TEXAS A&M UNIVERSITY

DEPARTMENT OF GEOLOGY & GEOPHYSICS
COLLEGE STATION, TEXAS 77843-3115

Dr. Hongbin Zhan, Endowed Dudley J. Hughes Chair in Geology and Geophysics
Tele: (979) 862-7961 Fax (979) 845-6162
Email:zhan@geos.tamu.edu
http://geoweb.tamu.edu/zhan

May 14, 2020
Memorandum
To: Dr. Philippe Ackerer, Editor of HESS
Subject: Revision of Paper # hess-2019-699

Dear Editor:

Upon the recommendation, we have carefully revised Paper # hess-2019-699 entitled “New Model of
Reactive Transport in Single-Well Injection-Withdrawal Test with Aquitard Effect” after considering all the
comments made by the reviewers. The following is the point-point response to all the comments.

Response to Reviewer #1:

General comments

1. This is an impressive mathematical work that involves several injection phases, adsorption (linear) and
first-order degradation, the presence of aquitards, and the separation between mobile/immobile domains.
The solution is fully analytical, just expressed in Laplace space (thus the need for inversion at the end). If
the solution is analytical, what is the point to test it? The only reason is that some simplifications are
involved. This is tested for example in Figure 2, showing limitations.

Reply: Implemented. See Lines 291-296.

2. Assumptions are quite strong: - Homogeneity — it might also be valid for mild heterogeneity - The well
extends all the thickness of the aquifer - Reactions: actually you only include linear sorption (K_d values)
and first-order degradation (nmu values). This is a very small subset of reactions.

Reply: Implemented. See Lines 95-99.

3. At the end there is a validation effort with real data. According to the authors, the new model performs
better. Yes, it also has many more parameters, and so in a real case some model selection criteria should
be performed to discriminate the “best” model. More, the authors provide just a single set of parameters,
without any study of uncertainty in the parameters, or even the reason why these numbers were chosen
and how they represent real physical quantities.

Reply: Implemented. The real physical quantities and the uncertainty of the estimated parameters have
been discussed. See Lines 405-413.

4. The mathematical work is really impressive, and | praise the authors for it, but in my opinion the resulting
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work can be hardly used with real data, and the problem would be better solved using a numerical model
that can provide best fit, but also some uncertainty evaluation.

Reply: Implemented. See Lines 83-91.

Response to Reviewer #2:

General comments

1. The present work presents a novel analytical treatment of single-well injection withdrawal (SWIW) tests,
whereas the impact of mixing in the well and the presence of confining aquitards are considered. | applaud
the Authors for the efforts in the derivation of the solution (math not checked) and the commitment to
introduce more flexibility in the conceptual model. Yet, | am not sure about its usefulness to other
researchers, it is very complicated! Maybe, if the Authors made available a script for the calibration against
data it could be beneficial to the usage among practitioners. Regarding the quality of the paper, | see many
unclear points or unclear parts. | listed below a series of comments which | hope will make the paper more
clear. Moreover, | have some criticisms about the employed sensitivity analysis, which it seems to be a
weak one in my personal opinion.

Reply: Thanks. We have carefully revised the manuscript after considering all the comments.

Specific comments

1. line 15: why put emphasis on the use of Green’ function for the extraction phase in the abstract? This
leads to think ‘what about the other phases?’. | would remove this comment.

Reply: Implemented. We have removed it. See Line 14.

2. line 17: I would replace ‘tested by’ with ‘tested against results grounded on numerical simulations’, or
something similar, i.e., the numerical simulations results serve as reference values to be matched and do
not verify the validity of the assumptions directly.

Reply: Implemented. “tested by a numerical solution” has been changed into “against results grounded on
numerical simulations”. See Lines 18-19.

3. lines 17-19 ‘The sensitivity analysis demonstrates that the influence of vertical flow velocity and porosity
in the aquitards, and radial dispersion of the aquifer is more sensitive to the SWIW test than other
parameters.’. Which sensitivity analysis? The fact that the latter has been conducted is not specify earlier in
the text. Moreover, specify which kind of sensitivity analysis you are using. Furthermore, the sentence is
rather confusing: it says that the influence of three-parameter is more sensitive to the SWIW test, than
other. What is the difference between influence and sensitivity? Is it the influence that varies as a function
of the SWIW test? ... | was thinking that are the results of the SWIW (i.e., model output) to be largely
sensitive (i.e., influenced by) to the three mentioned parameters (i.e., model inputs), but maybe | am biased
by my previous experiences with sensitivity analysis. Please clarify.

Reply: Implemented. See Lines 19-20.



4. line 23 ‘The new model of this study performs better than previous studies excluding the aquitard effect
for interpreting data of the field SWIW test’ too general. Please specify which field test you are referring to,
since the quality of the novel solution can be worse than previous ones in case the system do not have an
aquitard, for example.

Reply: Implemented. See Lines 24-25, and Lines 277-283.

5. lines 49-50 ‘Another assumption included in many previous models of radial dispersion is that the
concentration of the mixing water with the injected tracer is equal to the injected tracer concentration during
the injection phase’ the sentence is not very clear. What is the mixing water? ‘is equal to the injected tracer
concentration’ of what? Please revise the sentence. Moreover, lines 53-55 ‘This assumption implies that
the mixing effect in the wellbore is not considered, where the mixing effect refers to the mixture between
the original (or native) water and the injected tracer in the well.” ow there is the native water which is not
mentioned earlier. ... | can grasp the general idea that there is a difference between the concentration of
tracer between the resident water, injected water and water within the well where mixing occurs, but not in
a standalone manner from these lines (i.e., | need to think about them and deduce that this the implied
message). Please clarify, maybe with an additional figure.

Reply: Implemented. See Lines 51-62.

6. line 61 ‘mostly because ADE could not adequately interpret anomalous reactive transport,” this true when
the ADE is used to capture the whole behavior of the system, i.e., as an effective model for all the system
behavior to be characterized by a single representative value of advection, dispersion and reaction. Instead,
if ADE is finely discretized (i.e., the system heterogeneity is properly detailed) and then (numerically) solved
it can fairly well capture anomalous behaviors. Please clarify this point. This is in line with the mentioned
superior capacity of effective transport models mentioned afterward (e.g., MMT,CTRW, fADE, MIM) to have
a superior capacity in rendering anomalous behaviors of heterogeneous system when viewed as a whole
(e.g., spatially integrated BTCs).

Reply: Implemented. See Lines 63-79.

7. line 74 ‘anonymous’ | suppose anomalous.
Reply: Implemented. “anonymous” has been changed into “anomalous”. See Line 76.

8. line 86 ‘Some examples of weak heterogeneity include the Borden Site of Canada (Sudicky, 1988)’ this
is just one example, either add others or modify the sentence.

Reply: Implemented. The Borden Site of Canada (Sudicky, 1988) is one example of weak aquifer
heterogeneity. See Lines 104-105.

9. lines 89-96 ‘Second, for moderate or even strong heterogeneous media such as Cape Code site (Hess,
1989) or MADE site (Bohling et al., 2012), the analytical model developed under the homogeneity
assumption is also valuable, but in a statistical sense, as long as the media heterogeneity can be regarded
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as spatially stationary, meaning that the statistical structure of the media heterogeneity does not vary in
space. In this setting, the analytical model developed under the homogeneity assumption is used to
describe the (ensemble) average characteristics of an ensemble of heterogeneous media which are
statistically identical but individually different. In another word, such an analytical model will provide a
statistically average description of many realizations (an ensemble) which are similar to the heterogeneous
media of concern, but it cannot provide an exact description for the particular heterogeneous media under
investigation’ .... this made me think that the validation strategy based on the direct numerical simulations
is not valid: those simulations are considering directly an homogenous media (with deterministic properties)
and NOT the statistical average of the SWIW results across a set of Monte Carlo realizations of the
conductivity fields, characterized by either small, middle or large variance. Please clarify this point.

Reply: Implemented. See Lines 95-99.

The description of ‘Second, for moderate or even strong heterogeneous...” in the original manuscript has
been deleted.

Such assumptions might be oversimplified for cases in reality, while they are inevitable for the derivation of
the analytical solution, especially for the aquifer homogeneity. For a heterogeneity aquifer, the solution
presented here may be regarded as an ensemble-averaged approximation if the heterogeneity is spatially
stationary. If the heterogeneity is spatially non-stationary, then one can apply non-stationary stochastic
approach and/or Monte Carlo simulations to deal with the issue, which is out of the scope of this
investigation.

10. line 99 ‘A schematic diagram of the model investigated by this study is similar to Figure 1 of Wang and
Zhan (2013)’ please add this figure and incorporate what mentioned above in comment 5.

Reply: Implemented. A new figure has been added, See Figure 1.
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Figure 1: The schematic diagram of the SWPP test.

11. Eq.s (1)~(3) | didn’t quite understand the + notation: | would say that the fact that the velocity
component is pointing towards the well or in the opposite direction is in the value of (for example) va
considering (1), similar for the others velocity components in (2) and (3). | would say that the value of va
(and others advective velocities) varies as a function of the SWIW phase. If not va should be the module of
the advective component, no? Maybe | am wrong.

Reply: Implemented. Egs. (1) - (3) have been revised.

12. Eq. (12a) what's C0? (12d) there is a without subscript, what's that?
Reply: Implemented. See Lines 159-161.

¢ =2nr,6,,2B, (12d)
where h,, i ; is the wellbore water depth [L] in the injection phase, C, is concentration [ML-3] of prepared
tracer.

13. Eq.s (8)-(11) Highlight that in the imposition of the continuity of flux across the well and the formation
only the mobile fractions are considered, for who are not familiar with the MIM model?

Reply: Implemented. See Lines 152-154.



Egs. (8) - (11) indicate that the flux continuity across the interface between well and the formation is only
considered for the mobile continuum (or mobile domain).

14. ‘For instance, if the characteristic length of SWIW test is | and the aquifer hydraulic diffusivity is
D=Ka/Sa, where Ka are Sa are the radial hydraulic conductivity and specific storage, then the typical
characteristic time of unsteady state flow is around tc = I"2/2D. For instance, for a typical Ic=10 m, Ka=10
m/day and Sa=10-5 (m-1) (which are representative of an aquifer consisting of medium sands), the value of
tc is found to be 5x10°-5 day.” How do the authors determine the characteristic length Ic? In my experience
this length is typically a function of the aquifer diffusivity, e.g., for tidal fluctuations is idealized coastal
aquifer (e.g., homogeneous, infinite lateral extension) there is a proportionality of the kind Ic = sqrt(K/S)
(see e.g., Guarracino et al., 2012). Moreover, the proposed estimate of 10 m disagree with the results
presented in figures 2-3 where the solute travels up to 100 m, suggesting that the influence of the SWIW
test is at least reaching that distance. | am not entirely convinced about the fact that push-pull tests can be
seen as steady state tests and with the justification provided by the Authors, | leave to the Editor the
judgment here. Nevertheless, | agree on the need to simplify the (already complex) analysis choosing the
steady state!

Reply: Implemented. See Lines 178-190.

In the comment by reviewer: “In my experience this length is typically a function of the aquifer diffusivity,
e.g., for tidal fluctuations is idealized coastal aquifer (e.g., homogeneous, infinite lateral extension) there is
a proportionality of the kind Ic = sqrt(K/S) (see e.g., Guarracino et al., 2012)”, the formula of computing the
characteristic length Ic may be not right, since the dimension of sqrt(K/S) is L/sqrt(T), while the dimension
of Ic is L. By checking Guarracino et al. (2012), we found that authors employed “sqrt(K/(wS))” to calculate
the characteristic dampening distance, where w is tidal angular velocity (T-1).

This approximation is generally acceptable given the very limited spatial range of influence of most SWPP
tests. For instance, if the characteristic length of SWPP test is / and the aquifer hydraulic diffusivity is
D=K4/Sa, where K are S, are respectively the radial hydraulic conductivity and specific storage, then the
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typical characteristic time of unsteady-state flow is around t. = ;—D. The typical characteristic time refers to

the time of the flow changing from transient state to quasi-steady state, where the spatial distribution of flow
velocity does not change while the drawdown varies with time. This model is similar to the model used to
calculate the typical characteristic length of the tide-induced head fluctuation in a coastal aquifer system
(Guarracino et al., 2012). For Ks=1m/day, S-=10-m-" and /=10m (which are representative of an aquifer

consisting of medium sands), one has t, = % = 5.0 x 1073 day, which is a very small value. To test the
model in computing t., the numerical simulation has been conducted, where the other parameters used in
the model are the same as ones used in Figures 2 and 3. Figure S2 shows the flow is in quasi-steady state
when time is greater than ¢, since two curves of t =5.0 X 1073 day and ¢ =10.0 x 1073 day overlap.
As for the typical characteristic length, if the values of Ka, Sa, and B have been estimated by the pumping
tests before the SWPP test, it could be calculated by numerical modelling exercises using different

simulation times.

15. line 289, in the comparison against the numerical solution the porosity of the immobile region of the
aquifer is zero, why? There is also a general w =0, to which mass transfer makes it reference? Why zero?
Aren’t these choices limiting the testing of the proposed solution?



Reply: Implemented. We have revised it: 6;,,=0.05, and w=0.01d"". See Line 308.

16. lines 309-310 ‘As mentioned in Section 3.1, the new model is a generalization of many previous models,
and the conceptual model is more close to reality.” Again, too general. This novel solution could or not be
closer to reality depending on the specific case.

Reply: Implemented. See Lines 24-25, and Lines 277-283.

17. line 323 ‘To prioritize the sensitivity of parameters involved the new model’ an in is missing (i.e., ‘in the
new model’). Moreover, the sensitivity is not a property of the parameters (or model inputs), but it is of the
output with respect to the parameters. You want to quantify/evaluate the sensitivity of predictions with
respect to the diverse parameters. Sensitivity cannot be prioritized, it is what it is and it is dictated by the
way a model builds relationship between input(s) and output(s). Then you can prioritize the estimate of
those parameters that influence the most the output.

Reply: Implemented.
“in” has been added. See Line 3309.

To prioritize the sensitivity of predictions with respect to the diverse parameters involved in the new model,
a sensitivity analysis is conducted in Section 5.2. See Lines 354-372.

18. Eq. (29), the definition and explanation is quite obscure. The only clar thing is that it sensitivity is
grounded here on the concept of derivative. Then, what is ci? Moreover, the subscript i does not vary at all,
what is it? Why there is Ij before the derivative?. Furthermore, this equation implies (i) that only variation of
a single parameter at time are considered and (ii) it seems that the index associated with a parameter is
evaluated around only one value of that parameter. These features prevent the identification of non-
linearities and parameters interactions, which are quite likely to occur for the present model. The proposed
method is a quite restricted characterization of sensitivity to me, if the model is not expensive | would
suggest using a global sensitivity method: Sobol’ indices (see Sobol, 2001) or DELSA (see Rakovec et al.,
2014). On this point | leave the final decision to the Editor.

Reply: Implemented. See Lines 355-372.

The model of Eq. (29) in the original manuscript is for the local sensitivity analysis, and it has been deleted.
Instead, a global sensitivity analysis is conducted using the model of Morris (1991) to investigate the
importance of the input parameters on the output concentration.

19. lines 389-390 ‘The new model is most sensitive to the aquitard porosity and aquifer radial dispersivity’
the model results are... ‘after a comprehensive sensitivity analysis’ you discover the previous thing after
performing the sensitivity analysis, and it is not the latter that implies the former results; the sensitivity
analysis is just a way to quantify the former aspect. Moreover, | would avoid comprehensive, see comment
18.

Reply: Implemented. See Lines 354-372.

A global sensitivity analysis is conducted using the model of Morris (1991). The description of the sensitivity
is also revised.



If you have any further questions about this revision, please contact me.
Sincerely Yours,

Hongbin Zhan, PhD, PG. W 4\(\@%2)«9»«/\
Professor and

Holder of Endowed Dudley J. Hughes Chair in Geology and Geophysics
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Abstract.

The model of single-well push-pull (SWPP) test has been widely used to investigate reactive radial dispersion in remediation
or parameter estimation of the in sifu aquifers. Previous analytical solutions only focused on a completely isolated aquifer for
the SWPP test, excluding any influence of aquitards bounding the tested aquifer, and ignored the wellbore storage of the
chaser and rest phases in the SWPP test. Such simplification might be questionable in field applications when test durations
are relatively long, because solute transport in or out of the bounding aquitards is inevitable due to molecular diffusion and
cross-formational advective transport. Here, a new SWPP model is developed in an aquifer-aquitard system with wellbore
storage, and the analytical solution in the Laplace domain is derived. Four phases of the test are included: the injection phase,
the chaser phase, the rest phase and the extraction phase.-Fhe-Green’sfunctionmethod-is-employed-for-the selution-in-the
extractionphase: As the permeability of aquitard is much smaller than the permeability of the aquifer, the flow is assumed to
be perpendicular to the aquitard, thus only vertical dispersive and advective transports are considered for aquitard. The
validity of this treatment is tested against results grounded on numerical simulationstested—by—a—numerical-solation. The

global sensitivity analysis_indicates that the results of the SWPP test are largely sensitive (i.e., influenced by) to the

parameters of sensitivity-analysis-demonstrates-that-the-influenee-efporosity and radial dispersion of the aquifer, and-where
the influence of aquitard on results could not be ignored.-is—mere-sensitive-to-the-SWIHW-test-than-other parameters In the

injection phase, the larger radial dispersivity of the aquifer could result in the smaller values of breakthrough curves (BTCs),

while greater BTC values in the chaser and rest phases. In the extraction phase, it could lead to the smaller peak values of

BTCs. The new model of this study is a generalization of several previous studies, and it performs better than previous

studies ignoring the aquitard effect and wellbore storage for interpreting data of the field SWPP test reported by Yang et al.
(2014).

Keywords: Aquifer-aquitard system; Radial dispersion; Parameter estimation; Push-pull test
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1 Introduction

A single-well push-pull (SWPP) test could be applied for investigating aquifer properties related to reactive transport in
subsurface instead of the inter-well tracer test, due to its advantages of efficiency, low cost, and easy implementation. The
SWPP test is sometimes called the single-well injection-withdrawal test, or single-well huff-puff test, or single-well
injection-backflow test (Jung and Pruess, 2012). A complete SWPP test includes the injection, the chaser, the rest, and the
extraction phase. The second and third phases are generally ignored in the analytical solutions, but recommended in the field
applications, since they could increase the reaction time for the injected chemicals with the porous media (Phanikumar and

McGuire, 2010;Wang and Zhan, 2019).

Similar to other aquifer tests, the SWPP test is a forced-gradient groundwater tracer test, and analytical solutions are often
preferred to determine the in situ aquifer properties, due to the computational efficiency. Currently, many analytical models
were available for various scenarios of the SWPP tests (Gelhar and Collins, 1971; Huang et al., 2010; Chen et al., 2017;
Schroth and Istok, 2005; Wang et al., 2018). However, these studies were based on a common underlying assumption, that
the studied aquifer was isolated from adjacent aquitards. In another word, the aquitards bounding the aquifer are taken as two
completely impermeable barriers for solute transport. To date, numerous studies demonstrated that such an assumption might
cause errors for groundwater flow (Zlotnik and Zhan, 2005;Hantush, 1967), and for reactive transport (Zhan et al., 2009;
Chowdhury et al., 2017; Li et al., 2019). This is because even without any flow in the aquitards, molecular diffusion is
inevitable to occur when solute injected to the aquifer is close to the aquitard-aquifer interface. This is particularly true when
a fully penetrating well is used for injection, thus a portion of injected solute is very close to the aquitard-aquifer interface
and the SWPP test duration is relatively long so the effect of molecular diffusion can be materialized. Another important
point to note is that the materials of aquitard are usually clay and silt which have strong absorbing capability for chemicals
and great mass storage capacities (Chowdhury et al., 2017). To date, the influence of aquitard on reactive transport in
aquifers has attracted attentions for several decades. As for radial dispersion, Chen (1985), Wang and Zhan (2013) and Zhou
et al. (2017) presented analytical solutions for radial dispersion around an injection well in an aquifer-aquitard system.

However, these models only focus on the first phase of the SWPP test (injection).

Another assumption included in many previous models of radial dispersion is that the wellbore storage is ignored for the

solute transport._In_the injection phase of the SWPP test, the wellbore storage refers to the mixing processes between the

prepared tracer injected into the wellbore and original (or native) water in the wellbore. As a result of the wellbore storage,

the concentration inside the wellbore varies with time until reaching the same value as the injected concentration, as shown

in Figure 1(a). When ignoring it, the concentration inside the wellbore is constant during the entire inject phase, which is

certainly not true. Similarly, the wellbore storage in the chaser, rest and extraction phases refers to the_concentration

variation caused by mixing processes between the original solute in the wellbore and the tracer moving in or out the wellbore.
The examples of ignoring wellbore storage include Gelhar and Collins (1971), Chen (1985, 1987), Moench (1989), Chen et
al. (2007, 2012), Schroth et al. (2001), Tang and Babu (1979), Chen et al. (2017), Huang et al. (2010), Chen et al. (2012),

2
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inalmest-all previeusstudies-exeeptRecently, Wang et al. (2018) developed a two-phase (injection and extraction) model for

the SWPP test with specific considerations of the wellbore storage. In many field applications, the chaser and rest phases are

generally involved and the mixing effect also happens in these two phases in the SWPP test, which is-will be investigated in

this study.

Besides above-mentioned issues in previous studies, another issue is that the advection-dispersion equation (ADE) was used

to govern the reactive transport of SWPP tests (Gelhar and Collins,1971; Wang et al.; 2018; Jung and Pruess, 2012). The

validity of ADE was challenged by numerous laboratory and field experimental studies before, when using a single

representative value of advection, dispersion and reaction to characterize the whole system. In a hypothetical case, if great

details of heterogeneity are known, one may employ a sufficiently fine mesh to discretize the porous media of concern and

use ADE to capture anomalous transport characteristics fairly well (e.g. the early arrivals and/or heavy late-time tails of the

breakthrough curves (BTCs)). However, such a hypothetical case is rarely been materialized in real applications, especiall

for field-scale problems. To remedy the situation (at least in some degrees), the multi-rate mass transfer (MMT) model was

proposed as an alternative to interpret the data of SWPP test (Huang et al., 2010; Chen et al., 2017). In the MMT model, the

porous media is divided into many overlapping continuums (Haggerty et al., 2000;:Haggerty and Gorelick, 1995). A subset of

MMT is the two overlapping continuums or the mobile-immobile model (MIM) in which the mass transfer between two

domains (mobile and immobile) becomes a single parameter instead of a function. The MIM model can grasp most

characteristics of MMT and is mathematically simpler than MMT. Besides the MMT model, the continuous time random

walk (CTRW) model and the fractional advection-dispersion equation (FADE) model were also applied for anomalous

reactive transport in SWPP tests (Hansen et al., 2017; Chen et al., 2017). Due to the complexity of the mathematic models of

CTRW and FADE, it is very difficult, or even not possible to derive analytical solutions for those two models, although both

methods perform well in a numerical framework.

In this study, a new model of SWAWSWPP tests will be established by including both wellbore storage and the aquitard
effect under the MIM framework. The reason to choose MIM as the working framework is to capture the possible anomalous
anenymeus-transport characteristics that cannot be described by ADE but at the same time to make the analytical treatment
of the problem possible. Four stages of a SWIWSWPP test will be considered. The model of the wellbore storage will be
developed using a mass balance principle in the chaser and rest phases._It seems not difficult to solve this model of this study

using the numerical packages, like MODFLOW-MT3DMS, TOUGH and TOUGHREACT, FEFLOW, and so on. However,

the numerical solutions may cause errors in treating the wellbore storage, since the volume of the-water in the wellbore was

assumed to be constant (Wang et al., 2018), while in reality it changes with time and well discharge. Meanwhile, the

numerical errors (like numerical dispersion and numerical oscillation) have to be considered in solving the ADE equation,

especially for advection-dominated transport. In this study, analytical solution will be derived to facilitate the data
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interpretation. Due to the format of analytical solutions, it is much easier to couple such solutions with a proper optimization

algorithm (like genetic algorithm). The analytical solution could serve as a benchmark to test the numerical solutions as well.

2 Model statement of the SWIW.SWPP test

A single test well is assumed to fully penetrate an aquifer with uniform thickness. Both the aquifer and aquitards are

homogeneous and extend laterally to infinity. Linear sorption and first-order degradation are included in the mathematic

model of the SWPP test. Such assumptions might be oversimplified for cases in reality, while they are inevitable for the

derivation of the analytical solution, especially for the aquifer homogeneity. For a heterogeneity aquifer, the solution

presented here may be regarded as an ensemble-averaged approximation if the heterogeneity is spatially stationary. If the

heterogeneity is spatially non-stationary, then one can apply non-stationary stochastic approach and/or Monte Carlo

simulations to deal with the issue, which is out of the scope of this investigation.

The concept of homogeneity here deserves seme-clarification. First-dDespite the fact that the homogeneity assumption is
commonly used in developing analytical and numerical models of subsurface flow and transport, one should be aware that a
rigorous sense of homogeneity probably never exists in a real-world setting (unless the media are composed of idealized
glass balls as in some laboratory experiments). Therefore, the homogeneity concept here should be envisaged as a media

whose hydraulic parameters vary within relatively narrow ranges, or the so-called weak heterogeneity. The Borden site of

Canada (Sudicky, 1988) is one example of weak aquifer heterogeneity. Wang et al. (2018) employed a stochastic

medelingmodelling technique to test the assumption of homogeneity associated with the SWHMSWPP test, and found that

such an assumption could be used to approximate a heterogencous aquifer when the variance of spatial hydraulic

conductivity was small. S

A cylindrical coordinate system is employed in this study, and the origin is located at the well eentercentre, as shown in

Figure 1(c). The z-axis and the r-axis are vertical and horizontal, respectively. Figure 1 is a schematic diagram of the model

investigated by this studysimiarte-Figure - of Wangand Zhan (20433,
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2.1 Reactive transport model

Considering advective effect, dispersive effect and first-order chemical reaction in describing solute transport under the MIM
framework, the governing equations the SWAWSWPP test are:
9Cy, 0y 0 ( acm) aCp,

9mRm7 =5 \0r5 ) - Hmva? — wa(Cpy — Ci) — O i Cry

OimRim 22 = 0, (Co = Cim) — Oimbim Cim- T = Ti» (1b)
Bum o 2 = 0D, =08 — 0,10, 2851 — 0, (Com ~ Cotn) = Orumbaam Cumsz = B (2a)
BuimRuim "2 = @, (Cum = Cuim) = OuimbuimCuim- Z = B, (2b)
Hllem% = O Dy % = O Vim % — 0(Cyn = Ciim) = OumtimCim» 2 < =B, (3a)
O1im Ruim a?ém = 0(Cym = Cum) = BuimMiim Cuim» 2 < =B, (3b)

where subscripts ‘“‘u’’_and ‘‘I”’ refers to parameters in the upper and lower aquitards, respectively; subseript—1"+refersto

parameters-in-the lower aquitard:-subscripts ““m’’ and “im” refers to parameters in the mobile domain:subseript-im> refers
to-parameters-in-theand immobile domains, respectively:: Cp, and Cj,, are the concentrations [ML™] of the aquifer; C,,,,-and,

C, im-are-concentrations IME }-of the upperaguitard:, Cp,,, and C;,,, are concentrations [ML™] of the leweraquitards; 7 is the

time [T]; B is half of the aquifer thickness [L]; r is the radial distance [L]; z represents the vertical distance [L]; 7, is the
well radius [L]; D, is aquifer dispersion coefficient [L*T™']; D, and D; are vertical dispersion coefficients [L*T™'] of the upper

aquitard and lower aquitard, respectively; v, is-represents the average velocity [LT™] in the aquifer and v, = Z—a; Ug 1s
m

Darcian velocity [LT']; v, and v, are vertical velocities [LT"']_in the aquitards; fm, Lim» Hums Huim»> Him a0d [y, are

PpKd
2

. . . . K,
reaction rates; 8., , Oim > Gum s Ouim» Oum and 6y, are the porosities [dimensionless]; R, = 1 +%, Rm =1+ 0
m im

K, K K, . . . .
pel;r:’ Ryim =1+ pgbl—md and Ry, = 1+ ’;”—'d are the retardation factors [dimensionless]; K is

lim

PbKd’ le =1 +

Ouim

Rpm=1+

the equilibrium distribution coefficient [M'L*]; p,, is the bulk density [ML?]; w,, w, and w, are the first-order mass transfer

coefficients [T™].

The symbol of the advection term is positive in the extraction phase in above equations, while it is negative before that. The

dispersions are assumed to be linearly changing with the flow velocity, and one has:

D, = a,|v.| + Dy, (4a)
D, = ay|v,| + Dy, (4b)
Dl = Oll|171| + Dl*’ (4C)
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where a,., a, and a; are dispersivities -[L] of the aquifer, upper aquitard, and lower aquitard, respectively; Dy, D; and D; are

the diffusion coefficients [L*T™].

Initial conditions are:

Cn (1, Ole=o = Com (T, Dle=0 = Cum (7,2, D)lt=0 = Cuim (1,2, Ole=o = Cim (1,2, )| t=0 = Ciim (1, 2, D ¢=0 = 0,7 = 5,.,(5)
The boundary conditions at infinity are:

Cn (T, Olrsw = Cim (1 Dlrse = Cum (12,0250 = Cuim (7,2, ) 2500 = Cim (1,2, )| 15-00 = Ciim (7,2, )| 15— oo,

=0,r 21, (6)
Due to the concentration continuity at the aquifer-aquitard interface, one has:

Cpn(r,t) = Cyn(r,z = B, 1), (7a)
Cpn(r,t) = Cpp(r,z = —B, t). (7b)

The flux concentration continuity (FCC) is applied on the surface of wellbore, and one has:

ACy(1,t)
[Uacm(r: t) - arlval 137, ”r—r = [UaCinj,m(t)”T:TWa 0<t< tinja (8)
—'w
ACm (,t)
[‘UaCm(T, t) - arlval TS—T”r—r = [vaCcha,m(t)”T:rwa tinj <t< tchaa (9)
—'w
[Cm(r: t)]lr:rw = Cres,m(rw' t)a teha <t < tres, (10)
ACy(1,t)
[Uacm(r: t) — a,|vgl 1;_7’”1“—7’ = [UaCext,m(t)”T:rwa tres < U= toxes (11)
—'w

where tinj, tenas tres and Loy are the end moments [T] of the injection phase, the chaser phase, the rest phase and the
extraction phase, respectively; Cinjm(t), Congm(t), Cresm(t) and Coye m (t) represent the wellbore concentrations [ML?] of

tracer in the injection phase, the chaser phase, the rest phase and the extraction phase, respectively. Egs. (8) - (11) indicate

that the flux continuity across the interface between well and the formation is only considered for the mobile continuum (or

mobile domain).

The variation of the concentration with mixing effect in the injection phase could be described by (Wang et al., 2018):

dCin'.m
Vw,inj d—tj = _fva(rw)[cinj,m(t) - Co]a 0<t< tinja (12a)
Cinjm@®)],_, = 0,0 <t <ty (12b)
Viv,inj = 5 Ay inj» (12¢)
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& =2mr,0,,2B, (12d)

where h,, i ; is the wellbore water depth [L] in the injection phase, C_is concentration [ML"] of prepared tracer.-

As for the chaser phase, the models describing the concentration variation in the wellbore could be obtained using mass

balance principle:

dCcham
Vw,cha dht = _Sva(rw)[ccha,m(t)]s tinj <t =< tehas (13a)
Ccha,m(t)ltztinj = Cinj'm(t)|t=tinj’ tinj <t =< tchas (13b)
Vw,cha = T[rm% hw,chas (13c¢)

where h,, .4 is the wellbore water depth [L] in the chaser phase.

In the extraction phase, the boundary condition is (Wang et al., 2018):

dc dac,
Vw,ext tht'm rer = _farva(rw)%t'm =’ tres < US text, (14a)
=1y =
Cext,m(t)ltzt = Cres,m(t)|t=t s bres < U< oyt (14b)
res res
Vwext = T[rm%hw,ext: (14¢)

where h,, ., is the wellbore water depth [L] in the extraction phase.

2.2 Flow field model
The flow problem must be solved first before investigating the transport problem of the SWHWSWPP test. The velocity
involved in the advection and dispersion terms of the governing equations (1a) and (1b) is:

Q

471y, B0y,

Va () = 2T, 5)

where Q is the pumping rate [L’T"], and it is negative for injection and positive for pumping. The use of Eq. (15) implies
that quasi-steady state flow can be established very quickly near the injection/pumping well, thus the flow velocity becomes
independent of time. This approximation is generally acceptable given the very limited spatial range of influence of most

SWIW.SWPP tests. For instance, if the characteristic length of SWIWSWPP test is / and the aquifer hydraulic diffusivity is

D=K,/S,. where K, are S, are respectively the radial hydraulic conductivity and specific storage, then the typical

T . 12 . T .
characteristic time of unsteady-state flow is around t. = Py The typical characteristic time refers to the time of the flow

changing from transient state to quasi-steady state, where the spatial distribution of flow velocity does not change while the

drawdown varies with time. This model is similar to the model used to calculate the typical characteristic length of the tide-
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induced head fluctuation in a coastal aquifer system (Guarracino et al., 2012). For K,=1m/day. S,=10°m™" and /=10m (which

. . .. . 12 _ L
are representative of an aquifer consisting of medium sands), one has t, = = 5.0 X 1073 day, which is a very small value.

To test the model in computing t., the numerical simulation has been conducted, where the other parameters used in the

model are the same as ones used in Figures 2 and 3. Figure S2 shows the flow is in quasi-steady state when time is greater

than ¢, since two curves of t =5.0 x 1073 day and ¢t =10.0 x 1072 day overlap. As for the typical characteristic length, if

the values of the-K,, S,, and B have been estimated by the pumping tests before the SWPP test, it could be calculated by

numerical modelling exercises using different simulation times.
The water levels in the wellbore in Egs. (12) - (14) could be calculated by the models of Moench (1985):
hy = limeo{L7*[hy, ()]}, (16)

where p is Laplace transform variable; L™ represents the inverse Laplace transform; the over bar represents the Laplace-

domain variable, and

2[Ko (x)+xSwK1 (x)]

T _ __@Q
hw(p) =ho 87K B p{pWp[Ko (x)+xSyw K1 (x)]+xK; (x)} (7)
1
Wo = e (18)
X = (p;ﬁ)’ (19)
g = (y")?*m’coth(m’) + (y"")?m" coth(m"), (20)
1/2
, ()
m = — (21)
(SlBlp)l/Z
m' =S, (22)
%
L K, \1/2
V=T (ZKaBBu) ’ (23)
"o o__ Ki 1/2
o=t (ZKaBBl) ’ (24)

where K, and K; are hydraulic conductivities [LT™']; S, and S; are specific storages [L']; S, is the wellbore skin factor

[dimensionless]; B, and B, are thicknesses [L]; K, (-) and K; (+) are the modified Bessel functions.



3 New solution of reactive transport in the SWPP test

In this study, the Laplace transform and Green’s function methods will be employed to derive the analytical solution of the

. . . . . C o
225 new SWPP test models described in Section 2. The dimensionless parameters are defined as follows: C,,,p = C—m, Cimp = %,
0 0
_ Cinj,m _ Cinj.im _ Ccha,m _ Ccha,im _ Cres,m _ Cres,im _
Cinj,mD - C 5 Cinj,imD - C 5 Ccha,mD - C 5 Ccha,imD - C 5 Cres,mD - C 5 Cres,imD - C 5 Cext,mD -
0 0 0 0 0 0
Cextm Cext,im Cum Cuim Cim Clim |A] r w
2 C : = 2 C. = _C.. =um = C = — =—gtt. 1y =—. 1 = —.Zn = —
Co ext,imD o umbD Co uimbD Co ’ ImD Co ’ limD Co ’ D a%Rm > I'D a’ wD a’ D B’
— afum . — aZRmbim — afuum . — aZRinbluim — auim . — aZRmiiim and 4 = Q The
HUmp > Himp Rimd Hump 2> Huimp Rimd Himbp 2 Himp RimA 4nBO,
detailed derivation of the new solution is listed in Section S1 of Supplementary Materials.
230 3.1 Solutions in Laplace domain
As for the injection phase of the SWPP test, the solutions in Laplace domain are:
~ _ Yinj 1/3
Crnp (1, S) = ¢y €xp (_2 )Ai(E / Yinj), Tp = Typ, (25a)
_ & _
Cimp = ——2——Cpp,1p =1 25b
imD (s+Mimp+Eim) mD> "D = "wD> ( )
Cump = Cnpexp(azzp — a,),zp 2 1, (25¢)
_ e _
235 Cuimp = ——2——C zp =1 25d
uimbD S+Eyim+Huimb umbD> 4D > ( )
Cimp = Cnpexp(bizp + by), zp < —1, (25¢)
~ _ Elim ~
ClimD - ClmDa Zp < _17 (25D

St+elim*tHiimp

where s represents the Laplace transform parameter for ¢, (which is proportional to p); 4;(+) is the Airy function A;(*) is the
derivative of the Airy function; the expressions for a;, by, E, Yinj, Yinjws Ems Eim»> Eum> Euim> Em> Eiim»> Binj and ¢, are

240 listed in Table 1.

In the chaser phase, the solutions of the SWPP test in Laplace domain are:

Crnp = ¥ (1) + 81 + 831, 1p = Typ, (26a)
o= Eim = Cimp(TD.tinjp) o> (26b)
D (stpimp+eim) P (stuimpreg) P T WD
¥ (1o, Eaim) = [, 9, Eas ) @(m)di, Ty 2 Tiyp, (26¢)
~ o Zp—Zep
245 Cymp = fl 9u(zp, Eus ) fu(n)dny + 1—Zop Conp (1D, 8), 2p = 1, (26d)
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5 Sui 5 Cuimp(TD.2DtinjD)
Cyuimp = L umbD ! zp 21, (26¢)
SteyimtHuimbp SteyimtHuimbD

~ —00 ZeptZp &

Comp = I, 91(2p, E;;my) f(n)dm, + ﬁCmD(TD:ZD'S), zp = —1, (261)
— : — Cyi (T'D,ZD,C' 'D)

Ciimp = ———C e P2 7y < -1 26
HmD ™ st epim+ittimp P StemtHiimD - ’ (26¢)

where 1 varies between 1,,, and o, e.g. 1,p, <1 < ; 1, varies between 1 and o ; 1; varies between —1 and —oo;
Cmp (rD, tin ]-_D) and Cipnp (rD, tin ]-,D) are the concentrations [ML] of the aquifer at the end of injection stage, which could be
calculated by Eq. (25a) and Eq. (25b) after applying the inverse Laplace transform, Cy,p (rD,zD, tin]-_D) and
Cuimp (rD, Zp, tcha_D) represent the concentrations [ML™] of the upper aquitard at the end of the injection phase, which could
be calculated by Eq. (25¢) and Eq. (25d) after applying the inverse Laplace transform, Cjp (rD,ZD, tin j‘D) and
Ciimp (rD,ZD, tin j,D) are the concentrations [ML™] of the lower aquitard at the end of the injection phase, which could be
calculated by Eq. (25¢) and Eq. (25f) after applying the inverse Laplace transform, g(1p, Eq; 1), 9u(Zp, Ey; hy) and
9:1(zp, E;; ;) are the Green's functions; the expressions for g(rp, E4; 1), 9u(Zp, Ewi 1w)s 9120, E; M), 81, 82, 81, 82, Eq, Ey,
El, Yenas Yenaws Fs @), fu(1), X, My, My, M3, My, Ny, No, N3, Ny, 71, 55, T3, T, and fpg,p are listed in Table 2.

For the rest phase, the solutions of the SWPP test in Laplace domain are:

smcimD(rD'tcha,D)
(s+4imp+&im)
EméEim )
StiimptEim

Cmbp(Ditcha, D)+

Cnp = > 2 Twp, (272)

(S+Sm+[tmD—

= C; rp,t £imC;
CimD — LmD( cha,D) + imbtlmbD T > T (27b)
(s+uimp+eim) (s+uimp+eim)

sumcuimD(rD'ZD'tcha,D)

StéyimtHuimbD

Eumeuim ) »Zp = 1a (270)
Stéyim*HuimbD

_ CumD(TD‘ZDrtcha,D) t
umbD =

(5"' EumtUumD—

Eui ~ Cuimp\"D.ZD,tcha,D
Cutmp = =40, + Cuimp(0Dlehan) ) g 27d)
SteyimtHumbD S+eyimtHumbD

EmClimD (TD'ZD'tcha,D)

Stéim+HimbD _
T R zp < —1, (27¢)
Steim*himD

Cimp(TD.ZD.tcha,p)*

ClmD =
(5+Slm+lilmD_

~ Eli ~ Climp("D.2D,tcha,D
Ciomp = =2 ,,,, + CimpUDZplenan) oy, 271)
Steim+tHimbp S+Eim+UimD

where Cp,p (rD, tcha‘D) and Cimp (rD, tch,w) are the concentrations [ML] of the aquifer at the end of the chaser phase, which

could be calculated by Eq. (26a) and Eq. (26b) after applying the inverse Laplace transform, C,,,p (rD,ZD,tcha‘D) and

10
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Cuimp (rD,zD,tcha_D) are the concentrations [ML™] of the upper aquitard at the end of the chaser phase, which could be
computed by Eq. (26d) and Eq. (26e) after applying the inverse Laplace transform, Cj,p (rD,zD,tcha_D) and

Ciimp (rD:ZD:tcha,D) are the concentrations [ML™] of the lower aquitard at the end of the chaser phase, which could be

calculated by Eq. (26f) and Eq. (26g) after applying the inverse Laplace transform.

As for the extraction phase of the SWPP test, the solutions in Laplace domain are:

Conp (1, 8) = exp(—1p/2)[U(1p, $ €) + 01 + 03151, 1 = Ty, (28a)
~ — gim ~ Cimp(rp.res)

CimD - (s+timp+€im) CmD + s+iimp+eim’ "> = Twp: (28b)

U, Gie) = [ g0, G3€) f(e)de, (28¢)
umD f gu(ZD: Eu"&u) fu(& )d’& + b= Z;D C D(rD:S)s Zp 2 la (28d)
~ _ EuimCum CuimD(TDrZvares,D)

CuimD - SteyimtHuimbp + SteyimtHuimbp “p = 1, (286)

Cimp = I, 91z, i 80) fi(8) Ay + 2222 Cop (1, 5), 2p < 1, (280)
~ _ £1imCimbD ClimD(TDrZvares,D) _

Ciimp = S+Elim*tUiimD S+Elim*+HUiimD Zp = -L (282)

where Cy,,p (rD, treS,D) and Cipp (rD, tres,D) are the concentrations [ML™] of the aquifer at the end of the rest phase, which
could be calculated by Eq. (27a) and Eq. (27b) after applying the inverse Laplace transform, C,.,p (rD,ZD,treS_D) and
Cuimp (rD,zD,tres_D) are the concentrations [ML™] of the upper aquitard at the end of the rest phase, which could be
calculated by Eq. (27c¢) and Eq. (27d) after applying the inverse Laplace transform, Cj,p (rD,ZD, tres,D) and
Ciimp (rD:ZD:tres,D) are the concentrations [ML™] of the lower aquitard at the end of the rest phase, which could be
calculated by Eq. (27¢) and Eq. (27f) after applying the inverse Laplace transform; &, varies between 1 and oo; £, varies
between —1 and —oo; ¢ varies between 1;,p and o (e.g. 1,p < € < ); g(1p, {; €), gu(zp, Ey; 4,) and g;(zp, E;; &) are the
Green's functions; the expressions for g(rp, {; €), 9u(Zp, Ey; 62, 9:(Zp, E;; 41), 01, 05, A, T, f(€), fu(8), fi(61), H~H,,

Ii~Iy, my~my, ny~Ny, Pi~Py, W, Yort, Yextw and Beye p are listed in Table 3.

3.2 Solutions from Laplace domain to real-time domain

Because the analytical solutions in Laplace domain are too complex, it seems impossible to transform it into the real time
domain analytically. Alternatively, a numerical method will be introduced for the invers Laplace transform. Currently,

several methods are available, like the Stehfest model, Zakian model, Fourier series model, de Hoog model, and Schapery

11
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model (Wang and Zhan, 2015). Here, the de Hoog method will be applied to conduct the inverse Laplace transform, since it

performed well for radial-dispersion problems (Wang et al., 2018;Wang and Zhan, 2013).

3.3 Assumptions included in the new SWPP test model

The new SWPP test model is a generalization of several previous studies; for instance, the new solution reduces to the

solution of Gelhar and Collins (1971) when w, = wy = w; = Dy = Dy = Uy = Vi = Vipinj =V, 40 = Vwext = tena =

tres = 0 and-, to the solution of Chen et al. (2017) when w,, = w; = Dy = D; = Yy = Vimy = Viinj =V, e = Vwext = 0s

and Wang et al., (2018) when w, = w, = w; = D, = D; = Vypy, = Uy = tepg = tres = 0. “tepa = tres = 07 represents the

four-phase SWPP test becomes the two-phase SWPP test, where the chaser and rest phases are excluded. Actually, all values

iwaﬁ Wy, Wi, Dus Dls Vum> Vim» Vw,injs 4

w cha »-20d Vy, orr are not zero in the reality, which have been considered in the new

solutions of this study.

However, three assumptions still remain. First, the flow is in the quasi-steady state flow, e.g. Eq. (15). Second, the
groundwater flow is horizontal in the aquifer, and is vertical in the aquitard. This treatment relies on the basis that the
permeability of the aquitard is smaller than the permeability of the aquifer (Moench, 1985). Third, the model is simplified for
the solute transport. For example, only vertical dispersion and advection effects are considered in the aquitard, and only
radial dispersion and advection effects are considered in the aquifer. The validation of these assumptions will be discussed in

the Section 4.2.

4 Verification of the new model

In this section, the newly derived analytical solutions will be tested from two aspects. Firstly, the new solution of this study

could reduce to previous solutions under special cases, as the model established in this study is an extension of previous ones,

and comparisons between them will be shown in Section 4.1. Secondly, although some assumptions included in previous

models have been relaxed in the new model, some other processes of the reactive transport in the SWPP test have to be

simplified in analytical solutions. Assumptions included in the new model have been discussed and their applicability is

elaborated in Section 4.2.

4.1 Test of the new solution with previous solutions

To test the new solutions, the model of Chen et al. (2017) serves as a benchmark, who ignored the aquitard effect and
wellbore storage in the SWHWSWPP test. Figure 2 shows the comparison of BTCs between them, and the-parameters used in
such a comparison are: R, = R;;, = Rym = Ryim = Run = Riim =1, Oym = 0;,=0.1, o, = oy, = a;=0.1m, p,, = i =
Hum = Huim = tim = Him=107°d", 1, =0.2m, Q;,;=2.5 m'/d, Qzpg=2.5 m'/d, Ques=0 m’/d, Quy=-2.5 m’/d, t;,;=100day,
teng=50day, t,.,=40day, B=5 m, 6,,=0.3, 0,,=0.15, 0,;;, = 6;;;n=0.—1, and w=0.001 d’'. ThepParameters of “Ry,inj =
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hw.cha = hwres = Py exe =07 tepresent V,,, i =0,V cpq =0 and V, o, =0, and imply that the-wellbore storage is neglected.
The values of v,,;,=v;,,=0 m/d mean that aquitards are neglected. As shown in Figure 42, both solutions agree well for the

mobile and immobile domains.

4.2 Test of assumptions involved in the analytical solution

To test the—three assumptions outlined in Section 3.3, a numerical model will be established, where general three-
dimensional transient flow and solute transport are considered in both aquifer and aquitards. A finite-element method with
the help of COMSOL Multiphysics will be used to solve the three-dimensional model. The grid system is shown in Section
S2 of Supplementary Materials.

In this study, four sets of aquitard hydraulic conductivities are employed, such as K, =K;=0.1K,, K,=K;=0.02K, ,
K,,=K;=0.01K,, and K,,=K;=0.001K,. A point to note is that the extreme case of K,,=K;=0.1K, used here is only for the
purpose of examining the robustness of comparison, while the real values of K, and K, are usually much lower than 0.1K,. In

another word, the rest three cases mentioned above are more likely to occur in real applications.

The initial drawdown and the initial concentration are 0 for aquifer and aquitards. The hydraulic parameters are: K,=0.1
m/day, S,=S,= 5,=10* m™, and the other parameters are R,, = Rim = Rym = Ruim = Rim = Riim=1, Oum = O = 0.1,
ay = 2.5m, ay = a; = 0.5m, fy, = i = Hum = Huim = Him = Him=10"s", 7, =0.5m, Qinj=Wcha =50 m’/d, Q,s=0 m’/d,
Qoxt=-50 m*/d, t;, ;=250day, tpq=50day, t,.s=50day, B=10m, 0,,=0.325, 6,,,=0.005, and w=00.01-d™". The comparison of

concentration between the analytical and numerical solutions is shown in Figures— 2-3 and 34.

As the first assumption in Section 3.3 has been elaborated in Section 2.2, the following discussion will only focus on the
second and third assumptions. Figures- 2a3(a), 2b-3(b) and 2e-3(c) represent the snapshots of concentration distributions in
the aquifer along the r-axis at different times. One may conclude that the-curves with smaller K, and K; values are closer to
the analytical solution. This is because aquitards with smaller K,, and K; (when K, &, remains constant) could make flow
closer to the horizontal direction (or parallel with the aquitard-aquifer interface) in the aquifer and closer to the vertical
direction (or perpendicular with the aquitard-aquifer interface) in the aquitard, according to the law of refraction (Fetter,
2018). In another word, when the values of K, /K, and K; /K, are-approach 0, the flow direction becomes horizontal in the
aquifer and vertical in the aquitard, and then the numerical model reduces to the analytical model. Therefore, from this figure,
one may conclude that the above-mentioned second assumption in Section 3.3 works well in the aquifer when K,,/K,, and

K, /K, are samller then 0.01.

Figure- 34 shows the comparison of the analytical and numerical solutions for aquitards. Figs-ures 3-4(al) - (cl) represent the
snapshots of concentration distributions obtained from analytical solutions of this study at different times, and Figs-ures 3
4(a2) - (c2) represent the snapshots of concentration distributions obtained from the numerical solutions—at-the-same-time.

One may find that the contour maps obtained from both solutions are almost the same in the aquifer, but very different in the
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aquitards. Therefore, the above-mentioned third assumption in Section 3.3 is generally unacceptable in describing solute

transport in the aquitard in the SWHFWSWPP test, but works well when the aquifer is of the primary concern.

5 Discussions
5.1 Model applications

As mentioned in Section 3.43, the new model is a generalization of many previous models, and the conceptual model is more
close to reality.-_However, there are many parameters involved in this new model that have to be determined first for
applying this model. For instance, the involved parameters for the aquitards include dispersivity (,, and «;), first-order mass
transfer coefficient (w, and w;), retardation factor (R, Ryim»> Rim, and Ryiy,), porosity (Bym, Ouim, Oum and 6y;,,), reaction
rate (Uyms Huim» Lim and Wm), and velocity (v, and vy,,). The involved parameters for the aquifer include «,-, w,, Ry, Rim»
Om, Bim, and B. Generally, these parameters could_not be measured directly. Otherwise, they eeuld-have to be obtained by

fitting the experimental data using the forward model.

Parameter estimation is an inverse problem, and it is generally conducted by an optimization model, such as genetic
algorithm, simulated annealing, and so on. Due to the ill-posedness of many inverse problems or insufficient observation
data, the initial guess values of unknown parameters of interest are critical for finding the best values or real values of those
parameters in the optimization model. Here, we recommend using values of parameters from literatures as the initial guesses
for similar lithology. Table 4 lists some parameter values for sandy and clay aquifers in previous studies. When result is not
sensitive to a particular parameter of concern, the value from previous publications for similar lithology and/or situations
could be taken as estimated value of that parameter, if there is no direct measurement of that particular parameter of concern.

To prioritize the sensitivity of predictions with respect to the diverse parameters involved in the new model, a global

sensitivity analysis is conducted in Section 5.2.

5.2 A _global sensitivity analysis

From the analytical solutions of Egs. (26) - (28), one may find that BTCs are affected by several parameters, like &, Vym.

Oum. w, &, By and V,,. As a;, vy, 0y, _have the similar effect on the results with a,,, V. 8,m. they have been excluded in

the following analysis. In this section, a global sensitivity analysis is conducted using the model of Morris (1991), which is a

one-step-at-a-time method. Morris (1991) employed y;,_and oy to represent the importance of the input parameters on the

output concentration_and they could be computed by (Morris, 1991 and Lin et al., 2019):

Hi = £1(|EE11<|/M):k =12,N, (29a)

o = \/iz{”:l(EE}{ )k =12, N, (29b)
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where M is the total sampling number, assuming that the range of parameter value is divided to M intervals; N is the total

parameter number of interest, and it is 7 in this study; & is the £ parameter. In this study, M = 50;

CmD(Pl'PZ!“"Pk + lA""!PN) - CmD(Pl'PZ!“'lPk!“"PN)

EEL = A

where P, is the random value of the /™ parameter in the range of (Pi,O'Pi,lim)i P;oand P; ;;,,, are the smallest and largest

values of P;, as shown in Table S1; A is a small increment defined as 1/( M — 1).

A larger p;,_means a higher sensitive effect of the . parameter on the output, and a larger o} _represents that the K" parameter

has a greater interaction effect with others. Figures 5(a) and 5(b) represent the variation of y;,_and oj,_with time in the

wellbore, respectively. The values of y, are greater for a, and_0,, than for the others, as shown in Figures 5(a), indicating

that the influence of 6,,, and «,-_on the results is more obvious than others. However, the values of o is large for ., 0,,,,.

Ay, 0, and V,,, demonstrating that the interactions of these parameters_with others are strong; namely, the influence of them

on results also could not be ignored.

5.3 Effect of the aquitard

As shown in Section 4.2, the new analytical solution is a good approximation for the numerical model in the aquifer when
K, /K, and K; /K, are smaller thenthan 0.01. In this section, we try to figure out how the aquitards will affect BTCs of the
SWPP tests. Since the porosity is an important factor of concern, three sets of porosity values are used for the aquitards:

Oum = O =0, 0.1, and 0.25. The other parameters are from the case in Figure 4.

Figure 6 shows the difference between the models with and without aquitards for different flow velocities in the aquitard.
The case of 6, = 6;,,, = 0 represents the model without the aquitard. The difference is not obvious at the beginning of the
extraction phase, while such a difference is obvious at the late time. Meanwhile, the smaller aquitard porosity makes the
value of BTCs in the aquifer greater at a given time. When the aquitard is ignored, the values of BTCs are the greatest.

Therefore, the aquitard effect on transport in the aquifer is quite obvious and should not be ignored in general.

5.4 Effect of the aquifer radial dispersion

Another important parameter is the radial dispersion in the aquifer. In this section, three sets of the radial dispersivity values

will be used to analyse the influence: a,, =1.25m, 2.50m, and 5.00m.

Figure 7 shows BTCs in the well face for different radial dispersivity values. Firstly, the difference is obvious among curves
in all phases. Secondly, a larger a, could decrease BTCs at a given time of the injection phase. This could be explained by
the boundary condition of Eq. (8). The solute in the mobile domain of the aquifer is transported by both advection and
dispersion, thus a larger a, could lower the values of C,, in the well face. Thirdly, BTCs increase with increasing «, values

in the chaser and rest phases. Fourthly, the peak values of BTCs decrease with increasing a, values.
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6 Data interpretation: Field SWPP test

To test the performance of the new model, the field data reported in Chen et al. (2017) will be employed. Specifically, the
experimental data of S1 conducted in the borehole TW3 will be analysed. The reason choosing this dataset is because this
borehole penetrated several layers, and it had been interpreted by Chen et al. (2017) before (using a model without
considering the aquitard effect and the wellbore storage).  The physical parameters of the SWPP test are r, =0.1m,

Qinj=Qcha =7.78L/min, Qyes=0 L/min, Q¢y =12 L/min, t;,;=180min, t.,=26.74min, t,,;=10080min, B=4m. The other

Detatled-information of experimental data could be seen in the references of Assayag et al. (2009) and Yang et al. (2014).

Fig—ure 8(%#a) shows the fitness of the computed and observed BTCs. The estimated parameters are:_6,,,,=0.05, 6,,,=0.0,
0, =0.1, 6;1,=0.068, a;, = 0.5m, @, = 0.35m, @;=0.0m, Ry = Ryyp = Rym = Ruim = Rim = Rum =1, U = Mim = tum =
Uuim = Mim = Miim=107s"", and w=0.001d"", and hw,inj = hw.cha =32m, hy, ros=30m, hy, o, =28m. Apparently, the fitness
by the new solution is better than the model of Chen et al. (2017). As for the error between the observed and computed BTCs,

the new solution is also smaller than that of Chen et al. (2017) as well, where the error is defined as
Error = Ziv:l(COBS — Ccom)?, (30)
where Cpgs and Ccop are the observed and computed concentrations, respectively, and N is the number of sampling points.

How accurate these parameters estimated by best fitting the observed data are in representative of the real aquifer will be

discussed as following. The values of retardation factor and reaction rate demonstrate that the chemical reaction and sorption

are weak for the tracer of KBr in the SWPP test. It is not surprising since KBr is commonly treated as a “conservative” tracer.

The porosity of the real aquifer ranges from 0.01 to 0.1, according to the well log analysis (Yang et al., 2014), where the

estimated values are located. The estimated porosity represents the average values of the aquifer and aquitards. The

estimated dispersivity of the aquifer is 0.7134m by Chen et al. (2017), which is similar with ours. The values of water level

in the test could be observed directly; however, these data are not available, and they have to be estimated in this study. To

evaluate the uncertainty in the estimated parameters, the sensitivity of the dispersivity on BTCs is analysed, as shown in

Figures 8(b). One may conclude that the estimated values of this study seem to be representative of the reality, since Error

is smallest for . = 0.5m.

7 Summary and conclusions

The single-well Push-Pull (SWPP) test could be applied to estimate the dispersivity, porosity, chemical reaction rates of the
in situ aquifers. However, previous studies mainly focused on an isolated aquifer, excluding all the possible effect of
aquitards bounding the aquifer. In another word, the adjacent layers are assumed to be non-permeable, which is not exactly
true in reality. In this study, a new analytical model is established and its associate solutions derived to inspect the effect of

overlying and underlying aquitards. Meanwhile, four stages are considered in the new model with wellbore storage,
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including the injection phase, the chaser phase, the rest phase and the extraction phase. The anomalous behaviours of

reactive transport in the test were described by a mobile-immobile framework.

To derive the analytical solution of the new model, some assumptions are inevitable. For instance, only vertical advection
and dispersion are considered in the aquitard and only horizontal advection and dispersion are considered in the aquifer, and
the flow is quasi-steady state. Although these assumptions have been widely used to describe the radial dispersion in
previous studies, the influences on reactive transport have not been discussed in a rigorous sense before. In this study,
numerical modelling exercises will be introduced to test the above-mentioned assumptions of the new model. Based on this

study, the several conclusions could be obtained.
1. A new model of the SWPP test is a generalizing of many previous models by considering the aquitard effect, the wellbore

storage, and the mass transfer rate in both aquifer and aquitards. The sub-model of the wellbore storage is developed.

2. Assumption of vertical advection and dispersion on the aquitard and horizontal advection and dispersion in the aquifer is
tested by specially designed finite-element numerical models using COMSOL, and the result shows that this assumption is
acceptable when the aquifer is of primary concern, provided that the ratios of the aquitard/aquifer permeability are less than
0.01; while such an assumption is generally unacceptable when the aquitards are of concern, regardless of the ratios of the

aquitard/aquifer permeability.

3. The new model is mest-more sensitive to «,- and_6,, after a comprehensive-global sensitivity analysis, and the values of

oy, is large for ay,, 0, @, 0,, and V,,,, demonstrating that the influence of aquitard on results could not be ignored.

4. The performance of the new model is better than previous models of excluding the aquitard effect and the wellbore

storage in terms of best fitting exercises with field data reported in Chen et al. (2017).
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Table 1. Expressions of the coefficients in the solutions expressed in Egs.(25a) - (25f).
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Table 2. Expressions of the coefficients in the solutions expressed in Eqs.(26a) - (26g).
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EumEuim
+ + —
Eu ° Fum 7 Humb s+ Euim + Hyimbp
EmElim
S+ &, + -
& tm 7 Hmb Eim T Hiimp
& C; D(T'D,tin-)
F C b + mbim j
me (rD ml,D) s+ Uimp + €im
o) Fn = [8, + nE4 (8, + 6,1)]
C (T‘ to ) n Eum Cuimp (rD' Nu, tinj,D) _ Rmvuma’ﬁ
fu(nu) umDATD» fhus Einj.0 S+ Eyim T Huimp ABRum 2
- Eu(51 + 5277u)
C (r to ) n 5lmClimD(rD,771, tinj,p) Ry Vima? C_‘mD
mp\"p, N inj,D S + Elim + LiimD ABle Zop — 1
fi(m)
_ C.— E Zep + m
mD*™1 Zop — 1
Ych 1 YVeh 1
gl(rD: Ea; 77) = Tlexp( Cza)Ai (Ea3ycha) + TZ exp ( Cza) Bi (Ea3YCha) TwbD < ]
g(er Ea; n) ycha 1 yCha l
92(rp, Easm) = Tzexp(— )4 (Ea3ycha) + Ty exp (T) B; (Ea3ycha) n<y,

9u(p, Ey;my)

u1(Zp, Ey;my) = Niexp(aqzp) + Nyexp(azzp)- 1 < zp <1y
9uz(Zp, Ey;my) = N3exp(aizp) + Nyexp(azp)-ny, < zp <
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91(zp, E;;mp)

Ju1(@Zp, E;; ) = Myexp(bizp) + Myexp(byzp)- — 1< zp, <
uz(Zp, E;;ny) = Mzexp(bizp) + Myexp(byzp)- n < zp < —©

M; —Myexp(b, — b,)
" —AB?R,,

’ R a2Dy[exp(b,n, — bymy) — byexp(b,ny)]
M; Myexp(b,n; — byn) — Myexp(by — by)
M, 0
Ny —N,exp(a, — aq)

N —ABZRum

2 Rma?Dy[(a; — az)exp(a; — a;)exp(ain,)]
N, 0
N, N,—N,exp(a, — a)exp(ainy, — azny)

1 /
¥ fBi (Eal/Sycha,w) - Eal/gBi (Ea1/33/cha,w)
1 '
fAi(Eal/SYCha,w) - Eal/gAi(Eal/SYCha,w)
Tl _T[Ai(yexter=n+)X
E1/3
T ”Ai(yexter:an)
2 E 173
a
”Ai(yexter:an) Bi()’exter:n’r)
‘7;3 1/3 - X
Ea Ai(yexter:n+)
T 0
1
Ycha p + AE
a
1
YCha,w TwD + E

a

35




Table 3. Expressions of the coefficients in the solutions expressed in Eqs.(28a) - (28g).

Em CimD (rD' tres)

A C ,t +
mp (T, tres) S+ timp + €
,8 _ Vw,exter
ext,D mear
Eimém Bum 0.’7% Vum elm 0.’7% Vim
+em + - - +
. S Em T M e 246,B | 24B%6,,
1 Gum arz Du 1 glm a? Dl
1—z,p 2460,b ' z,, —12Ab20,,
1
f(e) exp(e/2)eA — (s( + Z) (01 + 0,8)
Eum CuimD (TD' ’&ul tres,D) Rmvumag EmD (rD' S)
Cump (rD:'&w tres,D) + + _
s+ Euim + Huimbp ABRum 1 ZeD
fu(8)
1— Zep umD\'D»
C (T bt ) + glmClimD (rD:’&l: tres,D) _ Rmvlma’r2 EmD (TD. S)
mpATDy T TresD s+ Elim + Hiimp ABle Zep — 1
fi(6)
_ M E,C..p(1p,5)
Zop — 1 L1“mD\'D»
. 910,85 €) = PLA;(Vext) + PoBi(Vext)——— Twp < Vext < €
9o, $€) [€) = PA, PyBi (Vext)————— <
gZ(rD'(' S) — 13 L(yext) + 4 l(yext) €= Yext <o

gu(ZD: Ey;4)

9u1(Zp, Ey; &) = Hyexp(myzp) + Hyexp(myzp)--1<zp < b,
Guz(Zp, Ey; &) = Hzexp(myzp) + Haexp(myzp)- by < zp <

9 (@p, Ep; 61) = Lexp(nyzp) + Lexp(npzp)- — 1 < zp < 4

91z, B #1) 9i2(2p, Ei; ) = Izexp(n,zp) + lyexp(nyzp)- by < zp < —o
Hy —Hjexp(m; —my)
H, —AR,,,B?
Ry a?Dy[(my —my)exp(m, — my)exp(m, b))
H; 0
Hy H, — Hyexp(m, — my)exp(my by, — myby)
I —lLexp(n, —ny)
I, —AB?R,,,
Rya?Di[exp(ny by — nyby) — npexp(ny6:)]
I3 Lexp(ny by — nyby) — Lexp(ng —ny)
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2
_ RinVum @7 (Rmvumarg) Rpna?Dy, _ EumEuim
mq ABRym i ABRym * 4ABZRum (S * Eum + famp S+ pyimp + 5uim)
5 R,a?D,
AB%R,,
- RinVum@? _ (Rmvumarg)z + 4Rma3Du (S +e + _ EumEuim )
m, ABR,,, ABRym ABZR,,, um D T S i + S
5 R,a?D,
AB%R,m,
Rmvlm%g + (Rmvlmoﬁg)2 4_Rma1%Dl (S +emtu _ EimElim )
7’11 ABle ABle ABlem lm lmD s+ Hiimbp + Elim
RmafDl
AB?Ry,
RV a2 (Rmvlmarz)z R, a?D, E1mEli
Rubiat; _ aRpD( L e )
n, ABRim, ABRym, AB7 Ry \* 7 Em T D T Sy + Erim
) R,azD,
AB?R,
p ”Ai(yexter:st) w
1 - QB
p T[Ai(yexter=£+)
2 IS
p ”Ai(yexter:st) [Bi(Yexter:s’r)
5 -
{1/3 Ai(yexter:s+)
P, 0
1 1/3 1
W S,Bext,D + j Bi(yext,w) - ( Bi (yext,w)
1
(Sﬁext,D + f) Ai(yext,w) - {1/3Ag(yext,w)
1
YVext {1/3 (rD + 4__{)
1
Yext,w {1/3 (er + 4_{)
Bext,pex0(Twp/2)Cmp (TwD: tres,D)
01 - o Tp—00

(Sﬁext,D + %) Twp —1— (Sﬁext,D + %) rDer—mo
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Bext,pexP(Twp/2)Cmp (TwD: tres,D)

(Sﬁext,D + %) Twp —1— (Sﬁext,D + %) rDer—wo

Table 4. A partial list of parameters from literatures.

Fine sand Medium sand Course sand Clay
Retardation factor [-] 1.20-4.76™ 11.40-13.24" 1.10-7.30 6.98!
Dispersivity [cm] 0.15-0.21™ 0.20-9.00™ 3.2-38.6 13.801"
First-order = mass  transfer

0.15-0.401¢ 0.501¢] 1.0-4.6¢ 0.05-0.15'¢
coefficient[1/d]
Porosity [-] 0.28-0.31% 0.36" 0.37-0.40" 0.40-0.4411
Reaction rate[1/d] 6.36-6.84" 0.08-2.1" 0.55-3.1207 0.10-28.80™

[a]. Brusseau et al. (1991); [b]. Pickens et al. (1981); [c].Davis et al. (2003); [d].Javadi et al. (2017); [e].Liang et al. (2018);
[f].Swami et al. (2016); [g].Kookana et al. (1992); [h].Haggerty et al. (1998); [i].Bouwer and McCarty (1985); [j].Chun et al.

(2009); [k].Alvarez et al. (1991). References are shown in Section S3 of Supplementary Materials.
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Supplementary Materials

S1. Derivation of analytical solutions for the SWPP test

To reduce the complexity in analyzing the influence of input parameters on the output, the

: : . C C; Cinj
dimensionless parameters are introduced as follows: C,,p = C—’:, Cimp = CL—:‘, Cinjmp = %ﬁ)’m,
C _ Cinj,im C _ Ccha,m C _ Ccha,im C _ Cres,m C _ Cres,im
injimD — > “chamD — > Y“cha,imD — > LYresmD — > Lres,imD — )
Co Co Co Co Co
_ Cext,m _ Cext,im _ Cum _ Cuim _ Cim —_ Clim
Cext,mD - P Cext,imD - D CumD - D CuimD - P ClmD - P ClimD - >
C() C() CO CO CO CO
£ = |A] t _r _Tw _Z _ a%ﬂm _ avzﬂRmI"im _ avzﬂﬂum _
D — ang »Ip = a’ Twp = ay’ Zp = B’ HUmp = a4 Uimp = RimA > lymp = a4 HUyimp =
angﬂuim a%ﬂlm a’%Rmﬂlim . 173 a%t)
> Himp == and Wimp = Y where the subscript “D” represents the
im im

dimensionless parameter hereinafter, A = " e By substituting these dimensionless parameters

B0,

into the governing equations, one could obtain the dimensionless model of the SWPP test:

9Cmp 1 0%Cmp 1 0Cmp OumdZvym
=1 — = %mD _ o (Coup — Cimp) — Hamp Conpy — (2 um -

atp o 02 o 07D m( mD LmD) Umplmp 240, B “umD
gumavzﬂDu aCumD) elmavzﬂvlm elmavzﬂDl 9Cimp
e = Cmp — 5, 5. s 7D 2 Twp, (S1a)
240,,B%2 9zp zp=1 2AB6 2AB%60,, 0zp zp=-1

aCimD _

oty Eim(CmD - CimD) — Wimp Cimp> "o = Twp» (S1b)

0Cymp __ Rma%Du azcumD _ Rmvumoﬁz‘ dCymD

— &um (CumD - CuimD) — Humb CumDa

atp  AB2Ryy, 0z3 ABRym  9zp
zp =1, (S2a)
aCuimD _

oty Euim (CumD - CuimD) — Huimp Cuimp» Zp = 1, (S2b)

9Cimp _ RmaDi 0*Cimp | RmVim@% 0Cimp
dtp AB2Ry, 9z} AB 1 0zp

— &m (ClmD - ClimD) — WimbD ClmDa

Zp < —1, (833)



39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

9Climp

oty &lim (Cimp — Ciimp) — Miimp Crimps Zp < —1, (S3b)
where £ = wq 0% _ wgaZRpy _ wyuaZRy e _ wyaZRy _ w1aRpy c _
m A9m > ftm AQmRim, um = AeumRum, wim AeumRuim, tm = Agllem, tim =
w]aZRm
Aelleim.

The analytical solution will be derived using the Laplace transform method and the Green’s

functions method, and the detailed information could be seen in the following sections.

S1.1 Solutions in the injection phase: Eqs. (25a) and (25f)
Substituting the dimensionless parameters into Egs. (5) - (6), one could obtain the
dimensionless boundary conditions and dimensionless initial conditions for the injection phase:
Crmp (Tp, tp)tp=0 = Cimp (b, tp)lep=0 = Cump("p, Zp, tp)lep=0 = Cuimp (', Zp, tp)lep=0 =
Cimp ("0, Zp, tp)ltp=0 = Ciimp ("p, Zp, tp)lep=0 = 0, (54)
Cop ("D tp) |7 pse0 = Cimp Ty tp) lrpsco = Cump (1ps Zps tp) | zp—e0 =
Cuimp ("0, Zps tp)l 20 = Cimp ("0, Zp, )| 2~ -0 = Ciimp (p, 2D, tp) | 7p——0 = 0, (S5)
Conp (1, tp) = Cump (1p, 2p = 1, tp), (S6a)
Cnp (1, tp) = Cimp (rp, 2p = =1, tp). (S6b)
Conducting Laplace transform to Egs. (S2a) - (S2b), one has:

_ RynafDy 0%Cymp _ RmnVum@% dCump

SCTumD - ABZRym, 6212) ABRym  0zp - (Sum + .uumD)EumD + EumC_uimD’
Zp = 1, (S7a)
SCTuimD = Suim(CTumD - CTuimD) — HuimbD CTuimDa Zp = 17 (S7b)

Substituting Eq. (S7b) into Eq. (S7a) will lead to:

_ Rma12”Du az(jumD _ Rmvumavzﬂ 0Cymp

= Euméuim ~
o = (bt — 22 )
umD AB2Rym 625 AB ym 0zp um T Humbp S+Uyimp+Euim umpb?
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61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

zp =1, (S8)
Similarly, Egs. (S3a) - (S3b) become:

_ Rma?D; 8°Cimp | RmVim@F 9Cimp

SCTlmD - AB2Rpm 6212) ABRim  97p - (Elm + HlmD)CTlmD + ElmC_limDa
zp < —1, (S9a)
SCiimp = €1im (Cimp — Ciimp) — Wiimp Crimp» Zp < —1, (S9b)

Substituting Eq. (S9b) into Eq.(S9a) results in:

_ RmavzﬂDl aZCZmD Rmvlma% 0Cimp _

~ Eimélim ~
o = . (e + s — 25 )
imD AB2Rym 625 ABRy, 0zp lm Himp StUimDtElim imD>

zp < —1, (S10)
where overbar represents the variables in Laplace domain hereinafter; s is the Laplace transform
parameter in respect to dimensionless time.

Eqgs. (S5), (S6a)-(S6b) and (S8) compose a model of the second-order ordinary differential
equation (ODE) with boundary conditions, the general solution of Eq. (S8) is:

CumD = AlealzD + BleaZZD. (Slla)

Similarly, the general solution of Eq. (S10) is:

Cimp = A,eP1%D + B,eP27p (S11b)
Rmv a? Rmv a? z RmaZD & Eyi
mbumar | (mum r) mru(s+e U _ umeeuim )

h ABRum ABRym AB2Rym UmTEUMD sy imD + Euim
where a; = RmaZDy ,
AB2Rym
RmVuma? RmVuma2 z Rma2D ( Eumeyi
mvumar (mum r) ygfmarDulc o L SumEuim )
ABRym ABRym ABZRym\” UM T EUMD Tty imD Feuim
a, =
2 lex-,anu >
AB2Rym
Rm vy a2 Rm vy, a2 2 Rma2D E1méEli
mVim@r | mVim%r mUri _ Imelim
t 7 Ste&m+Uimp——
b ABRym AB m AB“Rym StUiimp*Elim d
1= Rma?Dy an
AB2Rp,
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86

87

88

89

90

91

92

93

94

95

96

EiméElim )

2 2
Rmvimay Rmvlmaf% " Rma%Dl P— _
ABRy, ABRpy, AB2Rpy, tm D o D+ Elim

b2:

Rma%D;
AB2R,

Substituting Egs. (S11a) - (S11b) into Egs. (S5)-(S6b) leads to:

Cymp = B1e%2%D. (S12a)

Cimp = AyeP17p. (S12b)
where B; = Cpexp(—ay), B, = 0,4, = 0 and A, = C,pexp(by).

Thus, we could obtain the solutions for the aquitards as:

Cump = Cmpexp(ayzp — ay). (S13a)

Cyuimp =

Cumbp> (S13b)

Euim

StEyim+HuimbD

ClmD = C_mDexp(blzD + bl)' (Sl4a)

Climp = —2— Cinp, (S14b)

SteimtHimp

In the injection phase, the dimensional boundary conditions Eq. (8) and Eqgs. (12a)-(12b) are

transformed into their dimensionless forms:

|Conp = Z22E2D | = i (£5), 0 < tp < tinjp (S15)
Irp T=TwD ' '
dCin',m (t )
3iandTDD = 1= Cinjmp(tp) , 0 < tp < tinjp, (S16a)
Cinjmp(tp =0) =0, (S16b)
Vw,injTw
where .Binj = W‘HD.

Conducting Laplace transform to Egs. (S1a) - (S1b), one has:

s _19%Cmp _ 1 0Cmp

SCmp = — (em + Crp + EmCimp —
mb = 1 or2 5 97D (&m + Ump)Cmp mbimbD
(Guma’?z”vum ~ euma’%Du acTumD) + (elma’vzﬂvlm ~ glma%DlaC_lmD)
YT D — e Va5 Y“lmD T S,n28 AL
246, B UM 246,B2  dzp zp=1 240,B M 2AB%0,, dzp Zp=—1 ’



97 o = Tp. (S17a)

98 Cimp = mfmm p = Twp, (S17b)
99 Substituting Eqgs. (S13a), (S14a) and (S17b) into Eq. (S17a),one has:
1 626_'mD 1 0Cmp = _
100 P R E ECy,p = 0. (S18)
101  where
_ _ EmEim Oum &F Vum _ O1m a7 Vim _ a20um@iDy | b101maiD;
102 E=s+é&n+tmp S+Uimp+Eim + 2460, B 2ABO, 2460, B2 24B20,,
103 The boundary conditions of the wellbore and infinity in the Laplace domain are:
= dCmp(rp,s) =
104 |Conp — ZEm223) v = Conmo (), (S19a)
105 Crnp (1D, )y psoo = 0. (S19b)
106 Conducting Laplace transform on Eqs. (S16a)- (S16b), one has:
= 1
107 Cinjmp (T, 8) = SRt 1) (520)
108 Egs. (S18), (S19a)-(S19b), and (S20) compose a model of the second-order ordinary

109  differential equation (ODE) with boundary conditions. The general solution of Eq. (S18) is:
~ YVinj Yinj
110 Crp (1, 5) = 1 exp (Y22) A(EV3yiny) + doexp (22) Bi(E3yimy).  (S21)

111 where y;,j = 1p + é, Yinjw = Twp + ﬁ; ¢, and ¢, are constants which could be determined by

112 the boundary conditions; A;(+) and B;(+) are the Airy functions of the first kind and second kind,
113 respectively. As B;(rp) diverges when 1, — oo , ¢, has to be zero.

114 Substituting Egs. (S21), (S20) and ¢, = 0 into Eq. (S19a), the value of ¢ is:

1 1
P s(sBingt) exp(yi"f"”)[A"(El/ 3Yinjw)
2 2

115 ¢ (522)

EY3 AL (EY3yinj)

116  where A;(*) is the derivative of the Airy function.



117 Substituting Eq. (S22) and ¢, = 0 into Egs. (S21) and (S17b), one could obtain the
118  Laplace-domain analytical solution of solute transport in the injection phase of the SWPP test.
119

120  81.2 Solutions in the chaser phase: Eqs. (26a) - (26g)

121 For the chaser phase, conducting Laplace transform on Eqgs. (S2a)-(S2b), one has:
122 R @Dy 0%Cymp _ RinVum@? 0Cyump _ ( + + )CT + C_ ) +

ABZRum azlz) ABRum aZD S Eum :uumD umD Eum uimbD
123 Cump (10, 2p, tinjp) =0, zp =1, (S23a)
124 SéuimD - CuimD (rD» Zp, tinj,D) = guim(C_umD - C_uimD) - .uuimDC_‘uimD P (823b)
125 Eq. (S23b) could be rewritten as:

~ _ Euim ~ CuimD(rDvZthinj,D)
1260 umn = e s P et (5239
127 Substituting Eq. (S23c¢) into Eq. (S23a), one has:

Rin@7Dy 0%Cymp RinVumaf dCump Euméuim ~
128 AB2Ryy 0z3  ABRym 0zp (S + &um + tmp s+suim+uuimp) Cump +

gumcuimD(rDvZthinj.D) _

129 Cump (10, 2p, tinjp) + e o = 0.2p 2 1, (S24)
130 Similarly, Egs. (S3a) - (S3b) become:

RmaiD; 9%Cyn RmVm@F 9Cim ~ ~
131 AB;leml azllz)D e ”: alZDD — (s + &m + timp) Cimp + €m Ciimp +
132 Cimp (10, 2p, tinjp) =0, zp < —1, (S25a)
133 5Ciimp — Ciimp (70, 2D, tinjp) = €1im (Cimp — Crimp) — Hiimp Crimp » (S25b)
134 Eq. (S23b) could be rewritten as :

~ _ Elim ~ ClimD(rD:Zthinj,D)
135 Ciimp = S+Eim+hiimp Cimp + steimtiiimp (525¢)
136 Substituting Eq. (S25¢) into Eq. (S25a), one has:
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Rm@7D; 0%Cynp | RmVim@F 9Cimp _
AB2Ryy, 0z} ABR;, 0zp

(S + &m + Wimp — M) CTlmD +

Sté&iimtUiimbp

Cii ZD:tinj
ClmD (T'D,ZD, tinj'D) + Elm lmD(TD ZDp n].D) — 0 Zp S _1, (826)

S+EmtUIimD

where Cymp (rD, Zp, tinj, D) and Cyimp (rD, Zp, tin ]-,D) are respectively the mobile and immobile
concentrations [ML™] of the upper aquitard at the end of the injection phase, Cymp (rD, Zp, tinj, D)

and Cimp (rD, Zp, tinj, D) are respectively the mobile and immobile concentrations [ML>] of the

lower aquitard at the end of the injection phase. In this study, we use the Green’s function
method to derive the analytical solution of Egs. (S24) and (S26).
Notice that the boundary condition of Eq. (S6a) is inhomogeneous, thus we need to

homogenize it first. Letting C,,,p = #(2p) + 8, + 8,2p, and substituting them into Egs. (S5)

and (S6a) yields:
[#(zp)]lzp-00 = 0, (S27a)
[k(ZD)“ZD:l =0, (S27b)
where 8; = —8,7,p and 8, = C_";Li(—zr:’;)

Rma?D, d? _ RmVuma? d

Defining the spatial operator: L, = — ABZRym 428 ABRum 475 E, |, one has:
LyCymp = Ly[#(2p) + 1] = F,(zp), (S28)
Let f,,(zp) = E,(zp) — Ly[81 + $22p], one has:
IndiDudd _ Intndi 4 _ g g = —f(zp). (529)

EumEuim

Where E, =s + & + _——
u um Hum S+Euim+luimp’

EumCui (rD,zD,t- i )
E,(zp) = CumD(rD'ZD'tinj,D) + == ulmé , L2 and f,,(zp) = CumD(rD'Zthinj,D) +
S+&yimtHuimbD

EumCuimD(TD'ZD-'-LL'nj,D) _ R Vym @2
S+E&yimtHuimb AB ym

8y — Eu(51 + 522[)).
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The general solution of Eq. (S24) is:

Cump = floo 9u(Zp, Ey; ) fu(m)dny, + ZD_ZZED Cmp(1p,5),2p = 1. (S30)

1-Zep

EumCuimD(7’D-77u'tinj,D) _ R Vym of
S+&yuimtHuimbD ABRym

where f,,(n,) = CumD(rD,nu, fmj,D) + 8y — E, (81 + 821m,,), My

is a positive value varying between 1 and o (e.g. 1 < 1, < ); g,(zp, Ey;ny) is the Green's
function, and could be expressed as :

Ju1(@p, Ey;my) = Niexp(a,zp) + Nyexp(azzp) 1<zp <my (S31)

Z ,E ) = { )
9ulzp, Eui ) 9uz(Zp, Eu;ny) = Nzexp(aizp) + Noexp(azzp) ny < zp <

where Ny, N,, N3 and N, are coefficients to be detrmined using the following conditions
[Chen and Woodside ,1988]:
a) gy (zp, Ey; ny) satisfying the model of Egs. (S29) and (S27a)-(S27b);

b) gul(ZDfEu; nu) =Ju2 (ZD'Eu; nu);

d d AB?R
C) Ju2 _ %9u1 - _ um,

dzp + dzp Rma?Dy’

Zp=MNu Zp=nu "

Substituting Eq. (S31) into Eq. (S27a), one has:

N; =0, (532)
Substituting Eq. (S31) into Eq. (S27b), one has:

N;exp(a,) + Nyexp(a,) = 0, (S33a)
According to Eq. (S33a), one has:

N, = —N,exp(a, — a,), (S33b)
According to above condition of b), one has:

Niexp(a,n,) + Nyexp(azn,) = Niexp(azny), (S34)
According to above condition of ¢), one has:

AB?Rym
Rma?, Dy’

Nja,exp(ayn,) — [Nyaexp(a;n,) + Nyazexp(azn,)] = (S35)
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195
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197

In the chaser phase, the values of Ny, N, , N;and N, could be determined by Eqs. (S33a) -
(S35), namely:

—AB?Rym

Rma}Dy[(ar-az)exp(az—ai)exp(ain,)l’

Nl = _Nzexp(az - al), NZ = N3 = 0 and

N, = N;—Nqexp(a; — ar)exp(any — azny).
As for the analytical solution of the lower aquitard, one could use a similar approach as that
used for deriving the analytical solution of the upper aquitard to obtain, and the general solution

of Eq. (S26) could be described as:

ZeptZp

Cimp = f__loo 9:(zp, E;;my) fr(mdm, + Cmp (s 2p, 8), 2p < —1. (S36a)

ZeD_l

9u(zp, E;;m) = Myexp(bizp) + Myexp(byzp) — 1< zp <y

, S36b
912(zp, E;;m) = Mzexp(byzp) + Muexp(byzp) 0 < zp < —o ( )

91(zp, E;;my) = {

SlmclimD(TD:nl:tinjD) RmVim@% Cmp ~ ZeptMy
= Cimp (7 tinip) + = + - E S36¢
fl(nl) lmD( DN m],D) S+&1im+HimD ABRpm  Zep—1 mD &1 ZeD_1’ ( )

where 1; is a negative value varying between —1 and —oo (e.g.—1 < n; < —»); g,(zp, E;; ) is

. EmEli
the Green's function, E; = S + &y + Uimp — ——="— and the values of M;, M, , M3and M,
S+ElimtHiimbp

—AB?Rim,
RpaZDy[exp(byn—by1n)—brexp(ban)]’

could be described as: M; = —M,exp(b; — b,), M, =

M5 = Myexp(b,n; — byny) — Myexp(by — b,), M, = 0, and the values of a,, a, , b; and b, are
the same as used in the injection phase.

In the chaser phase, the dimensional boundary conditions Egs. (15a)-(15b) are transformed
into dimensionless forms as:

9Cmp(TptD)
ﬁcha,D atp

= Cp("py tp)s tinjp < tp < tcnaps (S37a)
D=TwD

Ccha,mD (rD' tD)l B tinj,D < tD < tcha,D- (S37b)

= Cinj,mD (rD' tD) |

tp=tinjp tp=tinj,p

Vw,chaTwD

where Bepgp = — R

10
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206

207

208

209

210

211

212

213

214

215

216

Conducting Laplace transform on Egs. (S1a)-(S1b) in the chaser phase, one has:

1 0%Cmp 1 Cmp = =
- - - (Sm + HmD)CmD + SmCimD -

Sme - CmD(rD' tinj.D) =

rp Orh rp 0rp
(gumavzﬂvum ~ _ Oum @i Dy a(jumD) + (elmavzﬂvlm ~ _ 81mai Dy a(jlmD)
246,,B YMD 240,82 azp 2p=1 246,,B 'MD " o4B20,, azp 2p=—1’
Tp = Twp- (S38a)
= & = Cimp(rDtinjD
CimD = UL C +—lm ( i ) TD 2 rWD’ (S38b)

(+timp+eim) P (s+timp+eim)
where C,,,p (rD, tin j_D) and Cimp (rD, tinj, D) are respectively the mobile and immobile
concentrations [ML™] of the aquifer at the end of the injection phase, which could be calculated
by Egs. (S21) and (S17b).

After substituting Egs. (S30), (S36a)-(S36¢) and (S38b) into Eq. (S38a), one has:

1 0%Cmp 1 0Cmp
D 67'5 rp 0rp

- EaC_mD +F = 0, p = TwD» (839)

EmEim Bum aF Vum _ 01m O Vim _ 1 Bum a7 Dy 1 6paiDdy
S+Uimp+Eim 2A0,,B 2AB26,, 1-z,p 2A60,,B2 Zep—1 2AB26,,

where E, = s+ &y + Ump —

emCimp(TDitinj)

StUimptE&im

and F = CmD(TD, tinj,D) +

The boundary conditions of Egs. (S37a)-(S37b) in Laplace domain becomes:

~ .Bcha,D

Conamp(Twp, $) = 222 Cinjmp (b £) |tD=tinj,D' (540)
The boundary conditions of the wellbore and infinity in Laplace domain are:

~ 0Cmp(rp.s) _ Bcha,p o
[CmD B T] T=Twp - SPcha,pt1 Cm]’mD (rD' tD) |tD=tinj.D, (S4la)
CTcha,mD (er' S)l = Oa (S41b)

rp—
Similar to the model of the SWPP test in the injection phase, Eqs. (S39) and (S40)-(S41b)

compose a model of the second-order ordinary differential equation (ODE) with boundary

11
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218

219

220

221

222
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224

225

226

227

228

229

230

231

232

233

234

235

conditions, however, the governing equation is an inhomogeneous differential equation. In this
study, we use the Green’s function method to derive the analytical solution of Eq. (S39).
Notice that the boundary condition of Eq. (S41a) is inhomogeneous, and we need to

homogenize it first. Assigning Cy,p = ¥ (1p) + 8; + 8,7p, and substituting it into Eqgs. (S41a)

and (S41b) yields:
[lp(rD, 5) — 22ps) ~ 0, (S42a)
D =TwD
(P(rD; S)IrD—>oo = Oa (S42b)
— Bcha,D rDlTD—>°° o
where §; = Benap+1 (er—rD|rD—>oo—1) Cln],mD (rp, tp) |tD=tinj,D and
_ ﬁcha,D 1
6, = Benant1 rwp—TDlrgoe1) Cinjmp ("D, tD)ltthinj_D'
. . d? d
Defining a spatial operator:L = — [—2 — ——1pE,|, one has:
drp drp
LCTmD = L[llll(rD) + 61 + 527‘[)] = FTD, (843)
Let @ (rp) = Frp — L(8; + &,1p), one has:
9’y oy
92 " arp ~ Ea¥ = —0(m). (S44)
Whel‘e (p(T‘D) = FTD - [62 + T‘DEa(51 + 527‘[))].
The general solution of Eqs. (S42a) - (S44) is:
W(rp, Eim) = J,. (o, Ea; 1) 9(m)dln. (S45)

where 7 is a positive value varying between r,,, and o (e.g. 1,,p < 1 < ©); g(1p, E4; 1) is the

Green's function, and could be expressed as :

1 1
91U, Egsn) = TlexP(yczha)Ai (Ea33’cha) + T exp (yczha) B; (Ea33’cha) Twp < Yeha =1

(S46)
1 1
92(rp, Eqsm) = TsexP(yczha)Ai (EaEYCha) + Ty exp (yczﬂ) B; (EaEYCha) N <Ychg <

g(rD' Ea; 7)) = {

12
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238

239
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243

244

245

246

247

248

249

250

251

252

253

where o() = Fn — [8; + nE (61 + 82m)], Yena =10 + %. As B;(rp) diverges when 1, —
o , T, has to be zero. Substituting Eq. (S45) into Eq. (S42a), one has:

=0, (847)

_ 041
1
D=TwD

aTD

According to Eq. (S47), one has:
T, = —TX. (S48)

1
where X = EBi(Ea1/33’cha,w)_Ea1/3Bi’(Ea1/33’cha,w) and y =r + 1
-1 chaw — 'wD T 7™
EAi(Ea1/33’cha,w)_Ea1/3Ag(Ea1/33’cha,w) 4Eq

According to above condition of b), one has:

TlA (E 3ycha|rD =n* )+TZB (E 3ycha|rD =nt ):TBAi(Eal/gychaerm]‘)- (849)

According to above condition of c), one has:

275 exp (222) 4, (Eu3yena) + EaT exp (222) A (Ea3Yena )|

D=1

0.57; exp (222) 4; (E 3V ena ) + E 37"1 exp (22) A! Eaéycha T
[ (222) 4 (Eayena) (*92) 4i( oo

[ T, exp (yCh“) B; (E 33’cha) +E 37"2 exp (yma) B; (Eaé)’cha)”rl):?rr =—-1. (S50)

For solution in the chaser phase, the values of 73, 7, , 75 and 7, could be determined by Egs.

(S48) - (S50), namely:

”Ai(Yext|rD=n+) 7""Ai(yext|TD=,1+) ”Ai(Yext|rD=n+) Bi()’ext|rD=,7+)
T1=_ 1/3 XaTZ= £ 1/3 aT3= £ 173 — X|and
a Ai(Yext|rD:n+

S81.3 Solutions in the rest phase: Eqs. (27a) - (27f)

13



254 In the rest phase, the flow velocity become zero, and the advection and dispersion terms
255  drop out of the governing equations. After conducting Laplace transform on Egs. (S2a)-(S2b),

256  the following equations would be obtained:

257 (5 + Eum + HumD)EumD - SumEuimD - CumD (rD'ZD' tcha,D) =0. Zp = 1 (SSla)

~ _ Euim ~ CuimD(rD'ZD'tcha,D)
258 CuimD N Steyim+UumbD CumD + s+eyim+iump “p =1, (SSIb)
259 Substituting Eq. (S51b) into Eq. (S51a), one has:

umecuim ~ umCuim ZD:tcha,

260 (5 + &um + Hump = 22 —) €y = Cumn (1 2D, Eeap) — 227402 ::fuilzmnh p) _
261 0.zp = 1. (S52)
262 Similarly, Eqgs. (S3a) - (S3b) become:
263 (s + &m + Himp)Cimp = €tmCiimp = Cimp (1, 2p, tenap) = 0.2p < 1. (S53a)

~ _ Elim ~ Climp(TD.ZDtcha,D)
264 Ciimp = mclml) + Steqntimp zp < —1, (S53b)
265 Substituting Eq. (S45b) into Eq. (S45a), one has:

E1mElim = etmCiimp ("D.ZD tcha,p) _

266 (S + &m + Uimp — S+€lim—+lﬂump) ClmD - ClmD (TD;ZD' tcha,D) —= sl+£ll)imiu5mph 2=
267  0.zp < —1. (S54)
268 According to Egs. (S52) and (S54), one has:

SumcuimD(rszthcha,D)

StéyimtHuimD
M) »Zp 2 1, (S55a)
St&yimtHuimbD

_ CumbD (rD:ZD:tcha,D) t

269 Comp =

(S+5um +Uump—

glmclimD(rszD'tcha,D)

S+€1im+1imD

G e < -1, (S55b)
StélimTHiimD

_ Cimp(TD.ZD.tcha,p )+

270 Comp =

(S+£lm+ﬂlmD_
271 where Cymp (rD, Zp, tcha,D)and Cuimp (rD, Zp,teha, D) are respectively the mobile and immobile

272 concentrations [ML>] of the upper aquitard at the end of the chaser phase, Cpmp (rD, Zp, teha, D)

14
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274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

and Cyjmp (rD, Zp, tcha,D) are respectively the mobile and immobile concentrations [ML™] of the
lower aquitard at the end of the chaser phase.

Similarly, the dimensionless governing equation of the mobile zone during the rest phase is:

ICrm
atDD = —&m(Cmp = Cimp) — Hmp Cmps o = Twp- (S56a)
9Cim
TDD = &m(Cmp — Cimp) — Wimp Cimp» > = Twp, (S56D)

Conducting Laplace transform to Egs. (S56a) and (S56b) for the rest phase, one has:
SCmp = Cmp (s tenap) = —€m(Cmp = Cimp) = imp Cmp» Tp = Tiwp- (S57a)
$Cimp = Cimp (", tchap) = &im(Cmp = Cimp) = Mimp Cimp» o = T, (S57b)
According to Egs. (S57a)-(S57b) , one has:

emCimp (TD'tcha,D)

(s+iimp*+Eim) ] (8583)

Cmp(TDitcha,p)4

mD = EmEim
[S+€m+ﬂmD_(5+“imD+5im)
— C; DrDlth,D i C. D
CimD — tim ( cha ) imCm (SS8b)

(s+iimp+€im) (s+Uimp+€im)’

S1.4 Solutions in the extraction phase: Eqs. (28a) - (28g)
Contrary to the injection and chaser phases, the direction of advective flux is reversed in the

extraction stage, Eqgs. (S2a) and (S3a) are modified as:

0Cymp _ Rmo-’?z*Du 62CumD Rmvumo-’?z‘ 0CymD
dtp  AB2Ryy, 0z} ABRy, 0zp

— &um (CumD - CuimD) — Humb CumDa

zp =1, (S59a)

0Cimp _ RmavzﬂDl aZCZmD _ Rmvlma% 9Cimp

= — &m (Cimp — Climp) — C
atp ABZR;, 625 ABRpn,  9zp lm( ImD llmD) UimpLimb>

zp < -1, (S59b)

Conducting Laplace transform on Egs. (S2b) and (S59a), one has:

15



= Rma#D, 92C, RmVyuma?z 0C. = =
293 SCumD - CumD (erZD' tres,D) = A:-:z}:u; aglzr)nD ZBZTmT 612)”) - Sum(cumD - CuimD) -
294 pympCump» 2p = 1, (S60a)
~ imC. Cui (TD-ZD'tresD)
295 Cpimp = —m-ymD__ 4 —uimb L2 7y 21, S60b
wmb St&yimtHuimbD St+é&yimtHuimbD b ( )
296 Substituting Eqgs. (S60b) into Eq. (S60a) ,one can has:
RmaZDy, 0%Cymp RmVyum@? 0Cyump _ ( EumEuim ) ~
297 AB2Ryy, 073 ABRy;m 0zp § + &um + Hump S+eyim+Huimb Cump +
Cui (TD'ZD'tresD)
298 Cump (7o 2p, t  Zem_uimD L) —0.2p 21, S61
umD( D»4D res,D) s+egim+tuimb D ( )
299 Similarly, conducting Laplace transform on Egs. (S3b) and (S59b), one has:
~ R aZDl 6251 R 4 O_’z 6C_l ~ ~
301 .ulmDC_lmDa Zp < _13 (8623)
~ imC Cyi (TD'ZD'tresD)
302 Climp = ——m=tmb__ 4 “limp L2 7y < —1, S62b
limb StEeimtUiimbD SteimtUhiimp D ( )
303 Substituting Eqgs. (S62b) into Eq.(S62a), one has:
RmaiD; 0*Ciymp  RmVim@# 9Cimp ( _ __ Emélim ) ~
304 ABZle 625 ABRim dzp S+ €im + Himp S+E1imtULIimD ClmD +
Cii ZD,
305 Cump (T Zp» tres p) + SnClmp(roZtresn) _ g ) o g (S63)

S+&im+Hiimp
306  where Cymp (rD, Zp, tres’D)and Cuimp (rD, Zp) tres, D) are respectively the mobile and immobile
307  concentrations [ML'3] of the upper aquitard at the end of the rest phase, Cj,,p (rD, Zp, tres, D) and
308  Ciimp (T‘D, Zp, tres’D) are respectively the mobile and immobile concentrations [ML'3] of the
309  lower aquitard at the end of the rest phase.
310 One could use a similar approach of obtaining the analytical solution of aquitards in the

311  chaser phase to derive the solution of aquitards in the extraction phase. The general solution of

312 (S61)is:
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313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

CTumD = f1°° gu(ZDﬂEu; &u) fu(’&u)d’&u + Zf_—ZZ:DD C_mD(erS)a Zp = 15 (S64a)

Gu1(Zp, Ey; 4) = Hiexp(myzp) + Hyexp(myzp) 1<z, < by

9uzp, Bui b) = {guz(ZD,EuFlyu) = Hzexp(m,zp) + Hyexp(myzp) by < zp < oo’ (S64b)

fu(ﬂu) =

EumCuimbp (rDvZ’uvtres,D) RmVym @ Cmp(rp.s) byu—Zep
CumD (rD» ﬂu' tres,D) + -

EyCprp(rp,s)
S+euim*Huimb ABRym  1—2Zgp 1-zpp W mDND»>/

(S64c¢)

The general solution of Eq. (S63) could be described as:

Cimp = f__loo 91(zp, E;; &) fi(&)d b + Zzlj;z_ef Cmp (1D, 8), 2p < —1, (S65a)
E; ) = Lexp(nizp) + Lexp(nyzp) — 1<z, < &

20, Ep: & ={gll(zDr LY 1 12D 2 2Zp D ) S65b
9up, B ) 912(2p, Ei; &) = Lzexp(nyzp) + Lyexp(nyzp) 4 < zp < —o ( )
fl(’e"l) =

slmclimD(rD:&lvtres.D) _ Rmvlma% Cmp(p,S) _ b1+Zep ~
CmD (rD» ﬂl' tres,D) + S+Eim+Riimb ABRym Zep—1 Zep—1 ElCmD (rD; S)a
(S65¢)

where 4, is a positive value varying between 1 and <°; 4, is a negative value varying between
—1 and —<=; g, (zp, Ey; 64,) and g,(zp, E;; 6;) are the Green's functions, H;~H, and I, ~I, are
contants which could be determined by the boundary conditions and conditions of a)~c), the

values of H;~H, and I, ~1, are as follows: H; = —H,exp(m, — m,),

_ —ARymB?
RmaiD, [(m;—m,)exp(m,—my)exp(m, 67)]

H, ,Hs =0, H, = H, — Hyexp(m, — my)exp(m, 4, — m4,),

—AB%Rym
Rma?Di[exp(nyby—nqb)—nzexp(naé))]’

I, = —Lexp(ny —ny), I, =

I; = Lexp(ny 6y — nqy b)) — Lexp(ng —ny), I, = 0,

2 2
Rmvumad ' Rmvuma? +4Rm“TDu(S+S +u __ fuméyim )
AB um ABRym AB%Rym umtFumD s+ i p+euim

m ey
1 Rma2D,, ’

AB%Rym
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332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

2
Rmvuma} \/(RmVumawzf> 4Rm“72“Du Euméyim )

(s+sum+uumD 5F

. = ABRym ABRym AB%Rym HyimD T Euim
2 ZRma,gDu ’
AB%Rym
2
2 2 2
Rmvimar | (Rm"lm“r) gl iy by Amflim )
ABRyy, ABRyy, aB%R,, N T EImD s e,
n = and
1 2Rma,2Dl
AB®R,,,
2
2 2 2
Rmv,ar (Rmulmar) 4RmarDl(S+£l +u _ €Imflim )
ABRyy, ABRyy, ABZR, N MDD s e
n =
2 ZRma,Z-Dl
AB®R,,

Similarly, contrary to the injection and chaser phases, the direction of advective flux is
reversed in the extraction stage, and Eq. (S1a) is modified as:

9Cmp _ iaZCmD iaCmD _ _ Oum AF Vym C

= &, (Crop — C; — C —( _ —
atp > 912 o 91D m( mD LmD) Umplmp 246,  “umD

9um0‘12* Dy aCumD)
240,,B dzp

,Tp = TwpD- (866)

z=-1

(_ 01m A Vim _ BimaiD; aClmz))
1 24B26,, "MD" 54p29. azp

zZ=

In the extraction phase, the dimensional boundary conditions Eqs. (14a)-(14b) are

transformed to the dimensionless format:

9Cmp (rp,tp) _ 0Cmp(rpitp)
:Bext,D at - ar s tres,D < tD S text,D (8673)
b TD=TwD b TD=TwD
Cp(rp, t = =C 1, t . S67b
mp ("D, D)|tD_tres,D res,mp (T D)|t1>=tres,p ( )
_ Vw,ext"wD
where ﬁext,D = —W.

Conducting Laplace transform on Egs. (S58) and (S1b) in the extraction phase, one has:

_ 10%C,,, 10C,;
SCmp — Cinp (rD' tres) = T'_ aT'T;L T‘_ a;n
D D D D

- (gm + .umD)C_‘mD + gmc_‘imD -

b

(_ Bum @7 Vum Cumb _ Oum a7 Dy aéumD)
zp=-1

2A0mb 240mb  dzp

_ (GlmafVZmC_ZmD O1m a7 Dy aélmD)
-1 2Ab2%6,, 2Ab2%6,, 9zp

Zp=
18)) = Twp- (8683)
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347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

— _ g
CimD -

m

(s+iimp+em) TP

Cimp(TDitres)
S+UimptEim

> D = TwbD>

(S68b)

After substituting Egs. (S64a)- (S65¢) and Eq. (S68b) into Eq. (S68a), one has

8%Cmp , 9Cmp
— 4+ =
orp orp

where { = s + &y, + Ump —

- T‘D(CTmD + T‘DA = 0.

(S69)
Eimém _ Oum @F Vum O1maFvim 1 Oumaf Dy 1 OimaiDy
S+Uimp+Eim 2A0, B 2AB20,, 1-zp,p 2A0pb Zep—1 24b26,,°

EmCimp (TD.tres)
A = Cpp(rp, tres) + ——2
mD( D> res) S+H’imD+£im b

Cimp (Tp, tres) and Cp,p (1, tres) represent the initial

concentrations in the immobile and mobile domains of the SWPP test in the rest phase.

The boundary condition of Egs. (S67a)-(S67b) in Laplace domain becomes:

SBext,p CTmD (p, s) |rD =rwp Bext,p Cresm (rp, tp) | =

__ 0Cmp(rp.s)

tp=tresD orp TD=TwD

(S70)

Similar to the model of the SWPP test in the injection phase, Egs. (S5), (S61) and (S70)

compose a model of the second-order ordinary differential equation (ODE) with boundary

conditions. However, the governing equation is an inhomogeneous differential equation. In this

study, we use the Green’s function method to derive the analytical solution of Eq. (S69).

Similar to Chen and Woodside [1988], Eq. (S69) could be transferred into a self-adjoint

form:

026G

P (rDZ + %) G =—4L(rp).

where G = exp(rp/2)Cpp and £(rp) = exp(rp /2)1pA.

The boundary conditions of Egs. (S5) and (S70) could be rewritten as:

G(rDI S) |T‘D=00

[(Sﬁext,D + %) G

=0,

aG

aT'D

D=TwD

= .Bext,Dexp (er /Z)CmD (er' tres,D)a

19
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372

373
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376

377

378
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381
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385

One could find that the boundary condition of Eq. (S72b) is inhomogeneous, and we need to
homogenize it first. Assigning G = U(rp) + V(1p) and V (1rp) = 07 + 0,1p, and substituting
them into Egs. (S72a) and (S72b) yields:

U(rp, $)lrp=e0 =0, (S73a)

ou

[(Sﬁext,D + %) U——

aTD

=0, (S73b)

D=TwD

Bext,pexp(rwp/2)Cmp (Tantres,D)
1 1
SBext,D +E)TWD -1- (Sﬁext,D +E)”D lrp—oo

where 0; = —( 7 |7 =005

ﬁext,D exp(rwp/2)Cmp (er-tres,D)
1 1 .
SBext,D +5)er_1_(Sﬁext,D +5)TD |rD—>oo

02=(

2
After defining a spatial operator:L = — % + (TD{ + i), one has:
D

LG = LU(rp) + LV (1) = £(1p), (S74)
and
LU(rp) = £(rp) — LV (1p). (S75)

Let f(rp) = €(rp) — LV (1p), one has:

o%u

= (g +3)U = —f(). (S76)

arj
where f(rp) = exp(rp/2)rpA — (rD{ + %) (01 + a,1p).

Right now, the model with an inhomogeneous boundary condition becomes a regular

Sturm-Louisville problem. The general solution of Egs. (S73a) - (S73b) and (S76) is:
UG, G;€) = . 90, 3:€) f(e)de. (S77)
where ¢ is a positive value varying between 1,,, and oo (e.g. 1,p < € < ); g(1p, {; €) is the

Green's function, and could be expressed as :

gl(rD'{; 5) = PlAi(yext) + PzBi(yext) Twp < Yext <¢

R S78
.92(7‘0;(; 8) = PBAi(yext) + P4Bi(yext) € S Yext S ( )

g, Ge) = {
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405

where f(g) = exp(e/2)eA — (s( + %) (01 + 02€), Voxe = (M3 (rD + é), P, P,, P;and P,

are coefficients to be determined. As B;(rp) diverges when 1, — o, P, has to be zero.

Substituting Eq. (S78) into Eq. (S73b), one has:

1 agl _
[(Sﬁext,D + E) 91— E] N =0, (S79)
which leads to
P, = —-P,W. (S80)

(Sﬁext,D+%)Bi(3’ext,w)_{l/33i’ (J’ext,w)
(Sﬁext,D +%)Ai(3’ext,w)_51/3Ag(3’ext,w)

1
where W = s Vextw = (/3 (er + E)'

According to the properties of Green’s function , one has:
PlAi(yextIrD=s+) + PZBi(yexter=s+) = PBAi(yexter=s‘)- (881)

1 1
PG (Yexe) + PaGB{Der)| = —1.  (S82)

rp=e*

[P3¢3 A} Yexe)]

T‘D=8_ - [
The values of Py, P, and P; could be determined by Egs. (S69) - (S71), namely:

”Ai(J’ext|rD=5+) T’-'Ai(Yext|rD=€+)

P1:_ (1/3 Wy P2: (1/3 ,
p, — ”Ai(ygxt|rD=s+) Bi(Yext|rD=s+) W
3 = (1/3 ] - .
Az(l’ext|rD:g+)
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S2. Numerical simulations

To test the assumptions used in the analytical solution of this study, a 3D finite-element
method with the help of COMSOL Multiphysics will be used to solve the three-dimensional
model. The grid mesh of the aquifer-aquitard system in the numerical modeling could be seen in
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406  Figure S1. The initial drawdown and the initial concentration are 0 for aquifer and aquitards. The
407  hydraulic parameters are: K,=0.1 m/day, S,= S,= 5,=10” m™, and the other parameters

408 are R, = Rym = Rym = Ruim = Rim = Riim=1, Oym = 01, = 0.1, a,, = 2.5m, o, = a; = 0.5m,
409 pm = Him = Hum = Huim = Him = Pim=1075", 7, =0.5m, Qinj=Qcna =50 m*/d, Qres=0 m*/d,
410 Q=50 m*/d, t;, ;=250day, t.p,=50day, t,.s=50day, B=10m, 6,,=0.25, 6;,,=0.05,

411  and w=0.01d"". In this modeling, the finite thickness of the aquitard is used to approximate the
412  infinite thickness of the aquitard, and the finite radial length of the aquifer is used to approximate
413 the infinite radial length of the aquifer. Such treatment works well when the tracer has not

414  approach the boundary.
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416  Figure S1. The grid mesh of the aquifer-aquitard system used in the Galerkin finite element

417  program using COMSOL Multiphysics.
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419  Figure S2. Spatial distribution of the flow velocity for different time. The parameters are the

420  same with ones in Figures 2 and 3.
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S4. Parameter range used in sensitivity analysis

Table S1: parameter range used in sensitivity analysis

Parameter Unit Range
ay, m 0.05-0.50
a m 0.50-1.00
Vum m/d 0-0.01
Oym - 0-0.2
w 1/s 0.0001-0.001
[ - 0.20-0.40
v, m’ 0.10-500

(132

represents dimensionless unit.

25






