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Supplementary Materials 23 

S1. Derivation of analytical solutions for the SWPP test 24 

To reduce the complexity in analyzing the influence of input parameters on the output, the 25 

dimensionless parameters are introduced as follows: 𝐶𝑚𝐷 =
𝐶𝑚

𝐶0
, 𝐶𝑖𝑚𝐷 =

𝐶𝑖𝑚

𝐶0
, 𝐶𝑖𝑛𝑗,𝑚𝐷 =

𝐶𝑖𝑛𝑗,𝑚

𝐶0
, 26 

𝐶𝑖𝑛𝑗,𝑖𝑚𝐷 =
𝐶𝑖𝑛𝑗,𝑖𝑚

𝐶0
,  𝐶𝑐ℎ𝑎,𝑚𝐷 =

𝐶𝑐ℎ𝑎,𝑚

𝐶0
,  𝐶𝑐ℎ𝑎,𝑖𝑚𝐷 =

𝐶𝑐ℎ𝑎,𝑖𝑚

𝐶0
,  𝐶𝑟𝑒𝑠,𝑚𝐷 =

𝐶𝑟𝑒𝑠,𝑚

𝐶0
, 𝐶𝑟𝑒𝑠,𝑖𝑚𝐷 =

𝐶𝑟𝑒𝑠,𝑖𝑚

𝐶0
, 27 

𝐶𝑒𝑥𝑡,𝑚𝐷 =
𝐶𝑒𝑥𝑡,𝑚

𝐶0
, 𝐶𝑒𝑥𝑡,𝑖𝑚𝐷 =

𝐶𝑒𝑥𝑡,𝑖𝑚

𝐶0
, 𝐶𝑢𝑚𝐷 =

𝐶𝑢𝑚

𝐶0
, 𝐶𝑢𝑖𝑚𝐷 =

𝐶𝑢𝑖𝑚

𝐶0
, 𝐶𝑙𝑚𝐷 =

𝐶𝑙𝑚

𝐶0
, 𝐶𝑙𝑖𝑚𝐷 =

𝐶𝑙𝑖𝑚

𝐶0
, 28 

𝑡𝐷 =
|𝐴|

𝛼𝑟
2𝑅𝑚

𝑡, 𝑟𝐷 =
𝑟

𝛼𝑟
, 𝑟𝑤𝐷 =

𝑟𝑤

𝛼𝑟
, 𝑧𝐷 =

𝑧

𝐵
, 𝜇𝑚𝐷 =

𝛼𝑟
2𝜇𝑚

𝐴
, 𝜇𝑖𝑚𝐷 =

𝛼𝑟
2𝑅𝑚𝜇𝑖𝑚

𝑅𝑖𝑚𝐴
, 𝜇𝑢𝑚𝐷 =

𝛼𝑟
2𝜇𝑢𝑚

𝐴
, 𝜇𝑢𝑖𝑚𝐷 =29 

𝛼𝑟
2𝑅𝑚𝜇𝑢𝑖𝑚

𝑅𝑖𝑚𝐴
,  𝜇𝑙𝑚𝐷 =

𝛼𝑟
2𝜇𝑙𝑚

𝐴
 and 𝜇𝑙𝑖𝑚𝐷 =

𝛼𝑟
2𝑅𝑚𝜇𝑙𝑖𝑚

𝑅𝑖𝑚𝐴
, where the subscript “D” represents the 30 

dimensionless parameter hereinafter, 𝐴 =
𝑄

4𝜋𝐵𝜃𝑚
. By substituting these dimensionless parameters 31 

into the governing equations, one could obtain the dimensionless model of the SWPP test: 32 

𝜕𝐶𝑚𝐷

𝜕𝑡𝐷
=

1

𝑟𝐷

𝜕2𝐶𝑚𝐷

𝜕𝑟𝐷
2 −

1

𝑟𝐷

𝜕𝐶𝑚𝐷

𝜕𝑟𝐷
− 𝜀𝑚(𝐶𝑚𝐷 − 𝐶𝑖𝑚𝐷) − 𝜇𝑚𝐷𝐶𝑚𝐷 − (

𝜃𝑢𝑚𝛼𝑟
2𝑣𝑢𝑚

2𝐴𝜃𝑚𝐵
𝐶𝑢𝑚𝐷 −33 

𝜃𝑢𝑚𝛼𝑟
2𝐷𝑢

2𝐴𝜃𝑚𝐵2

𝜕𝐶𝑢𝑚𝐷

𝜕𝑧𝐷
)|

𝑧𝐷=1
+ (

𝜃𝑙𝑚𝛼𝑟
2𝑣𝑙𝑚

2𝐴𝐵𝜃𝑚
𝐶𝑙𝑚𝐷 −

𝜃𝑙𝑚𝛼𝑟
2𝐷𝑙

2𝐴𝐵2𝜃𝑚

𝜕𝐶𝑙𝑚𝐷

𝜕𝑧𝐷
)|

𝑧𝐷=−1
, 𝑟𝐷 ≥ 𝑟𝑤𝐷,  (S1a) 34 

𝜕𝐶𝑖𝑚𝐷

𝜕𝑡𝐷
= 𝜀𝑖𝑚(𝐶𝑚𝐷 − 𝐶𝑖𝑚𝐷) − 𝜇𝑖𝑚𝐷𝐶𝑖𝑚𝐷, 𝑟𝐷 ≥ 𝑟𝑤𝐷,    (S1b) 35 

𝜕𝐶𝑢𝑚𝐷

𝜕𝑡𝐷
=

𝑅𝑚𝛼𝑟
2𝐷𝑢

𝐴𝐵2𝑅𝑢𝑚

𝜕2𝐶𝑢𝑚𝐷

𝜕𝑧𝐷
2 −

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚

𝜕𝐶𝑢𝑚𝐷

𝜕𝑧𝐷
− 𝜀𝑢𝑚(𝐶𝑢𝑚𝐷 − 𝐶𝑢𝑖𝑚𝐷) − 𝜇𝑢𝑚𝐷𝐶𝑢𝑚𝐷, 36 

𝑧𝐷 ≥ 1,           (S2a) 37 

𝜕𝐶𝑢𝑖𝑚𝐷

𝜕𝑡𝐷
= 𝜀𝑢𝑖𝑚(𝐶𝑢𝑚𝐷 − 𝐶𝑢𝑖𝑚𝐷) − 𝜇𝑢𝑖𝑚𝐷𝐶𝑢𝑖𝑚𝐷, 𝑧𝐷 ≥ 1,   (S2b) 38 

𝜕𝐶𝑙𝑚𝐷

𝜕𝑡𝐷
=

𝑅𝑚𝛼𝑟
2𝐷𝑙

𝐴𝐵2𝑅𝑙𝑚

𝜕2𝐶𝑙𝑚𝐷

𝜕𝑧𝐷
2 +

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚

𝜕𝐶𝑙𝑚𝐷

𝜕𝑧𝐷
− 𝜀𝑙𝑚(𝐶𝑙𝑚𝐷 − 𝐶𝑙𝑖𝑚𝐷) − 𝜇𝑙𝑚𝐷𝐶𝑙𝑚𝐷, 39 

𝑧𝐷 ≤ −1,          (S3a) 40 
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𝜕𝐶𝑙𝑖𝑚𝐷

𝜕𝑡𝐷
= 𝜀𝑙𝑖𝑚(𝐶𝑙𝑚𝐷 − 𝐶𝑙𝑖𝑚𝐷) − 𝜇𝑙𝑖𝑚𝐷𝐶𝑙𝑖𝑚𝐷, 𝑧𝐷 ≤ −1,    (S3b) 41 

where 𝜀𝑚 =
𝜔𝑎𝛼𝑟

2

𝐴𝜃𝑚
, 𝜀𝑖𝑚 =

𝜔𝑎𝛼𝑟
2𝑅𝑚

𝐴𝜃𝑚𝑅𝑖𝑚
,  𝜀𝑢𝑚 =

𝜔𝑢𝛼𝑟
2𝑅𝑚

𝐴𝜃𝑢𝑚𝑅𝑢𝑚
, 𝜀𝑢𝑖𝑚 =

𝜔𝑢𝛼𝑟
2𝑅𝑚

𝐴𝜃𝑢𝑚𝑅𝑢𝑖𝑚
, 𝜀𝑙𝑚 =

𝜔𝑙𝛼𝑟
2𝑅𝑚

𝐴𝜃𝑙𝑚𝑅𝑙𝑚
, 𝜀𝑙𝑖𝑚 =42 

𝜔𝑙𝛼𝑟
2𝑅𝑚

𝐴𝜃𝑙𝑚𝑅𝑙𝑖𝑚
. 43 

The analytical solution will be derived using the Laplace transform method and the Green’s 44 

functions method, and the detailed information could be seen in the following sections. 45 

 46 

S1.1 Solutions in the injection phase: Eqs. (25a) and (25f) 47 

Substituting the dimensionless parameters into Eqs. (5) - (6), one could obtain the 48 

dimensionless boundary conditions and dimensionless initial conditions for the injection phase: 49 

𝐶𝑚𝐷(𝑟𝐷, 𝑡𝐷)|𝑡𝐷=0 = 𝐶𝑖𝑚𝐷(𝑟𝐷 , 𝑡𝐷)|𝑡𝐷=0 = 𝐶𝑢𝑚𝐷(𝑟𝐷, 𝑧𝐷 , 𝑡𝐷)|𝑡𝐷=0 = 𝐶𝑢𝑖𝑚𝐷(𝑟𝐷, 𝑧𝐷 , 𝑡𝐷)|𝑡𝐷=0 =50 

𝐶𝑙𝑚𝐷(𝑟𝐷, 𝑧𝐷 , 𝑡𝐷)|𝑡𝐷=0 = 𝐶𝑙𝑖𝑚𝐷(𝑟𝐷, 𝑧𝐷 , 𝑡𝐷)|𝑡𝐷=0 = 0,   (S4) 51 

𝐶𝑚𝐷(𝑟𝐷, 𝑡𝐷)|𝑟𝐷→∞ = 𝐶𝑖𝑚𝐷(𝑟𝐷, 𝑡𝐷)|𝑟𝐷→∞ = 𝐶𝑢𝑚𝐷(𝑟𝐷, 𝑧𝐷 , 𝑡𝐷)|𝑧𝐷→∞ =52 

𝐶𝑢𝑖𝑚𝐷(𝑟𝐷, 𝑧𝐷 , 𝑡𝐷)|𝑧𝐷→∞ = 𝐶𝑙𝑚𝐷(𝑟𝐷 , 𝑧𝐷 , 𝑡)|𝑧𝐷→−∞ = 𝐶𝑙𝑖𝑚𝐷(𝑟𝐷, 𝑧𝐷 , 𝑡𝐷)|𝑧𝐷→−∞ = 0, (S5) 53 

𝐶𝑚𝐷(𝑟𝐷, 𝑡𝐷) = 𝐶𝑢𝑚𝐷(𝑟𝐷 , 𝑧𝐷 = 1, 𝑡𝐷),      (S6a) 54 

𝐶𝑚𝐷(𝑟𝐷, 𝑡𝐷) = 𝐶𝑙𝑚𝐷(𝑟𝐷 , 𝑧𝐷 = −1, 𝑡𝐷).      (S6b) 55 

Conducting Laplace transform to Eqs. (S2a) - (S2b), one has: 56 

𝑠𝐶𝑢̅𝑚𝐷 =
𝑅𝑚𝛼𝑟

2𝐷𝑢

𝐴𝐵2𝑅𝑢𝑚

𝜕2𝐶̅𝑢𝑚𝐷

𝜕𝑧𝐷
2 −

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚

𝜕𝐶̅𝑢𝑚𝐷

𝜕𝑧𝐷
− (𝜀𝑢𝑚 + 𝜇𝑢𝑚𝐷)𝐶𝑢̅𝑚𝐷 + 𝜀𝑢𝑚𝐶𝑢̅𝑖𝑚𝐷， 57 

 𝑧𝐷 ≥ 1,          (S7a) 58 

𝑠𝐶𝑢̅𝑖𝑚𝐷 = 𝜀𝑢𝑖𝑚(𝐶𝑢̅𝑚𝐷 − 𝐶𝑢̅𝑖𝑚𝐷) − 𝜇𝑢𝑖𝑚𝐷𝐶𝑢̅𝑖𝑚𝐷, 𝑧𝐷 ≥ 1,   (S7b) 59 

Substituting Eq. (S7b) into Eq. (S7a) will lead to: 60 

𝑠𝐶𝑢̅𝑚𝐷 =
𝑅𝑚𝛼𝑟

2𝐷𝑢

𝐴𝐵2𝑅𝑢𝑚

𝜕2𝐶̅𝑢𝑚𝐷

𝜕𝑧𝐷
2 −

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚

𝜕𝐶̅𝑢𝑚𝐷

𝜕𝑧𝐷
− (𝜀𝑢𝑚 + 𝜇𝑢𝑚𝐷 −

𝜀𝑢𝑚𝜀𝑢𝑖𝑚

𝑠+𝜇𝑢𝑖𝑚𝐷+𝜀𝑢𝑖𝑚
) 𝐶𝑢̅𝑚𝐷， 61 
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 𝑧𝐷 ≥ 1,          (S8) 62 

Similarly, Eqs. (S3a) - (S3b) become: 63 

𝑠𝐶𝑙̅𝑚𝐷 =
𝑅𝑚𝛼𝑟

2𝐷𝑙

𝐴𝐵2𝑅𝑙𝑚

𝜕2𝐶̅𝑙𝑚𝐷

𝜕𝑧𝐷
2 +

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚

𝜕𝐶̅𝑙𝑚𝐷

𝜕𝑧𝐷
− (𝜀𝑙𝑚 + 𝜇𝑙𝑚𝐷)𝐶𝑙̅𝑚𝐷 + 𝜀𝑙𝑚𝐶𝑙̅𝑖𝑚𝐷, 64 

𝑧𝐷 ≤ −1,          (S9a) 65 

𝑠𝐶𝑙̅𝑖𝑚𝐷 = 𝜀𝑙𝑖𝑚(𝐶𝑙̅𝑚𝐷 − 𝐶𝑙̅𝑖𝑚𝐷) − 𝜇𝑙𝑖𝑚𝐷𝐶𝑙̅𝑖𝑚𝐷, 𝑧𝐷 ≤ −1,   (S9b) 66 

Substituting Eq. (S9b) into Eq.(S9a) results in: 67 

𝑠𝐶𝑙̅𝑚𝐷 =
𝑅𝑚𝛼𝑟

2𝐷𝑙

𝐴𝐵2𝑅𝑙𝑚

𝜕2𝐶̅𝑙𝑚𝐷

𝜕𝑧𝐷
2 +

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚

𝜕𝐶̅𝑙𝑚𝐷

𝜕𝑧𝐷
− (𝜀𝑙𝑚 + 𝜇𝑙𝑚𝐷 −

𝜀𝑙𝑚𝜀𝑙𝑖𝑚

𝑠+𝜇𝑙𝑖𝑚𝐷+𝜀𝑙𝑖𝑚
) 𝐶𝑙̅𝑚𝐷, 68 

𝑧𝐷 ≤ −1,          (S10) 69 

where overbar represents the variables in Laplace domain hereinafter; s is the Laplace transform 70 

parameter in respect to dimensionless time. 71 

Eqs. (S5), (S6a)-(S6b) and (S8) compose a model of the second-order ordinary differential 72 

equation (ODE) with boundary conditions, the general solution of Eq. (S8)  is: 73 

𝐶𝑢̅𝑚𝐷 = 𝐴1𝑒𝑎1𝑧𝐷 + 𝐵1𝑒𝑎2𝑧𝐷.       (S11a) 74 

Similarly, the general solution of Eq. (S10)  is: 75 

𝐶𝑙̅𝑚𝐷 = 𝐴2𝑒𝑏1𝑧𝐷 + 𝐵2𝑒𝑏2𝑧𝐷.       (S11b) 76 

where  𝑎1 =

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚
+√(

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚
)

2

+4
𝑅𝑚𝛼𝑟

2𝐷𝑢
𝐴𝐵2𝑅𝑢𝑚

(𝑠+𝜀𝑢𝑚+𝜇𝑢𝑚𝐷−
𝜀𝑢𝑚𝜀𝑢𝑖𝑚

𝑠+𝜇𝑢𝑖𝑚𝐷+𝜀𝑢𝑖𝑚
)

2
𝑅𝑚𝛼𝑟

2𝐷𝑢
𝐴𝐵2𝑅𝑢𝑚

, 77 

𝑎2 =

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚
−√(

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚
)

2

+4
𝑅𝑚𝛼𝑟

2𝐷𝑢
𝐴𝐵2𝑅𝑢𝑚

(𝑠+𝜀𝑢𝑚+𝜇𝑢𝑚𝐷−
𝜀𝑢𝑚𝜀𝑢𝑖𝑚

𝑠+𝜇𝑢𝑖𝑚𝐷+𝜀𝑢𝑖𝑚
)

2
𝑅𝑚𝛼𝑟

2𝐷𝑢
𝐴𝐵2𝑅𝑢𝑚

, 78 

𝑏1 =
−

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚
+√(

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚
)

2

+4
𝑅𝑚𝛼𝑟

2𝐷𝑙
𝐴𝐵2𝑅𝑙𝑚

(𝑠+𝜀𝑙𝑚+𝜇𝑙𝑚𝐷−
𝜀𝑙𝑚𝜀𝑙𝑖𝑚

𝑠+𝜇𝑙𝑖𝑚𝐷+𝜀𝑙𝑖𝑚
)

2
𝑅𝑚𝛼𝑟

2𝐷𝑙
𝐴𝐵2𝑅𝑙𝑚

 and  79 
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𝑏2 =
−

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚
− √(

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚
)

2

+4
𝑅𝑚𝛼𝑟

2𝐷𝑙
𝐴𝐵2𝑅𝑙𝑚

(𝑠+𝜀𝑙𝑚+𝜇𝑙𝑚𝐷−
𝜀𝑙𝑚𝜀𝑙𝑖𝑚

𝑠+𝜇𝑙𝑖𝑚𝐷+𝜀𝑙𝑖𝑚
)

2
𝑅𝑚𝛼𝑟

2𝐷𝑙
𝐴𝐵2𝑅𝑙𝑚

. 80 

Substituting Eqs. (S11a) - (S11b) into Eqs. (S5)-(S6b) leads to: 81 

𝐶𝑢̅𝑚𝐷 = 𝐵1𝑒𝑎2𝑧𝐷.        (S12a) 82 

𝐶𝑙̅𝑚𝐷 = 𝐴2𝑒𝑏1𝑧𝐷.         (S12b) 83 

where 𝐵1 = 𝐶𝑚̅𝐷𝑒𝑥𝑝 (−𝑎2), 𝐵2 = 0, 𝐴1 = 0 and 𝐴2 = 𝐶𝑚̅𝐷𝑒𝑥𝑝 (𝑏1). 84 

Thus, we could obtain the solutions for the aquitards as: 85 

𝐶𝑢̅𝑚𝐷 = 𝐶𝑚̅𝐷𝑒𝑥𝑝 (𝑎2𝑧𝐷 − 𝑎2).       (S13a) 86 

𝐶𝑢̅𝑖𝑚𝐷 =
𝜀𝑢𝑖𝑚

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
𝐶𝑢̅𝑚𝐷,       (S13b) 87 

𝐶𝑙̅𝑚𝐷 = 𝐶𝑚̅𝐷𝑒𝑥𝑝 (𝑏1𝑧𝐷 + 𝑏1).       (S14a) 88 

𝐶𝑙̅𝑖𝑚𝐷 =
𝜀𝑙𝑖𝑚

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷
𝐶𝑙̅𝑚𝐷,       (S14b) 89 

In the injection phase, the dimensional boundary conditions Eq. (8) and Eqs. (12a)-(12b) are 90 

transformed into their dimensionless forms: 91 

[𝐶𝑚𝐷 −
𝜕𝐶𝑚𝐷(𝑟𝐷,𝑡𝐷)

𝜕𝑟𝐷
]|

𝑟=𝑟𝑤𝐷

= 𝐶𝑖𝑛𝑗,𝑚𝐷(𝑡𝐷), 0 < 𝑡𝐷 ≤ 𝑡𝑖𝑛𝑗,𝐷   (S15) 92 

𝛽𝑖𝑛𝑗
𝑑𝐶𝑖𝑛𝑗,𝑚𝐷(𝑡𝐷)

𝑑𝑡𝐷
= 1 − 𝐶𝑖𝑛𝑗,𝑚𝐷(𝑡𝐷) , 0 < 𝑡𝐷 ≤ 𝑡𝑖𝑛𝑗,𝐷,     (S16a) 93 

𝐶𝑖𝑛𝑗,𝑚𝐷(𝑡𝐷 = 0) = 0,         (S16b) 94 

where 𝛽𝑖𝑛𝑗 =
𝑉𝑤,𝑖𝑛𝑗𝑟𝑤𝐷

𝜉𝑅𝑚𝛼𝑟
. 95 

Conducting Laplace transform to Eqs. (S1a) - (S1b), one has: 96 

𝑠𝐶𝑚̅𝐷 =
1

𝑟𝐷

𝜕2𝐶̅𝑚𝐷

𝜕𝑟𝐷
2 −

1

𝑟𝐷

𝜕𝐶̅𝑚𝐷

𝜕𝑟𝐷
− (𝜀𝑚 + 𝜇𝑚𝐷)𝐶𝑚̅𝐷 + 𝜀𝑚𝐶𝑖̅𝑚𝐷 −  97 

(
𝜃𝑢𝑚𝛼𝑟

2𝑣𝑢𝑚

2𝐴𝜃𝑚𝐵
𝐶𝑢̅𝑚𝐷 −

𝜃𝑢𝑚𝛼𝑟
2𝐷𝑢

2𝐴𝜃𝑚𝐵2

𝜕𝐶̅𝑢𝑚𝐷

𝜕𝑧𝐷
)|

𝑧𝐷=1
+ (

𝜃𝑙𝑚𝛼𝑟
2𝑣𝑙𝑚

2𝐴𝜃𝑚𝐵
𝐶𝑙̅𝑚𝐷 −

𝜃𝑙𝑚𝛼𝑟
2𝐷𝑙

2𝐴𝐵2𝜃𝑚

𝜕𝐶̅𝑙𝑚𝐷

𝜕𝑧𝐷
)|

𝑧𝐷=−1
 , 98 
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𝑟𝐷 ≥ 𝑟𝑤𝐷.          (S17a) 99 

𝐶𝑖̅𝑚𝐷 =
𝜀𝑖𝑚

(𝑠+𝜇𝑖𝑚𝐷+𝜀𝑖𝑚)
𝐶𝑚̅𝐷, 𝑟𝐷 ≥ 𝑟𝑤𝐷,      (S17b) 100 

Substituting Eqs. (S13a), (S14a) and (S17b) into Eq. (S17a),one has: 101 

1

𝑟𝐷

𝜕2𝐶̅𝑚𝐷

𝜕𝑟𝐷
2 −

1

𝑟𝐷

𝜕𝐶̅𝑚𝐷

𝜕𝑟𝐷
− 𝐸𝐶𝑚̅𝐷 = 0.       (S18) 102 

where 103 

 𝐸 = 𝑠 + 𝜀𝑚 + 𝜇𝑚𝐷 −
𝜀𝑚𝜀𝑖𝑚

𝑠+𝜇𝑖𝑚𝐷+𝜀𝑖𝑚
+

𝜃𝑢𝑚𝛼𝑟
2𝑣𝑢𝑚

2𝐴𝜃𝑚𝐵
−

𝜃𝑙𝑚𝛼𝑟
2𝑣𝑙𝑚

2𝐴𝐵𝜃𝑚
−

𝑎2𝜃𝑢𝑚𝛼𝑟
2𝐷𝑢

2𝐴𝜃𝑚𝐵2 +
𝑏1𝜃𝑙𝑚𝛼𝑟

2𝐷𝑙

2𝐴𝐵2𝜃𝑚
. 104 

The boundary conditions of the wellbore and infinity in the Laplace domain are: 105 

[𝐶𝑚̅𝐷 −
𝜕𝐶̅𝑚𝐷(𝑟𝐷,𝑠)

𝜕𝑟𝐷
]|

𝑟=𝑟𝑤𝐷

= 𝐶𝑖̅𝑛𝑗,𝑚𝐷(𝑠),      (S19a) 106 

𝐶𝑚̅𝐷(𝑟𝐷, 𝑠)|𝑟𝐷→∞ = 0.        (S19b) 107 

Conducting Laplace transform on Eqs. (S16a)- (S16b), one has: 108 

𝐶𝑖̅𝑛𝑗,𝑚𝐷(𝑟𝑤, 𝑠) =
1

𝑠(𝑠𝛽𝑖𝑛𝑗+1)
,        (S20) 109 

Eqs. (S18), (S19a)-(S19b), and (S20) compose a model of the second-order ordinary 110 

differential equation (ODE) with boundary conditions. The general solution of Eq. (S18) is: 111 

𝐶𝑚̅𝐷(𝑟𝐷, 𝑠) = 𝜙1 𝑒𝑥𝑝 (
𝑦𝑖𝑛𝑗

2
) 𝐴𝑖(𝐸1/3𝑦𝑖𝑛𝑗) + 𝜙2exp (

𝑦𝑖𝑛𝑗

2
) 𝐵𝑖(𝐸1/3𝑦𝑖𝑛𝑗).  (S21) 112 

where 𝑦𝑖𝑛𝑗 = 𝑟𝐷 +
1

4𝐸
, 𝑦𝑖𝑛𝑗,𝑤 = 𝑟𝑤𝐷 +

1

4𝐸
; 𝜙1 and 𝜙2 are constants which could be determined by 113 

the boundary conditions; 𝐴𝑖(∙) and 𝐵𝑖(∙) are the Airy functions of the first kind and second kind, 114 

respectively. As 𝐵𝑖(𝑟𝐷) diverges when 𝑟𝐷 → ∞ , 𝜙2 has to be zero. 115 

Substituting Eqs. (S21), (S20) and 𝜙2 = 0 into Eq. (S19a), the value of 𝜙1 is: 116 

𝜙1 =
1

𝑠(𝑠𝛽𝑖𝑛𝑗+1)

1

𝑒𝑥𝑝(
𝑦𝑖𝑛𝑗,𝑤

2
)[

𝐴𝑖(𝐸1/3𝑦𝑖𝑛𝑗,𝑤)

2
−𝐸1/3𝐴𝑖

′(𝐸1/3𝑦𝑖𝑛𝑗)]

.    (S22) 117 

where 𝐴𝑖
′(∙) is the derivative of the Airy function. 118 
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Substituting Eq. (S22) and 𝜙2 = 0 into Eqs. (S21) and (S17b), one could obtain the 119 

Laplace-domain analytical solution of solute transport in the injection phase of the SWPP test. 120 

 121 

S1.2 Solutions in the chaser phase: Eqs. (26a) - (26g) 122 

For the chaser phase, conducting Laplace transform on Eqs. (S2a)-(S2b), one has: 123 

𝑅𝑚𝛼𝑟
2𝐷𝑢

𝐴𝐵2𝑅𝑢𝑚

𝜕2𝐶̅𝑢𝑚𝐷

𝜕𝑧𝐷
2 −

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚

𝜕𝐶̅𝑢𝑚𝐷

𝜕𝑧𝐷
− (𝑠 + 𝜀𝑢𝑚 + 𝜇𝑢𝑚𝐷)𝐶𝑢̅𝑚𝐷 + 𝜀𝑢𝑚𝐶𝑢̅𝑖𝑚𝐷 +124 

𝐶𝑢𝑚𝐷(𝑟𝐷 , 𝑧𝐷 , 𝑡𝑖𝑛𝑗,𝐷) = 0，𝑧𝐷 ≥ 1,       (S23a) 125 

𝑠𝐶𝑢̅𝑖𝑚𝐷 − 𝐶𝑢𝑖𝑚𝐷(𝑟𝐷, 𝑧𝐷 , 𝑡𝑖𝑛𝑗,𝐷) = 𝜀𝑢𝑖𝑚(𝐶𝑢̅𝑚𝐷 − 𝐶𝑢̅𝑖𝑚𝐷) − 𝜇𝑢𝑖𝑚𝐷𝐶𝑢̅𝑖𝑚𝐷 ,  (S23b) 126 

Eq. (S23b)  could be rewritten as : 127 

𝐶𝑢̅𝑖𝑚𝐷 =
𝜀𝑢𝑖𝑚

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
𝐶𝑢̅𝑚𝐷 +

𝐶𝑢𝑖𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑖𝑛𝑗,𝐷)

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
,    (S23c)  128 

Substituting Eq. (S23c) into Eq. (S23a), one has: 129 

𝑅𝑚𝛼𝑟
2𝐷𝑢

𝐴𝐵2𝑅𝑢𝑚

𝜕2𝐶̅𝑢𝑚𝐷

𝜕𝑧𝐷
2 −

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚

𝜕𝐶̅𝑢𝑚𝐷

𝜕𝑧𝐷
− (𝑠 + 𝜀𝑢𝑚 + 𝜇𝑢𝑚𝐷 −

𝜀𝑢𝑚𝜀𝑢𝑖𝑚

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
) 𝐶𝑢̅𝑚𝐷 +130 

𝐶𝑢𝑚𝐷(𝑟𝐷 , 𝑧𝐷 , 𝑡𝑖𝑛𝑗,𝐷) +
𝜀𝑢𝑚𝐶𝑢𝑖𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑖𝑛𝑗,𝐷)

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
= 0. 𝑧𝐷 ≥ 1,    (S24) 131 

Similarly, Eqs. (S3a) - (S3b) become: 132 

𝑅𝑚𝛼𝑟
2𝐷𝑙

𝐴𝐵2𝑅𝑙𝑚

𝜕2𝐶̅𝑙𝑚𝐷

𝜕𝑧𝐷
2 +

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚

𝜕𝐶̅𝑙𝑚𝐷

𝜕𝑧𝐷
− (𝑠 + 𝜀𝑙𝑚 + 𝜇𝑙𝑚𝐷)𝐶𝑙̅𝑚𝐷 + 𝜀𝑙𝑚𝐶𝑙̅𝑖𝑚𝐷 +133 

𝐶𝑙𝑚𝐷(𝑟𝐷 , 𝑧𝐷 , 𝑡𝑖𝑛𝑗,𝐷) = 0，𝑧𝐷 ≤ −1,       (S25a) 134 

𝑠𝐶𝑙̅𝑖𝑚𝐷 − 𝐶𝑙𝑖𝑚𝐷(𝑟𝐷, 𝑧𝐷 , 𝑡𝑖𝑛𝑗,𝐷) = 𝜀𝑙𝑖𝑚(𝐶𝑙̅𝑚𝐷 − 𝐶𝑙̅𝑖𝑚𝐷) − 𝜇𝑙𝑖𝑚𝐷𝐶𝑙𝑖𝑚𝐷 ,  (S25b) 135 

Eq. (S23b) could be rewritten as : 136 

𝐶𝑙̅𝑖𝑚𝐷 =
𝜀𝑙𝑖𝑚

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷
𝐶𝑙̅𝑚𝐷 +

𝐶𝑙𝑖𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑖𝑛𝑗,𝐷)

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷
,     (S25c) 137 

Substituting Eq. (S25c) into Eq. (S25a), one has: 138 
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𝑅𝑚𝛼𝑟
2𝐷𝑙

𝐴𝐵2𝑅𝑙𝑚

𝜕2𝐶̅𝑙𝑚𝐷

𝜕𝑧𝐷
2 +

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚

𝜕𝐶̅𝑙𝑚𝐷

𝜕𝑧𝐷
− (𝑠 + 𝜀𝑙𝑚 + 𝜇𝑙𝑚𝐷 −

𝜀𝑙𝑚𝜀𝑙𝑖𝑚

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷
) 𝐶𝑙̅𝑚𝐷 +139 

𝐶𝑙𝑚𝐷(𝑟𝐷 , 𝑧𝐷 , 𝑡𝑖𝑛𝑗,𝐷) +
𝜀𝑙𝑚𝐶𝑙𝑖𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑖𝑛𝑗,𝐷)

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷
= 0. 𝑧𝐷 ≤ −1,    (S26) 140 

where 𝐶𝑢𝑚𝐷(𝑟𝐷 , 𝑧𝐷 , 𝑡𝑖𝑛𝑗,𝐷) and 𝐶𝑢𝑖𝑚𝐷(𝑟𝐷, 𝑧𝐷 , 𝑡𝑖𝑛𝑗,𝐷) are respectively the mobile and immobile 141 

concentrations [ML
-3

] of the upper aquitard at the end of the injection phase,  𝐶𝑙𝑚𝐷(𝑟𝐷, 𝑧𝐷 , 𝑡𝑖𝑛𝑗,𝐷) 142 

and 𝐶𝑙𝑖𝑚𝐷(𝑟𝐷 , 𝑧𝐷 , 𝑡𝑖𝑛𝑗,𝐷) are respectively the mobile and immobile concentrations [ML
-3

] of the 143 

lower aquitard at the end of the injection phase. In this study, we use the Green’s function 144 

method to derive the analytical solution of Eqs. (S24) and (S26). 145 

Notice that the boundary condition of Eq. (S6a) is inhomogeneous, thus we need to 146 

homogenize it first. Letting 𝐶𝑢̅𝑚𝐷 = 𝓀(𝑧𝐷) + 𝓈1 + 𝓈2𝑧𝐷, and substituting them into Eqs. (S5) 147 

and (S6a) yields: 148 

[𝓀(𝑧𝐷)]|𝑧𝐷→∞ = 0,         (S27a) 149 

[𝓀(𝑧𝐷)]|𝑧𝐷=1 = 0,         (S27b) 150 

where 𝓈1 = −𝓈2𝑧𝑒𝐷 and 𝓈2 =
𝐶̅𝑚𝐷(𝑟𝐷,𝑠)

1−𝑧𝑒𝐷
. 151 

Defining the spatial operator: 𝐿𝑢 = − [
𝑅𝑚𝛼𝑟

2𝐷𝑢

𝐴𝐵2𝑅𝑢𝑚

𝑑2

𝑑𝑧𝐷
2 −

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚

𝑑

𝑑𝑧𝐷
− 𝐸𝑢], one has: 152 

𝐿𝑢𝐶𝑢̅𝑚𝐷 = 𝐿𝑢[𝓀(𝑧𝐷) + 𝓈1] = 𝐹𝑢(𝑧𝐷),       (S28) 153 

Let 𝑓𝑢(𝑧𝐷) = 𝐹𝑢(𝑧𝐷) − 𝐿𝑢[𝓈1 + 𝓈2𝑧𝐷], one has: 154 

𝑅𝑚𝛼𝑟
2𝐷𝑢

𝐴𝐵2𝑅𝑢𝑚

𝑑2𝓀

𝑑𝑧𝐷
2 −

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚

𝑑𝓀

𝑑𝑧𝐷
− 𝐸𝑢𝓀 = −𝑓𝑢(𝑧𝐷) ,     (S29) 155 

where 𝐸𝑢 = 𝑠 + 𝜀𝑢𝑚 + 𝜇𝑢𝑚𝐷 −
𝜀𝑢𝑚𝜀𝑢𝑖𝑚

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
, 156 

𝐹𝑢(𝑧𝐷) = 𝐶𝑢𝑚𝐷(𝑟𝐷, 𝑧𝐷 , 𝑡𝑖𝑛𝑗,𝐷) +
𝜀𝑢𝑚𝐶𝑢𝑖𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑖𝑛𝑗,𝐷)

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
 and 𝑓𝑢(𝑧𝐷) = 𝐶𝑢𝑚𝐷(𝑟𝐷 , 𝑧𝐷 , 𝑡𝑖𝑛𝑗,𝐷) +157 

𝜀𝑢𝑚𝐶𝑢𝑖𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑖𝑛𝑗,𝐷)

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
−

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚
𝓈2 − 𝐸𝑢(𝓈1 + 𝓈2𝑧𝐷). 158 
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The general solution of Eq. (S24) is: 159 

𝐶𝑢̅𝑚𝐷 = ∫ 𝑔𝑢(𝑧𝐷 , 𝐸𝑢; 𝜂𝑢)
∞

1
𝑓𝑢(𝜂𝑢)𝑑𝜂𝑢 +

𝑧𝐷−𝑧𝑒𝐷

1−𝑧𝑒𝐷
𝐶𝑚̅𝐷(𝑟𝐷 , 𝑠), 𝑧𝐷 ≥ 1.   (S30) 160 

where 𝑓𝑢(𝜂𝑢) = 𝐶𝑢𝑚𝐷(𝑟𝐷 , 𝜂𝑢, 𝑡𝑖𝑛𝑗,𝐷) +
𝜀𝑢𝑚𝐶𝑢𝑖𝑚𝐷(𝑟𝐷,𝜂𝑢,𝑡𝑖𝑛𝑗,𝐷)

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
−

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚
𝓈2 − 𝐸𝑢(𝓈1 + 𝓈2𝜂𝑢), 𝜂𝑢 161 

is a positive value varying between 1 and ∞ (e.g. 1 ≤ 𝜂𝑢 ≤ ∞); 𝑔𝑢(𝑧𝐷 , 𝐸𝑢; 𝜂𝑢) is the Green's 162 

function, and could be expressed as : 163 

𝑔𝑢(𝑧𝐷, 𝐸𝑢; 𝜂𝑢) = {
𝑔𝑢1(𝑧𝐷, 𝐸𝑢; 𝜂𝑢) = 𝑁1𝑒𝑥𝑝(𝑎1𝑧𝐷) + 𝑁2𝑒𝑥𝑝(𝑎2𝑧𝐷)   1 ≤ 𝑧𝐷 < 𝜂𝑢

𝑔𝑢2(𝑧𝐷 , 𝐸𝑢; 𝜂𝑢) = 𝑁3𝑒𝑥𝑝(𝑎1𝑧𝐷) + 𝑁4𝑒𝑥𝑝(𝑎2𝑧𝐷)  𝜂𝑢 ≤ 𝑧𝐷 < ∞
,  (S31) 164 

where 𝑁1，𝑁2，𝑁3 and 𝑁4 are coefficients to be detrmined using the following conditions 165 

[Chen and Woodside ,1988]: 166 

a) 𝑔𝑢(𝑧𝐷 , 𝐸𝑢; 𝜂𝑢) satisfying the model of Eqs. (S29) and (S27a)-(S27b); 167 

b) 𝑔𝑢1(𝑧𝐷 , 𝐸𝑢; 𝜂𝑢) = 𝑔𝑢2(𝑧𝐷 , 𝐸𝑢; 𝜂𝑢); 168 

c) 
𝑑𝑔𝑢2

𝑑𝑧𝐷
|

𝑧𝐷=𝜂𝑢
+

−
𝑑𝑔𝑢1

𝑑𝑧𝐷
|

𝑧𝐷=𝜂𝑢
−

= −
𝐴𝐵2𝑅𝑢𝑚

𝑅𝑚𝛼𝑟
2𝐷𝑢

; 169 

Substituting Eq. (S31) into Eq. (S27a), one has: 170 

𝑁3 = 0,           (S32) 171 

Substituting Eq. (S31) into Eq. (S27b), one has: 172 

𝑁1𝑒𝑥𝑝(𝑎1) + 𝑁2𝑒𝑥𝑝(𝑎2) = 0,        (S33a) 173 

According to Eq. (S33a), one has: 174 

𝑁1 = −𝑁2𝑒𝑥𝑝(𝑎2 − 𝑎1)，       (S33b) 175 

According to above condition of b), one has: 176 

𝑁1𝑒𝑥𝑝(𝑎1𝜂𝑢) + 𝑁2𝑒𝑥𝑝(𝑎2𝜂𝑢) = 𝑁4𝑒𝑥𝑝(𝑎2𝜂𝑢),     (S34) 177 

According to above condition of c), one has: 178 

𝑁4𝑎2𝑒𝑥𝑝(𝑎2𝜂𝑢) − [𝑁1𝑎1𝑒𝑥𝑝(𝑎1𝜂𝑢) + 𝑁2𝑎2𝑒𝑥𝑝(𝑎2𝜂𝑢)] = −
𝐴𝐵2𝑅𝑢𝑚

𝑅𝑚𝛼𝑟
2𝐷𝑢

.  (S35) 179 
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In the chaser phase, the values of 𝑁1, 𝑁2 , 𝑁3and 𝑁4 could be determined by Eqs. (S33a) - 180 

(S35), namely: 181 

𝑁1 = −𝑁2𝑒𝑥𝑝(𝑎2 − 𝑎1), 𝑁2 =
−𝐴𝐵2𝑅𝑢𝑚

𝑅𝑚𝛼𝑟
2𝐷𝑢[(𝑎1−𝑎2)𝑒𝑥𝑝(𝑎2−𝑎1)𝑒𝑥𝑝(𝑎1𝜂𝑢)]

, 𝑁3 = 0 and  182 

𝑁4 = 𝑁2−𝑁2𝑒𝑥𝑝(𝑎2 − 𝑎1)𝑒𝑥𝑝(𝑎1𝜂𝑢 − 𝑎2𝜂𝑢). 183 

As for the analytical solution of the lower aquitard, one could use a similar approach as that 184 

used for deriving the analytical solution of the upper aquitard to obtain, and the general solution 185 

of Eq. (S26) could be described as: 186 

𝐶𝑙̅𝑚𝐷 = ∫ 𝑔𝑙(𝑧𝐷 , 𝐸𝑙; 𝜂𝑙)
−∞

−1
𝑓𝑙(𝜂𝑙)𝑑𝜂𝑙 +

𝑧𝑒𝐷+𝑧𝐷

𝑧𝑒𝐷−1
𝐶𝑚̅𝐷(𝑟𝐷, 𝑧𝐷 , 𝑠), 𝑧𝐷 ≤ −1. (S36a) 187 

𝑔𝑙(𝑧𝐷, 𝐸𝑙; 𝜂𝑙) = {
𝑔𝑙1(𝑧𝐷, 𝐸𝑙; 𝜂𝑙) = 𝑀1𝑒𝑥𝑝(𝑏1𝑧𝐷) + 𝑀2𝑒𝑥𝑝(𝑏2𝑧𝐷)   − 1 ≤ 𝑧𝐷 < 𝜂𝑙

𝑔𝑙2(𝑧𝐷, 𝐸𝑙; 𝜂𝑙) = 𝑀3𝑒𝑥𝑝(𝑏1𝑧𝐷) + 𝑀4𝑒𝑥𝑝(𝑏2𝑧𝐷)   𝜂𝑙 ≤ 𝑧𝐷 < −∞
,  (S36b) 188 

𝑓𝑙(𝜂𝑙) = 𝐶𝑙𝑚𝐷(𝑟𝐷, 𝜂𝑙 , 𝑡𝑖𝑛𝑗,𝐷) +
𝜀𝑙𝑚𝐶𝑙𝑖𝑚𝐷(𝑟𝐷,𝜂𝑙,𝑡𝑖𝑛𝑗,𝐷)

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷
+

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚

𝐶̅𝑚𝐷

𝑧𝑒𝐷−1
− 𝐶̅𝑚𝐷𝐸𝑙

𝑧𝑒𝐷+𝜂𝑙

𝑧𝑒𝐷−1
,  (S36c) 189 

where 𝜂𝑙 is a negative value varying between −1 and −∞ (e.g.−1 ≤ 𝜂𝑙 ≤ −∞); 𝑔𝑙(𝑧𝐷 , 𝐸𝑙; 𝜂𝑙) is 190 

the Green's function, 𝐸𝑙 = 𝑠 + 𝜀𝑙𝑚 + 𝜇𝑙𝑚𝐷 −
𝜀𝑙𝑚𝜀𝑙𝑖𝑚

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷
, and the values of 𝑀1, 𝑀2 , 𝑀3and 𝑀4 191 

could be described as: 𝑀1 = −𝑀2𝑒𝑥𝑝(𝑏1 − 𝑏2), 𝑀2 =
−𝐴𝐵2𝑅𝑙𝑚

𝑅𝑚𝛼𝑟
2𝐷𝑙[𝑒𝑥𝑝(𝑏2𝜂𝑙−𝑏1𝜂𝑙)−𝑏2𝑒𝑥𝑝(𝑏2𝜂𝑙)]

, 192 

𝑀3 = 𝑀2𝑒𝑥𝑝(𝑏2𝜂𝑙 − 𝑏1𝜂𝑙) − 𝑀2𝑒𝑥𝑝(𝑏1 − 𝑏2), 𝑀4 = 0, and the values of  𝑎1, 𝑎2 , 𝑏1 and 𝑏2 are 193 

the same as used in the injection phase.  194 

In the chaser phase, the dimensional boundary conditions Eqs. (15a)-(15b) are transformed 195 

into dimensionless forms as: 196 

𝛽𝑐ℎ𝑎,𝐷
𝜕𝐶𝑚𝐷(𝑟𝐷,𝑡𝐷)

𝜕𝑡𝐷
|

𝑟𝐷=𝑟𝑤𝐷

= 𝐶𝑚𝐷(𝑟𝐷, 𝑡𝐷), 𝑡𝑖𝑛𝑗,𝐷 < 𝑡𝐷 ≤ 𝑡𝑐ℎ𝑎,𝐷,   (S37a) 197 

𝐶𝑐ℎ𝑎,𝑚𝐷(𝑟𝐷, 𝑡𝐷)|
𝑡𝐷=𝑡𝑖𝑛𝑗,𝐷

= 𝐶𝑖𝑛𝑗,𝑚𝐷(𝑟𝐷, 𝑡𝐷)|
𝑡𝐷=𝑡𝑖𝑛𝑗,𝐷

 , 𝑡𝑖𝑛𝑗,𝐷 < 𝑡𝐷 ≤ 𝑡𝑐ℎ𝑎,𝐷. (S37b) 198 

where 𝛽𝑐ℎ𝑎,𝐷 = −
𝑉𝑤,𝑐ℎ𝑎𝑟𝑤𝐷

𝜉𝑅𝑚𝛼𝑟
. 199 
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Conducting Laplace transform on Eqs. (S1a)-(S1b) in the chaser phase, one has: 200 

𝑠𝐶𝑚̅𝐷 − 𝐶𝑚𝐷(𝑟𝐷 , 𝑡𝑖𝑛𝑗,𝐷) =
1

𝑟𝐷

𝜕2𝐶̅𝑚𝐷

𝜕𝑟𝐷
2 −

1

𝑟𝐷

𝜕𝐶̅𝑚𝐷

𝜕𝑟𝐷
− (𝜀𝑚 + 𝜇𝑚𝐷)𝐶𝑚̅𝐷 + 𝜀𝑚𝐶𝑖̅𝑚𝐷 −201 

(
𝜃𝑢𝑚𝛼𝑟

2𝑣𝑢𝑚

2𝐴𝜃𝑚𝐵
𝐶𝑢̅𝑚𝐷 −

𝜃𝑢𝑚𝛼𝑟
2𝐷𝑢

2𝐴𝜃𝑚𝐵2

𝜕𝐶̅𝑢𝑚𝐷

𝜕𝑧𝐷
)|

𝑧𝐷=1
+ (

𝜃𝑙𝑚𝛼𝑟
2𝑣𝑙𝑚

2𝐴𝜃𝑚𝐵
𝐶𝑙̅𝑚𝐷 −

𝜃𝑙𝑚𝛼𝑟
2𝐷𝑙

2𝐴𝐵2𝜃𝑚

𝜕𝐶̅𝑙𝑚𝐷

𝜕𝑧𝐷
)|

𝑧𝐷=−1
, 202 

𝑟𝐷 ≥ 𝑟𝑤𝐷.          (S38a) 203 

𝐶𝑖̅𝑚𝐷 =
𝜀𝑖𝑚

(𝑠+𝜇𝑖𝑚𝐷+𝜀𝑖𝑚)
𝐶𝑚̅𝐷 +

𝐶𝑖𝑚𝐷(𝑟𝐷,𝑡𝑖𝑛𝑗,𝐷)

(𝑠+𝜇𝑖𝑚𝐷+𝜀𝑖𝑚)
, 𝑟𝐷 ≥ 𝑟𝑤𝐷,    (S38b) 204 

where 𝐶𝑚𝐷(𝑟𝐷 , 𝑡𝑖𝑛𝑗,𝐷) and 𝐶𝑖𝑚𝐷(𝑟𝐷, 𝑡𝑖𝑛𝑗,𝐷) are respectively the mobile and immobile 205 

concentrations [ML
-3

] of the aquifer at the end of the injection phase, which could be calculated 206 

by Eqs. (S21) and (S17b).  207 

After substituting Eqs. (S30), (S36a)-(S36c) and (S38b) into Eq. (S38a), one has: 208 

1

𝑟𝐷

𝜕2𝐶̅𝑚𝐷

𝜕𝑟𝐷
2 −

1

𝑟𝐷

𝜕𝐶̅𝑚𝐷

𝜕𝑟𝐷
− 𝐸𝑎𝐶𝑚̅𝐷 + 𝐹 = 0, 𝑟𝐷 ≥ 𝑟𝑤𝐷,    (S39) 209 

where 𝐸𝑎 = 𝑠 + 𝜀𝑚 + 𝜇𝑚𝐷 −
𝜀𝑚𝜀𝑖𝑚

𝑠+𝜇𝑖𝑚𝐷+𝜀𝑖𝑚
+

𝜃𝑢𝑚𝛼𝑟
2𝑣𝑢𝑚

2𝐴𝜃𝑚𝐵
−

𝜃𝑙𝑚𝛼𝑟
2𝑣𝑙𝑚

2𝐴𝐵2𝜃𝑚
−

1

1−𝑧𝑒𝐷

𝜃𝑢𝑚𝛼𝑟
2𝐷𝑢

2𝐴𝜃𝑚𝐵2 +
1

𝑧𝑒𝐷−1

𝜃𝑙𝑚𝛼𝑟
2𝐷𝑙

2𝐴𝐵2𝜃𝑚
  210 

and 𝐹 = 𝐶𝑚𝐷(𝑟𝐷, 𝑡𝑖𝑛𝑗,𝐷) +
𝜀𝑚𝐶𝑖𝑚𝐷(𝑟𝐷,𝑡𝑖𝑛𝑗)

𝑠+𝜇𝑖𝑚𝐷+𝜀𝑖𝑚
. 211 

The boundary conditions of Eqs. (S37a)-(S37b)  in Laplace domain becomes: 212 

𝐶𝑐̅ℎ𝑎,𝑚𝐷(𝑟𝑤𝐷, 𝑠) =
𝛽𝑐ℎ𝑎,𝐷

𝑠𝛽𝑐ℎ𝑎,𝐷+1
𝐶𝑖𝑛𝑗,𝑚𝐷(𝑟𝐷, 𝑡𝐷)|

𝑡𝐷=𝑡𝑖𝑛𝑗,𝐷
.    (S40) 213 

The boundary conditions of the wellbore and infinity in Laplace domain are: 214 

[𝐶𝑚̅𝐷 −
𝜕𝐶̅𝑚𝐷(𝑟𝐷,𝑠)

𝜕𝑟𝐷
]|

𝑟=𝑟𝑤𝐷

=
𝛽𝑐ℎ𝑎,𝐷

𝑠𝛽𝑐ℎ𝑎,𝐷+1
𝐶𝑖𝑛𝑗,𝑚𝐷(𝑟𝐷, 𝑡𝐷)|

𝑡𝐷=𝑡𝑖𝑛𝑗,𝐷
,   (S41a) 215 

𝐶𝑐̅ℎ𝑎,𝑚𝐷(𝑟𝑤𝐷, 𝑠)|
𝑟𝐷→∞

= 0,        (S41b) 216 

Similar to the model of the SWPP test in the injection phase, Eqs. (S39) and (S40)-(S41b) 217 

compose a model of the second-order ordinary differential equation (ODE) with boundary 218 
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conditions, however, the governing equation is an inhomogeneous differential equation. In this 219 

study, we use the Green’s function method to derive the analytical solution of Eq. (S39).  220 

Notice that the boundary condition of Eq. (S41a) is inhomogeneous, and we need to 221 

homogenize it first. Assigning 𝐶𝑚̅𝐷 = 𝛹(𝑟𝐷) + 𝛿1 + 𝛿2𝑟𝐷, and substituting it into Eqs. (S41a) 222 

and (S41b) yields: 223 

[𝛹(𝑟𝐷, 𝑠) −
𝜕𝛹(𝑟𝐷,𝑠)

𝜕𝑟𝐷
]|

𝑟=𝑟𝑤𝐷

= 0,       (S42a) 224 

𝛹(𝑟𝐷 , 𝑠)|𝑟𝐷→∞ = 0,        (S42b) 225 

where  𝛿1 = −
𝛽𝑐ℎ𝑎,𝐷

𝑠𝛽𝑐ℎ𝑎,𝐷+1

𝑟𝐷|𝑟𝐷→∞

(𝑟𝑤𝐷−𝑟𝐷|𝑟𝐷→∞−1)
𝐶𝑖𝑛𝑗,𝑚𝐷(𝑟𝐷 , 𝑡𝐷)|

𝑡𝐷=𝑡𝑖𝑛𝑗,𝐷
 and  226 

𝛿2 =
𝛽𝑐ℎ𝑎,𝐷

𝑠𝛽𝑐ℎ𝑎,𝐷+1

1

(𝑟𝑤𝐷−𝑟𝐷|𝑟𝐷→∞−1)
𝐶𝑖𝑛𝑗,𝑚𝐷(𝑟𝐷, 𝑡𝐷)|

𝑡𝐷=𝑡𝑖𝑛𝑗,𝐷
. 227 

Defining a spatial operator:𝐿 = − [
𝑑2

𝑑𝑟𝐷
2 −

𝑑

𝑑𝑟𝐷
− 𝑟𝐷𝐸𝑎], one has: 228 

𝐿𝐶𝑚̅𝐷 = 𝐿[𝛹(𝑟𝐷) + 𝛿1 + 𝛿2𝑟𝐷] = 𝐹𝑟𝐷,      (S43) 229 

Let 𝜑(𝑟𝐷) = 𝐹𝑟𝐷 − 𝐿(𝛿1 + 𝛿2𝑟𝐷), one has: 230 

𝜕2𝛹

𝜕𝑟𝐷
2 −

𝜕𝛹

𝜕𝑟𝐷
− 𝑟𝐷𝐸𝑎𝛹 = −𝜑(𝑟𝐷).        (S44) 231 

where 𝜑(𝑟𝐷) = 𝐹𝑟𝐷 − [𝛿2 + 𝑟𝐷𝐸𝑎(𝛿1 + 𝛿2𝑟𝐷)]. 232 

The general solution of Eqs. (S42a) - (S44) is: 233 

𝛹(𝑟𝐷 , 𝐸𝑎; 𝜂) = ∫ 𝑔(𝑟𝐷 , 𝐸𝑎; 𝜂)
∞

𝑟𝑤𝐷
𝜑(𝜂)𝑑𝜂.      (S45) 234 

where 𝜂 is a positive value varying between 𝑟𝑤𝐷 and ∞ (e.g. 𝑟𝑤𝐷 ≤ 𝜂 ≤ ∞); 𝑔(𝑟𝐷 , 𝐸𝑎; 𝜂) is the 235 

Green's function, and could be expressed as : 236 

𝑔(𝑟𝐷, 𝐸𝑎; 𝜂) = {
𝑔1(𝑟𝐷, 𝐸𝑎; 𝜂) = 𝒯1𝑒𝑥𝑝 (

𝑦𝑐ℎ𝑎

2
)𝐴𝑖 (𝐸𝑎

1

3𝑦𝑐ℎ𝑎) + 𝒯2 𝑒𝑥𝑝 (
𝑦𝑐ℎ𝑎

2
) 𝐵𝑖 (𝐸𝑎

1

3𝑦𝑐ℎ𝑎) 𝑟𝑤𝐷 ≤ 𝑦𝑐ℎ𝑎 ≤ 𝜂

𝑔2(𝑟𝐷, 𝐸𝑎; 𝜂) = 𝒯3𝑒𝑥𝑝 (
𝑦𝑐ℎ𝑎

2
)𝐴𝑖 (𝐸𝑎

1

3𝑦𝑐ℎ𝑎) + 𝒯4 𝑒𝑥𝑝 (
𝑦𝑐ℎ𝑎

2
) 𝐵𝑖 (𝐸𝑎

1

3𝑦𝑐ℎ𝑎)  𝜂 ≤ 𝑦𝑐ℎ𝑎 ≤ ∞
. (S46) 237 
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where 𝜑(𝜂) = 𝐹𝜂 − [𝛿2 + 𝜂𝐸𝑎(𝛿1 + 𝛿2𝜂)], 𝑦𝑐ℎ𝑎 = 𝑟𝐷 +
1

4𝐸𝑎
. As 𝐵𝑖(𝑟𝐷) diverges when 𝑟𝐷 →238 

∞ , 𝒯4 has to be zero. Substituting Eq. (S45) into Eq. (S42a), one has: 239 

[𝑔1 −
𝜕𝑔1

𝜕𝑟𝐷
]|

𝑟𝐷=𝑟𝑤𝐷

= 0,        (S47) 240 

According to Eq. (S47), one has: 241 

 𝒯1 = −𝒯2𝑋.          (S48) 242 

where 𝑋 =
1

2
𝐵𝑖(𝐸𝑎

1/3𝑦𝑐ℎ𝑎,𝑤)−𝐸𝑎
1/3𝐵𝑖

′(𝐸𝑎
1/3𝑦𝑐ℎ𝑎,𝑤)

1

2
𝐴𝑖(𝐸𝑎

1/3𝑦𝑐ℎ𝑎,𝑤)−𝐸𝑎
1/3𝐴𝑖

′(𝐸𝑎
1/3𝑦𝑐ℎ𝑎,𝑤)

 and  𝑦𝑐ℎ𝑎,𝑤 = 𝑟𝑤𝐷 +
1

4𝐸𝑎
. 243 

According to above condition of  b), one has: 244 

𝒯1𝐴𝑖 (𝐸𝑎

1

3𝑦𝑐ℎ𝑎|𝑟𝐷=𝜂+) + 𝒯2𝐵𝑖 (𝐸𝑎

1

3𝑦𝑐ℎ𝑎|𝑟𝐷=𝜂+) = 𝒯3𝐴𝑖(𝐸𝑎
1/3𝑦𝑐ℎ𝑎|𝑟𝐷=𝜂−).  (S49) 245 

According to above condition of  c), one has: 246 

[
1

2
𝒯3 𝑒𝑥𝑝 (

𝑦𝑐ℎ𝑎

2
) 𝐴𝑖 (𝐸𝑎

1

3𝑦𝑐ℎ𝑎) + 𝐸𝑎

1

3𝒯3 𝑒𝑥𝑝 (
𝑦𝑐ℎ𝑎

2
) 𝐴𝑖

′ (𝐸𝑎

1

3𝑦𝑐ℎ𝑎)]|
𝑟𝐷=𝜂−

−247 

[0.5𝒯1 𝑒𝑥𝑝 (
𝑦𝑐ℎ𝑎

2
) 𝐴𝑖 (𝐸𝑎

1

3𝑦𝑐ℎ𝑎) + 𝐸𝑎

1

3𝒯1 𝑒𝑥𝑝 (
𝑦𝑐ℎ𝑎

2
) 𝐴𝑖

′ (𝐸𝑎

1

3𝑦𝑐ℎ𝑎)]|
𝑟𝐷=𝜂+

−248 

[
1

2
𝒯2 𝑒𝑥𝑝 (

𝑦𝑐ℎ𝑎

2
) 𝐵𝑖 (𝐸𝑎

1

3𝑦𝑐ℎ𝑎) + 𝐸𝑎

1

3𝒯2 𝑒𝑥𝑝 (
𝑦𝑐ℎ𝑎

2
) 𝐵𝑖

′ (𝐸𝑎

1

3𝑦𝑐ℎ𝑎)]|
𝑟𝐷=𝜂+

= −1.  (S50) 249 

For solution in the chaser phase, the values of 𝒯1, 𝒯2 , 𝒯3 and 𝒯4 could be determined by Eqs. 250 

(S48) - (S50), namely: 251 

𝒯1 = −
𝜋𝐴𝑖(𝑦𝑒𝑥𝑡|

𝑟𝐷=𝜂+)

𝐸𝑎
1/3 𝑋 , 𝒯2 =

𝜋𝐴𝑖(𝑦𝑒𝑥𝑡|
𝑟𝐷=𝜂+)

𝐸𝑎
1/3 , 𝒯3 =

𝜋𝐴𝑖(𝑦𝑒𝑥𝑡|
𝑟𝐷=𝜂+)

𝐸𝑎
1/3 [

𝐵𝑖(𝑦𝑒𝑥𝑡|
𝑟𝐷=𝜂+)

𝐴𝑖(𝑦𝑒𝑥𝑡|𝑟𝐷=𝜂+)
− 𝑋] and  252 

𝒯4 = 0. 253 

 254 

S1.3 Solutions in the rest phase: Eqs. (27a) - (27f) 255 
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In the rest phase, the flow velocity become zero, and the advection and dispersion terms 256 

drop out of the governing equations. After conducting Laplace transform on Eqs. (S2a)-(S2b), 257 

the following equations would be obtained: 258 

(𝑠 + 𝜀𝑢𝑚 + 𝜇𝑢𝑚𝐷)𝐶𝑢̅𝑚𝐷 − 𝜀𝑢𝑚𝐶𝑢̅𝑖𝑚𝐷 − 𝐶𝑢𝑚𝐷(𝑟𝐷 , 𝑧𝐷 , 𝑡𝑐ℎ𝑎,𝐷) = 0. 𝑧𝐷 ≥ 1. (S51a) 259 

𝐶𝑢̅𝑖𝑚𝐷 =
𝜀𝑢𝑖𝑚

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑚𝐷
𝐶𝑢̅𝑚𝐷 +

𝐶𝑢𝑖𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑐ℎ𝑎,𝐷)

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑚𝐷
, 𝑧𝐷 ≥ 1,    (S51b) 260 

Substituting Eq. (S51b) into Eq. (S51a), one has: 261 

(𝑠 + 𝜀𝑢𝑚 + 𝜇𝑢𝑚𝐷 −
𝜀𝑢𝑚𝜀𝑢𝑖𝑚

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
) 𝐶𝑢̅𝑚𝐷 − 𝐶𝑢𝑚𝐷(𝑟𝐷 , 𝑧𝐷 , 𝑡𝑐ℎ𝑎,𝐷) −

𝜀𝑢𝑚𝐶𝑢𝑖𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑐ℎ𝑎,𝐷)

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
=262 

0. 𝑧𝐷 ≥ 1.       (S52) 263 

Similarly, Eqs. (S3a) - (S3b) become: 264 

(𝑠 + 𝜀𝑙𝑚 + 𝜇𝑙𝑚𝐷)𝐶𝑙̅𝑚𝐷 − 𝜀𝑙𝑚𝐶𝑙̅𝑖𝑚𝐷 − 𝐶𝑙𝑚𝐷(𝑟𝐷 , 𝑧𝐷 , 𝑡𝑐ℎ𝑎,𝐷) = 0. 𝑧𝐷 ≤ −1. (S53a) 265 

𝐶𝑙̅𝑖𝑚𝐷 =
𝜀𝑙𝑖𝑚

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑚𝐷
𝐶𝑙̅𝑚𝐷 +

𝐶𝑙𝑖𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑐ℎ𝑎,𝐷)

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑚𝐷
,  𝑧𝐷 ≤ −1,   (S53b) 266 

Substituting Eq. (S45b) into Eq. (S45a), one has: 267 

(𝑠 + 𝜀𝑙𝑚 + 𝜇𝑙𝑚𝐷 −
𝜀𝑙𝑚𝜀𝑙𝑖𝑚

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷
) 𝐶𝑙̅𝑚𝐷 − 𝐶𝑙𝑚𝐷(𝑟𝐷 , 𝑧𝐷 , 𝑡𝑐ℎ𝑎,𝐷) −

𝜀𝑙𝑚𝐶𝑙𝑖𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑐ℎ𝑎,𝐷)

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷
=268 

0. 𝑧𝐷 ≤ −1.       (S54) 269 

According to Eqs. (S52) and (S54), one has: 270 

𝐶𝑢̅𝑚𝐷 =
𝐶𝑢𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑐ℎ𝑎,𝐷)+

𝜀𝑢𝑚𝐶𝑢𝑖𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑐ℎ𝑎,𝐷)

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷

(𝑠+𝜀𝑢𝑚+𝜇𝑢𝑚𝐷−
𝜀𝑢𝑚𝜀𝑢𝑖𝑚

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
)

, 𝑧𝐷 ≥ 1,   (S55a) 271 

𝐶𝑙̅𝑚𝐷 =
𝐶𝑙𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑐ℎ𝑎,𝐷)+

𝜀𝑙𝑚𝐶𝑙𝑖𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑐ℎ𝑎,𝐷)

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷

(𝑠+𝜀𝑙𝑚+𝜇𝑙𝑚𝐷−
𝜀𝑙𝑚𝜀𝑙𝑖𝑚

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷
)

, 𝑧𝐷 ≤ −1,   (S55b) 272 

where 𝐶𝑢𝑚𝐷(𝑟𝐷 , 𝑧𝐷 , 𝑡𝑐ℎ𝑎,𝐷)and 𝐶𝑢𝑖𝑚𝐷(𝑟𝐷, 𝑧𝐷 , 𝑡𝑐ℎ𝑎,𝐷) are respectively the mobile and immobile 273 

concentrations [ML
-3

] of the upper aquitard at the end of the chaser phase,  𝐶𝑙𝑚𝐷(𝑟𝐷 , 𝑧𝐷 , 𝑡𝑐ℎ𝑎,𝐷) 274 
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and 𝐶𝑙𝑖𝑚𝐷(𝑟𝐷 , 𝑧𝐷 , 𝑡𝑐ℎ𝑎,𝐷) are respectively the mobile and immobile concentrations [ML
-3

] of the 275 

lower aquitard at the end of the chaser phase. 276 

Similarly, the dimensionless governing equation of the mobile zone during the rest phase is: 277 

𝜕𝐶𝑚𝐷

𝜕𝑡𝐷
= −𝜀𝑚(𝐶𝑚𝐷 − 𝐶𝑖𝑚𝐷) − 𝜇𝑚𝐷𝐶𝑚𝐷, 𝑟𝐷 ≥ 𝑟𝑤𝐷.    (S56a) 278 

𝜕𝐶𝑖𝑚𝐷

𝜕𝑡𝐷
= 𝜀𝑖𝑚(𝐶𝑚𝐷 − 𝐶𝑖𝑚𝐷) − 𝜇𝑖𝑚𝐷𝐶𝑖𝑚𝐷, 𝑟𝐷 ≥ 𝑟𝑤𝐷,    (S56b) 279 

Conducting Laplace transform to Eqs. (S56a) and (S56b) for the rest phase, one has: 280 

𝑠𝐶𝑚̅𝐷 − 𝐶𝑚𝐷(𝑟𝐷, 𝑡𝑐ℎ𝑎,𝐷) = −𝜀𝑚(𝐶𝑚̅𝐷 − 𝐶𝑖̅𝑚𝐷) − 𝜇𝑚𝐷𝐶𝑚̅𝐷, 𝑟𝐷 ≥ 𝑟𝑤𝐷.  (S57a) 281 

𝑠𝐶𝑖̅𝑚𝐷 − 𝐶𝑖𝑚𝐷(𝑟𝐷, 𝑡𝑐ℎ𝑎,𝐷) = 𝜀𝑖𝑚(𝐶𝑚̅𝐷 − 𝐶𝑖̅𝑚𝐷) − 𝜇𝑖𝑚𝐷𝐶𝑖̅𝑚𝐷, 𝑟𝐷 ≥ 𝑟𝑤𝐷, (S57b) 282 

According to Eqs. (S57a)-(S57b) , one has: 283 

𝐶𝑚̅𝐷 =
𝐶𝑚𝐷(𝑟𝐷,𝑡𝑐ℎ𝑎,𝐷)+

𝜀𝑚𝐶𝑖𝑚𝐷(𝑟𝐷,𝑡𝑐ℎ𝑎,𝐷)

(𝑠+𝜇𝑖𝑚𝐷+𝜀𝑖𝑚)

[𝑠+𝜀𝑚+𝜇𝑚𝐷−
𝜀𝑚𝜀𝑖𝑚

(𝑠+𝜇𝑖𝑚𝐷+𝜀𝑖𝑚)
]

.       (S58a) 284 

𝐶𝑖̅𝑚𝐷 =
𝐶𝑖𝑚𝐷(𝑟𝐷,𝑡𝑐ℎ𝑎,𝐷)

(𝑠+𝜇𝑖𝑚𝐷+𝜀𝑖𝑚)
+

𝜀𝑖𝑚𝐶̅𝑚𝐷

(𝑠+𝜇𝑖𝑚𝐷+𝜀𝑖𝑚)
.      (S58b) 285 

 286 

S1.4 Solutions in the extraction phase: Eqs. (28a) - (28g) 287 

Contrary to the injection and chaser phases, the direction of advective flux is reversed in the 288 

extraction stage, Eqs. (S2a) and (S3a) are modified as: 289 

𝜕𝐶𝑢𝑚𝐷

𝜕𝑡𝐷
=

𝑅𝑚𝛼𝑟
2𝐷𝑢

𝐴𝐵2𝑅𝑢𝑚

𝜕2𝐶𝑢𝑚𝐷

𝜕𝑧𝐷
2 +

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚

𝜕𝐶𝑢𝑚𝐷

𝜕𝑧𝐷
− 𝜀𝑢𝑚(𝐶𝑢𝑚𝐷 − 𝐶𝑢𝑖𝑚𝐷) − 𝜇𝑢𝑚𝐷𝐶𝑢𝑚𝐷, 290 

𝑧𝐷 ≥ 1,          (S59a) 291 

𝜕𝐶𝑙𝑚𝐷

𝜕𝑡𝐷
=

𝑅𝑚𝛼𝑟
2𝐷𝑙

𝐴𝐵2𝑅𝑙𝑚

𝜕2𝐶𝑙𝑚𝐷

𝜕𝑧𝐷
2 −

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚

𝜕𝐶𝑙𝑚𝐷

𝜕𝑧𝐷
− 𝜀𝑙𝑚(𝐶𝑙𝑚𝐷 − 𝐶𝑙𝑖𝑚𝐷) − 𝜇𝑙𝑚𝐷𝐶𝑙𝑚𝐷, 292 

𝑧𝐷 ≤ −1,          (S59b) 293 

Conducting Laplace transform on Eqs. (S2b) and (S59a), one has: 294 
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𝑠𝐶𝑢̅𝑚𝐷 − 𝐶𝑢𝑚𝐷(𝑟𝐷 , 𝑧𝐷 , 𝑡𝑟𝑒𝑠,𝐷) =
𝑅𝑚𝛼𝑟

2𝐷𝑢

𝐴𝐵2𝑅𝑢𝑚

𝜕2𝐶̅𝑢𝑚𝐷

𝜕𝑧𝐷
2 +

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚

𝜕𝐶̅𝑢𝑚𝐷

𝜕𝑧𝐷
− 𝜀𝑢𝑚(𝐶𝑢̅𝑚𝐷 − 𝐶𝑢̅𝑖𝑚𝐷) −295 

𝜇𝑢𝑚𝐷𝐶𝑢̅𝑚𝐷, 𝑧𝐷 ≥ 1,       (S60a) 296 

𝐶𝑢̅𝑖𝑚𝐷 =
𝜀𝑢𝑖𝑚𝐶̅𝑢𝑚𝐷

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
+

𝐶𝑢𝑖𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑟𝑒𝑠,𝐷)

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
, 𝑧𝐷 ≥ 1,    (S60b) 297 

Substituting Eqs. (S60b) into Eq. (S60a) ,one can has: 298 

𝑅𝑚𝛼𝑟
2𝐷𝑢

𝐴𝐵2𝑅𝑢𝑚

𝜕2𝐶̅𝑢𝑚𝐷

𝜕𝑧𝐷
2 +

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚

𝜕𝐶̅𝑢𝑚𝐷

𝜕𝑧𝐷
− (𝑠 + 𝜀𝑢𝑚 + 𝜇𝑢𝑚𝐷 −

𝜀𝑢𝑚𝜀𝑢𝑖𝑚

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
) 𝐶𝑢̅𝑚𝐷 +299 

𝐶𝑢𝑚𝐷(𝑟𝐷 , 𝑧𝐷 , 𝑡𝑟𝑒𝑠,𝐷) +
𝜀𝑢𝑚𝐶𝑢𝑖𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑟𝑒𝑠,𝐷)

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
= 0. 𝑧𝐷 ≥ 1,    (S61) 300 

Similarly, conducting Laplace transform on Eqs. (S3b) and (S59b), one has: 301 

𝑠𝐶𝑙̅𝑚𝐷 − 𝐶𝑙𝑚𝐷(𝑟𝐷 , 𝑧𝐷 , 𝑡𝑟𝑒𝑠,𝐷) =
𝑅𝑚𝛼𝑟

2𝐷𝑙

𝐴𝐵2𝑅𝑙𝑚

𝜕2𝐶̅𝑙𝑚𝐷

𝜕𝑧𝐷
2 −

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚

𝜕𝐶̅𝑙𝑚𝐷

𝜕𝑧𝐷
− 𝜀𝑙𝑚(𝐶𝑙̅𝑚𝐷 − 𝐶𝑙̅𝑖𝑚𝐷) −302 

𝜇𝑙𝑚𝐷𝐶𝑙̅𝑚𝐷, 𝑧𝐷 ≤ −1,       (S62a) 303 

𝐶𝑙̅𝑖𝑚𝐷 =
𝜀𝑙𝑖𝑚𝐶̅𝑙𝑚𝐷

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷
+

𝐶𝑙𝑖𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑟𝑒𝑠,𝐷)

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷
, 𝑧𝐷 ≤ −1,    (S62b) 304 

Substituting Eqs. (S62b) into Eq.(S62a), one has: 305 

𝑅𝑚𝛼𝑟
2𝐷𝑙

𝐴𝐵2𝑅𝑙𝑚

𝜕2𝐶̅𝑙𝑚𝐷

𝜕𝑧𝐷
2 −

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚

𝜕𝐶̅𝑙𝑚𝐷

𝜕𝑧𝐷
− (𝑠 + 𝜀𝑙𝑚 + 𝜇𝑙𝑚𝐷 −

𝜀𝑙𝑚𝜀𝑙𝑖𝑚

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷
) 𝐶𝑙̅𝑚𝐷 +306 

𝐶𝑙𝑚𝐷(𝑟𝐷 , 𝑧𝐷 , 𝑡𝑟𝑒𝑠,𝐷) +
𝜀𝑙𝑚𝐶𝑙𝑖𝑚𝐷(𝑟𝐷,𝑧𝐷,𝑡𝑟𝑒𝑠,𝐷)

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷
= 0. 𝑧𝐷 ≤ −1,    (S63) 307 

where 𝐶𝑢𝑚𝐷(𝑟𝐷 , 𝑧𝐷 , 𝑡𝑟𝑒𝑠,𝐷)and 𝐶𝑢𝑖𝑚𝐷(𝑟𝐷, 𝑧𝐷 , 𝑡𝑟𝑒𝑠,𝐷) are respectively the mobile and immobile 308 

concentrations [ML
-3

] of the upper aquitard at the end of the rest phase,  𝐶𝑙𝑚𝐷(𝑟𝐷 , 𝑧𝐷 , 𝑡𝑟𝑒𝑠,𝐷) and 309 

𝐶𝑙𝑖𝑚𝐷(𝑟𝐷, 𝑧𝐷 , 𝑡𝑟𝑒𝑠,𝐷) are respectively the mobile and immobile concentrations [ML
-3

] of the 310 

lower aquitard at the end of the rest phase. 311 

One could use a similar approach of obtaining the analytical solution of aquitards in the 312 

chaser phase to derive the solution of aquitards in the extraction phase. The general solution of 313 

(S61) is: 314 



17 

 

𝐶𝑢̅𝑚𝐷 = ∫ 𝑔𝑢(𝑧𝐷 , 𝐸𝑢; 𝒷𝑢)
∞

1
𝑓𝑢(𝒷𝑢)𝑑𝒷𝑢 +

𝑧𝐷−𝑧𝑒𝐷

1−𝑧𝑒𝐷
𝐶𝑚̅𝐷(𝑟𝐷 , 𝑠), 𝑧𝐷 ≥ 1,   (S64a) 315 

𝑔𝑢(𝑧𝐷, 𝐸𝑢; 𝒷𝑢) = {
𝑔𝑢1(𝑧𝐷, 𝐸𝑢; 𝒷𝑢) = 𝐻1𝑒𝑥𝑝(𝑚1𝑧𝐷) + 𝐻2𝑒𝑥𝑝(𝑚2𝑧𝐷)    1 ≤ 𝑧𝐷 < 𝒷𝑢

𝑔𝑢2(𝑧𝐷, 𝐸𝑢; 𝒷𝑢) = 𝐻3𝑒𝑥𝑝(𝑚1𝑧𝐷) + 𝐻4𝑒𝑥𝑝(𝑚2𝑧𝐷)   𝒷𝑢 ≤ 𝑧𝐷 < ∞
,  (S64b) 316 

𝑓𝑢(𝒷𝑢) =317 

𝐶𝑢𝑚𝐷(𝑟𝐷 , 𝒷𝑢, 𝑡𝑟𝑒𝑠,𝐷) +
𝜀𝑢𝑚𝐶𝑢𝑖𝑚𝐷(𝑟𝐷,𝒷𝑢,𝑡𝑟𝑒𝑠,𝐷)

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
+

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚

𝐶̅𝑚𝐷(𝑟𝐷,𝑠)

1−𝑧𝑒𝐷
−

𝒷𝑢−𝑧𝑒𝐷

1−𝑧𝑒𝐷
𝐸𝑢𝐶𝑚̅𝐷(𝑟𝐷, 𝑠),   318 

       (S64c) 319 

The general solution of Eq. (S63) could be described as: 320 

𝐶𝑙̅𝑚𝐷 = ∫ 𝑔𝑙(𝑧𝐷 , 𝐸𝑙; 𝒷𝑙)
−∞

−1
𝑓𝑙(𝒷𝑙)𝑑𝒷𝑙 +

𝑧𝐷+𝑧𝑒𝐷

𝑧𝑒𝐷−1
𝐶𝑚̅𝐷(𝑟𝐷 , 𝑠), 𝑧𝐷 ≤ −1,   (S65a) 321 

𝑔𝑙(𝑧𝐷, 𝐸𝑙; 𝒷𝑙) = {
𝑔𝑙1(𝑧𝐷, 𝐸𝑙; 𝒷𝑙) = 𝐼1𝑒𝑥𝑝(𝑛1𝑧𝐷) + 𝐼2𝑒𝑥𝑝(𝑛2𝑧𝐷)   − 1 ≤ 𝑧𝐷 < 𝒷𝑙

𝑔𝑙2(𝑧𝐷, 𝐸𝑙; 𝒷𝑙) = 𝐼3𝑒𝑥𝑝(𝑛1𝑧𝐷) + 𝐼4𝑒𝑥𝑝(𝑛2𝑧𝐷)   𝒷𝑙 ≤ 𝑧𝐷 < −∞
,  (S65b) 322 

𝑓𝑙(𝒷𝑙) =323 

𝐶𝑚𝐷(𝑟𝐷 , 𝒷𝑙, 𝑡𝑟𝑒𝑠,𝐷) +
𝜀𝑙𝑚𝐶𝑙𝑖𝑚𝐷(𝑟𝐷,𝒷𝑙,𝑡𝑟𝑒𝑠,𝐷)

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷
−

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚

𝐶̅𝑚𝐷(𝑟𝐷,𝑠)

𝑧𝑒𝐷−1
−

𝒷𝑙+𝑧𝑒𝐷

𝑧𝑒𝐷−1
𝐸𝑙𝐶𝑚̅𝐷(𝑟𝐷, 𝑠),   324 

       (S65c) 325 

where 𝒷𝑢 is a positive value varying between 1 and ∞; 𝒷𝑙 is a negative value varying between 326 

−1 and −∞; 𝑔𝑢(𝑧𝐷 , 𝐸𝑢; 𝒷𝑢) and 𝑔𝑙(𝑧𝐷 , 𝐸𝑙; 𝒷𝑙) are the Green's functions, 𝐻1~𝐻4 and 𝐼1~𝐼4 are 327 

contants which could be determined by the boundary conditions and conditions of a)~c), the 328 

values of 𝐻1~𝐻4 and 𝐼1~𝐼4 are as follows: 𝐻1 = −𝐻2𝑒𝑥𝑝(𝑚2 − 𝑚1),  329 

𝐻2 =
−𝐴𝑅𝑢𝑚𝐵2

𝑅𝑚𝛼𝑟
2𝐷𝑢[(𝑚1−𝑚2)𝑒𝑥𝑝(𝑚2−𝑚1)𝑒𝑥𝑝(𝑚1𝒷𝑢)]

, 𝐻3 = 0, 𝐻4 = 𝐻2 − 𝐻2𝑒𝑥𝑝(𝑚2 − 𝑚1)𝑒𝑥𝑝(𝑚1𝒷𝑢 − 𝑚2𝒷𝑢), 330 

𝐼1 = −𝐼2𝑒𝑥𝑝(𝑛1 − 𝑛2), 𝐼2 =
−𝐴𝐵2𝑅𝑙𝑚

𝑅𝑚𝛼𝑟
2𝐷𝑙[𝑒𝑥𝑝(𝑛2𝒷𝑙−𝑛1𝒷𝑙)−𝑛2𝑒𝑥𝑝(𝑛2𝒷𝑙)]

, 331 

𝐼3 = 𝐼2𝑒𝑥𝑝(𝑛2𝒷𝑙 − 𝑛1𝒷𝑙) − 𝐼2𝑒𝑥𝑝(𝑛1 − 𝑛2), 𝐼4 = 0,  332 

𝑚1 =
−

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚
+√(

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚
)

2

+4
𝑅𝑚𝛼𝑟

2𝐷𝑢

𝐴𝐵2𝑅𝑢𝑚
(𝑠+𝜀𝑢𝑚+𝜇𝑢𝑚𝐷−

𝜀𝑢𝑚𝜀𝑢𝑖𝑚
𝑠+𝜇𝑢𝑖𝑚𝐷+𝜀𝑢𝑖𝑚

)

2
𝑅𝑚𝛼𝑟

2𝐷𝑢

𝐴𝐵2𝑅𝑢𝑚

, 333 
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𝑚2 =
−

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚
−√(

𝑅𝑚𝑣𝑢𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑢𝑚
)

2

+4
𝑅𝑚𝛼𝑟

2𝐷𝑢

𝐴𝐵2𝑅𝑢𝑚
(𝑠+𝜀𝑢𝑚+𝜇𝑢𝑚𝐷−

𝜀𝑢𝑚𝜀𝑢𝑖𝑚
𝑠+𝜇𝑢𝑖𝑚𝐷+𝜀𝑢𝑖𝑚

)

2
𝑅𝑚𝛼𝑟

2𝐷𝑢

𝐴𝐵2𝑅𝑢𝑚

, 334 

𝑛1 =

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚
+√(

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚
)

2

+4
𝑅𝑚𝛼𝑟

2𝐷𝑙

𝐴𝐵2𝑅𝑙𝑚

(𝑠+𝜀𝑙𝑚+𝜇𝑙𝑚𝐷−
𝜀𝑙𝑚𝜀𝑙𝑖𝑚

𝑠+𝜇𝑙𝑖𝑚𝐷+𝜀𝑙𝑖𝑚
)

2
𝑅𝑚𝛼𝑟

2𝐷𝑙

𝐴𝐵2𝑅𝑙𝑚

 and  335 

𝑛2 =

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚
− √(

𝑅𝑚𝑣𝑙𝑚𝛼𝑟
2

𝐴𝐵𝑅𝑙𝑚
)

2

+4
𝑅𝑚𝛼𝑟

2𝐷𝑙

𝐴𝐵2𝑅𝑙𝑚

(𝑠+𝜀𝑙𝑚+𝜇𝑙𝑚𝐷−
𝜀𝑙𝑚𝜀𝑙𝑖𝑚

𝑠+𝜇𝑙𝑖𝑚𝐷+𝜀𝑙𝑖𝑚
)

2
𝑅𝑚𝛼𝑟

2𝐷𝑙

𝐴𝐵2𝑅𝑙𝑚

. 336 

Similarly, contrary to the injection and chaser phases, the direction of advective flux is 337 

reversed in the extraction stage, and Eq. (S1a) is modified as: 338 

𝜕𝐶𝑚𝐷

𝜕𝑡𝐷
=

1

𝑟𝐷

𝜕2𝐶𝑚𝐷

𝜕𝑟𝐷
2 +

1

𝑟𝐷

𝜕𝐶𝑚𝐷

𝜕𝑟𝐷
− 𝜀𝑚(𝐶𝑚𝐷 − 𝐶𝑖𝑚𝐷) − 𝜇𝑚𝐷𝐶𝑚𝐷 − (−

𝜃𝑢𝑚𝛼𝑟
2𝑣𝑢𝑚

2𝐴𝜃𝑚𝐵
𝐶𝑢𝑚𝐷 −339 

𝜃𝑢𝑚𝛼𝑟
2𝐷𝑢

2𝐴𝜃𝑚𝐵

𝜕𝐶𝑢𝑚𝐷

𝜕𝑧𝐷
)|

𝑧=1
+ (−

𝜃𝑙𝑚𝛼𝑟
2𝑣𝑙𝑚

2𝐴𝐵2𝜃𝑚
𝐶𝑙𝑚𝐷 −

𝜃𝑙𝑚𝛼𝑟
2𝐷𝑙

2𝐴𝐵2𝜃𝑚

𝜕𝐶𝑙𝑚𝐷

𝜕𝑧𝐷
)|

𝑧=−1
, 𝑟𝐷 ≥ 𝑟𝑤𝐷.  (S66) 340 

In the extraction phase, the dimensional boundary conditions Eqs. (14a)-(14b) are 341 

transformed to the dimensionless format: 342 

𝛽𝑒𝑥𝑡,𝐷
𝜕𝐶𝑚𝐷(𝑟𝐷,𝑡𝐷)

𝜕𝑡𝐷
|

𝑟𝐷=𝑟𝑤𝐷

=
𝜕𝐶𝑚𝐷(𝑟𝐷,𝑡𝐷)

𝜕𝑟𝐷
|

𝑟𝐷=𝑟𝑤𝐷

, 𝑡𝑟𝑒𝑠,𝐷 < 𝑡𝐷 ≤ 𝑡𝑒𝑥𝑡,𝐷  (S67a)  343 

𝐶𝑚𝐷(𝑟𝐷, 𝑡𝐷)|𝑡𝐷=𝑡𝑟𝑒𝑠,𝐷
= 𝐶𝑟𝑒𝑠,𝑚𝐷(𝑟𝐷 , 𝑡𝐷)|

𝑡𝐷=𝑡𝑟𝑒𝑠,𝐷
.    (S67b)  344 

where 𝛽𝑒𝑥𝑡,𝐷 = −
𝑉𝑤,𝑒𝑥𝑡𝑟𝑤𝐷

𝜉𝑅𝑚𝛼𝑟
. 345 

Conducting Laplace transform on Eqs. (S58) and (S1b) in the extraction phase, one has: 346 

𝑠𝐶𝑚̅𝐷 − 𝐶𝑚𝐷(𝑟𝐷 , 𝑡𝑟𝑒𝑠) =
1

𝑟𝐷

𝜕2𝐶𝑚̅𝐷

𝜕𝑟𝐷
2 +

1

𝑟𝐷

𝜕𝐶𝑚̅𝐷

𝜕𝑟𝐷
− (𝜀𝑚 + 𝜇𝑚𝐷)𝐶𝑚̅𝐷 + 𝜀𝑚𝐶𝑖̅𝑚𝐷 − 

(−
𝜃𝑢𝑚𝛼𝑟

2𝑣𝑢𝑚𝐶̅𝑢𝑚𝐷

2𝐴𝜃𝑚𝑏
−

𝜃𝑢𝑚𝛼𝑟
2𝐷𝑢

2𝐴𝜃𝑚𝑏

𝜕𝐶̅𝑢𝑚𝐷

𝜕𝑧𝐷
)|

𝑧𝐷=1
− (

𝜃𝑙𝑚𝛼𝑟
2𝑣𝑙𝑚𝐶̅𝑙𝑚𝐷

2𝐴𝑏2𝜃𝑚
+

𝜃𝑙𝑚𝛼𝑟
2𝐷𝑙

2𝐴𝑏2𝜃𝑚

𝜕𝐶̅𝑙𝑚𝐷

𝜕𝑧𝐷
)|

𝑧𝐷=−1
, 347 

𝑟𝐷 ≥ 𝑟𝑤𝐷.          (S68a) 348 
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𝐶𝑖̅𝑚𝐷 =
𝜀𝑖𝑚

(𝑠+𝜇𝑖𝑚𝐷+𝜀𝑖𝑚)
𝐶𝑚̅𝐷 +

𝐶𝑖𝑚𝐷(𝑟𝐷,𝑡𝑟𝑒𝑠)

𝑠+𝜇𝑖𝑚𝐷+𝜀𝑖𝑚
, 𝑟𝐷 ≥ 𝑟𝑤𝐷,     (S68b)  349 

After substituting Eqs. (S64a)- (S65c) and Eq. (S68b) into Eq. (S68a), one has 350 

𝜕2𝐶̅𝑚𝐷

𝜕𝑟𝐷
2 +

𝜕𝐶̅𝑚𝐷

𝜕𝑟𝐷
− 𝑟𝐷𝜁𝐶𝑚̅𝐷 + 𝑟𝐷Λ = 0.       (S69) 351 

where 𝜁 = 𝑠 + 𝜀𝑚 + 𝜇𝑚𝐷 −
𝜀𝑖𝑚𝜀𝑚

𝑠+𝜇𝑖𝑚𝐷+𝜀𝑖𝑚
−

𝜃𝑢𝑚𝛼𝑟
2𝑣𝑢𝑚

2𝐴𝜃𝑚𝐵
+

𝜃𝑙𝑚𝛼𝑟
2𝑣𝑙𝑚

2𝐴𝐵2𝜃𝑚
−

1

1−𝑧𝑒𝐷

𝜃𝑢𝑚𝛼𝑟
2𝐷𝑢

2𝐴𝜃𝑚𝑏
+

1

𝑧𝑒𝐷−1

𝜃𝑙𝑚𝛼𝑟
2𝐷𝑙

2𝐴𝑏2𝜃𝑚
, 352 

Λ = 𝐶𝑚𝐷(𝑟𝐷 , 𝑡𝑟𝑒𝑠) +
𝜀𝑚𝐶𝑖𝑚𝐷(𝑟𝐷,𝑡𝑟𝑒𝑠)

𝑠+𝜇𝑖𝑚𝐷+𝜀𝑖𝑚
; 𝐶𝑖𝑚𝐷(𝑟𝐷 , 𝑡𝑟𝑒𝑠) and 𝐶𝑚𝐷(𝑟𝐷 , 𝑡𝑟𝑒𝑠) represent the initial 353 

concentrations in the immobile and mobile domains of the SWPP test in the rest phase. 354 

The boundary condition of Eqs. (S67a)-(S67b) in Laplace domain becomes: 355 

𝑠𝛽𝑒𝑥𝑡,𝐷𝐶𝑚̅𝐷(𝑟𝐷, 𝑠)|𝑟𝐷=𝑟𝑤𝐷
− 𝛽𝑒𝑥𝑡,𝐷𝐶𝑟𝑒𝑠,𝑚(𝑟𝐷, 𝑡𝐷)|

𝑡𝐷=𝑡𝑟𝑒𝑠,𝐷
=

𝜕𝐶̅𝑚𝐷(𝑟𝐷,𝑠)

𝜕𝑟𝐷
|

𝑟𝐷=𝑟𝑤𝐷

. (S70)  356 

Similar to the model of the SWPP test in the injection phase, Eqs. (S5), (S61) and (S70) 357 

compose a model of the second-order ordinary differential equation (ODE) with boundary 358 

conditions. However, the governing equation is an inhomogeneous differential equation. In this 359 

study, we use the Green’s function method to derive the analytical solution of Eq. (S69).  360 

Similar to Chen and Woodside [1988], Eq. (S69) could be transferred into a self-adjoint 361 

form: 362 

𝜕2𝐺

𝜕𝑟𝐷
2 − (𝑟𝐷𝜁 +

1

4
) 𝐺 = −ℓ(𝑟𝐷).        (S71) 363 

where 𝐺 = 𝑒𝑥𝑝(𝑟𝐷/2)𝐶𝑚̅𝐷 and ℓ(𝑟𝐷) = 𝑒𝑥𝑝(𝑟𝐷/2)𝑟𝐷Λ. 364 

The boundary conditions of Eqs. (S5) and (S70) could be rewritten as： 365 

𝐺(𝑟𝐷 , 𝑠)|𝑟𝐷=∞ = 0,         (S72a) 366 

[(𝑠𝛽𝑒𝑥𝑡,𝐷 +
1

2
) 𝐺 −

𝜕𝐺

𝜕𝑟𝐷
]|

𝑟𝐷=𝑟𝑤𝐷

= 𝛽𝑒𝑥𝑡,𝐷𝑒𝑥𝑝(𝑟𝑤𝐷/2)𝐶𝑚𝐷(𝑟𝑤𝐷, 𝑡𝑟𝑒𝑠,𝐷),  (S72b) 367 
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One could find that the boundary condition of Eq. (S72b) is inhomogeneous, and we need to 368 

homogenize it first. Assigning 𝐺 = 𝑈(𝑟𝐷) + 𝑉(𝑟𝐷) and 𝑉(𝑟𝐷) = 𝜎1 + 𝜎2𝑟𝐷, and substituting 369 

them into Eqs. (S72a) and (S72b) yields: 370 

𝑈(𝑟𝐷, 𝑠)|𝑟𝐷=∞ = 0,         (S73a) 371 

[(𝑠𝛽𝑒𝑥𝑡,𝐷 +
1

2
) 𝑈 −

𝜕𝑈

𝜕𝑟𝐷
]|

𝑟𝐷=𝑟𝑤𝐷

= 0,       (S73b) 372 

where 𝜎1 = −
𝛽𝑒𝑥𝑡,𝐷𝑒𝑥𝑝(𝑟𝑤𝐷/2)𝐶𝑚𝐷(𝑟𝑤𝐷,𝑡𝑟𝑒𝑠,𝐷)

(𝑠𝛽𝑒𝑥𝑡,𝐷+
1

2
)𝑟𝑤𝐷−1−(𝑠𝛽𝑒𝑥𝑡,𝐷+

1

2
)𝑟𝐷|𝑟𝐷→∞

𝑟𝐷|𝑟𝐷→∞, 373 

𝜎2 =
𝛽𝑒𝑥𝑡,𝐷𝑒𝑥𝑝(𝑟𝑤𝐷/2)𝐶𝑚𝐷(𝑟𝑤𝐷,𝑡𝑟𝑒𝑠,𝐷)

(𝑠𝛽𝑒𝑥𝑡,𝐷+
1

2
)𝑟𝑤𝐷−1−(𝑠𝛽𝑒𝑥𝑡,𝐷+

1

2
)𝑟𝐷|𝑟𝐷→∞

. 374 

After defining a spatial operator:L = −
𝑑2

𝑑𝑟𝐷
2 + (𝑟𝐷𝜁 +

1

4
), one has: 375 

𝐿𝐺 = 𝐿𝑈(𝑟𝐷) + 𝐿𝑉(𝑟𝐷) = ℓ(𝑟𝐷),       (S74)  376 

and  377 

𝐿𝑈(𝑟𝐷) = ℓ(𝑟𝐷) − 𝐿𝑉(𝑟𝐷).       (S75) 378 

Let 𝑓(𝑟𝐷) = ℓ(𝑟𝐷) − 𝐿𝑉(𝑟𝐷), one has: 379 

𝜕2𝑈

𝜕𝑟𝐷
2 − (𝑟𝐷𝜁 +

1

4
) 𝑈 = −𝑓(𝑟𝐷).        (S76) 380 

where 𝑓(𝑟𝐷) = 𝑒𝑥𝑝(𝑟𝐷/2)𝑟𝐷Λ − (𝑟𝐷𝜁 +
1

4
) (𝜎1 + 𝜎2𝑟𝐷). 381 

Right now, the model with an inhomogeneous boundary condition becomes a regular 382 

Sturm-Louisville problem. The general solution of Eqs. (S73a) - (S73b) and (S76) is: 383 

𝑈(𝑟𝐷, 𝜁; 𝜀) = ∫ 𝑔(𝑟𝐷 , 𝜁; 𝜀)
∞

𝑟𝑤𝐷
𝑓(𝜀)𝑑𝜀.      (S77) 384 

where 𝜀 is a positive value varying between 𝑟𝑤𝐷 and ∞ (e.g. 𝑟𝑤𝐷 ≤ 𝜀 ≤ ∞); 𝑔(𝑟𝐷, 𝜁; 𝜀) is the 385 

Green's function, and could be expressed as : 386 

𝑔(𝑟𝐷, 𝜁; 𝜀) = {
𝑔1(𝑟𝐷 , 𝜁; 𝜀) = 𝑃1𝐴𝑖(𝑦𝑒𝑥𝑡) + 𝑃2𝐵𝑖(𝑦𝑒𝑥𝑡)       𝑟𝑤𝐷 ≤ 𝑦𝑒𝑥𝑡 ≤ 𝜀

𝑔2(𝑟𝐷 , 𝜁; 𝜀) = 𝑃3𝐴𝑖(𝑦𝑒𝑥𝑡) + 𝑃4𝐵𝑖(𝑦𝑒𝑥𝑡)          𝜀 ≤ 𝑦𝑒𝑥𝑡 ≤ ∞
, (S78) 387 



21 

 

where 𝑓(𝜀) = 𝑒𝑥𝑝(𝜀/2)𝜀Λ − (𝜀𝜁 +
1

4
) (𝜎1 + 𝜎2𝜀), 𝑦𝑒𝑥𝑡 = 𝜁1/3 (𝑟𝐷 +

1

4𝜁
)，𝑃1，𝑃2，𝑃3 and 𝑃4 388 

are coefficients to be determined. As 𝐵𝑖(𝑟𝐷) diverges when 𝑟𝐷 → ∞ , 𝑃4 has to be zero. 389 

Substituting Eq. (S78) into Eq. (S73b), one has: 390 

[(𝑠𝛽𝑒𝑥𝑡,𝐷 +
1

2
) 𝑔1 −

𝜕𝑔1

𝜕𝑟𝐷
]|

𝑟𝐷=𝑟𝑤𝐷

= 0,       (S79) 391 

which leads to 392 

𝑃1 = −𝑃2𝑊.          (S80) 393 

where 𝑊 =
(𝑠𝛽𝑒𝑥𝑡,𝐷+

1

2
)𝐵𝑖(𝑦𝑒𝑥𝑡,𝑤)−𝜁1/3𝐵𝑖

′(𝑦𝑒𝑥𝑡,𝑤)

(𝑠𝛽𝑒𝑥𝑡,𝐷+
1

2
)𝐴𝑖(𝑦𝑒𝑥𝑡,𝑤)−𝜁1/3𝐴𝑖

′(𝑦𝑒𝑥𝑡,𝑤)
, 𝑦𝑒𝑥𝑡,𝑤 = 𝜁1/3 (𝑟𝑤𝐷 +

1

4𝜁
). 394 

According to the properties of Green’s function , one has: 395 

𝑃1𝐴𝑖(𝑦𝑒𝑥𝑡|𝑟𝐷=𝜀+) + 𝑃2𝐵𝑖(𝑦𝑒𝑥𝑡|𝑟𝐷=𝜀+) = 𝑃3𝐴𝑖(𝑦𝑒𝑥𝑡|𝑟𝐷=𝜀−).    (S81) 396 

[𝑃3𝜁1/3𝐴𝑖
′(𝑦𝑒𝑥𝑡)]

𝑟𝐷=𝜀− − [𝑃1𝜁
1

3𝐴𝑖
′(𝑦𝑒𝑥𝑡) + 𝑃2𝜁

1

3𝐵𝑖
′(𝑦𝑒𝑥𝑡)]

𝑟𝐷=𝜀+
= −1.  (S82) 397 

The values of 𝑃1，𝑃2 and 𝑃3 could be determined by Eqs. (S69) - (S71), namely: 398 

𝑃1 = −
𝜋𝐴𝑖(𝑦𝑒𝑥𝑡|

𝑟𝐷=𝜀+)

𝜁1/3 𝑊 ，𝑃2 =
𝜋𝐴𝑖(𝑦𝑒𝑥𝑡|

𝑟𝐷=𝜀+)

𝜁1/3 ,  399 

 𝑃3 =
𝜋𝐴𝑖(𝑦𝑒𝑥𝑡|

𝑟𝐷=𝜀+)

𝜁1/3 [
𝐵𝑖(𝑦𝑒𝑥𝑡|

𝑟𝐷=𝜀+)

𝐴𝑖(𝑦𝑒𝑥𝑡|𝑟𝐷=𝜀+)
− 𝑊]. 400 
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