rivers. 15 

In this paper, we presented an improved reservoir operation model, called the Dynamically Zoned Target Release (DZTR) 

model that can be integrated into any large-scale hydrological model; here we integrated it into the MESH hydrology-land 

surface model. The DZTR model is based on parametric piecewise linear functions that approximate reservoir release rules 

used by reservoir operators. We proposed two strategies to identify the parameters of this model: one based on the distributions 

of historical storage and release to generate the so-called “generalized parameters” and the other one based on direct calibration 20 

to observed storage and release time series via multi-objective optimization. We first tested the DZTR model individually 

across a number of reservoirs around the globe, and then tested its performance when plugged into the MESH model for a 

subset of those reservoirs. Our conclusions can be summarized as: 

 The DZTR reservoir operation model performed well in reproducing observed storage and release time series in 

(almost) all reservoirs tested and outperformed the existing reservoir models proposed by Hanasaki et al. (2006) and 25 

Wisser et al. (2010). The model was capable of capturing inter- and intra-annual variability of both reservoir storage 

and release. 

 As expected, calibration significantly improved the performance of the DZTR model compared with the performance 

of the “generalized parameters”. There often exists, however, a significant tradeoff between fitting reservoir storage 

versus release, signifying the importance of accounting for both storage and release in a multi-objective fashion.  30 

 The integration of the DZTR reservoir model into the MESH hydrology-land surface modelling system was 

straightforward and improved the overall model performance compared with the traditional methods of accounting 
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for reservoirs in H-LSMs. This integration can be viewed as a successful example for improving the representation 

of reservoir operation in CMs, LSMs and GWSMs. 

Future research work may include (1) examining the applicability of the DZTR model for regions with severely-limited data 

by examining the utility of other data sources such those derived from satellite-based observations (Savtchenko et al., 2004; 

Garambois and Monnier, 2015; Gao et al., 2012) and using area-volume relationship approximated by regular geometric shapes 5 

(e.g., Yigzaw et al., 2018); and (2) examining direct one- and/or two-way coupling of WMMs with CMs and LSMs towards 

developing a seamless coupled framework for the simulation of natural-engineered watershed systems. 
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Figure 1: The schematic representation of reservoir zoning and storage-release function: a) Four (active) reservoir 

zones with inflow and outflows; b) piecewise linear reservoir release function, m1, and m2 control the slope of the release 

curve and they change monthly. The upward blue arrow is to indicate that inflow to the reservoir may also be 5 

considered in determining the release in zone 3. 

 

Figure 2: Cumulative Distribution Function (CDF) a) Storage CDF of Gardiner dam b) Reservoir release CDF of 

Gardiner dam. Double arrows on y-axis shows parametrizations ranges for each generalized parameters. 
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Figure 3: Locations of dams used to evaluate reservoir routing model. 

 

 



35 

 

 



36 

 

Figure 4: Performance evaluation result of the DZTR model reservoir operation algorithm a) NSE performance 

metrics, b) KGE performance metrics. 

 

 

Figure 5: Scatter plot between KGE and NSE with regulation scale represented in terms of c a) KGE and NSE on no 5 

reservoir condition, b) KGE and NSE on DZTR release, and c) KGE and NSE on DZTR storage. 
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Figure 6: Daily and monthly reservoir simulations using DZTR model with a generalized parametrization, x-axis 

shows month/year, the primary y-axis shows release (m3/s) and the secondary y-axis shows storage (m3). 
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Figure 7: Long-term average daily or monthly reservoir simulations with generalized parametrization, the x-axis shows 

days (1-365) or months, (1-12) the primary y-axis shows release (m3/s) and the secondary y-axis shows storage (m3). 
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Here we made correction on the comparison result and the figure below is the correct version 

 

Figure 8: A comparison of our proposed reservoir operation model with generalized parameters with the models of 

Hanasaki, et al. (2006) and Wisser et al. (2010): a) NSE(Flow), b) KGE(Flow), c) NSE(Storage), d) KGE(Storage). 

5 

Figure 9: Reservoir initial storage effect on storage and release simulation: a) Charvak storage case 1, b) Charvak 

release case 1, c) Charvak storage case 2, d) Charvak release case 2, e) Gardiner storage case 1, f) Gardiner release case 

1, g) Gardiner storage case 2, h) Gardiner release case 2, i) High Aswan storage case 1, j) High Aswan release case 1, 

k) High Aswan storage case 2, l) High Aswan release case 2 

 10 
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Figure 10: Inflow bias sensitivity test on storage and release simulation: a) Charvak storage, b) Gardiner storage, c) 

High Aswan storage, d) Charvak release, e) Gardiner release, f) High Aswan release   

 5 
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Figure 11: Reservoir release parameter multi-objective calibration result, x-axis shows NSE (flow) multiplied by -1 and 

the y-axis shows NSE (storage) multiplied by -1. 



42 

 

 

Figure 12: Reservoir release parameter multi-objective calibration using all available data for each reservoirs, x-axis 

shows NSE (flow) multiplied by -1 and the y-axis shows NSE (storage) multiplied by -1. 
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Figure 13: Daily and monthly reservoir simulations using DZTR model with a generalized parametrization, x-axis 

shows month/year, the primary y-axis shows release (m3/s) and the secondary y-axis shows storage (m3). 
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Figure 14: Long-term average daily or monthly reservoir simulations with generalized parametrization, the x-axis 

shows days (1-365) or months, (1-12) the primary y-axis shows release (m3/s) and the secondary y-axis shows storage 

(m3). 
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Figure 15: Reservoir simulation results within MESH model run for selected reservoirs. X-axis shows time (days), the 

primary y-axis shows release (m3/s) and the secondary y-axis shows storage (m3). 

Table 1: Summary of reservoirs 5 
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American Falls USA 1977 IR -112.87 42.78 32 2061.5 0.303 1978-1995 (18) -3.29 

Andijan (y) Uzbekistan 1974 HP 73.06 40.77 115 1900 0.444 2001-2013 m (13) -0.98 

Bhumibol Thailand 1964 IR 98.97 17.24 154 13462 2.645 1980-1996 (16) -10.29 

Big Horn Canada 1972 HP -116.32 52.31 150 1770 0.747 2002-2011 (10) 16.08 

Bull Lake (y) USA 1938 IR -109.04 43.21 24 187.2 0.883 2001-2013(13) -3.74 

Canyon Ferry (y) USA 1954 HP −111.73 46.65 69  2464.4 0.543 1971-2011 m (40) -1.46 

Chardara Kazakhstan 1968 IR 67.96 41.24 27 6700 0.354 2001-2010 m (10) 7.57 
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Charvak(y) Uzbekistan 1977 HP 69.97 41.62 168 2000 0.284 2001-2010 m (10) 1.6 

Dickson Canada 1983 WS -114.21 52.05 40 203 0.167 2005-2011(6) 27.3 

E.B. Campbell(y) Canada 1963 HP -103.40 53.66 34 2200 0.153 2000-2011(12) -1.69 

Flaming Gorge(y) USA 1964 WS -109.42 40.91 153 4336.3 2.460 1971-2017(46) -6.37 

Fort Peck(y) USA 1957 FC -106.41 48.00 78 23560 2.210 1970-1999 m (30) 6.33 

Fort Randal USA 1953 FC -98.55 43.06 50 6683 0.240 1970-1999m (30) -1.43 

Gardiner Canada 1968 IR -106.86 51.27 69 9870 1.460 1980-2011(32) -3.44 

Garrison(y) USA 1953 FC -101.43 47.50 64 30220 1.436 1970-1999 m (30) -5.79 

Ghost Canada 1929 HP -114.70 51.21 42 132 0.048 1990-2011(22) 5.43 

Glen Canyon(y) USA 1966 HP -111.48 36.94 216 25070 2.230 1980-1996(17) -6.87 

Grand Coulee USA 1942 IR -118.98 47.95 168 6395.6 0.124 1978-1990(12) -3.37 

High Aswan Egypt 1970 IR 32.88 23.96 111 162000 2.843 1971-1997 m (26) -3.34 

Int. Amistad  USA/Mexico 1969 IR -101.05 29.45 87 6330 2.457 1977-2002(25) -20.28 

Int. Falcon Lake USA/Mexico 1954 FC -99.17 26.56 53 3920 1.045 1958-2001(43) -14.48 

Kayrakkum(y) Tajikistan 1959 HP 69.82 40.28  32 4160 0.199 2001-2010 m (10) 1.19 

Navajo USA 1963 IR -107.60 36.80 123 1278 1.744 1971-2011(40) -21.07 

Nurek Tajikistan 1980 IR 69.35 38.37  300 10500 0.540 2001-2010 m (10) 0.28 

Oahe Dam(y) USA 1966 FC -100.40 44.45 75 29110 1.244 1970-1999 m (30) -5.366 

Oldman River Canada 1991 IR -113.90 49.56 76 490 0.446 1996-2011(16) 3.98 

Oroville(y) USA 1968 FC -121.48 39.54 235 4366.5 0.804 1995-2004(11) 4.20 

Palisades USA 1957 IR -111.20 43.33 82 1480.2 0.242 1970-2000(31) 0.48 

Seminoe USA 1939 IR -106.91 42.16  90 1254.8 1.048 1951-2013 m (63) -4.10 

Sirikit Thailand 1974 IR 100.55 17.76 114 9510 1.834 1981-1996(16) -7.32 

St. Mary Canada 1951 IR -113.12 49.36 62 394.7 0.492 2000-2011(12) 0.16 

Toktogul(y) Kyrgyzstan 1978 HP 72.65 41.68  215 19500 1.393 2001-2010 m (10) -6.34 

Trinity USA 1962 IR -122.76 40.80 164 2633.5 1.470 1970-2000(31) -4.18 

Tyuyamuyun Turkmenistan N/A IR 61.40 41.21  N/A 6100 0.204 2001-2010 m (10) -2.43 

W.A.C. Bennett Canada 1967 HP -122.20 56.02 183 74300 1.200 2003-2011(9) 5.41 

Waterton Canada 1992 IR -113.67 49.32 55 172.7 0.258 2000-2011(12) -10.34 

Yellowtail USA 1967 IR -107.95 45.30 160 1760.6 0.489 1970-2000m (31) -1.693 

2Main purpose: WS-Water Supply, HP-Hydropower IR-Irrigation FC-Flood Control 

(m) Represents monthly data and simulation 

(y) Represents multiple reservoir models are compared on this reservoir 

Table 2: Reservoir initial storage effect on storage and release simulation 

  Case 1 

S0= [0.1Smax Smax] 

  

Case 2 

S0=[min(obs) max(obs)] 

obs= observed for all Jan 1st 

  NSE(Storage) NSE(Flow) NSE(Storage) NSE(Flow) 

Charvak No spin-up [0.61 0.74] [0.79 0.83]  [0.61 0.74] [0.79 0.83] 

1yr spin-up [0.74 0.74] [0.82 0.82] [0.74 0.74] [0.82 0.82] 

Gardiner No spin-up [-0.43 0.88] [0.35 0.51] [0.87 0.88] [0.44 0.49] 

1yr spin-up [0.76 0.87] [0.49 0.51] [0.87 0.87] [0.49 0.49] 

High Aswan No spin-up [0.38 0.91] [-0.28 0.85] [0.42 0.91] [0.52 0.85] 

1yr spin-up [0.58 0.91] [0.62 0.85] [0.58 0.91] [0.62 0.85] 
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Table 3: Inflow bias sensitivity test on storage and release simulation 

  -50% -25% 0% 25% 50% 

Charvak NSE(Storage) -1.95 0.25 0.74 0.52 -0.21 

NSE(Flow) -0.06 0.54 0.82 0.57 -0.07 

Gardiner NSE(Storage) -2.00 0.74 0.88 0.79 0.66 

NSE(Flow) -0.21 0.47 0.49 -0.43 -2.02 

High Aswan NSE(Storage) -9.37 -5.96 0.90 -0.60 -1.45 

NSE(Flow) -3.90 -0.34 0.80 -2.29 -8.70 

 


