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Supplementary Materials

S1. Derivation of analytical solutions for the SWPP test

To reduce the complexity in analyzing the influence of input parameters on the output, the

. . . C Ci Cinj
dimensionless parameters are introduced as follows: C,,p = C—’: Cimp = CL—’: Cinjmp = ‘2}'"‘,
C _ Cinj,im _ Ccha,m _ Ccha,im _ Cres,m _ Cres,im
inj,imD — co chamD — Co cha,imD — co | resmD — Co | res,imD — co
C _ Cext,m _ Cext,im _ Cum C _ Cuim C _ Cim C _ Clim
extmD — T~ ext,imD — c. ' cumD T T~ uimD — c, ' lmD T T~ limb — Co
0 0 0 0 0 0
_ |A| _Tr _Tw _Zz _ a%l‘m _ a%lef‘im _ a%ﬂum _
b =2 U = o Twp = v 20 = p Hmp = = Himp =~ 5 Bump = T Huimp =
aZRmyim afpm aZRmtiim SIS oe )
—— Wmp = — and Uimp = ———, where the subscript “D” represents the
RimA A RimA
Q

dimensionless parameter hereinafter, A = " By substituting these dimensionless parameters

B0,
into the governing equations, one could obtain the dimensionless model of the SWPP test:

0Cmp _ iaszD _ iaCmD eumagvum C

- gm(CmD - CimD) - .umDCmD - ( 2460mB umD ~—

dtp - 18)) 67"5 rp 0rp
Oum@Z Dy aCumD) alma%vlm elm“%Dl 9Cimp
—um —u 7-umb + (AmEim e, ) — oL oimD Tp = Ty, Sla
246mB% ozp /1, _, 24BO, ™MD 5429, azp 2p=—1 b ="wb (Sla)
9md = ¢ (Coup — Cimp) — timn C > S1b
atp = &m lmp imD UimpLlimp, D = Twp» ( )
0Cymp __ Rm@7 Dy 0°Cump RmVum@7 dCymD
dtp  AB2Rym az2 - ABRyn  97p - gum(CumD - CuimD) - .uumDCumDa
zp > 1, (S2a)
Cuimp _ Comp — Cuimp) — C >1 S2b
atp - guim( umbD uimD) HUyimp buimbp) Zp = 1, ( )

9Cimp _ Rma’12*Dl azclmD Rmvlma-’?z” 0Cimp
dtp AB2Ry, 0z} ABRy, 0zp

— &m(Cimp — Climp) — Mimp Cimp.

Zp < _1, (838.)
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9Climp

dtp = glim(clmD - ClimD) — Wiimp Ciimp» Zp < —1, (S3b)
where £.. = wqaz _ wqdfRm _ wyafRm e _ wy@fRy _ w]a#Rm c _
m - Aem > fim AemRim’ um = AeumRum’ uim = AgumRuim, tm = Aellem’ tim =
wla,ZARm
Aelleim.

The analytical solution will be derived using the Laplace transform method and the Green’s

functions method, and the detailed information could be seen in the following sections.

S1.1 Solutions in the injection phase: Egs. (25a) and (25f)
Substituting the dimensionless parameters into Egs. (5) - (6), one could obtain the
dimensionless boundary conditions and dimensionless initial conditions for the injection phase:
Con (Mps tp)lep=0 = Cimp (p, tp) | tp=0 = Cump (Tps Zp, tp)lep=0 = Cuimp ("ps Zps tp)lep=0 =
Cimp (0, Zp, tp) | ep=0 = Ciimp (", Zp, tp)lep=0 = 0, (S4)
Conp (0, t0)lrpseo = Cimp (Mps tp) lrp—0 = Cump (py Zp,s tp) |z p—00 =
Cuimp (T, Zp, tp) | zp 500 = Cimp (1ps Zp, ) 2p5—c0 = Climp ("'ps Zp, tp) | 250 = 0, (S5)
Comp (Tp, tp) = Cump (1p, zp = 1, tp), (S6a)
Cop (Tpy tp) = Cimp (1p, zp = —1, tp). (S6b)
Conducting Laplace transform to Egs. (S2a) - (S2b), one has:

_ Rma'12*Du 626_‘umD _ Rmvuma-’?z” 9Cymp

SéumD - AB2Rym 625 ABRym  0zp - (Sum + MumD)éumD + guméuimD ’
Zp > 1, (578.)
SC_'uimD = guim(c_'umD - C_‘uimD) — Hyimbp C_‘uimDa Zp = 1, (S7b)

Substituting Eq. (S7b) into Eq. (S7a) will lead to:

sC — Rm@7Dy 0*Cymp _ RmVum@# 0Cump _ (S +u _
WmD " AB2Ry 023 ABRym um * Fumb

Eumuim ) C_
umbD?’

dzp StUyimptEuim
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where a; =

Zp > 1,
Similarly, Egs. (S3a) - (S3b) become:

_ Rma12”Dl aZElmD Rmvlma% 9Cimp

(S8)

(S9a)

(S9b)

$Cimp = AB2Rpy, 973 ABRy, 9zp (&im + timp) Comp + €1mCrimp.

zp < —1,

$Cimp = €1im(Cimp = Crimp) = Miimp Ciimp» Zp < =1,

Substituting Eq. (S9b) into Eq.(S9a) results in:

SComp = SOVl | 2000 _ (g, — S G
zp < —1,

parameter in respect to dimensionless time.
Egs. (S5), (S6a)-(S6b) and (S8) compose a model of the second-order ordinary differential

equation (ODE) with boundary conditions, the general solution of Eq. (S8) is:

CumD = Alea1ZD + BleazzD.
Similarly, the general solution of Eq. (S10) is:

ClmD = AzeblzD + BzebzzD.

2
Rmvuma$+ (Rmvum“12~) +4Rma%Du{s+s +u D_M)
ABRum ABRyum ABZRym \° " WD st imp teuim
Ry aZDy !
AB2Rym

2
Rmvyumas J(Rmvumo&-) ARma,%Du{

__ fuméyim
ABRym ABRym S+&yum+HhumbD

“AB?2Rym\ StlhyimbtEuim

RmaZDy !

AB2Rym

EimElim )

R 2 R 2\2  pma2D
mVim&r | ( m”lmar) marD
SthiimD*€lim

ABRpym |\ ABRp, ABlem<S+Slm+”lmD_

and

RmaiD;
AB2Rp,

(S10)

where overbar represents the variables in Laplace domain hereinafter; s is the Laplace transform

(S1la)

(S11b)
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2 2,2 2
Rmvimar (Rm"lm“r) RmazDy( Elmélim )
+1A32le\5+£lm+ﬂlmD

ABRym ABRym StUimD tElim
b, = Rma?D;
AB?Ry,
Substituting Egs. (S11a) - (S11b) into Egs. (S5)-(S6b) leads to:
C_'umD = BleazzD. (SlZa)
C_'lmD == AzeblzD. (Sle)
Whel’e Bl = C_‘mDexp(_az), BZ = 0, Al = 0 and AZ = EmDexp(bl).
Thus, we could obtain the solutions for the aquitards as:
Cump = Cmpexp(azzp — ay). (S13a)
C_uimD - S+5u:rillin/:uimb CTumD, (Slsb)
ElmD - C_'mDexp(blzD + bl) (Sl4a)
Climp = Hsli:%ézmm (S14b)
In the injection phase, the dimensional boundary conditions Eq. (8) and Eqgs. (12a)-(12b) are
transformed into their dimensionless forms:
dCmp(rp.t
|Cop = Z2E2D | = Gl (60), 0 <t <t (S15)
6rD r=TwpD
dCin',m (tp)
.Binj#w =1— Cinjmp(tp) , 0 <tp < tinjp, (S16a)
Cinjmp(tp = 0) =0, (S16b)
Vw,injTwD
where B, = N7 njlar )
Conducting Laplace transform to Egs. (S1a) - (S1b), one has:
= 1 8%2Cpy 1 9Cp = =
SCmp = ; 6r5D - ; arDD - (Sm + .umD)CmD + &nCimp —
(Guma%vum ~ _ OumaZDy a(‘:umD) + (Blma%vlm ~ _ O1maf Dy aélmD)
246mB MM 246,82 0zp /1, _, 240,B 'MD  24B26,, azp 2p=1



99 o = Twp- (S17a)

100 Cimp = mc‘m, T = Ty, (S17b)
101 Substituting Egs. (S13a), (S14a) and (S17b) into Eq. (S17a),one has:

1 6ZEmD 1 dCmp = _
102 R ECpp =0. (518)
103 where

_ _ Em€im Oum @7 Vum _ 01m @ vim _ a20um@iDy | b161maiDy

104 E=s+é&n+ tmo S+iimp+Eim 246, B 2ABOm, 2A0,,B2 24B20,,
105 The boundary conditions of the wellbore and infinity in the Laplace domain are:

_ aCom ) _
106 |Cnp — 2222 = Cinjmn (), (5192)

b r=rwpD

107 Conp (1D )y pse0 = 0. (S19b)
108 Conducting Laplace transform on Egs. (S16a)- (S16b), one has:

= 1
109 Cinjmp (T, ) = SGhog D)’ (S20)
110 Egs. (S18), (S19a)-(S19b), and (S20) compose a model of the second-order ordinary

111  differential equation (ODE) with boundary conditions. The general solution of Eq. (S18) is:
112 Cmp (1, 5) = ¢ exp (%) Ai(E P yinj) + poexp (%) Bi(EY*Yinj). (S21)
113 where y;; = 1p + ﬁ, Yinjw = Twp + ﬁ; ¢, and ¢, are constants which could be determined by

114  the boundary conditions; A;(+) and B;(+) are the Airy functions of the first kind and second kind,
115  respectively. As B;(rp) diverges when 1, — o, ¢, has to be zero.

116 Substituting Egs. (S21), (S20) and ¢, = 0 into Eq. (S19a), the value of ¢, is:

1 1

Ai(51/3yinj,w)
2

117 ¢ =

(S22)

S(Sﬁinj"'l) exp()’inj,w)

5 E1/3A£(E1/3yinj)

118  where A; (") is the derivative of the Airy function.



119 Substituting Eq. (S22) and ¢, = 0 into Egs. (S21) and (S17b), one could obtain the

120  Laplace-domain analytical solution of solute transport in the injection phase of the SWPP test.
121

122 S1.2 Solutions in the chaser phase: Egs. (26a) - (269)

123 For the chaser phase, conducting Laplace transform on Eqgs. (S2a)-(S2b), one has:

Rm@7 Dy 0?Cyump _ RinVum @7 0Cump

124 ABZRym, 6212) ABRy;,  0zp - (S + Eum + ,uumD)C_'umD + gumc_'uimD +
125  Cymp (1, 2p, tinjp) =0, zp =1, (S23a)
126 SEuimD = Cyuimp (rD'ZD: tinj,D) = guim(éumD - C_uimD) — Huimb C_uimD ) (S23b)
127 Eq. (S23b) could be rewritten as :

~ — Euim ~ CuimD(rD'ZD’tinj,D)
28 Cump = b Ut Tttt (523%)
129 Substituting Eq. (S23c) into Eq. (S23a), one has:

RmagDu azéumD Rm”um“? 0Cymp _ Euméuim ~
130 AB2Rym 0z%  ABRym 0zp (S + Eum + Hump s+suim+uuimp) Cump +

EumCuim (T ZDtinj, )

131 CumD (TD!ZDI tinj,D) + S+£u[i’m+D#uI:mD J.D) _ 0. Zp > 1, (824)
132 Similarly, Egs. (S3a) - (S3b) become:

Rma#D;8%Cimp |, RmVim@? 0Cim ~ ~
133 ABngf aZlgD A;];l: alZDD - (S + Eim + /’leD)ClmD + SlmClimD +
134 Comp(7p,2p, tinjp) =0, zp < —1, (S25a)
135 $Ciimp = Crimp (10, 2D, tinj.p) = €1im (Cimp — Crimp) — Mimp Crimp » (S25b)
136 Eq. (S23b) could be rewritten as :

~ _ Elim = Climp(TD.ZDtinjp)
137 Climp = SteimtUiimb Cimp + s+eimtiiimp (825C)
138 Substituting Eq. (S25c¢) into Eq. (S25a), one has:
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Rm@}D; 02Cimp RmVima? 0Cimp
AB2Ryy, 0z} ABRy, 0zp

EimElim ~
- (S + Em + Uimp — #) ClmD +

StEmtUIimD

Cii ZDotin
ClmD(TD,ZD, tinj‘D) + Elm llmD(TD Zp ln],D) — 0 ZD S _1’ (826)

S+EmtTUIimD

where Cyymp (1, Zp, tinj,p) ad Cyimp (Tp, Zp, tinj,p ) are respectively the mobile and immobile
concentrations [ML] of the upper aquitard at the end of the injection phase, Cjp (rD, Zp, tin j,D)

and Cyimp (rD,zD, tin j,D) are respectively the mobile and immobile concentrations [ML™] of the
lower aquitard at the end of the injection phase. In this study, we use the Green’s function
method to derive the analytical solution of Eqs. (S24) and (526).

Notice that the boundary condition of Eq. (S6a) is inhomogeneous, thus we need to
homogenize it first. Letting Cymp = #(zp) + 8, + 8,2p, and substituting them into Egs. (S5)

and (S6a) yields:

[%(2p)]1lzp-e0 = 0, (S27a)
[#%(zp)]lzp=1 =0, (S27b)
where 8; = —8,z,p and 8, = C_T,;D(er,s).
—Z4eD
2 2 2
Defining the spatial operator: L, = — |fm&2u & _ Rmvumat 4 _ p | oo pag:

AB?Rym dzf ABRym dzp
LufumD =Ly [%’(ZD) + 51] = Fu(ZD)a (828)
Let £, (zp) = F,(zp) — L[5, + 8,2p], one has:

Rma?Dy d*#  Rpvymai dk
AB2Rym dz3 ABRym dzp

E k= _fu(ZD) ) (S29)

Euméuim
where E, = s+ &,, + - :
u um Hump St&yimtHuimbD

& Cui D(TD,ZD,t' ',D)
Fu(ZD) = CumD(rD'ZD' tinj,D) + umsilgm_ L nj and fu(ZD) = CumD (TD'ZD’ tinj,D) +
uimtTHluimbD

EumCuimb (rDrZD;tinj,D) _ RmVyma?
StéyimtHuimb ABRym

8, — Ey, (81 + 8,2p).
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The general solution of Eq. (S24) is:
éumD = floo gu(ZDr Ey;ny) fu (My)dn, + % EmD (rp,s),zp = 1. (S30)

umcuimD(TD'nu'tinj,D) _ RmVyma?

StéyimtHuimb ABRym

e
where fu(nu) = CumD(rD: N, tinj,D) + 82 — Eu(51 + 5leu), Nu

is a positive value varying between 1 and o« (e.g. 1 < n,, < ©); g.(2p, Ey; 1) 1S the Green's
function, and could be expressed as :

9u1(Zp, Ey;ny) = Niexp(a,zp) + Nyexp(azzp) 1< zp <my (S31)

Z ,E ; :{ ’
Gu(Zp, Eui ) Guz(Zp, Ey;my) = Nzexp(ai2p) + Nyexp(azzp) 1y < zp <

where N;, N,, N3 and N, are coefficients to be detrmined using the following conditions
[Chen and Woodside ,1988]:
a) gu(zp, Ey;ny) satisfying the model of Egs. (S29) and (S27a)-(S27b);

b) 9u1(Zp, Eys M) = Guz2(2p, Eys M),

d d AB?R
C) Juz __%9u1 - _ um.

dzp dzp Rma?Dy,’

0+ -
Zp=Nu Zp=Nu

Substituting Eqg. (S31) into Eq. (S27a), one has:

Ny =0, (S32)
Substituting Eq. (S31) into Eq. (S27b), one has:

N,exp(a,) + Nyexp(a,) = 0, (S33a)
According to Eq. (S33a), one has:

N, = —N,exp(a, — a,), (S33b)
According to above condition of b), one has:

Nyexp(aimy,) + Noexp(azny) = Nyexp(azny), (S34)
According to above condition of c), one has:

AB?Rym

Rma?Dy’

Nyayexp(a,n,) — [Nyaexp(ain,) + N,aexp(azn,)] = (S35)
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In the chaser phase, the values of N;, N, , Nsand N, could be determined by Egs. (S33a) -

(S35), namely:

—AB?Rym

Rma?Dyl(a1—az)exp(az—ai)exp(any)l’

Nl = _Nzexp(az - al), NZ = N3 == 0 and

N, = N,—Njexp(a, — a)exp(any, — azny,).
As for the analytical solution of the lower aquitard, one could use a similar approach as that
used for deriving the analytical solution of the upper aquitard to obtain, and the general solution

of Eq. (S26) could be described as:

= —o0 Zep+Zp &
Cimp = f_l 91(zp, E;my) fi(m)dn, + ;:D_f Conp (T, 2p,8), Zp < —1. (S36a)
9n(zp, E;;m) = Myexp(byzp) + Myexp(by,zp) —1<2zp <
2o, Epiy) = { ., (S36b
9120, Eiim) 912(zp, E;;my) = Mzexp(byzp) + Myexp(byzp) 1 < zp < —o0 ( )
EmClim (r MNuting, ) RmVim@% Cm ~ eDt
fl(m) = Cump (TD’m’tinj'D) + : s:-ezlsz#lZmD]D + A;Jil?lr: ZeDi)l ~ Cmpky ZZe[LJJ—nll’ (8360)

where 7, is a negative value varying between —1 and —o (e.g.—1 < 1, < —); g,(zp, E;; 1) IS

the Green's function, E; = s + € + timp — —2U™ and the values of My, M, , Msand M,
S+Eim+UiimD
—AB?Ryp,

could be described as: M; = —M,exp(b, — by), M, = R D loxn Gam—binn—baexnanl

M; = M,exp(b,n; — byn;) — Myexp(b, — b,), M, = 0, and the values of a,, a, , b; and b, are
the same as used in the injection phase.
In the chaser phase, the dimensional boundary conditions Egs. (15a)-(15b) are transformed

into dimensionless forms as:

9Cmp(Tp,tp)
ﬁcha,D atp

= Cnp("p, tp), tinjp < tp < tenap: (S373)
D=TwD

Cena,mp (T tD)ltD=tinjD = Cinjmp(Tp» tD)ltD=tinjD v tinjp < tp < tepap- (S37b)

_ Vw,cha™wD

where Bepap = R

10
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Conducting Laplace transform on Eqgs. (S1a)-(S1b) in the chaser phase, one has:

1 aZC_'mD 1 0Cmp = =
. - - (gm + .umD)CmD + EmCimD -

SCmp — Comp (rD'tinj,D) =

rp Orp rp Orp
(Gumagvum ~ _ Oumaf Dy a(‘:umD) + (elmaﬁvlm ~ _ OmafD; acTlmD)
246,,B YMD 540 B2 azp zp=1 246,,B MD  2ap2g9. 9zp zp=—1
Tp = Twp. (S38a)
c _ Eim = Cimp(TD.tinj,p) > S38b
imb = 7. . mb T .. /D<= Twp ( )

(+iimp+em) ™ T (s+uimp+eim)
where Cpp (7p, tinj,p) ad Cimp (7, tinj,p ) are respectively the mobile and immobile
concentrations [ML ] of the aquifer at the end of the injection phase, which could be calculated
by Egs. (S21) and (S17b).

After substituting Egs. (S30), (S36a)-(S36¢) and (S38b) into Eg. (S38a), one has:

10%°Cmp 1 3Cmp

—ECp +F=0,1p =1, S39

™ 67’5 rp Orp a~mD »'D = 'wbD» ( )

where Ea =S+en + thyp — Emé&im Bum aFvum _ elmafvlm 1 eumazDzu 1 elmeDl
S+Uimp+Eim 2460, B 24B20,, 1-zep 2A0,B Zep—1 2AB20,,

EmCimp (Tthinj)

StUimptEim

and F = CmD(rD' tinj,D) +

The boundary conditions of Egs. (S37a)-(S37b) in Laplace domain becomes:

~ E cha,D

Cechamp ("wp,S) = Bonaptl Cinjmp(Tp,tp) | tp=tinjp’ (S40)
The boundary conditions of the wellbore and infinity in Laplace domain are:

~ _ 9Cmp(TD.S) _ Bchap o
[CmD orp T=TwpD " SBchap+l Cm]’mD (7, tp) |tD=tinj.D’ (S413)
Cenaymp Twp, S)| =0, (S41b)

T‘D—)OO
Similar to the model of the SWPP test in the injection phase, Egs. (S39) and (S40)-(S41b)

compose a model of the second-order ordinary differential equation (ODE) with boundary

11
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conditions, however, the governing equation is an inhomogeneous differential equation. In this

study, we use the Green’s function method to derive the analytical solution of Eq. (S39).
Notice that the boundary condition of Eq. (S41a) is inhomogeneous, and we need to

homogenize it first. Assigning C,,p = ¥ (rp) + &; + 8,1p, and substituting it into Egs. (S41a)

and (S41b) yields:

[lP(‘rD,s) - ""’“D‘”] =0, (S42a)
0rp r="wbD
Y(1p,S)|rpoe =0, (S42b)
— Bcha,p TD|TD—>°° o
where §; = Benap+1 Fup—rolrpoe1) Cm,,mn(rp,tn)LD:tmjD and
_ ﬁcha,D 1 o
02 = SBcha,pt1 (er_rDer—mo_l) ij’mD (7o, tp) |tD=tinj,D.
- . az d
Defining a spatial operator:L = — [—2 —— —1pE,|, one has:
drp drp
LCpp = LI¥(rp) + &1 + 8,1p] = Frp, (S43)
Let (rp) = Frp — L(8; + 8,1p), one has:
o’y oy
72 "y~ 0Ea¥ = —0(). (S44)
Where (p(TD) == FTD - [62 + TDEa(61 + 62TD)].
The general solution of Egs. (S42a) - (S44) is:
W(rp,Eein) = [ 90, Easm) 9(n)d. (S45)

where 7 is a positive value varying between r,,, and o (e.9. 1,p < 11 < ); g(1p, E4; 1) is the

Green's function, and could be expressed as :

1 1
91, Eq;m) = Tlexp(yczha)Ai (Easycha) + T, exp (yczha) B; (Ea3ycha) Twp < Ycha <1

(S46)
92(rp, Eq;m) = %exP(yczha)Ai (Ea%’cha) + T, exp (yczha) B; (Ea§YCha) N < Ycha < ©

g(TDr Ea; 77) = {

12
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255

where o(n) = Fn — [8, + nE, (81 + 62m)], Yena = 1o + é. As B;(rp) diverges when rp =

oo , T, has to be zero. Substituting Eq. (S45) into Eq. (S42a), one has:

6.91]
6rD

=0, (S47)

D=TwD

|91 -

According to Eq. (S47), one has:

T, = ~T3xX. (s48)
>Bi(Ea*ycnaw)—Ea*B{(Ea**ycnaw) 1
where X =i Lt and Yenaw = Twp +
z z(Ea YCha,w)_Ea Ai(Ea YCha,w) ’ 4Eq

According to above condition of b), one has:

T14; (E 3ycha|rD =n* )+TZB (E 3ycha|rD =n* )=T3Ai(Ea1/3ycha|rD=n‘)- (S49)

According to above condition of c), one has:

o0 (22) ) e (22 e ) -

057 59 (229 (B + B9 () 1 (B -

1
7 Yeha) B (E EiT, Yeha) B! (E,3 =-1. (S50
[ 2 exp( ) ( 3ycha) + 3J2 exp( ) i ( a3ycha)]|rD=n+ ( )
For solution in the chaser phase, the values of 73, 7, , 75 and T, could be determined by Egs.
(S48) - (S50), namely:

7TAi(3’ext|rD=,7+) TA; o+
Ji=- £ 173 X, 7 = £ 173 I3 =
a

”Ai(Yext|TD=n+) [Bi(Yext|TD=n+)

Ea1/3 Ai()’ext|rD=n+)

—XI and

S1.3 Solutions in the rest phase: Egs. (27a) - (27f)
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256 In the rest phase, the flow velocity become zero, and the advection and dispersion terms
257  drop out of the governing equations. After conducting Laplace transform on Eqgs. (S2a)-(S2b),

258  the following equations would be obtained:

259 (S + Eum + UumD)éumD - gumfuimD - CumD (rD'ZD: tcha,D) = 0. Zp = 1. (8518-)

~ _ Euim ~ CuimD(rDJZD'tcha,D)
260 CuimD h S+euim+HUumbp CumD + s+eyim+hump Zp = L (851b)
261 Substituting Eq. (S51b) into Eq. (S51a), one has:

umecuim ~ umCuim ZDitcha,

262 (S + &um + Uump — m) Cump — Cump (TD; Zp, tcha,D) —: 5+€u[i)1ir+DHiDimDh o) =
263 0.z, > 1. (S52)
264 Similarly, Egs. (S3a) - (S3b) become:
265 (s+é&m + ﬂlmD)ElmD - glmélimD = Cimp (rDrZD: tcha,D) =0.zp < -1 (S53a)

~ _ Elim ~ Ciimp("D,ZD:tcha,p) .
266 ClimD = mClmD + S+em+imb y Zp < 1, (853b)
267 Substituting Eq. (S45b) into Eq. (S45a), one has:

EmElim = etmCiimp (7'D,2D,tcha,p) _

268 (S + Eim + Uimp — m) ClmD - ClmD (erZD' tcha,D) — = Sl+gll)im_|D_ml:mDh 22 =
269 0.z, < —1. (S54)
270 According to Egs. (S52) and (S54), one has:

gumCy; rp.Zp.t
= CumD(TD,ZD,tcha‘D)+ um ulmD( DZD cha,D)

S+eyimtHyi
271 Comp = wmtbuimd > (S55a)
umbD Euméyim ) D
s

slmclimD(rD'ZD'tcha,D)

Stelim T HlimD _

i  zp < —1, (S55h)
Steim+hlimD

_ Cimp(TD.ZD.tcha,p)+

272 Cimp =

(S+5lm+ﬂlmD_
273 where Cyump (70, Zp, tena,p )and Cuimp (T, Zp, tena,p ) are respectively the mobile and immobile

274  concentrations [ML™] of the upper aquitard at the end of the chaser phase, Cj,,,p (rD,zD, tcha,D)
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275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

and Cyimp (rD,zD, tcha,D) are respectively the mobile and immobile concentrations [ML™] of the
lower aquitard at the end of the chaser phase.

Similarly, the dimensionless governing equation of the mobile zone during the rest phase is:

9Cmp

oty —&m(Cmp = Cimp) — UmpCmp, o = Typ. (S56a)
6Cl~m
TDD = eim(CmD - CimD) - .uimDCimDv p = TwD: (SS6b)

Conducting Laplace transform to Egs. (S56a) and (S56b) for the rest phase, one has:
$Cmp — Cmp (7, tchap) = —&m(Cnp = Cimp) = MmpCmp, o = Twp- (S57a)
$Cimp = Cimp ("0 tena,p) = €im(Cmp = Cimp) — Mimp Cimp: Tp = Two, (S57b)

According to Egs. (S57a)-(S57b) , one has:

. SmcimD(TD'tcha,D)
— Cmp("Ditcha,p) (5+8imD *€im)
Cop = “limD*eim) (S58a)
[+£ +u D_%]
STEmFHm (s+Himp+&im)

C. _ Cimp(TDtcha,D) €imCmp (858b)
tmD (s+uimp+eim) (s+Uimp+Eim)’

S1.4 Solutions in the extraction phase: Egs. (28a) - (289)
Contrary to the injection and chaser phases, the direction of advective flux is reversed in the

extraction stage, Egs. (S2a) and (S3a) are modified as:

0Cymp _ Rm“%Du aZCumD Rmvumarz‘ 0CymD
dtp  AB2Ryy, 0z3 ABRym  9zp

— &um (CumD - CuimD) — HyumbD CumDi

zp =1, (S59a)

9Cimp _ Rma’12*Dl azclmD _ Rmvlma-’?z” 0Cimp
dtp AB2Ry, 0z} ABRy, 0zp

— &m(Cimp — Climp) — Mimp Cimp.

zp < —1, (S59b)

Conducting Laplace transform on Egs. (S2b) and (S59a), one has:
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295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

Rma12"Du 02 Cumb Rmvuma% 9Cyump

SC_'umD - CumD (rD'ZDr tres,D) = - gum(c_'umD - EuimD) -

AB2Ry;,m 0z} ABRym 0zp
Hump Cump, Zp 2 1, (S60a)
~ _ EuimCumb CuimD(rDJZDJtres,D)
Cuimp = ——— — ———=2 7 2 1, (S60b)
SteyimtHuimbD S+&yimtHuimb

Substituting Egs. (S60b) into Eq. (S60a) ,one can has:

Rm@7Dy 0%Cump |, RmVum@f 9Cump _
AB2Ry;, 0z} ABRym 0zp

Euméuim ~
S+ &ym + - —) Cump +
( um HUymb S+&yim+Huimb umD

EumCuimp (rD’ZD’tres,D)
Cump (rDrZD: tres,D) + =0.zp 21, (S61)
Steyim+Huimb

Similarly, conducting Laplace transform on Egs. (S3b) and (S59b), one has:

RmafD;0*Cimp  RmVim@F 9Cimp

SELmD — Cimp (TD'ZD; tres,D) = - glm(C_lmD - C_limD) -

AB2Ryy, 0z} ABRy, 0zp
timp Cimp, Zp < —1, (S62a)
= €1imC Cyi D,Zp,t
ClimD — lim“imbD + leD( D,4D res,D) Zp < _1’ (S62b)
S+é&lim+limp S+éiim+Uiimp

Substituting Eqgs. (S62b) into Eq.(S62a), one has:

Rm@fD;0°Cimp _ RmVim@7 9Cimp
AB2Ryy, 0z} ABRy, 0zp

- (S + Eim + Uimp — M) ClmD +

St+E&imtUimD

€imClimp(TD,ZD tresp) _
ClmD(TDIZD! tres,D) + =0. Zp < _1, (863)
StEimtHiimD

where Cump (70, Zp, tres,p )and Cuimp (70, Zp, tres,p ) are respectively the mobile and immobile
concentrations [ML®] of the upper aquitard at the end of the rest phase, Cymp (rD,zD, tres,D) and
Crimp (rD, Zp, tres‘D) are respectively the mobile and immobile concentrations [ML™] of the
lower aquitard at the end of the rest phase.

One could use a similar approach of obtaining the analytical solution of aquitards in the
chaser phase to derive the solution of aquitards in the extraction phase. The general solution of

(S61) is:
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zZ

315 aszjfgﬂqyﬂﬁ&@ﬁA&@d&f+QZfémﬂmJLzDz1, (S64a)

1

. _ Gu1(zp, Ey; b)) = Hiexp(myzp) + Hyexp(myzp) 1< zp < 4y
316 Gulap, Bui ) = {guZ(ZD:Eu;’gyu) = Hzexp(myzp) + Hyexp(myzp) by < zp < 0’ (S64D)
317 fulby) =
umCuim rf'u'tres, RmVum rz‘ém ( ) ) ['u_ e ~
318 CumD (TD,f)’u, tres,D) + £ S+€u?1i:DﬂuimD D) + A}:Rurj 1]-1;:;5 - l—ZZeDD EquD (rDJ S);
319 (S64c)
320 The general solution of Eq. (S63) could be described as:
321 C_lmD = f__loo gl(ZD!El; /&l)fl(ﬁ/l)dﬁ/l + ZZ[;';Z_elD EmD(rD' S), Zp < _1, (8653.)
) (911 (zp, Ej; b)) = Lexp(nyzp) + Lexp(nyzp) —1<zp <4
322 9tz Ei ) = {glz(zD'El;’&l) = Lzexp(nyzp) + lyexp(npzp) 41 < zp < —oo (S65b)

323 filtby) =

CmD (T'D, S)!

emClimp(TpAutresp RnVim@% Cimp(rp,s)  &1+Zep
324 CmD(rDr’ﬁllr tresD) + mtlim ( res, )_ mVim%r m __YiTZe El
’ StemtHUIimD ABRim Zep—1 Zep—1

325 (S65c)

326  where 4, is a positive value varying between 1 and ==; 4, is a negative value varying between
327 —1and —<°; g, (zp, Ey,; 4,) and g,(zp, E;; 4;) are the Green's functions, H,~H, and I; ~1, are
328  contants which could be determined by the boundary conditions and conditions of a)~c), the

329  values of H;~H, and I, ~I, are as follows: H; = —H,exp(m, — m,),

330 H2 = _ARumBZ H3 = 0, H4 = HZ - Hzexp(mz - ml)exp(mlf&u - mz/ﬁ'u),

Rpma? D, [(m;—m;)exp(m,—my)exp(my 6:,)]'

—AB%Rij,
Rma?Di[exp(nyb1—ny6)—nzexp(ny &)’

331 11 = _Izexp(nl - n2)1 12 =

332 I3 = Lexp(nyb, —nyby) — Lexp(ny —ny), I, =0,

2
Rmvumag | (Rmvuma;) +4Rma,2.Du(S+£ +u _ fuméyim )
T —
333 m. = ABRum ABRum ABzRum W FumD s+ imp +eyim
1= H

2
2RmarDu

AB%Rym
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334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

2 2
Rmvumag \](le’uma;) 2RmarDy Euméyim )
2

4 steymt —
ABRum ABRum AR Ry HumD ™ ¥ i imp +euim
m =
2 Rina?D,, '
ABRym
2
2 2 2
Rmvpmar | |(Rmvpnai\ | RmayD/ ___ &imélim
ABR T ABR Ti— \S+glm+ﬁ“lmD
Im Im AB“R},, STHImD +Elim
ny = — and
ZM
AB®Ry,
2
Rmvlm‘)‘TZ Rmvlma?z” ¢ARm[x¥Dl/ __ fimflim
ABR ABR F e \STemTHmp
Im Im AB“R},, StHImD +elim
n =
2 szagnl
AB®Ry,

Similarly, contrary to the injection and chaser phases, the direction of advective flux is

reversed in the extraction stage, and Eq. (S1a) is modified as:

dCmp 1 9%Cmp 1 0Cmp Oum A2 vym
%mp _ L L2mb _ o (Coup — Cimp) — Homp oy — ( — 2emrtum -
atp o Or2 rp 9D m( mD lmD) Umplmp 2468 “umD
Oumaf Dy 0Cymp O1mafvim O1m@#D; 0Cimp
s A ——27 UmD ~ Sams . Tp 2 Twp- (S66)
246,mB  0zp /1, 2AB26,, 24B%0y, 0zp Jl,__,

In the extraction phase, the dimensional boundary conditions Eqs. (14a)-(14b) are

transformed to the dimensionless format:

9Cmp(Tp,tp) _ 0Cmp(rp,tp)
Bext,D at - or ' tres,D < tD < text,D (8673-)
b TD=Twp b TD=Twp
CmD (TDr tD) |tD=tres,D = Cres,mD (TD: tD) | tthres,D. (S67b)
Vw,ext"wD
where = — ==
IBext,D ERmay

Conducting Laplace transform on Eqgs. (S58) and (S1b) in the extraction phase, one has:

10%Crp 1 0Cyp

SC_'mD — Conp (Tp) tres) = T'_ 72 T_ or
D D D D

- (em + .umD)C_'mD + gmc_'imD -

(_ euma’?z*vuméumD _ Gumarz‘Du a(‘:umD)
240mb 240mb  9zp

zp=-—1

_ (elma%vlmélmD Blm“%DlaélmD)
-1 2Ab%0,, 2Ab2%0,, 0zp

Zp=

Tp = Tywp- (S68a)
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349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

_ Eim
CimD -

~ Cimp(rp.tres)
————Cpyp + ———21p 21, S68b
(s+timp+eim) P " stpimprem P wbD: ( )

After substituting Egs. (S64a)- (S65c) and Eq. (S68b) into Eq. (S68a), one has

92Cp . 9C, -
TBD‘I'TDD—TDZCmD +1rpA=0. (S69)

E€imém _ Bum@Fvum |, O1m@ivim _ 1 BumaF Dy 1 6maiD
S+Uimp+Eim 2A0,B 2AB20,, 1-Zep 2A0pmb Zep—1 2Ab26,,’

where { = s+ &, + Ump —

C;i ,t ..
A = Cpp(1p, treg) + ZEmpUDIres). o1t Y and Cp (1, tres) TEpresent the initial
StUimptEim

concentrations in the immobile and mobile domains of the SWPP test in the rest phase.
The boundary condition of Egs. (S67a)-(S67b) in Laplace domain becomes:

— 0Cmp (rp,S)
Sﬁext,D CmD (rD: S) |rD=rwp - Bext,D Cres,m (rD: tD) |tD=tresD = mg)rDD ' (870)
’ D=TwD

Similar to the model of the SWPP test in the injection phase, Egs. (S5), (S61) and (S70)
compose a model of the second-order ordinary differential equation (ODE) with boundary
conditions. However, the governing equation is an inhomogeneous differential equation. In this
study, we use the Green’s function method to derive the analytical solution of Eq. (S69).

Similar to Chen and Woodside [1988], Eq. (S69) could be transferred into a self-adjoint

form:

where G = exp(rp/2)Cp,p and £(rp) = exp(rp /2)1TpHA.
The boundary conditions of Egs. (S5) and (S70) could be rewritten as:

G(1p,S)|rp=co = 0, (S72a)

[(Sﬁext,D + %) G — 6_6]

6rD

= ﬁext,D exp(er /Z)CmD (TWD’ tres,D)a (S72b)

D=TwD
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368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

One could find that the boundary condition of Eq. (S72b) is inhomogeneous, and we need to
homogenize it first. Assigning G = U(rp) + V(1p) and V(rp) = o7 + a,1p, and substituting
them into Eqgs. (S72a) and (S72b) yields:

U(p, $)lrp=w =0, (S73a)

[(S.Bext,D + %) U - 6_U]

6rD

— 0, (S73b)

D=TwD

Bext,pexp (rwp/2)Cmp (er'tres,D)

1 1
SBext,D +§)er - 1_(Sﬁext,D +E)7'D |rD—>oo

where o; = 1 7D |7 p—sc0r

Bext,pexp(rwp/2)Cmp (er.tres,D)

1 1 .
(Sﬁext,D +§)er - 1_(5ﬁext,D +§)7'D |rD—>oo

0-2:

2
After defining a spatial operator:L = — d—z + (rDZ + 3), one has:
arp 4

LG = LU(rp) + LV (p) = £(1p), (S74)
and
LU (rp) = €(rp) — LV (1p). (S75)

Let f(rp) = £(rp) — LV (1p), one has:

02U

7~ (¢ +3) U =~f0m). (S76)

where f(rp) = exp(rp/2)1rpA — (TDC + i) (g, + 01p).

Right now, the model with an inhomogeneous boundary condition becomes a regular
Sturm-Louisville problem. The general solution of Egs. (S73a) - (S73b) and (S76) is:

UGrp, Gie) = [, 9(rp,3e) f(e)de. (S77)
where ¢ is a positive value varying between r,,, and o (e.g. 1,p < € < ); g(1p, {; €) is the
Green's function, and could be expressed as :

gl(rD: ¢ g) = PlAi(yext) + PZBi(yext) Twp < Yext S €

, S78
gz(TD: ¢ €)= P3Ai(yext) + P4Bi(yext) €S Yext S ®© ( )

9(rp, G5 €) ={

20



388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

where f(e) = exp(e/2)eA — (e{ + %) (01 + 028), Vore = (M3 (rD + é), P;, P,, P;and P,

are coefficients to be determined. As B;(rp) diverges when 1, = o, P, has to be zero.

Substituting Eq. (S78) into Eq. (S73b), one has:

1 691 _
[(Sﬁexw + 5) g1 — m] romr =0, (S79)
which leads to

(Sﬁext,D +%)Bi(3/ext,w)_<1/3 Bi’ (Yext,w)

where W = ,
(Sﬁext,D "%)Ai(Yext,w)_(l/SAg(Yext,w)

Yextw = (1/3 (er + ﬁ)

According to the properties of Green’s function , one has:

PlAi(yexter=s+) + PZBi(yexter=s+) = P3Ai(yext|rD=£‘)- (881)

[P Gl - = [P er) + PGB )] =1 (58D)

rp=&~
The values of P;, P, and P; could be determined by Egs. (S69) - (S71), namely:

A (estlyp—ct) mAi(Yeatlypet)

P1:_ (1/3 W’ P2: {1/3 y
7TAi(3’ext|rD=£+) Bi(yext|rD=e+)
P3 = 1/3 _ —Wwi.
¢ AL(J’ext|TD=£+)
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S2. Numerical simulations
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Figure S1. The grid mesh of the aquifer-aquitard system used in the Galerkin finite element

program using COMSOL Multiphysics.
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