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Memorandum 

To: Dr. Philippe Ackerer, Editor of HESS 

Subject: Revision of Paper # hess-2019-699 

 

Dear Editor: 

Upon the recommendation, we have carefully revised Paper # hess-2019-699 entitled “New Model of 
Reactive Transport in Single-Well Injection-Withdrawal Test with Aquitard Effect” after considering all the 
comments made by the reviewers. The following is the point-point response to all the comments. 

Response to Reviewer #1: 

General comments 

1. This is an impressive mathematical work that involves several injection phases, adsorption (linear) and 
first-order degradation, the presence of aquitards, and the separation between mobile/immobile domains. 
The solution is fully analytical, just expressed in Laplace space (thus the need for inversion at the end). If 
the solution is analytical, what is the point to test it? The only reason is that some simplifications are 
involved. This is tested for example in Figure 2, showing limitations. 

Reply: Implemented. See Lines 291-296. 

 

2. Assumptions are quite strong: - Homogeneity – it might also be valid for mild heterogeneity - The well 
extends all the thickness of the aquifer - Reactions: actually you only include linear sorption (K_d values) 
and first-order degradation (nmu values). This is a very small subset of reactions. 

Reply: Implemented. See Lines 95-99. 

 

3. At the end there is a validation effort with real data. According to the authors, the new model performs 
better. Yes, it also has many more parameters, and so in a real case some model selection criteria should 
be performed to discriminate the “best” model. More, the authors provide just a single set of parameters, 
without any study of uncertainty in the parameters, or even the reason why these numbers were chosen 
and how they represent real physical quantities. 

Reply: Implemented. The real physical quantities and the uncertainty of the estimated parameters have 
been discussed. See Lines 405-413. 

 

4. The mathematical work is really impressive, and I praise the authors for it, but in my opinion the resulting 
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work can be hardly used with real data, and the problem would be better solved using a numerical model 
that can provide best fit, but also some uncertainty evaluation. 

Reply: Implemented. See Lines 83-91. 

 

Response to Reviewer #2: 

General comments 

1.  The present work presents a novel analytical treatment of single-well injection withdrawal (SWIW) tests, 
whereas the impact of mixing in the well and the presence of confining aquitards are considered. I applaud 
the Authors for the efforts in the derivation of the solution (math not checked) and the commitment to 
introduce more flexibility in the conceptual model. Yet, I am not sure about its usefulness to other 
researchers, it is very complicated! Maybe, if the Authors made available a script for the calibration against 
data it could be beneficial to the usage among practitioners. Regarding the quality of the paper, I see many 
unclear points or unclear parts. I listed below a series of comments which I hope will make the paper more 
clear. Moreover, I have some criticisms about the employed sensitivity analysis, which it seems to be a 
weak one in my personal opinion. 

Reply: Thanks. We have carefully revised the manuscript after considering all the comments. 

 

Specific comments 

1. line 15: why put emphasis on the use of Green‟ function for the extraction phase in the abstract? This 
leads to think „what about the other phases?‟. I would remove this comment. 

Reply: Implemented. We have removed it. See Line 14. 

 

2. line 17: I would replace „tested by‟ with „tested against results grounded on numerical simulations‟, or 
something similar, i.e., the numerical simulations results serve as reference values to be matched and do 
not verify the validity of the assumptions directly. 

Reply: Implemented.  “tested by a numerical solution” has been changed into “against results grounded on 
numerical simulations”. See Lines 18-19. 

 

3. lines 17-19 „The sensitivity analysis demonstrates that the influence of vertical flow velocity and porosity 
in the aquitards, and radial dispersion of the aquifer is more sensitive to the SWIW test than other 
parameters.‟. Which sensitivity analysis? The fact that the latter has been conducted is not specify earlier in 
the text. Moreover, specify which kind of sensitivity analysis you are using. Furthermore, the sentence is 
rather confusing: it says that the influence of three-parameter is more sensitive to the SWIW test, than 
other. What is the difference between influence and sensitivity? Is it the influence that varies as a function 
of the SWIW test? … I was thinking that are the results of the SWIW (i.e., model output) to be largely 
sensitive (i.e., influenced by) to the three mentioned parameters (i.e., model inputs), but maybe I am biased 
by my previous experiences with sensitivity analysis. Please clarify. 

Reply: Implemented. See Lines 19-20. 
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4. line 23 „The new model of this study performs better than previous studies excluding the aquitard effect 
for interpreting data of the field SWIW test‟ too general. Please specify which field test you are referring to, 
since the quality of the novel solution can be worse than previous ones in case the system do not have an 
aquitard, for example. 

Reply: Implemented. See Lines 24-25, and Lines 277-283. 

 

5. lines 49-50 „Another assumption included in many previous models of radial dispersion is that the 
concentration of the mixing water with the injected tracer is equal to the injected tracer concentration during 
the injection phase‟ the sentence is not very clear. What is the mixing water? „is equal to the injected tracer 
concentration‟ of what? Please revise the sentence. Moreover, lines 53-55 „This assumption implies that 
the mixing effect in the wellbore is not considered, where the mixing effect refers to the mixture between 
the original (or native) water and the injected tracer in the well.‟ ow there is the native water which is not 
mentioned earlier. … I can grasp the general idea that there is a difference between the concentration of 
tracer between the resident water, injected water and water within the well where mixing occurs, but not in 
a standalone manner from these lines (i.e., I need to think about them and deduce that this the implied 
message). Please clarify, maybe with an additional figure. 

Reply: Implemented. See Lines 51-62. 

 

6. line 61 „mostly because ADE could not adequately interpret anomalous reactive transport,‟ this true when 
the ADE is used to capture the whole behavior of the system, i.e., as an effective model for all the system 
behavior to be characterized by a single representative value of advection, dispersion and reaction. Instead, 
if ADE is finely discretized (i.e., the system heterogeneity is properly detailed) and then (numerically) solved 
it can fairly well capture anomalous behaviors. Please clarify this point. This is in line with the mentioned 
superior capacity of effective transport models mentioned afterward (e.g., MMT,CTRW, fADE, MIM) to have 
a superior capacity in rendering anomalous behaviors of heterogeneous system when viewed as a whole 
(e.g., spatially integrated BTCs). 

Reply: Implemented. See Lines 63-79. 

 

7. line 74 „anonymous‟ I suppose anomalous. 

Reply: Implemented. “anonymous” has been changed into “anomalous”. See Line 76. 

 

8. line 86 „Some examples of weak heterogeneity include the Borden Site of Canada (Sudicky, 1988)‟ this 
is just one example, either add others or modify the sentence. 

Reply: Implemented. The Borden Site of Canada (Sudicky, 1988) is one example of weak aquifer 
heterogeneity. See Lines 104-105. 

 

9. lines 89-96 „Second, for moderate or even strong heterogeneous media such as Cape Code site (Hess, 
1989) or MADE site (Bohling et al., 2012), the analytical model developed under the homogeneity 
assumption is also valuable, but in a statistical sense, as long as the media heterogeneity can be regarded 
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as spatially stationary, meaning that the statistical structure of the media heterogeneity does not vary in 
space. In this setting, the analytical model developed under the homogeneity assumption is used to 
describe the (ensemble) average characteristics of an ensemble of heterogeneous media which are 
statistically identical but individually different. In another word, such an analytical model will provide a 
statistically average description of many realizations (an ensemble) which are similar to the heterogeneous 
media of concern, but it cannot provide an exact description for the particular heterogeneous media under 
investigation‟ .… this made me think that the validation strategy based on the direct numerical simulations 
is not valid: those simulations are considering directly an homogenous media (with deterministic properties) 
and NOT the statistical average of the SWIW results across a set of Monte Carlo realizations of the 
conductivity fields, characterized by either small, middle or large variance. Please clarify this point. 

Reply: Implemented. See Lines 95-99. 

The description of „Second, for moderate or even strong heterogeneous…” in the original manuscript has 
been deleted.  

Such assumptions might be oversimplified for cases in reality, while they are inevitable for the derivation of 
the analytical solution, especially for the aquifer homogeneity. For a heterogeneity aquifer, the solution 
presented here may be regarded as an ensemble-averaged approximation if the heterogeneity is spatially 
stationary. If the heterogeneity is spatially non-stationary, then one can apply non-stationary stochastic 
approach and/or Monte Carlo simulations to deal with the issue, which is out of the scope of this 
investigation. 

 

10. line 99 „A schematic diagram of the model investigated by this study is similar to Figure 1 of Wang and 
Zhan (2013)‟ please add this figure and incorporate what mentioned above in comment 5. 

Reply: Implemented. A new figure has been added, See Figure 1. 
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Figure 1: The schematic diagram of the SWPP test. 

 

11. Eq.s (1)-(3) I didn‟t quite understand the + notation: I would say that the fact that the velocity 
component is pointing towards the well or in the opposite direction is in the value of (for example) va 
considering (1), similar for the others velocity components in (2) and (3). I would say that the value of va 
(and others advective velocities) varies as a function of the SWIW phase. If not va should be the module of 
the advective component, no? Maybe I am wrong. 

Reply: Implemented. Eqs. (1) - (3) have been revised. 

 

12. Eq. (12a) what‟s C0? (12d) there is a without subscript, what‟s that?  

Reply: Implemented. See Lines 159-161. 

          ,           (12d) 
where        is the wellbore water depth [L] in the injection phase,    is concentration [ML-3] of prepared 

tracer. 

 

13. Eq.s (8)-(11) Highlight that in the imposition of the continuity of flux across the well and the formation 
only the mobile fractions are considered, for who are not familiar with the MIM model? 

Reply: Implemented. See Lines 152-154. 
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Eqs. (8) - (11) indicate that the flux continuity across the interface between well and the formation is only 
considered  for the mobile continuum (or mobile domain).  

 

14. „For instance, if the characteristic length of SWIW test is l and the aquifer hydraulic diffusivity is 
D=Ka/Sa, where Ka are Sa are the radial hydraulic conductivity and specific storage, then the typical 
characteristic time of unsteady state flow is around tc = lˆ2/2D. For instance, for a typical lc=10 m, Ka=10 
m/day and Sa=10-5 (m-1) (which are representative of an aquifer consisting of medium sands), the value of 
tc is found to be 5x10ˆ-5 day.‟ How do the authors determine the characteristic length lc? In my experience 
this length is typically a function of the aquifer diffusivity, e.g., for tidal fluctuations is idealized coastal 
aquifer (e.g., homogeneous, infinite lateral extension) there is a proportionality of the kind lc = sqrt(K/S) 
(see e.g., Guarracino et al., 2012). Moreover, the proposed estimate of 10 m disagree with the results 
presented in figures 2-3 where the solute travels up to 100 m, suggesting that the influence of the SWIW 
test is at least reaching that distance. I am not entirely convinced about the fact that push-pull tests can be 
seen as steady state tests and with the justification provided by the Authors, I leave to the Editor the 
judgment here. Nevertheless, I agree on the need to simplify the (already complex) analysis choosing the 
steady state! 

Reply: Implemented. See Lines 178-190. 

In the comment by reviewer:  “In my experience this length is typically a function of the aquifer diffusivity, 
e.g., for tidal fluctuations is idealized coastal aquifer (e.g., homogeneous, infinite lateral extension) there is 
a proportionality of the kind lc = sqrt(K/S) (see e.g., Guarracino et al., 2012)”, the formula of computing the 
characteristic length lc may be not right, since the dimension of sqrt(K/S) is L/sqrt(T), while the dimension 
of lc is L. By checking Guarracino et al. (2012), we found that authors employed “sqrt(K/(ωS))” to calculate 
the characteristic dampening distance, where ω is tidal angular velocity (T-1 ). 

This approximation is generally acceptable given the very limited spatial range of influence of most SWPP 
tests. For instance, if the characteristic length of SWPP test is l and the aquifer hydraulic diffusivity is 
D=Ka/Sa, where Ka are Sa are respectively the radial hydraulic conductivity and specific storage, then the 

typical characteristic time of unsteady-state flow is around    
  

  
. The typical characteristic time refers to 

the time of the flow changing from transient state to quasi-steady state, where the spatial distribution of flow 
velocity does not change while the drawdown varies with time. This model is similar to the model used to 
calculate the typical characteristic length of the tide-induced head fluctuation in a coastal aquifer system 
(Guarracino et al., 2012). For Ka=1m/day, Sa=10-5m-1 and l=10m (which are representative of an aquifer 

consisting of medium sands), one has    
  

  
          day, which is a very small value. To test the 

model in computing   , the numerical simulation has been conducted, where the other parameters used in 
the model are the same as ones used in Figures 2 and 3. Figure S2 shows the flow is in quasi-steady state 

when time is greater than   , since two curves of   =         day and   =10        day overlap. 
As for the typical characteristic length, if the values of Ka, Sa, and B have been estimated by the pumping 
tests before the SWPP test, it could be calculated by numerical modelling exercises using different 
simulation times. 

 

15. line 289, in the comparison against the numerical solution the porosity of the immobile region of the 

aquifer is zero, why? There is also a general   =0, to which mass transfer makes it reference? Why zero? 
Aren‟t these choices limiting the testing of the proposed solution? 
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Reply: Implemented. We have revised it:    =0.05, and  =0.01d-1. See Line 308. 

 

16. lines 309-310 „As mentioned in Section 3.1, the new model is a generalization of many previous models, 
and the conceptual model is more close to reality.‟ Again, too general. This novel solution could or not be 
closer to reality depending on the specific case. 

Reply: Implemented. See Lines 24-25, and Lines 277-283. 

 

17. line 323 „To prioritize the sensitivity of parameters involved the new model‟ an in is missing (i.e., „in the 
new model‟). Moreover, the sensitivity is not a property of the parameters (or model inputs), but it is of the 
output with respect to the parameters. You want to quantify/evaluate the sensitivity of predictions with 
respect to the diverse parameters. Sensitivity cannot be prioritized, it is what it is and it is dictated by the 
way a model builds relationship between input(s) and output(s). Then you can prioritize the estimate of 
those parameters that influence the most the output. 

Reply: Implemented.  

“in” has been added. See Line 339. 

To prioritize the sensitivity of predictions with respect to the diverse parameters involved in the new model, 
a sensitivity analysis is conducted in Section 5.2. See Lines 354-372. 

 

18. Eq. (29), the definition and explanation is quite obscure. The only clar thing is that it sensitivity is 
grounded here on the concept of derivative. Then, what is ci? Moreover, the subscript i does not vary at all, 
what is it? Why there is Ij before the derivative?. Furthermore, this equation implies (i) that only variation of 
a single parameter at time are considered and (ii) it seems that the index associated with a parameter is 
evaluated around only one value of that parameter. These features prevent the identification of non-
linearities and parameters interactions, which are quite likely to occur for the present model. The proposed 
method is a quite restricted characterization of sensitivity to me, if the model is not expensive I would 
suggest using a global sensitivity method: Sobol‟ indices (see Sobol, 2001) or DELSA (see Rakovec et al., 
2014). On this point I leave the final decision to the Editor. 

Reply: Implemented. See Lines 355-372. 

The model of Eq. (29) in the original manuscript is for the local sensitivity analysis, and it has been deleted. 
Instead, a global sensitivity analysis is conducted using the model of Morris (1991) to investigate the 
importance of the input parameters on the output concentration. 

 

19. lines 389-390 „The new model is most sensitive to the aquitard porosity and aquifer radial dispersivity‟ 
the model results are… „after a comprehensive sensitivity analysis‟ you discover the previous thing after 
performing the sensitivity analysis, and it is not the latter that implies the former results; the sensitivity 
analysis is just a way to quantify the former aspect. Moreover, I would avoid comprehensive, see comment 
18. 

Reply: Implemented. See Lines 354-372. 

A global sensitivity analysis is conducted using the model of Morris (1991). The description of the sensitivity 
is also revised. 



 8 

 

 

If you have any further questions about this revision, please contact me. 

Sincerely Yours,  

Hongbin Zhan, PhD, PG. 

Professor and 

Holder of Endowed Dudley J. Hughes Chair in Geology and Geophysics 
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New Model of Reactive Transport in Single-Well Push-Pull Test with 

Aquitard Effect and Wellbore Storage 

Quanrong Wang1*, Junxia Wang2, and Hongbin Zhan3*, Wenguang Shi1 
1School of Environmental Studies, China University of Geosciences, Wuhan, Hubei, 430074, P. R. China 
2School of Mathematics and Physics, China University of Geosciences, Wuhan, Hubei, 430074, P. R. China 5 
3Department of Geology and Geophysics, Texas A& M University, College Station, TX 77843-3115, USA 

Correspondence to: Quanrong Wang (wangqr@cug.edu.cn), and Hongbin Zhan (zhan@geos.tamu.edu) 

Abstract.  

The model of single-well push-pull (SWPP) test has been widely used to investigate reactive radial dispersion in remediation 

or parameter estimation of the in situ aquifers. Previous analytical solutions only focused on a completely isolated aquifer for 10 

the SWPP test, excluding any influence of aquitards bounding the tested aquifer, and ignored the wellbore storage of the 

chaser and rest phases in the SWPP test. Such simplification might be questionable in field applications when test durations 

are relatively long, because solute transport in or out of the bounding aquitards is inevitable due to molecular diffusion and 

cross-formational advective transport. Here, a new SWPP model is developed in an aquifer-aquitard system with wellbore 

storage, and the analytical solution in the Laplace domain is derived. Four phases of the test are included: the injection phase, 15 

the chaser phase, the rest phase and the extraction phase. The Green’s function method is employed for the solution in the 

extraction phase. As the permeability of aquitard is much smaller than the permeability of the aquifer, the flow is assumed to 

be perpendicular to the aquitard, thus only vertical dispersive and advective transports are considered for aquitard. The 

validity of this treatment is tested against results grounded on numerical simulationstested by a numerical solution. The 

global sensitivity analysis indicates that the results of the SWPP test are largely sensitive (i.e., influenced by) to the 20 

parameters of sensitivity analysis demonstrates that the influence of porosity and radial dispersion of the aquifer, and where 

the influence of aquitard on results could not be ignored. is more sensitive to the SWIW test than other parameters In the 

injection phase, the larger radial dispersivity of the aquifer could result in the smaller values of breakthrough curves (BTCs), 

while greater BTC values in the chaser and rest phases. In the extraction phase, it could lead to the smaller peak values of 

BTCs. The new model of this study is a generalization of several previous studies, and it performs better than previous 25 

studies ignoring the aquitard effect and wellbore storage for interpreting data of the field SWPP test reported by Yang et al. 

(2014).  

Keywords: Aquifer-aquitard system; Radial dispersion; Parameter estimation; Push-pull test 
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1 Introduction 30 

A single-well push-pull (SWPP) test could be applied for investigating aquifer properties related to reactive transport in 

subsurface instead of the inter-well tracer test, due to its advantages of efficiency, low cost, and easy implementation. The 

SWPP test is sometimes called the single-well injection-withdrawal test, or single-well huff-puff test, or single-well 

injection-backflow test (Jung and Pruess, 2012). A complete SWPP test includes the injection, the chaser, the rest, and the 

extraction phase. The second and third phases are generally ignored in the analytical solutions, but recommended in the field 35 

applications, since they could increase the reaction time for the injected chemicals with the porous media (Phanikumar and 

McGuire, 2010;Wang and Zhan, 2019).  

Similar to other aquifer tests, the SWPP test is a forced-gradient groundwater tracer test, and analytical solutions are often 

preferred to determine the in situ aquifer properties, due to the computational efficiency. Currently, many analytical models 

were available for various scenarios of the SWPP tests (Gelhar and Collins, 1971; Huang et al., 2010; Chen et al., 2017; 40 

Schroth and Istok, 2005; Wang et al., 2018). However, these studies were based on a common underlying assumption, that 

the studied aquifer was isolated from adjacent aquitards. In another word, the aquitards bounding the aquifer are taken as two 

completely impermeable barriers for solute transport. To date, numerous studies demonstrated that such an assumption might 

cause errors for groundwater flow (Zlotnik and Zhan, 2005;Hantush, 1967), and for reactive transport (Zhan et al., 2009; 

Chowdhury et al., 2017; Li et al., 2019). This is because even without any flow in the aquitards, molecular diffusion is 45 

inevitable to occur when solute injected to the aquifer is close to the aquitard-aquifer interface. This is particularly true when 

a fully penetrating well is used for injection, thus a portion of injected solute is very close to the aquitard-aquifer interface 

and the SWPP test duration is relatively long so the effect of molecular diffusion can be materialized. Another important 

point to note is that the materials of aquitard are usually clay and silt which have strong absorbing capability for chemicals 

and great mass storage capacities (Chowdhury et al., 2017). To date, the influence of aquitard on reactive transport in 50 

aquifers has attracted attentions for several decades. As for radial dispersion, Chen (1985), Wang and Zhan (2013) and Zhou 

et al. (2017) presented analytical solutions for radial dispersion around an injection well in an aquifer-aquitard system. 

However, these models only focus on the first phase of the SWPP test (injection).  

Another assumption included in many previous models of radial dispersion is that the wellbore storage is ignored for the 

solute transport. In the injection phase of the SWPP test, the wellbore storage refers to the mixing processes between the 55 

prepared tracer injected into the wellbore and original (or native) water in the wellbore. As a result of the wellbore storage, 

the concentration inside the wellbore varies with time until reaching the same value as the injected concentration, as shown 

in Figure 1(a). When ignoring it, the concentration inside the wellbore is constant during the entire inject phase, which is 

certainly not true. Similarly, the wellbore storage in the chaser, rest and extraction phases refers to the concentration 

variation caused by mixing processes between the original solute in the wellbore and the tracer moving in or out the wellbore. 60 

The examples of ignoring wellbore storage include Gelhar and Collins (1971), Chen (1985, 1987), Moench (1989), Chen et 

al. (2007, 2012), Schroth et al. (2001), Tang and Babu (1979), Chen et al. (2017), Huang et al. (2010), Chen et al. (2012), 
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and Zhou et al. (2017). This assumption implies that the mixing effect in the wellbore is not considered, where the mixing 

effect refers to the mixture between the original (or native) water and the injected tracer in the well. Such effect is excluded 

in almost all previous studies exceptRecently, Wang et al. (2018) developed a two-phase (injection and extraction) model for 65 

the SWPP test with specific considerations of the wellbore storage. In many field applications, the chaser and rest phases are 

generally involved and the mixing effect also happens in these two phases in the SWPP test, which is will be investigated in 

this study.  

Besides above-mentioned issues in previous studies, another issue is that the advection-dispersion equation (ADE) was used 

to govern the reactive transport of SWPP tests (Gelhar and Collins,1971; Wang et al.; 2018; Jung and Pruess, 2012). The 70 

validity of ADE was challenged by numerous laboratory and field experimental studies before, when using a single 

representative value of advection, dispersion and reaction to characterize the whole system. In a hypothetical case, if great 

details of heterogeneity are known, one may employ a sufficiently fine mesh to discretize the porous media of concern and 

use ADE to capture anomalous transport characteristics fairly well (e.g. the early arrivals and/or heavy late-time tails of the 

breakthrough curves (BTCs)). However, such a hypothetical case is rarely been materialized in real applications, especially 75 

for field-scale problems. To remedy the situation (at least in some degrees), the multi-rate mass transfer (MMT) model was 

proposed as an alternative to interpret the data of SWPP test (Huang et al., 2010; Chen et al., 2017). In the MMT model, the 

porous media is divided into many overlapping continuums (Haggerty et al., 2000;Haggerty and Gorelick, 1995). A subset of 

MMT is the two overlapping continuums or the mobile-immobile model (MIM) in which the mass transfer between two 

domains (mobile and immobile) becomes a single parameter instead of a function. The MIM model can grasp most 80 

characteristics of MMT and is mathematically simpler than MMT. Besides the MMT model, the continuous time random 

walk (CTRW) model and the fractional advection-dispersion equation (FADE) model were also applied for anomalous 

reactive transport in SWPP tests (Hansen et al., 2017; Chen et al., 2017). Due to the complexity of the mathematic models of 

CTRW and FADE, it is very difficult, or even not possible to derive analytical solutions for those two models, although both 

methods perform well in a numerical framework. 85 

In this study, a new model of SWIWSWPP tests will be established by including both wellbore storage and the aquitard 

effect under the MIM framework. The reason to choose MIM as the working framework is to capture the possible anomalous 

anonymous transport characteristics that cannot be described by ADE but at the same time to make the analytical treatment 

of the problem possible. Four stages of a SWIWSWPP test will be considered. The model of the wellbore storage will be 

developed using a mass balance principle in the chaser and rest phases. It seems not difficult to solve this model of this study 90 

using the numerical packages, like MODFLOW-MT3DMS, TOUGH and TOUGHREACT, FEFLOW, and so on. However, 

the numerical solutions may cause errors in treating the wellbore storage, since the volume of the water in the wellbore was 

assumed to be constant (Wang et al., 2018), while in reality it changes with time and well discharge. Meanwhile, the 

numerical errors (like numerical dispersion and numerical oscillation) have to be considered in solving the ADE equation, 

especially for advection-dominated transport. In this study, analytical solution will be derived to facilitate the data 95 
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interpretation. Due to the format of analytical solutions, it is much easier to couple such solutions with a proper optimization 

algorithm (like genetic algorithm). The analytical solution could serve as a benchmark to test the numerical solutions as well. 

Analytical solution will be derived to facilitate the data interpretation for SWIW tests. The newly developed model will be 

checked against numerical solutions and field experimental data. 

2 Model statement of the SWIWSWPP test 100 

A single test well is assumed to fully penetrate an aquifer with uniform thickness. Both the aquifer and aquitards are 

homogeneous and extend laterally to infinity. Linear sorption and first-order degradation are included in the mathematic 

model of the SWPP test. Such assumptions might be oversimplified for cases in reality, while they are inevitable for the 

derivation of the analytical solution, especially for the aquifer homogeneity. For a heterogeneity aquifer, the solution 

presented here may be regarded as an ensemble-averaged approximation if the heterogeneity is spatially stationary. If the 105 

heterogeneity is spatially non-stationary, then one can apply non-stationary stochastic approach and/or Monte Carlo 

simulations to deal with the issue, which is out of the scope of this investigation. 

The concept of homogeneity here deserves some clarification. First, dDespite the fact that the homogeneity assumption is 

commonly used in developing analytical and numerical models of subsurface flow and transport, one should be aware that a 

rigorous sense of homogeneity probably never exists in a real-world setting (unless the media are composed of idealized 110 

glass balls as in some laboratory experiments). Therefore, the homogeneity concept here should be envisaged as a media 

whose hydraulic parameters vary within relatively narrow ranges, or the so-called weak heterogeneity. The Borden site of 

Canada (Sudicky, 1988) is one example of weak aquifer heterogeneity. Wang et al. (2018) employed a stochastic 

modelingmodelling technique to test the assumption of homogeneity associated with the SWIWSWPP test, and found that 

such an assumption could be used to approximate a heterogeneous aquifer when the variance of spatial hydraulic 115 

conductivity was small. Second, for moderate or even strong heterogeneous media such as Cape Code site (Hess, 1989) or 

MADE site (Bohling et al., 2012), the analytical model developed under the homogeneity assumption is also valuable, but in 

a statistical sense, as long as the media heterogeneity can be regarded as spatially stationary, meaning that the statistical 

structure of the media heterogeneity does not vary in space. In this setting, the analytical model developed under the 

homogeneity assumption is used to describe the (ensemble) average characteristics of an ensemble of heterogeneous media 120 

which are statistically identical but individually different. In another word, such an analytical model will provide a 

statistically average description of many realizations (an ensemble) which are similar to the heterogeneous media of concern, 

but it cannot provide an exact description for the particular heterogeneous media under investigation.  

A cylindrical coordinate system is employed in this study, and the origin is located at the well centercentre, as shown in 

Figure 1(c). The z-axis and the r-axis are vertical and horizontal, respectively. Figure 1 is a schematic diagram of the model 125 

investigated by this studysimilar to Figure 1 of Wang and Zhan (2013). 
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2.1 Reactive transport model 

Considering advective effect, dispersive effect and first-order chemical reaction in describing solute transport under the MIM 

framework, the governing equations the SWIWSWPP test are: 

௠ܴ௠ߠ
௠ܥ߲

ݐ߲
=

௠ߠ

ݎ
߲

ݎ߲
൬ܦݎ௥

௠ܥ߲

ݎ߲
൰ − ௔ݒ௠ߠ

௠ܥ߲

ݎ߲
− ߱௔(ܥ௠ − (௜௠ܥ −  ௠ܥ௠ߤ௠ߠ

− ቀ
ఏೠ೘௩ೠ೘

ଶ஻
௨௠ܥ −

ఏೠ೘஽ೠ

ଶ஻

డ஼ೠ೘

డ௭
ቁቚ

௭ୀ஻
+ ቀ−

ఏ೗೘௩೗೘

ଶ஻
௟௠ܥ −

ఏ೗೘஽೗

ଶ஻

డ஼೗೘

డ௭
ቁቚ

௭ୀି஻
ݎ , ≥ ௪ݎ ,     (1a) 130 

௜௠ܴ௜௠ߠ
డ஼೔೘

డ௧
= ߱௔(ܥ௠ − (௜௠ܥ − ݎ ,௜௠ܥ௜௠ߤ௜௠ߠ ≥  ௪,        (1b)ݎ

௨௠ܴ௨௠ߠ
డ஼ೠ೘

డ௧
= ௨ܦ௨௠ߠ

డమ஼ೠ೘

డ௭మ − ௨௠ݒ௨௠ߠ
డ஼ೠ೘

డ௭
− ߱௨(ܥ௨௠ − (௨௜௠ܥ − ݖ,௨௠ܥ௨௠ߤ௨௠ߠ ≥  (2a)    ,ܤ

௨௜௠ܴ௨௜௠ߠ
డ஼ೠ೔೘

డ௧
= ߱௨(ܥ௨௠ − (௨௜௠ܥ − ݖ ,௨௜௠ܥ௨௜௠ߤ௨௜௠ߠ ≥  (2b)        ,ܤ

௟௠ܴ௟௠ߠ
డ஼೗೘

డ௧
= ௟ܦ௟௠ߠ

డమ஼೗೘

డ௭మ − ௟௠ݒ௟௠ߠ
డ஼೗೘

డ௭
− ߱௟(ܥ௟௠ − (௟௜௠ܥ − ݖ ,௟௠ܥ௟௠ߤ௟௠ߠ ≤  (3a)    ,ܤ−

௟௜௠ܴ௟௜௠ߠ
డ஼೗೔೘

డ௧
= ߱௟(ܥ௟௠ − (௟௜௠ܥ − ݖ ,௟௜௠ܥ௟௜௠ߤ௟௜௠ߠ ≤  135 (3b)       ,ܤ−

where subscripts ‘‘ݑ’’ and ‘‘݈’’ refers to parameters in the upper and lower aquitards, respectively; subscript “݈” refers to 

parameters in the lower aquitard; subscripts ‘‘݉’’ and “݅݉” refers to parameters in the mobile domain; subscript “݅݉” refers 

to parameters in theand immobile domains, respectively;; ܥ௠ and ܥ௜௠ are the concentrations [ML-3] of the aquifer; ܥ௨௠ and, 

 ௟௜௠ are concentrations [ML-3] of the lower aquitards; t is theܥ ௟௠ andܥ ,;௨௜௠ are concentrations [ML-3] of the upper aquitardܥ

time [T]; ܤ is half of the aquifer thickness [L]; ݎ is the radial distance [L]; ݖ represents the vertical distance [L]; ݎ௪ is the 140 

well radius [L]; ܦ௥  is aquifer dispersion coefficient [L2T-1]; ܦ௨ and ܦ௟  are vertical dispersion coefficients [L2T-1] of the upper 

aquitard and lower aquitard, respectively; ݒ௔  is represents the average velocity [LT-1] in the aquifer and ݒ௔ =
௨ೌ

ఏ೘
௔ݑ ;  is 

Darcian velocity [LT-1]; ݒ௨௠ and ݒ௟௠  are vertical velocities [LT-1] in the aquitards; ߤ௠ ௜௠ߤ , ௨௠ߤ , ௨௜௠ߤ , ௟௠ߤ ,  and ߤ௟௜௠  are 

reaction rates; ߠ௠ ௜௠ߠ , , ௨௠ߠ  ௨௜௠ߠ , , ௟௠ߠ   and ߠ௟௜௠  are the porosities [dimensionless]; ܴ௠ = 1 +
ఘ್௄೏

ఏ೘
, ܴ௜௠ = 1 +

ఘ್௄೏

ఏ೔೘
, 

ܴ௨௠ = 1 +
ఘ್௄೏

ఏೠ೘
, ܴ௨௜௠ = 1 +

ఘ್௄೏

ఏೠ೔೘
, ܴ௟௠ = 1 +

ఘ್௄೏

ఏ೗೘
 and ܴ௟௜௠ = 1 +

ఘ್௄೏

ఏ೗೔೘
 are the retardation factors [dimensionless]; ܭௗ  is 145 

the equilibrium distribution coefficient [M-1L3]; ߩ௕ is the bulk density [ML-3]; ߱௔, ߱௨ and ߱௟ are the first-order mass transfer 

coefficients [T-1].  

The symbol of the advection term is positive in the extraction phase in above equations, while it is negative before that. The 

dispersions are assumed to be linearly changing with the flow velocity, and one has: 

௥ܦ = |௥ݒ|௥ߙ + ௥ܦ
∗,           (4a) 150 

௨ܦ = |௨ݒ|௨ߙ + ௨ܦ
∗ ,           (4b) 

௟ܦ = |௟ݒ|௟ߙ + ௟ܦ
∗,            (4c) 
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where ߙ௥, ߙ௨ and ߙ௟ are dispersivities  [L] of the aquifer, upper aquitard, and lower aquitard, respectively; ܦ௥
௨ܦ ,∗

∗  and ܦ௟
∗ are 

the diffusion coefficients [L2T-1]. 

Initial conditions are: 155 

,ݎ)௠ܥ ௧ୀ଴|(ݐ = ,ݎ)௜௠ܥ ௧ୀ଴|(ݐ = ,ݎ)௨௠ܥ ,ݖ ௧ୀ଴|(ݐ = ,ݎ)௨௜௠ܥ ,ݖ ௧ୀ଴|(ݐ = ,ݎ)௟௠ܥ ,ݖ ௧ୀ଴|(ݐ = ,ݎ)௟௜௠ܥ ,ݖ ௧ୀ଴|(ݐ = ݎ ,0 ≥ ௪ݎ ,(5) 

The boundary conditions at infinity are: 

,ݎ)௠ܥ ௥→ஶ|(ݐ = ,ݎ)௜௠ܥ ௥→ஶ|(ݐ = ,ݎ)௨௠ܥ ,ݖ ௭→ஶ|(ݐ = ,ݎ)௨௜௠ܥ ,ݖ ௭→ஶ|(ݐ = ,ݎ)௟௠ܥ ,ݖ ௭→ିஶ|(ݐ = ,ݎ)௟௜௠ܥ ,ݖ  ,௭→ିஶ|(ݐ

= ݎ,0 ≥  ௪,            (6)ݎ

Due to the concentration continuity at the aquifer-aquitard interface, one has: 160 

,ݎ)௠ܥ (ݐ = ,ݎ)௨௠ܥ ݖ = ,ܤ  (7a)          ,(ݐ

,ݎ)௠ܥ (ݐ = ,ݎ)௟௠ܥ ݖ = ,ܤ−  (7b)           .(ݐ

The flux concentration continuity (FCC) is applied on the surface of wellbore, and one has: 

ቂݒ௔ܥ௠(ݎ, (ݐ − |௔ݒ|௥ߙ డ஼೘(௥,௧)

డ௥
ቃቚ

௥ୀ௥ೢ
= ൧ห(ݐ)௜௡௝,௠ܥ௔ݒൣ

௥ୀ௥ೢ
, 0 < ݐ ≤  ௜௡௝,      (8)ݐ

ቂݒ௔ܥ௠(ݎ, (ݐ − |௔ݒ|௥ߙ డ஼೘(௥,௧)

డ௥
ቃቚ

௥ୀ௥ೢ
= ൧ห(ݐ)௖௛௔,௠ܥ௔ݒൣ

௥ୀ௥ೢ
௜௡௝ݐ , < ݐ ≤  ௖௛௔,      (9) 165ݐ

ሾܥ௠(ݎ, ሿ|௥ୀ௥ೢ(ݐ = ௪ݎ)௥௘௦,௠ܥ , ௖௛௔ݐ ,(ݐ < ݐ ≤  ௥௘௦,         (10)ݐ

ቂݒ௔ܥ௠(ݎ, (ݐ − |௔ݒ|௥ߙ డ஼೘(௥,௧)

డ௥
ቃቚ

௥ୀ௥ೢ
= ൧ห(ݐ)௘௫௧,௠ܥ௔ݒൣ

௥ୀ௥ೢ
௥௘௦ݐ , < ݐ ≤  ௘௫௧,      (11)ݐ

where ݐ௜௡௝ ௖௛௔ݐ , ௥௘௦ݐ ,  and ݐ௘௫௧  are the end moments [T] of the injection phase, the chaser phase, the rest phase and the 

extraction phase, respectively; ܥ௜௡௝,௠(ݐ), ܥ௖௛௔,௠(ݐ), ܥ௥௘௦,௠(ݐ) and ܥ௘௫௧,௠(ݐ) represent the wellbore concentrations [ML-3] of 

tracer in the injection phase, the chaser phase, the rest phase and the extraction phase, respectively. Eqs. (8) - (11) indicate 170 

that the flux continuity across the interface between well and the formation is only considered for the mobile continuum (or 

mobile domain). 

The variation of the concentration with mixing effect in the injection phase could be described by (Wang et al., 2018): 

௪ܸ,௜௡௝
ௗ஼೔೙ೕ,೘

ௗ௧
= (ݐ)௜௡௝,௠ܥൣ(௪ݎ)௔ݒߦ− − ଴൧, 0ܥ < ݐ ≤  ௜௡௝,        (12a)ݐ

ห(ݐ)௜௡௝,௠ܥ
௧ୀ଴

= 0, 0 < ݐ ≤  ௜௡௝,           (12b) 175ݐ

 ௪ܸ,௜௡௝ = ௪ݎߨ
ଶℎ௪,௜௡௝,           (12c) 
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ߦ =  (12d)             ,ܤ௠2ߠ௪ݎߨ2

where ℎ௪,௜௡௝ is the wellbore water depth [L] in the injection phase, ܥ଴ is concentration [ML-3] of prepared tracer.. 

As for the chaser phase, the models describing the concentration variation in the wellbore could be obtained using mass 

balance principle:  180 

௪ܸ,௖௛௔
ௗ஼೎೓ೌ,೘

ௗ௧
= ௜௡௝ݐ ,൧(ݐ)௖௛௔,௠ܥൣ(௪ݎ)௔ݒߦ− < ݐ ≤  ௖௛௔,       (13a)ݐ

ห(ݐ)௖௛௔,௠ܥ
௧ୀ௧೔೙ೕ

= ห(ݐ)௜௡௝,௠ܥ
௧ୀ௧೔೙ೕ

௜௡௝ݐ , < ݐ ≤  ௖௛௔,         (13b)ݐ

 ௪ܸ,௖௛௔ = ௪ݎߨ
ଶℎ௪,௖௛௔,           (13c) 

where ℎ௪,௖௛௔ is the wellbore water depth [L] in the chaser phase. 

In the extraction phase, the boundary condition is (Wang et al., 2018): 185 

௪ܸ,௘௫௧
ௗ஼೐ೣ೟,೘

ௗ௧
ቚ

௥ୀ௥ೢ
= (௪ݎ)௔ݒ௥ߙߦ−

ௗ஼೐ೣ೟,೘

ௗ௧
ቚ

௥ୀ௥ೢ
௥௘௦ݐ , < t ≤  ௘௫௧,      (14a)ݐ

ห(ݐ)௘௫௧,௠ܥ
௧ୀ௧ೝ೐ೞ

= ห(ݐ)௥௘௦,௠ܥ
௧ୀ௧ೝ೐ೞ

௥௘௦ݐ , < ݐ ≤  ௘௫௧,         (14b)ݐ

௪ܸ,௘௫௧ = ௪ݎߨ
ଶℎ௪,௘௫௧ ,           (14c) 

where ℎ௪,௘௫௧ is the wellbore water depth [L] in the extraction phase. 

2.2 Flow field model 190 

The flow problem must be solved first before investigating the transport problem of the SWIWSWPP test. The velocity 

involved in the advection and dispersion terms of the governing equations (1a) and (1b) is:  

(௪ݎ)௔ݒ =
ொ

ସగ௥ೢ ஻ఏ೘
ݎ , ≥ ௪ݎ ,          (15) 

where ܳ is the pumping rate [L3T-1], and it is negative for injection and positive for pumping. The use of Eq. (15) implies 

that quasi-steady state flow can be established very quickly near the injection/pumping well, thus the flow velocity becomes 195 

independent of time. This approximation is generally acceptable given the very limited spatial range of influence of most 

SWIWSWPP tests. For instance, if the characteristic length of SWIWSWPP test is l and the aquifer hydraulic diffusivity is 

D=Ka/Sa, where Ka are Sa are respectively the radial hydraulic conductivity and specific storage, then the typical 

characteristic time of unsteady-state flow is around ݐ௖ ≈
௟మ

ଶ஽
. The typical characteristic time refers to the time of the flow 

changing from transient state to quasi-steady state, where the spatial distribution of flow velocity does not change while the 200 

drawdown varies with time. This model is similar to the model used to calculate the typical characteristic length of the tide-
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induced head fluctuation in a coastal aquifer system (Guarracino et al., 2012). For Ka=1m/day, Sa=10-5m-1 and l=10m (which 

are representative of an aquifer consisting of medium sands), one has ݐ௖ ≈
௟మ

ଶ஽
= 5.0 × 10ିଷ day, which is a very small value. 

To test the model in computing ݐ௖, the numerical simulation has been conducted, where the other parameters used in the 

model are the same as ones used in Figures 2 and 3. Figure S2 shows the flow is in quasi-steady state when time is greater 205 

than ݐ௖, since two curves of 5.0= ݐ × 10ିଷ day and 10= ݐ. 0 × 10ିଷ day overlap. As for the typical characteristic length, if 

the values of the Ka, Sa, and B have been estimated by the pumping tests before the SWPP test, it could be calculated by 

numerical modelling exercises using different simulation times. 

The water levels in the wellbore in Eqs. (12) - (14) could be calculated by the models of Moench (1985):  

ℎ௪ = lim௧→ஶ൛ℒିଵൣℎത௪(݌)൧ൟ,          (16) 210 

where ݌ is Laplace transform variable; ℒିଵ represents the inverse Laplace transform; the over bar represents the Laplace-

domain variable, and 

ℎത௪(݌) = ℎ଴ −
ொ

଼గ௄஻

ଶሾ௄బ(௫)ା௫ௌೢ௄భ(௫)ሿ

௣ሼ௣ௐವሾ௄బ(௫)ା௫ௌೢ௄భ(௫)ሿା௫௄భ(௫)ሽ
,        (17) 

஽ܹ =
ଵ

ସ஻ௌೌ
,            (18) 

ݔ =
(௣ା௤ത)

ଶ
,            (19) 215 

തݍ = ଶ݉ᇱcoth(݉ᇱ)(ᇱߛ) +  ଶ݉ᇱᇱcoth(݉ᇱᇱ),        (20)(ᇱᇱߛ)

݉ᇱ =
ቀ

ೄೠಳೠ೛
ೄೌಳ ቁ

భ/మ

ఊᇲ ,            (21) 

݉ᇱᇱ =
ቀ

ೄ೗ಳ೗೛
ೄೌಳ ቁ

భ/మ

ఊᇲᇲ ,            (22) 

ᇱߛ = ௪ݎ ቀ
௄ೠ

ଶ௄ೌ஻஻ೠ
ቁ

ଵ/ଶ
,           (23) 

ᇱᇱߛ = ௪ݎ ቀ
௄೗

ଶ௄ೌ஻஻೗
ቁ

ଵ/ଶ
,           (24) 220 

where ܭ௨  and ܭ௟  are hydraulic conductivities [LT-1]; ܵ௨  and ௟ܵ  are specific storages [L-1]; ܵ௪  is the wellbore skin factor 

[dimensionless]; ܤ௨ and ܤ௟  are thicknesses [L]; ܭ଴(∙) and ܭଵ(∙) are the modified Bessel functions. 
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3 New solution of reactive transport in the SWPP test 

In this study, the Laplace transform and Green’s function methods will be employed to derive the analytical solution of the 

new SWPP test models described in Section 2. The dimensionless parameters are defined as follows: ܥ௠஽ =
஼೘

஼బ
௜௠஽ܥ , =

஼೔೘

஼బ
, 225 

௜௡௝,௠஽ܥ =
஼೔೙ೕ,೘

஼బ
, ௜௡௝,௜௠஽ܥ  =

஼೔೙ೕ,೔೘

஼బ
௖௛௔,௠஽ܥ , =

஼೎೓ೌ,೘

஼బ
௖௛௔,௜௠஽ܥ , =

஼೎೓ೌ,೔೘

஼బ
௥௘௦,௠஽ܥ , =

஼ೝ೐ೞ,೘

஼బ
, ௥௘௦,௜௠஽ܥ  =

஼ೝ೐ೞ,೔೘

஼బ
௘௫௧,௠஽ܥ , =

஼೐ೣ೟,೘

஼బ
, ௘௫௧,௜௠஽ܥ  =

஼೐ೣ೟,೔೘

஼బ
௨௠஽ܥ , =

஼ೠ೘

஼బ
, ௨௜௠஽ܥ  =

஼ೠ೔೘

஼బ
, ௟௠஽ܥ  =

஼೗೘

஼బ
, ௟௜௠஽ܥ  =

஼೗೔೘

஼బ
஽ݐ , =

|஺|

ఈೝ
మோ೘

ݐ , ஽ݎ  =
௥

ఈೝ
, ௪஽ݎ  =

௥ೢ

ఈೝ
஽ݖ , =

௭

஻
, 

௠஽ߤ =
ఈೝ

మఓ೘

஺
௜௠஽ߤ , =

ఈೝ
మோ೘ఓ೔೘

ோ೔೘஺
௨௠஽ߤ , =

ఈೝ
మఓೠ೘

஺
௨௜௠஽ߤ , =

ఈೝ
మோ೘ఓೠ೔೘

ோ೔೘஺
௟௠஽ߤ , =

ఈೝ
మఓ೗೘

஺
௟௜௠஽ߤ , =

ఈೝ
మோ೘ఓ೗೔೘

ோ೔೘஺
 and ܣ =

ொ

ସగ஻ఏ೘
. The 

detailed derivation of the new solution is listed in Section S1 of Supplementary Materials. 

3.1 Solutions in Laplace domain 230 

As for the injection phase of the SWPP test, the solutions in Laplace domain are: 

஽ݎ)௠̅஽ܥ , (ݏ = ߶ଵ exp ቀ
௬೔೙ೕ

ଶ
ቁ ஽ݎ ,௜௡௝൯ݕଵ/ଷܧ௜൫ܣ ≥ ௪஽ݎ ,        (25a) 

௜̅௠஽ܥ =
ఌ೔೘

(௦ାఓ೔೘ವାఌ೔೘)
஽ݎ ,௠̅஽ܥ ≥  ௪஽,         (25b)ݎ

௨̅௠஽ܥ = ஽ݖଶܽ) ݌ݔ௠̅஽݁ܥ − ܽଶ), ݖ஽ ≥ 1,         (25c) 

௨̅௜௠஽ܥ =
ఌೠ೔೘

௦ାఌೠ೔೘ାఓೠ೔೘ವ
஽ݖ ,௨̅௠஽ܥ ≥ 1,         (25d) 235 

௟̅௠஽ܥ = ஽ݖଵܾ) ݌ݔ௠̅஽݁ܥ + ܾଵ), ݖ஽ ≤ −1,         (25e) 

௟̅௜௠஽ܥ =
ఌ೗೔೘

௦ାఌ೗೔೘ାఓ೗೔೘ವ
஽ݖ ,௟̅௠஽ܥ ≤ −1,         (25f) 

where s represents the Laplace transform parameter for ݐ஽ (which is proportional to p); ܣ௜(∙) is the Airy function ܣ௜
ᇱ(∙) is the 

derivative of the Airy function; the expressions for ܽଶ , ܾଵ ௜௡௝ݕ ,ܧ , ௜௡௝,௪ݕ , ௠ߝ , ௜௠ߝ , ௨௠ߝ , ௨௜௠ߝ , ௟௠ߝ , ௟௜௠ߝ , ௜௡௝ߚ ,  and ߶ଵ  are 

listed in Table 1. 240 

In the chaser phase, the solutions of the SWPP test in Laplace domain are: 

௠̅஽ܥ = (஽ݎ)ߖ + ଵߜ + ஽ݎ ,஽ݎଶߜ ≥ ௪஽ݎ ,          (26a) 

௜̅௠஽ܥ =
ఌ೔೘

(௦ାఓ೔೘ವାఌ೔೘)
௠̅஽ܥ +

஼೔೘ವ൫௥ವ,௧೔೙ೕ,ವ൯

(௦ାఓ೔೘ವାఌ೔೘)
஽ݎ , ≥ ௪஽ݎ ,        (26b) 

஽ݎ)ߖ , ;௔ܧ (ߟ = ׬ ஽ݎ)݃ , ;௔ܧ ஶ(ߟ
௥ೢವ

஽ݎ ,ߟ݀(ߟ)߮ ≥ ௪஽ݎ ,        (26c) 

௨̅௠஽ܥ = ׬ ݃௨(ݖ஽ , ;௨ܧ ௨)ஶߟ
ଵ ௨݂(ߟ௨)݀ߟ௨ +

௭ವି௭೐ವ

ଵି௭೐ವ
஽ݎ)௠̅஽ܥ , ஽ݖ ,(ݏ ≥ 1,      (26d) 245 
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௨̅௜௠஽ܥ =
ఌೠ೔೘

௦ାఌೠ೔೘ାఓೠ೔೘ವ
௨̅௠஽ܥ +

஼ೠ೔೘ವ൫௥ವ,௭ವ,௧೔೙ೕ,ವ൯

௦ାఌೠ೔೘ାఓೠ೔೘ವ
஽ݖ , ≥ 1,        (26e) 

௟̅௠஽ܥ = ׬ ݃௟(ݖ஽ , ;௟ܧ (௟ߟ
ିஶ

ିଵ ௟݂(ߟ௟)݀ߟ௟ +
௭೐ವା௭ವ

௭೐ವିଵ
஽ݎ)௠̅஽ܥ , ஽ݖ , ஽ݖ ,(ݏ ≤ −1,       (26f) 

௟̅௜௠஽ܥ =
ఌ೗೔೘

௦ାఌ೗೔೘ାఓ೗೔೘ವ
௟̅௠஽ܥ +

஼೗೔೘ವ൫௥ವ,௭ವ,௧೔೙ೕ,ವ൯

௦ାఌ೗೔೘ାఓ೗೔೘ವ
஽ݖ , ≤ −1,       (26g) 

where ߟ  varies between ݎ௪஽  and ∞ , e.g. ௪஽ݎ  ≤ ߟ ≤ ∞ ௨ߟ ;  varies between 1  and ∞ ௟ߟ ;  varies between −1  and −∞ ; 

஽ݎ௠஽൫ܥ , ஽ݎ௜௠஽൫ܥ ௜௡௝,஽൯ andݐ ,  ௜௡௝,஽൯ are the concentrations [ML-3] of the aquifer at the end of injection stage, which could be 250ݐ

calculated by Eq. (25a) and Eq. (25b) after applying the inverse Laplace transform, ܥ௨௠஽൫ݎ஽ , ஽ݖ ,  ௜௡௝,஽൯ andݐ

஽ݎ௨௜௠஽൫ܥ , ஽ݖ ,  ௖௛௔,஽൯ represent the concentrations [ML-3] of the upper aquitard at the end of the injection phase, which couldݐ

be calculated by Eq. (25c) and Eq. (25d) after applying the inverse Laplace transform, ܥ௟௠஽൫ݎ஽ , ஽ݖ , ௜௡௝,஽൯ݐ  and 

஽ݎ௟௜௠஽൫ܥ , ,஽ݖ  ௜௡௝,஽൯ are the concentrations [ML-3] of the lower aquitard at the end of the injection phase, which could beݐ

calculated by Eq. (25e) and Eq. (25f) after applying the inverse Laplace transform, ݃(ݎ஽ , ;௔ܧ (ߟ , ݃௨(ݖ஽ , ;௨ܧ (௨ߟ  and 255 

݃௟(ݖ஽ , ;௟ܧ ஽ݎ)݃ ௟) are the Green's functions; the expressions forߟ , ;௔ܧ ஽ݖ)௨݃ ,(ߟ , ;௨ܧ ஽ݖ)௨), ݃௟ߟ , ௟ܧ ;  ,௨ܧ ,௔ܧ ,ଶ, ःଵ, ःଶߜ ,ଵߜ ,(௟ߟ

௟ܧ  .௖௛௔,஽ are listed in Table 2ߚ ସ, ଵܰ, ଶܰ, ଷܰ, ସܰ, ଵ࣮, ଶ࣮, ଷ࣮, ସ࣮ andܯ ,ଷܯ ,ଶܯ ,ଵܯ ,ܺ ,(௨ߟ)௨݂ ,(஽ݎ)߮ ,ܨ ,௖௛௔,௪ݕ ,௖௛௔ݕ ,

For the rest phase, the solutions of the SWPP test in Laplace domain are: 

௠̅஽ܥ =
஼೘ವ(௥ವ,௧೎೓ೌ,ವ)ା

ഄ೘಴೔೘ವቀೝವ,೟೎೓ೌ,ವቁ

൫ೞశഋ೔೘ವశഄ೔೘൯

൬௦ାఌ೘ାఓ೘ವି
ഄ೘ഄ೔೘

ೞశഋ೔೘ವశഄ೔೘
൰

஽ݎ , ≥  ௪஽,        (27a)ݎ

௜̅௠஽ܥ =
஼೔೘ವ൫௥ವ,௧೎೓ೌ,ವ൯

(௦ାఓ೔೘ವାఌ೔೘)
+

ఌ೔೘஼೘̅ವ

(௦ାఓ೔೘ವାఌ೔೘)
஽ݎ , ≥  ௪஽,        (27b) 260ݎ

௨̅௠஽ܥ =
஼ೠ೘ವ൫௥ವ,௭ವ,௧೎೓ೌ,ವ൯ା

ഄೠ೘಴ೠ೔೘ವቀೝವ,೥ವ,೟೎೓ೌ,ವቁ

ೞశഄೠ೔೘శഋೠ೔೘ವ

൬௦ାఌೠ೘ାఓೠ೘ವି
ഄೠ೘ഄೠ೔೘

ೞశഄೠ೔೘శഋೠ೔೘ವ
൰

஽ݖ , ≥ 1,        (27c) 

௨̅௜௠஽ܥ =
ఌೠ೔೘

௦ାఌೠ೔೘ାఓೠ೘ವ
௨̅௠஽ܥ +

஼ೠ೔೘ವ൫௥ವ,௭ವ,௧೎೓ೌ,ವ൯

௦ାఌೠ೔೘ାఓೠ೘ವ
஽ݖ , ≥ 1,       (27d) 

௟̅௠஽ܥ =
஼೗೘ವ൫௥ವ,௭ವ,௧೎೓ೌ,ವ൯ା

ഄ೗೘಴೗೔೘ವቀೝವ,೥ವ,೟೎೓ೌ,ವቁ

ೞశഄ೗೔೘శഋ೗೔೘ವ

൬௦ାఌ೗೘ାఓ೗೘ವି
ഄ೗೘ഄ೗೔೘

ೞశഄ೗೔೘శഋ೗೔೘ವ
൰

஽ݖ , ≤ −1,       (27e) 

௟̅௜௠஽ܥ =
ఌ೗೔೘

௦ାఌ೗೔೘ାఓ೗೘ವ
௟̅௠஽ܥ +

஼೗೔೘ವ൫௥ವ,௭ವ,௧೎೓ೌ,ವ൯

௦ାఌ೗೔೘ାఓ೗೘ವ
஽ݖ , ≤ −1,       (27f) 

where ܥ௠஽൫ݎ஽ , ஽ݎ௜௠஽൫ܥ ௖௛௔,஽൯ andݐ ,  ௖௛௔,஽൯ are the concentrations [ML-3] of the aquifer at the end of the chaser phase, which 265ݐ

could be calculated by Eq. (26a) and Eq. (26b) after applying the inverse Laplace transform, ܥ௨௠஽൫ݎ஽ , ஽ݖ , ௖௛௔,஽൯ݐ  and 
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஽ݎ௨௜௠஽൫ܥ , ஽ݖ ,  ௖௛௔,஽൯ are the concentrations [ML-3] of the upper aquitard at the end of the chaser phase, which could beݐ

computed by Eq. (26d) and Eq. (26e) after applying the inverse Laplace transform, ܥ௟௠஽൫ݎ஽ , ,஽ݖ ௖௛௔,஽൯ݐ  and 

஽ݎ௟௜௠஽൫ܥ , ,஽ݖ  ௖௛௔,஽൯ are the concentrations [ML-3] of the lower aquitard at the end of the chaser phase, which could beݐ

calculated by Eq. (26f) and Eq. (26g) after applying the inverse Laplace transform. 270 

As for the extraction phase of the SWPP test, the solutions in Laplace domain are: 

஽ݎ)௠̅஽ܥ , (ݏ = ஽ݎ)ሾܷ(஽/2ݎ−)݌ݔ݁ , ;ߞ (ߝ + ଵߪ + ஽ݎ ,஽ሿݎଶߪ ≥ ௪஽ݎ ,       (28a) 

௜̅௠஽ܥ =
ఌ೔೘

(௦ାఓ೔೘ವାఌ೔೘)
௠̅஽ܥ +

஼೔೘ವ(௥ವ,௥௘௦)

௦ାఓ೔೘ವାఌ೔೘
஽ݎ , ≥ ௪஽ݎ ,        (28b) 

஽ݎ)ܷ , ;ߞ (ߝ = ׬ ஽ݎ)݃ , ;ߞ ஶ(ߝ
௥ೢವ

 (28c)          ,ߝ݀(ߝ)݂

௨̅௠஽ܥ = ׬ ݃௨(ݖ஽ , ;௨ܧ ௨ࣶ)ஶ
ଵ ௨݂( ௨ࣶ)݀ ௨ࣶ +

௭ವି௭೐ವ

ଵି௭೐ವ
஽ݎ)௠̅஽ܥ , ஽ݖ ,(ݏ ≥ 1,      (28d) 275 

௨̅௜௠஽ܥ =
ఌೠ೔೘஼ೠ̅೘

௦ାఌೠ೔೘ାఓೠ೔೘ವ
+

஼ೠ೔೘ವ൫௥ವ,௭ವ,௧ೝ೐ೞ,ವ൯

௦ାఌೠ೔೘ାఓೠ೔೘ವ
஽ݖ , ≥ 1,        (28e) 

௟̅௠஽ܥ = ׬ ݃௟(ݖ஽ , ;௟ܧ ௟ࣶ)ିஶ
ିଵ ௟݂( ௟ࣶ)݀ ௟ࣶ +

௭ವା௭೐ವ

௭೐ವିଵ
஽ݎ)௠̅஽ܥ , ஽ݖ ,(ݏ ≤ −1,      (28f) 

௟̅௜௠஽ܥ =
ఌ೗೔೘஼೗̅೘ವ

௦ାఌ೗೔೘ାఓ೗೔೘ವ
+

஼೗೔೘ವ൫௥ವ,௭ವ,௧ೝ೐ೞ,ವ൯

௦ାఌ೗೔೘ାఓ೗೔೘ವ
஽ݖ , ≤ −1,         (28g) 

where ܥ௠஽൫ݎ஽ , ஽ݎ௜௠஽൫ܥ ௥௘௦,஽൯ andݐ ,  ௥௘௦,஽൯ are the concentrations [ML-3] of the aquifer at the end of the rest phase, whichݐ

could be calculated by Eq. (27a) and Eq. (27b) after applying the inverse Laplace transform, ܥ௨௠஽൫ݎ஽ , ஽ݖ , ௥௘௦,஽൯ݐ  and 280 

஽ݎ௨௜௠஽൫ܥ , ஽ݖ ,  ௥௘௦,஽൯ are the concentrations [ML-3] of the upper aquitard at the end of the rest phase, which could beݐ

calculated by Eq. (27c) and Eq. (27d) after applying the inverse Laplace transform, ܥ௟௠஽൫ݎ஽ , ஽ݖ , ௥௘௦,஽൯ݐ  and 

஽ݎ௟௜௠஽൫ܥ , ,஽ݖ ௥௘௦,஽൯ݐ  are the concentrations [ML-3] of the lower aquitard at the end of the rest phase, which could be 

calculated by Eq. (27e) and Eq. (27f) after applying the inverse Laplace transform; ௨ࣶ varies between 1 and ∞; ௟ࣶ  varies 

between −1 and −∞; ߝ varies between ݎ௪஽  and ∞ (e.g. ݎ௪஽ ≤ ߝ ≤ ஽ݎ)݃ ;(∞ , ;ߞ ஽ݖ)௨݃ ,(ߝ , ;௨ܧ ௨ࣶ) and ݃௟(ݖ஽ , ;௟ܧ ௟ࣶ) are the 285 

Green's functions; the expressions for ݃(ݎ஽ , ;ߞ ஽ݖ)௨݃ ,(ߝ , ;௨ܧ ௨ࣶ), ݃௟(ݖ஽ , ;௟ܧ ௟ࣶ), ߪଵ, ߪଶ, Λ, (ߝ)݂ ,ߞ, ௨݂( ௨ࣶ), ௟݂( ௟ࣶ), ܪଵ~ܪସ, 

~ସ, ݉ଵ~݉ଶ, ݊ଵ~݊ଶ, ଵܲܫ~ଵܫ ସܲ, W, ݕ௘௫௧  .௘௫௧,஽ are listed in Table 3ߚ ௘௫௧,௪ andݕ ,

3.2 Solutions from Laplace domain to real-time domain 

Because the analytical solutions in Laplace domain are too complex, it seems impossible to transform it into the real time 

domain analytically. Alternatively, a numerical method will be introduced for the invers Laplace transform. Currently, 290 

several methods are available, like the Stehfest model, Zakian model, Fourier series model, de Hoog model, and Schapery 
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model (Wang and Zhan, 2015). Here, the de Hoog method will be applied to conduct the inverse Laplace transform, since it 

performed well for radial-dispersion problems (Wang et al., 2018;Wang and Zhan, 2013).  

3.3 Assumptions included in the new SWPP test model 

The new SWPP test model is a generalization of several previous studies; for instance, the new solution reduces to the 295 

solution of Gelhar and Collins (1971) when ߱௔ = ߱௨ = ߱௟ = ௨ܦ = ௟ܦ = ௨௠ݒ = ௟௠ݒ = ௪ܸ,௜௡௝ = ௪ܸ,௖ℎ௔ = ௪ܸ,௘௫௧ = ௖௛௔ݐ =

௥௘௦ݐ = 0 and , to the solution of Chen et al. (2017) when ߱௨ = ߱௟ = ௨ܦ = ௟ܦ = ௨௠ݒ = ௟௠ݒ = ௪ܸ,௜௡௝ = ௪ܸ,௖ℎ௔ = ௪ܸ,௘௫௧ = 0, 

and Wang et al., (2018) when ߱௔ = ߱௨ = ߱௟ = ௨ܦ = ௟ܦ = ௨௠ݒ = ௟௠ݒ = ௖௛௔ݐ = ௥௘௦ݐ = ௖௛௔ݐ“ .0 = ௥௘௦ݐ = 0” represents the 

four-phase SWPP test becomes the two-phase SWPP test, where the chaser and rest phases are excluded. Actually, all values 

of ߱௔, ߱௨, ߱௟, ܦ௨, ܦ௟ ௟௠, ௪ܸ,௜௡௝ݒ ,௨௠ݒ , , ௪ܸ,௖ℎ௔ , and ௪ܸ,௘௫௧  are not zero in the reality, which have been considered in the new 300 

solutions of this study.  

However, three assumptions still remain. First, the flow is in the quasi-steady state flow, e.g. Eq. (15). Second, the 

groundwater flow is horizontal in the aquifer, and is vertical in the aquitard. This treatment relies on the basis that the 

permeability of the aquitard is smaller than the permeability of the aquifer (Moench, 1985). Third, the model is simplified for 

the solute transport. For example, only vertical dispersion and advection effects are considered in the aquitard, and only 305 

radial dispersion and advection effects are considered in the aquifer. The validation of these assumptions will be discussed in 

the Section 4.2. 

4 Verification of the new model 

In this section, the newly derived analytical solutions will be tested from two aspects. Firstly, the new solution of this study 

could reduce to previous solutions under special cases, as the model established in this study is an extension of previous ones, 310 

and comparisons between them will be shown in Section 4.1. Secondly, although some assumptions included in previous 

models have been relaxed in the new model, some other processes of the reactive transport in the SWPP test have to be 

simplified in analytical solutions. Assumptions included in the new model have been discussed and their applicability is 

elaborated in Section 4.2.  

4.1 Test of the new solution with previous solutions 315 

To test the new solutions, the model of Chen et al. (2017) serves as a benchmark, who ignored the aquitard effect and 

wellbore storage in the SWIWSWPP test. Figure 2 shows the comparison of BTCs between them, and the parameters used in 

such a comparison are: ܴ௠ = ܴ௜௠ = ܴ௨௠ = ܴ௨௜௠ = ܴ௟௠ = ܴ௟௜௠ =1, ௨௠ߠ  = ௟௠ߠ ௥ߙ ,0.1= = ௨ߙ = ௟ߙ =0.1m, ߤ௠ = ௜௠ߤ =

௨௠ߤ = ௨௜௠ߤ = ௟௠ߤ = ௟௜௠ߤ =10-6d-1, ݎ௪  =0.2m, ௜ܳ௡௝ =2.5 m3/d, ܳ௖௛௔ =2.5 m3/d, ܳ௥௘௦ =0 m3/d, ܳ௘௫௧ =-2.5 m3/d, ݐ௜௡௝ =100day, 

௖௛௔ݐ =50day, ݐ௥௘௦ =40day, 5=ܤ m, ߠ௠=0.3, ߠ௜௠ ௨௜௠ߠ ,0.15= = ௟௜௠ߠ =0. 1, and  ߱=0.001 d-1. The pParameters of “ℎ௪,௜௡௝ =320 
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ℎ௪,௖௛௔ = ℎ௪,௥௘௦ = ℎ௪,௘௫௧  =0” represent ௪ܸ,௜௡௝ =0, ௪ܸ,௖௛௔ =0 and ௪ܸ,௘௫௧ =0, and imply that the wellbore storage is neglected. 

The values of ݒ௨௠=ݒ௟௠=0 m/d mean that aquitards are neglected. As shown in Figure 12, both solutions agree well for the 

mobile and immobile domains. 

4.2 Test of assumptions involved in the analytical solution 

To test the three assumptions outlined in Section 3.3, a numerical model will be established, where general three-325 

dimensional transient flow and solute transport are considered in both aquifer and aquitards. A finite-element method with 

the help of COMSOL Multiphysics will be used to solve the three-dimensional model. The grid system is shown in Section 

S2 of Supplementary Materials. 

In this study, four sets of aquitard hydraulic conductivities are employed, such as ܭ௨ = ௟ܭ =0.1 ௔ܭ ௨ܭ , = ௟ܭ =0.02 ௔ܭ , 

௔ܭ௟=0.1ܭ=௨ܭ ௔. A point to note is that the extreme case ofܭ௟=0.001ܭ=௨ܭ ௔, andܭ௟=0.01ܭ=௨ܭ  used here is only for the 330 

purpose of examining the robustness of comparison, while the real values of Ku and Kl are usually much lower than 0.1Ka. In 

another word, the rest three cases mentioned above are more likely to occur in real applications. 

The initial drawdown and the initial concentration are 0 for aquifer and aquitards. The hydraulic parameters are: ܭ௔=0.1 

m/day, ܵ௔ = ܵ௨ = ௟ܵ =10-4 m-1, and the other parameters are ܴ௠ = ܴ௜௠ = ܴ௨௠ = ܴ௨௜௠ = ܴ௟௠ = ܴ௟௜௠ ௨௠ߠ ,1= = ௟௠ߠ = 0.1, 

௥ߙ = 2.5m, ߙ௨ = ௟ߙ = 0.5m, ߤ௠ = ௜௠ߤ = ௨௠ߤ = ௨௜௠ߤ = ௟௠ߤ = ௪ =0.5m, ௜ܳ௡௝=ܳ௖௛௔ݎ ,௟௜௠=10-7s-1ߤ =50 m3/d, ܳ௥௘௦=0 m3/d, 335 

ܳ௘௫௧=-50 m3/d, ݐ௜௡௝=250day, ݐ௖௛௔=50day, ݐ௥௘௦=50day, 10=ܤm, ߠ௠=0.325, ߠ௜௠=0.005, and ߱=00.01 d-1. The comparison of 

concentration between the analytical and numerical solutions is shown in Figures.  2 3 and 34. 

As the first assumption in Section 3.3 has been elaborated in Section 2.2, the following discussion will only focus on the 

second and third assumptions. Figures. 2a3(a), 2b 3(b) and 2c 3(c) represent the snapshots of concentration distributions in 

the aquifer along the ݎ-axis at different times. One may conclude that the curves with smaller ܭ௨ and ܭ௟  values are closer to 340 

the analytical solution. This is because aquitards with smaller ܭ௨ and ܭ௟  (when ܭ௔Ka remains constant) could make flow 

closer to the horizontal direction (or parallel with the aquitard-aquifer interface) in the aquifer and closer to the vertical 

direction (or perpendicular with the aquitard-aquifer interface) in the aquitard, according to the law of refraction (Fetter, 

2018). In another word, when the values of ܭ௨/ܭ௔ and ܭ௟/ܭ௔ are approach 0, the flow direction becomes horizontal in the 

aquifer and vertical in the aquitard, and then the numerical model reduces to the analytical model. Therefore, from this figure, 345 

one may conclude that the above-mentioned second assumption in Section 3.3 works well in the aquifer when ܭ௨/ܭ௔ and 

  .௔ are samller then 0.01ܭ/௟ܭ

Figure. 34 shows the comparison of the analytical and numerical solutions for aquitards. Figs.ures 3 4(a1) - (c1) represent the 

snapshots of concentration distributions obtained from analytical solutions of this study at different times, and Figs.ures 3 

4(a2) - (c2) represent the snapshots of concentration distributions obtained from the numerical solutions at the same time. 350 

One may find that the contour maps obtained from both solutions are almost the same in the aquifer, but very different in the 
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aquitards. Therefore, the above-mentioned third assumption in Section 3.3 is generally unacceptable in describing solute 

transport in the aquitard in the SWIWSWPP test, but works well when the aquifer is of the primary concern. 

5 Discussions 

5.1 Model applications 355 

As mentioned in Section 3.13, the new model is a generalization of many previous models, and the conceptual model is more 

close to reality.  However, there are many parameters involved in this new model that have to be determined first for 

applying this model. For instance, the involved parameters for the aquitards include dispersivity (ߙ௨ and ߙ௟), first-order mass 

transfer coefficient (߱௨ and ߱௟), retardation factor (ܴ௨௠, ܴ௨௜௠, ܴ௟௠, and ܴ௟௜௠), porosity (ߠ௨௠, ߠ௨௜௠, ߠ௟௠ and ߠ௟௜௠), reaction 

rate (ߤ௨௠, ߤ௨௜௠, ߤ௟௠ and ߤ௟௜௠), and velocity (ݒ௨௠ and ݒ௟௠). The involved parameters for the aquifer include ߙ௥, ߱௔, ܴ௠, ܴ௜௠, 360 

 Generally, these parameters could not be measured directly. Otherwise, they could have to be obtained by .ܤ ௜௠, andߠ ,௠ߠ

fitting the experimental data using the forward model.  

Parameter estimation is an inverse problem, and it is generally conducted by an optimization model, such as genetic 

algorithm, simulated annealing, and so on. Due to the ill-posedness of many inverse problems or insufficient observation 

data, the initial guess values of unknown parameters of interest are critical for finding the best values or real values of those 365 

parameters in the optimization model. Here, we recommend using values of parameters from literatures as the initial guesses 

for similar lithology. Table 4 lists some parameter values for sandy and clay aquifers in previous studies. When result is not 

sensitive to a particular parameter of concern, the value from previous publications for similar lithology and/or situations 

could be taken as estimated value of that parameter, if there is no direct measurement of that particular parameter of concern. 

To prioritize the sensitivity of predictions with respect to the diverse parameters involved in the new model, a global 370 

sensitivity analysis is conducted in Section 5.2. 

5.2 A global sensitivity analysis 

From the analytical solutions of Eqs. (26) - (28), one may find that BTCs are affected by several parameters, like ߙ௨, ݒ௨௠, 

 ௨௠, they have been excluded inߠ ,௨௠ݒ ,௨ߙ ௟௠ have the similar effect on the results withߠ ,௟௠ݒ ,௟ߙ ௠ and ௪ܸ. Asߠ ,௥ߙ ,௨௠, ωߠ

the following analysis. In this section, a global sensitivity analysis is conducted using the model of Morris (1991), which is a 375 

one-step-at-a-time method. Morris (1991) employed ߤ௞ and ߪ௞ to represent the importance of the input parameters on the 

output concentration and they could be computed by (Morris, 1991 and Lin et al., 2019): 

௞ߤ = ∑ ൫หܧܧ௞
௟ ห/ܯ൯ெ

௟ୀଵ , ݇ = 1,2, ⋯ ܰ,         (29a) 

௞ߪ = ට
ଵ

ெ
∑ ௞ܧܧ)

௟ − ௞)ெߤ
௟ୀଵ , ݇ = 1,2, ⋯ ܰ,         (29b) 
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where ܯ is the total sampling number, assuming that the range of parameter value is divided to ܯ intervals; N is the total 380 

parameter number of interest, and it is 7 in this study; k is the kth parameter. In this study, ܯ = 50; 

௞ܧܧ
௟ =

)௠஽ܥ ଵܲ, ଶܲ, ⋯ , ௞ܲ + ݈Δ, ⋯ , ேܲ) − )௠஽ܥ ଵܲ, ଶܲ, ⋯ , ௞ܲ , ⋯ , ேܲ)

݈Δ
 

where ௜ܲ  is the random value of the ith parameter in the range of ൫ ௜ܲ ,଴ , ௜ܲ,௟௜௠൯; ௜ܲ,଴ and ௜ܲ,௟௜௠ are  the smallest and largest 

values of ௜ܲ , as shown in Table S1; Δ is a small increment defined as 1/( 1 − ܯ).  

A larger ߤ௞ means a higher sensitive effect of the kth parameter on the output, and a larger ߪ௞ represents that the kth parameter 

has a greater interaction effect with others. Figures 5(a) and 5(b) represent the variation of ߤ௞  and ߪ௞  with time in the 385 

wellbore, respectively. The values of ߤ௞ are greater for ߙ௥ and ߠ௠ than for the others, as shown in Figures 5(a), indicating 

that the influence of ߠ௠ and ߙ௥ on the results is more obvious than others. However, the values of  ߪ௞ is large for ߙ௨, ߠ௨௠, 

 ௠ and ௪ܸ, demonstrating that the interactions of these parameters with others are strong; namely, the influence of themߠ ,௥ߙ

on results also could not be ignored. 

5.3 Effect of the aquitard 390 

As shown in Section 4.2, the new analytical solution is a good approximation for the numerical model in the aquifer when 

 ௔ are smaller thenthan 0.01. In this section, we try to figure out how the aquitards will affect BTCs of theܭ/௟ܭ ௔ andܭ/௨ܭ

SWPP tests. Since the porosity is an important factor of concern, three sets of porosity values are used for the aquitards: 

௨௠ߠ = ௟௠ߠ =0, 0.1, and 0.25. The other parameters are from the case in Figure 4.  

Figure 6 shows the difference between the models with and without aquitards for different flow velocities in the aquitard. 395 

The case of ߠ௨௠ = ௟௠ߠ = 0 represents the model without the aquitard. The difference is not obvious at the beginning of the 

extraction phase, while such a difference is obvious at the late time. Meanwhile, the smaller aquitard porosity makes the 

value of BTCs in the aquifer greater at a given time. When the aquitard is ignored, the values of BTCs are the greatest. 

Therefore, the aquitard effect on transport in the aquifer is quite obvious and should not be ignored in general. 

5.4 Effect of the aquifer radial dispersion 400 

Another important parameter is the radial dispersion in the aquifer. In this section, three sets of the radial dispersivity values 

will be used to analyse the influence: ߙ௥ =1.25m, 2.50m, and 5.00m.  

Figure 7 shows BTCs in the well face for different radial dispersivity values. Firstly, the difference is obvious among curves 

in all phases. Secondly, a larger ߙ௥ could decrease BTCs at a given time of the injection phase. This could be explained by 

the boundary condition of Eq. (8). The solute in the mobile domain of the aquifer is transported by both advection and 405 

dispersion, thus a larger ߙ௥ could lower the values of ܥ௠ in the well face. Thirdly, BTCs increase with increasing ߙ௥ values 

in the chaser and rest phases. Fourthly, the peak values of BTCs decrease with increasing ߙ௥  values. 
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6 Data interpretation: Field SWPP test 

To test the performance of the new model, the field data reported in Chen et al. (2017) will be employed. Specifically, the 

experimental data of S1 conducted in the borehole TW3 will be analysed. The reason choosing this dataset is because this 410 

borehole penetrated several layers, and it had been interpreted by Chen et al. (2017) before (using a model without 

considering the aquitard effect and the wellbore storage). The physical parameters of the SWPP test are ݎ௪  =0.1m, 

௜ܳ௡௝ =ܳ௖௛௔ =7.78L/min, ܳ௥௘௦ =0 L/min, ܳ௘௫௧ =12 L/min, ݐ௜௡௝ =180min, ݐ௖௛௔ =26.74min, ݐ௥௘௦ =10080min, 4=ܤm. The other 

Detailed information of experimental data could be seen in the references of Assayag et al. (2009) and Yang et al. (2014).  

Fig. ure 8(7a) shows the fitness of the computed and observed BTCs. The estimated parameters are: ߠ௨௠=0.05, ߠ௟௠=0.0, 415 

௠ߠ ௜௠ߠ ,0.1= ௥ߙ ,0.068= = 0.5m, ߙ௨ = 0.35m, ߙ௟ =0.0m, ܴ௠ = ܴ௜௠ = ܴ௨௠ = ܴ௨௜௠ = ܴ௟௠ = ܴ௟௜௠ ௠ߤ ,1= = ௜௠ߤ = ௨௠ߤ =

௨௜௠ߤ = ௟௠ߤ = ௟௜௠=10-7s-1, and ߱=0.001d-1, and ℎ௪,௜௡௝ߤ = ℎ௪,௖௛௔ =32m, ℎ௪,௥௘௦=30m, ℎ௪,௘௫௧ =28m. Apparently, the fitness 

by the new solution is better than the model of Chen et al. (2017). As for the error between the observed and computed BTCs, 

the new solution is also smaller than that of Chen et al. (2017) as well, where the error is defined as  

ݎ݋ݎݎܧ = ∑ ை஻ௌܥ) − ஼ைெ)ଶேܥ
௜ୀଵ ,           (30) 420 

where ܥை஻ௌ and ܥ஼ைெ are the observed and computed concentrations, respectively, and ܰ is the number of sampling points. 

How accurate these parameters estimated by best fitting the observed data are in representative of the real aquifer will be 

discussed as following. The values of retardation factor and reaction rate demonstrate that the chemical reaction and sorption 

are weak for the tracer of KBr in the SWPP test. It is not surprising since KBr is commonly treated as a “conservative” tracer. 

The porosity of the real aquifer ranges from 0.01 to 0.1, according to the well log analysis (Yang et al., 2014), where the 425 

estimated values are located. The estimated porosity represents the average values of the aquifer and aquitards. The 

estimated dispersivity of the aquifer is 0.7134m by Chen et al. (2017), which is similar with ours. The values of water level 

in the test could be observed directly; however, these data are not available, and they have to be estimated in this study. To 

evaluate the uncertainty in the estimated parameters, the sensitivity of the dispersivity on BTCs is analysed, as shown in 

Figures 8(b). One may conclude that the estimated values of this study seem to be representative of the reality, since 430 ݎ݋ݎݎܧ 

is smallest for ߙ௥ = 0.5m. 

7 Summary and conclusions 

The single-well Push-Pull (SWPP) test could be applied to estimate the dispersivity, porosity, chemical reaction rates of the 

in situ aquifers. However, previous studies mainly focused on an isolated aquifer, excluding all the possible effect of 

aquitards bounding the aquifer. In another word, the adjacent layers are assumed to be non-permeable, which is not exactly 435 

true in reality. In this study, a new analytical model is established and its associate solutions derived to inspect the effect of 

overlying and underlying aquitards. Meanwhile, four stages are considered in the new model with wellbore storage, 
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including the injection phase, the chaser phase, the rest phase and the extraction phase. The anomalous behaviours of 

reactive transport in the test were described by a mobile-immobile framework.  

To derive the analytical solution of the new model, some assumptions are inevitable. For instance, only vertical advection 440 

and dispersion are considered in the aquitard and only horizontal advection and dispersion are considered in the aquifer, and 

the flow is quasi-steady state. Although these assumptions have been widely used to describe the radial dispersion in 

previous studies, the influences on reactive transport have not been discussed in a rigorous sense before. In this study, 

numerical modelling exercises will be introduced to test the above-mentioned assumptions of the new model. Based on this 

study, the several conclusions could be obtained. 445 

1. A new model of the SWPP test is a generalizing of many previous models by considering the aquitard effect, the wellbore 

storage, and the mass transfer rate in both aquifer and aquitards. The sub-model of the wellbore storage is developed. 

2. Assumption of vertical advection and dispersion on the aquitard and horizontal advection and dispersion in the aquifer is 

tested by specially designed finite-element numerical models using COMSOL, and the result shows that this assumption is 

acceptable when the aquifer is of primary concern, provided that the ratios of the aquitard/aquifer permeability are less than 450 

0.01; while such an assumption is generally unacceptable when the aquitards are of concern, regardless of the ratios of the 

aquitard/aquifer permeability. 

3. The new model is most more sensitive to ߙ௥ and ߠ௠  after a comprehensive global sensitivity analysis, and the values of  

 .௠ and ௪ܸ, demonstrating that the influence of aquitard on results could not be ignoredߠ ,௥ߙ ,௨௠ߠ ,௨ߙ ௞ is large forߪ

4. The performance of the new model is better than previous models of excluding the aquitard effect and the wellbore 455 

storage in terms of best fitting exercises with field data reported in Chen et al. (2017). 
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(a) Injection phase                                                    (b) Chaser phase 

       

       (c) Rest phase                                                          (d) Extraction phase 

Figure 1: The schematic diagram of the SWPP test. 550 
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Figure 12: Comparison of BTCs at the well screen computed by the solution of this study and Chen et al. (2017). 
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(a) At the end of the injection phase: t = 250 day 555 

Figure 23: Comparison of the concentration distribution between the analytical and numerical solutions along 

the ܚ-axis at 0=ܢm. “ANA” and “NUM” represent the analytical and numerical solutions, respectively. 
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(b) At the end of the chasing phase: t = 300 day 560 

Figure 23: Comparison of the concentration distribution between the analytical and numerical solutions along 

the ܚ-axis at 0=ܢm. “ANA” and “NUM” represent the analytical and numerical solutions, respectively. 
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(c) In the extraction phase: t = 500 day 565 

Figure 23: Comparison of the concentration distribution between the analytical and numerical solutions along 

the ܚ-axis at 0=ܢm. “ANA” and “NUM” represent the analytical and numerical solutions, respectively. 
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Figure 34: The vertical profiles (the r-z profiles) of the concentrations. (a1) - (c1) represent the analytical 

solutions at 300 ,250=࢚ and 500 day, respectively. (a2) - (c2) represent the numerical solutions at 300 ,250=࢚ and 570 

500 day, respectively. 
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(a) Variation of ߤ௞ with time in the wellbore. 

Figure 5: Sensitivity analysis. 575 

 

350 400 450 500 550 600 650
Time t (s)

0

0.2

0.4

0.6

0.8

1
k

r

m

um

u

v
um

V
w



28 
 

 

(b) Variation ߪ௞ with time in the wellbore. 

Figure 5: Sensitivity analysis. 
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 580 

Figure 56: Comparison of BTCs between the model with and without aquitards for different porosities.  
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Figure 67: BTCs in the wellbore for different ࢘ࢻ. 
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(a) Fitness of the observed data by different models. 585 

Figure 8: Fitness of observed BTC. 
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(b) Influence of the dispersivity of the aquifer on BTCs 

Figure 8: Fitness of observed BTC. 590 
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Table 1.  Expressions of the coefficients in the solutions expressed in Eqs.(25a) - (25f). 
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Table 2. Expressions of the coefficients in the solutions expressed in Eqs.(26a) - (26g). 
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௘஽ݖ − 1
௥ߙ௟௠ߠ

ଶܦ௟

௠ߠଶܤܣ2
 

ݏ ௨ܧ + ௨௠ߝ + ௨௠஽ߤ −
௨௜௠ߝ௨௠ߝ

ݏ + ௨௜௠ߝ + ௨௜௠஽ߤ
 

ݏ ௟ܧ + ௟௠ߝ + ௟௠஽ߤ −
௟௜௠ߝ௟௠ߝ

ݏ + ௟௜௠ߝ + ௟௜௠஽ߤ
 

஽ݎ௠஽൫ܥ ܨ , ௜௡௝,஽൯ݐ +
஽ݎ௜௠஽൫ܥ௠ߝ , ௜௡௝൯ݐ
ݏ + ௜௠஽ߤ + ௜௠ߝ

 

ߟܨ (ߟ)߮ − ሾߜଶ + ଵߜ)௔ܧߟ +  ሿ(ߟଶߜ

௨݂(ߟ௨) 
,஽ݎ௨௠஽൫ܥ ,௨ߟ ௜௡௝,஽൯ݐ +

,஽ݎ௨௜௠஽൫ܥ௨௠ߝ ,௨ߟ ௜௡௝,஽൯ݐ
ݏ + ௨௜௠ߝ + ௨௜௠஽ߤ

−
ܴ௠ݒ௨௠ߙ௥

ଶ

௨௠ܴܤܣ
ःଶ

− ௨(ःଵܧ + ःଶߟ௨) 

௟݂(ߟ௟) 
஽ݎ௟௠஽൫ܥ , ௟ߟ , ௜௡௝,஽൯ݐ +

,஽ݎ௟௜௠஽൫ܥ௟௠ߝ ௟ߟ , ௜௡௝,஽൯ݐ
ݏ + ௟௜௠ߝ + ௟௜௠஽ߤ

+
ܴ௠ݒ௟௠ߙ௥

ଶ

௟௠ܴܤܣ

௠஽ܥ̅

௘஽ݖ − 1

− ௟ܧ௠஽ܥ̅
௘஽ݖ + ௟ߟ

௘஽ݖ − 1
 

,஽ݎ)݃ ;௔ܧ  (ߟ
݃ଵ(ݎ஽ , ;௔ܧ (ߟ = ଵ࣮݁݌ݔ (

௖௛௔ݕ

2
௜ܣ( ൬ܧ௔

ଵ
ଷݕ௖௛௔൰ + ଶ࣮ ݌ݔ݁ ቀ

௖௛௔ݕ

2
ቁ ௜ܤ ൬ܧ௔

ଵ
ଷݕ௖௛௔൰ ௪஽ݎ ≤ ݕ

݃ଶ(ݎ஽, ;௔ܧ (ߟ = ଷ࣮݁݌ݔ (
௖௛௔ݕ

2
௜ܣ( ൬ܧ௔

ଵ
ଷݕ௖௛௔൰ + ସ࣮ ݌ݔ݁ ቀ

௖௛௔ݕ

2
ቁ ௜ܤ ൬ܧ௔

ଵ
ଷݕ௖௛௔൰ ߟ  ≤ ௖ݕ

݃௨(ݖ஽ , ;௨ܧ  (௨ߟ
݃௨ଵ(ݖ஽, ;௨ܧ (௨ߟ = ଵܰ݁݌ݔ(ܽଵݖ஽) + ଶܰ݁݌ݔ(ܽଶݖ஽)    1 ≤ ஽ݖ < ௨ߟ

݃௨ଶ(ݖ஽, ;௨ܧ (௨ߟ = ଷܰ݁݌ݔ(ܽଵݖ஽) + ସܰ݁݌ݔ(ܽଶݖ஽)   ߟ௨ ≤ ஽ݖ < ∞
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݃௟(ݖ஽ , ;௟ܧ  (௟ߟ
݃௨ଵ(ݖ஽, ;௟ܧ (௟ߟ = (஽ݖଵܾ)݌ݔଵ݁ܯ + (஽ݖଶܾ)݌ݔଶ݁ܯ    − 1 ≤ ஽ݖ < ௟ߟ

݃௨ଶ(ݖ஽, ;௟ܧ (௟ߟ = (஽ݖଵܾ)݌ݔଷ݁ܯ + ௟ߟ    (஽ݖଶܾ)݌ݔସ݁ܯ ≤ ஽ݖ < −∞
 

ଵܾ)݌ݔଶ݁ܯ− ଵܯ − ܾଶ) 

 ଶܯ
ଶܴ௟௠ܤܣ−

ܴ௠ߙ௥
ଶܦ௟ሾ݁݌ݔ(ܾଶߟ௟ − ܾଵߟ௟) − ܾଶ݁݌ݔ(ܾଶߟ௟)ሿ

 

௟ߟଶܾ)݌ݔଶ݁ܯ ଷܯ − ܾଵߟ௟) − ଵܾ)݌ݔଶ݁ܯ − ܾଶ) 

 ସ 0ܯ

ଵܰ − ଶܰ݁݌ݔ(ܽଶ − ܽଵ) 

ଶܰ 
ଶܴ௨௠ܤܣ−

ܴ௠ߙ௥
ଶܦ௨ሾ(ܽଵ − ܽଶ)݁݌ݔ(ܽଶ − ܽଵ)݁݌ݔ(ܽଵߟ௨)ሿ

 

ଷܰ 0 

ସܰ ଶܰ− ଶܰ݁݌ݔ(ܽଶ − ܽଵ)݁݌ݔ(ܽଵߟ௨ − ܽଶߟ௨) 

ܺ 

1
2 ௔ܧ௜൫ܤ

ଵ/ଷݕ௖௛௔,௪൯ − ௔ܧ
ଵ/ଷܤ௜

ᇱ൫ܧ௔
ଵ/ଷݕ௖௛௔,௪൯

1
2 ௔ܧ௜൫ܣ

ଵ/ଷݕ௖௛௔,௪൯ − ௔ܧ
ଵ/ଷܣ௜

ᇱ൫ܧ௔
ଵ/ଷݕ௖௛௔,௪൯

 

ଵ࣮ −
௘௫௧|௥ವୀఎశ൯ݕ௜൫ܣߨ

ଵ/ଷܧ ܺ 

ଶ࣮ 
௘௫௧|௥ವୀఎశ൯ݕ௜൫ܣߨ

௔ܧ
ଵ/ଷ  

ଷ࣮ 
௘௫௧|௥ವୀఎశ൯ݕ௜൫ܣߨ

௔ܧ
ଵ/ଷ ቈ

௘௫௧|௥ವୀఎశ൯ݕ௜൫ܤ

௘௫௧|௥ವୀఎశ൯ݕ௜൫ܣ
− ܺ቉ 

ସ࣮ 0 

஽ݎ ௖௛௔ݕ +
1

௔ܧ4
 

௪஽ݎ ௖௛௔,௪ݕ +
1

௔ܧ4
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Table 3. Expressions of the coefficients in the solutions expressed in Eqs.(28a) - (28g). 

Λ ܥ௠஽(ݎ஽ , (௥௘௦ݐ +
,஽ݎ)௜௠஽ܥ௠ߝ (௥௘௦ݐ

ݏ + ௜௠஽ߤ + ௜௠ߝ
 

− ௘௫௧,஽ߚ ௪ܸ,௘௫௧ݎ௪஽

௥ߙ௠ܴߦ
 

 ߞ

ݏ + ௠ߝ + ௠஽ߤ −
௠ߝ௜௠ߝ

ݏ + ௜௠஽ߤ + ௜௠ߝ
−

௥ߙ௨௠ߠ
ଶݒ௨௠

ܤ௠ߠܣ2
+

௥ߙ௟௠ߠ
ଶݒ௟௠

௠ߠଶܤܣ2

−
1

1 − ௘஽ݖ

௥ߙ௨௠ߠ
ଶܦ௨

௠ܾߠܣ2
+

1
௘஽ݖ − 1

௥ߙ௟௠ߠ
ଶܦ௟

௠ߠଶܾܣ2
 

Λߝ(2/ߝ)݌ݔ݁ (ߝ)݂ − ൬ߞߝ +
1
4

൰ ଵߪ) +  (ߝଶߪ

௨݂(ࣶ௨) 

,஽ݎ௨௠஽൫ܥ ࣶ௨, ௥௘௦,஽൯ݐ +
,஽ݎ௨௜௠஽൫ܥ௨௠ߝ ࣶ௨, ௥௘௦,஽൯ݐ

ݏ + ௨௜௠ߝ + ௨௜௠஽ߤ
+

ܴ௠ݒ௨௠ߙ௥
ଶ

௨௠ܴܤܣ

,஽ݎ)௠஽ܥ̅ (ݏ

1 − ௘஽ݖ

−
ࣶ௨ − ௘஽ݖ

1 − ௘஽ݖ
஽ݎ)௠஽ܥ௨̅ܧ ,  (ݏ

௟݂(ࣶ௟) 

஽ݎ௠஽൫ܥ , ࣶ௟ , ௥௘௦,஽൯ݐ +
,஽ݎ௟௜௠஽൫ܥ௟௠ߝ ࣶ௟ , ௥௘௦,஽൯ݐ

ݏ + ௟௜௠ߝ + ௟௜௠஽ߤ
−

ܴ௠ݒ௟௠ߙ௥
ଶ

௟௠ܴܤܣ

,஽ݎ)௠஽ܥ̅ (ݏ

௘஽ݖ − 1

−
ࣶ௟ + ௘஽ݖ

௘஽ݖ − 1
஽ݎ)௠஽ܥ௟̅ܧ ,  (ݏ

஽ݎ)݃ , ;ߞ  (ߝ
݃ଵ(ݎ஽ , ;ߞ (ߝ = ଵܲܣ௜(ݕ௘௫௧) + ଶܲܤ௜(ݕ௘௫௧)          ݎ௪஽ ≤ ௘௫௧ݕ < ߝ
݃ଶ(ݎ஽ , ;ߞ (ߝ = ଷܲܣ௜(ݕ௘௫௧) + ସܲܤ௜(ݕ௘௫௧)               ߝ ≤ ௘௫௧ݕ < ∞

 

݃௨(ݖ஽, ;௨ܧ ࣶ௨) 
݃௨ଵ(ݖ஽, ;௨ܧ ࣶ௨) = (஽ݖଵ݉)݌ݔଵ݁ܪ + 1      (஽ݖଶ݉)݌ݔଶ݁ܪ ≤ ஽ݖ < ࣶ௨

݃௨ଶ(ݖ஽, ;௨ܧ ࣶ௨) = (஽ݖଵ݉)݌ݔଷ݁ܪ + ௨ࣶ    (஽ݖଶ݉)݌ݔସ݁ܪ ≤ ஽ݖ < ∞
 

݃௟(ݖ஽, ;௟ܧ ࣶ௟) 
݃௟ଵ(ݖ஽, ;௟ܧ ࣶ௟) = (஽ݖଵ݊)݌ݔଵ݁ܫ + (஽ݖଶ݊)݌ݔଶ݁ܫ    − 1 ≤ ஽ݖ < ࣶ௟

݃௟ଶ(ݖ஽, ;௟ܧ ࣶ௟) = (஽ݖଵ݊)݌ݔଷ݁ܫ + ௟ࣶ    (஽ݖଶ݊)݌ݔସ݁ܫ ≤ ஽ݖ < −∞
 

ଶ݉)݌ݔଶ݁ܪ− ଵܪ − ݉ଵ) 

 ଶܪ
ଶܤ௨௠ܴܣ−

ܴ௠ߙ௥
ଶܦ௨ሾ(݉ଵ − ݉ଶ)݁݌ݔ(݉ଶ − ݉ଵ)݁݌ݔ(݉ଵࣶ௨)ሿ

 

 ଷ 0ܪ

ଶܪ ସܪ − ଶ݉)݌ݔଶ݁ܪ − ݉ଵ)݁݌ݔ(݉ଵࣶ௨ − ݉ଶࣶ௨) 

ଵ݊)݌ݔଶ݁ܫ− ଵܫ − ݊ଶ) 

 ଶܫ
ଶܴ௟௠ܤܣ−

ܴ௠ߙ௥
ଶܦ௟ሾ݁݌ݔ(݊ଶࣶ௟ − ݊ଵࣶ௟) − ݊ଶ݁݌ݔ(݊ଶࣶ௟)ሿ

 

ଶࣶ௟݊)݌ݔଶ݁ܫ ଷܫ − ݊ଵࣶ௟) − ଵ݊)݌ݔଶ݁ܫ − ݊ଶ) 
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 ସ 0ܫ

݉ଵ 
−

ܴ௠ݒ௨௠ߙ௥
ଶ

௨௠ܴܤܣ
+ ඨ൬

ܴ௠ݒ௨௠ߙ௥
ଶ

௨௠ܴܤܣ
൰

ଶ

+ 4
ܴ௠ߙ௥

ଶܦ௨
ଶܴ௨௠ܤܣ

ቀݏ + ௨௠ߝ + ௨௠஽ߤ −
௨௜௠ߝ௨௠ߝ

ݏ + ௨௜௠஽ߤ + ௨௜௠ߝ
ቁ

2
ܴ௠ߙ௥

ଶܦ௨
ଶܴ௨௠ܤܣ

 

݉ଶ 
−

ܴ௠ݒ௨௠ߙ௥
ଶ

௨௠ܴܤܣ
− ඨ൬

ܴ௠ݒ௨௠ߙ௥
ଶ

௨௠ܴܤܣ
൰

ଶ

+ 4
ܴ௠ߙ௥

ଶܦ௨
ଶܴ௨௠ܤܣ

ቀݏ + ௨௠ߝ + ௨௠஽ߤ −
௨௜௠ߝ௨௠ߝ

ݏ + ௨௜௠஽ߤ + ௨௜௠ߝ
ቁ

2
ܴ௠ߙ௥

ଶܦ௨
ଶܴ௨௠ܤܣ

 

݊ଵ 
ܴ௠ݒ௟௠ߙ௥

ଶ

௟௠ܴܤܣ
+ ඨ൬

ܴ௠ݒ௟௠ߙ௥
ଶ

௟௠ܴܤܣ
൰

ଶ

+ 4
ܴ௠ߙ௥

ଶܦ௟
ଶܴ௟௠ܤܣ

ቀݏ + ௟௠ߝ + ௟௠஽ߤ −
௟௜௠ߝ௟௠ߝ

ݏ + ௟௜௠஽ߤ + ௟௜௠ߝ
ቁ

2
ܴ௠ߙ௥

ଶܦ௟
ଶܴ௟௠ܤܣ

 

݊ଶ 

ܴ௠ݒ௟௠ߙ௥
ଶ

௟௠ܴܤܣ
− ඨ൬

ܴ௠ݒ௟௠ߙ௥
ଶ

௟௠ܴܤܣ
൰

ଶ

+ 4
ܴ௠ߙ௥

ଶܦ௟
ଶܴ௟௠ܤܣ

ቀݏ + ௟௠ߝ + ௟௠஽ߤ −
௟௜௠ߝ௟௠ߝ

ݏ + ௟௜௠஽ߤ + ௟௜௠ߝ
ቁ

2
ܴ௠ߙ௥

ଶܦ௟
ଶܴ௟௠ܤܣ

 

ଵܲ −
௘௫௧|௥ವୀఌశ൯ݕ௜൫ܣߨ

ଵ/ଷߞ ܹ 

ଶܲ 
௘௫௧|௥ವୀఌశ൯ݕ௜൫ܣߨ

ଵ/ଷߞ  

ଷܲ 
௘௫௧|௥ವୀఌశ൯ݕ௜൫ܣߨ

ଵ/ଷߞ ቈ
௘௫௧|௥ವୀఌశ൯ݕ௜൫ܤ

௘௫௧|௥ವୀఌశ൯ݕ௜൫ܣ
− ܹ቉ 

ସܲ 0 

ܹ 
ቀߚݏ௘௫௧,஽ +

1
2ቁ ௘௫௧,௪൯ݕ௜൫ܤ − ௜ܤଵ/ଷߞ

ᇱ൫ݕ௘௫௧,௪൯

ቀߚݏ௘௫௧,஽ +
1
2ቁ ௘௫௧,௪൯ݕ௜൫ܣ − ௜ܣଵ/ଷߞ

ᇱ൫ݕ௘௫௧,௪൯
 

ଵ/ଷߞ ௘௫௧ݕ ൬ݎ஽ +
1

ߞ4
൰ 

ଵ/ଷߞ ௘௫௧,௪ݕ ൬ݎ௪஽ +
1

ߞ4
൰ 

− ଵߪ
,௪஽ݎ௠஽൫ܥ(௪஽/2ݎ)݌ݔ௘௫௧,஽݁ߚ ௥௘௦,஽൯ݐ

ቀߚݏ௘௫௧,஽ +
1
2ቁ ௪஽ݎ − 1 − ቀߚݏ௘௫௧,஽ +

1
2ቁ ஽|௥ವ→ஶݎ

 ஽|௥ವ→ஶݎ
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 ଶߪ
,௪஽ݎ௠஽൫ܥ(௪஽/2ݎ)݌ݔ௘௫௧,஽݁ߚ ௥௘௦,஽൯ݐ

ቀߚݏ௘௫௧,஽ +
1
2ቁ ௪஽ݎ − 1 − ቀߚݏ௘௫௧,஽ +

1
2ቁ ஽|௥ವ→ஶݎ

 

 

Table 4. A partial list of parameters from literatures. 

 
Fine sand Medium sand Course sand Clay 

Retardation factor [-] 1.20-4.76[a] 11.40-13.24[b] 1.10-7.30[c] 6.98[d] 

Dispersivity [cm] 0.15-0.21[e] 0.20-9.00[b] 3.2-38.6[c] 13.80[f] 

First-order mass transfer 

coefficient[1/d]  
0.15-0.40[g] 0.50[g] 1.0-4.6[g] 0.05-0.15[g] 

Porosity [-] 0.28-0.31[e] 0.36[b] 0.37-0.40[e] 0.40-0.44[f] 

Reaction rate[1/d] 6.36-6.84[h] 0.08-2.1[i] 0.55-3.12[j] 0.10-28.80[k] 

[a]. Brusseau et al. (1991); [b]. Pickens et al. (1981); [c].Davis et al. (2003); [d].Javadi et al. (2017); [e].Liang et al. (2018); 

[f].Swami et al. (2016); [g].Kookana et al. (1992); [h].Haggerty et al. (1998); [i].Bouwer and McCarty (1985); [j].Chun et al. 600 

(2009); [k].Alvarez et al. (1991). References are shown in Section S3 of Supplementary Materials. 
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Supplementary Materials 21 

S1. Derivation of analytical solutions for the SWPP test 22 

To reduce the complexity in analyzing the influence of input parameters on the output, the 23 

dimensionless parameters are introduced as follows: ܥ௠஽ = ஼೘

஼బ
௜௠஽ܥ , = ஼೔೘

஼బ
௜௡௝,௠஽ܥ , =

஼೔೙ೕ,೘

஼బ
, 24 

௜௡௝,௜௠஽ܥ =
஼೔೙ೕ,೔೘

஼బ
௖௛௔,௠஽ܥ  , =

஼೎೓ೌ,೘

஼బ
௖௛௔,௜௠஽ܥ  , =

஼೎೓ೌ,೔೘

஼బ
௥௘௦,௠஽ܥ  , =

஼ೝ೐ೞ,೘

஼బ
௥௘௦,௜௠஽ܥ , =

஼ೝ೐ೞ,೔೘

஼బ
, 25 

௘௫௧,௠஽ܥ =
஼೐ೣ೟,೘

஼బ
௘௫௧,௜௠஽ܥ , =

஼೐ೣ೟,೔೘

஼బ
௨௠஽ܥ , =

஼ೠ೘

஼బ
௨௜௠஽ܥ , =

஼ೠ೔೘

஼బ
௟௠஽ܥ , =

஼೗೘

஼బ
௟௜௠஽ܥ , =

஼೗೔೘

஼బ
, 26 

஽ݐ =
|஺|

ఈೝ
మோ೘

஽ݎ ,ݐ = ௥

ఈೝ
௪஽ݎ , = ௥ೢ

ఈೝ
஽ݖ , = ௭

஻
௠஽ߤ , = ఈೝ

మఓ೘

஺
௜௠஽ߤ , = ఈೝ

మோ೘ఓ೔೘

ோ೔೘஺
௨௠஽ߤ , = ఈೝ

మఓೠ೘

஺
௨௜௠஽ߤ , =27 

ఈೝ
మோ೘ఓೠ೔೘

ோ೔೘஺
௟௠஽ߤ  , = ఈೝ

మఓ೗೘

஺
 and ߤ௟௜௠஽ = ఈೝ

మோ೘ఓ೗೔೘

ோ೔೘஺
, where the subscript “D” represents the 28 

dimensionless parameter hereinafter, ܣ =
ொ

ସగ஻ఏ೘
. By substituting these dimensionless parameters 29 

into the governing equations, one could obtain the dimensionless model of the SWPP test: 30 

డ஼೘ವ

డ௧ವ
= ଵ

௥ವ

డమ஼೘ವ

డ௥ವ
మ − ଵ

௥ವ

డ஼೘ವ

డ௥ವ
− ௠஽ܥ)௠ߝ − (௜௠஽ܥ − ௠஽ܥ௠஽ߤ − ቀఏೠ೘ఈೝ

మ௩ೠ೘

ଶ஺ఏ೘஻
௨௠஽ܥ −31 

ఏೠ೘ఈೝ
మ஽ೠ

ଶ஺ఏ೘஻మ

డ஼ೠ೘ವ

డ௭ವ
ቁቚ

௭ವୀଵ
+ ቀ

ఏ೗೘ఈೝ
మ௩೗೘

ଶ஺஻ఏ೘
௟௠஽ܥ −

ఏ೗೘ఈೝ
మ஽೗

ଶ஺஻మఏ೘

డ஼೗೘ವ

డ௭ವ
ቁቚ

௭ವୀିଵ
஽ݎ , ≥  ௪஽,  (S1a) 32ݎ

డ஼೔೘ವ

డ௧ವ
= ௠஽ܥ)௜௠ߝ − (௜௠஽ܥ − ஽ݎ ,௜௠஽ܥ௜௠஽ߤ ≥  ௪஽,    (S1b) 33ݎ

డ஼ೠ೘ವ

డ௧ವ
= ோ೘ఈೝ

మ஽ೠ

஺஻మோೠ೘

డమ஼ೠ೘ವ

డ௭ವ
మ − ோ೘௩ೠ೘ఈೝ

మ

஺஻ோೠ೘

డ஼ೠ೘஽

డ௭ವ
− ௨௠஽ܥ)௨௠ߝ − (௨௜௠஽ܥ −  ௨௠஽, 34ܥ௨௠஽ߤ

஽ݖ ≥ 1,           (S2a) 35 

డ஼ೠ೔೘ವ

డ௧ವ
= ௨௠஽ܥ)௨௜௠ߝ − (௨௜௠஽ܥ − ஽ݖ ,௨௜௠஽ܥ௨௜௠஽ߤ ≥ 1,   (S2b) 36 

డ஼೗೘ವ

డ௧ವ
= ோ೘ఈೝ

మ஽೗

஺஻మோ೗೘

డమ஼೗೘ವ

డ௭ವ
మ + ோ೘௩೗೘ఈೝ

మ

஺஻ ೗೘

డ஼೗೘ವ

డ௭ವ
− ௟௠஽ܥ)௟௠ߝ − (௟௜௠஽ܥ −  ௟௠஽, 37ܥ௟௠஽ߤ

஽ݖ ≤ −1,          (S3a) 38 
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డ஼೗೔೘ವ

డ௧ವ
= ௟௠஽ܥ)௟௜௠ߝ − (௟௜௠஽ܥ − ஽ݖ ,௟௜௠஽ܥ௟௜௠஽ߤ ≤ −1,    (S3b) 39 

where ߝ௠ = ఠೌఈೝ
మ

஺ఏ೘
௜௠ߝ , = ఠೌఈೝ

మோ೘

஺ఏ೘ோ೔೘
௨௠ߝ  , = ఠೠఈೝ

మோ೘

஺ఏೠ೘ோೠ೘
௨௜௠ߝ , = ఠೠఈೝ

మோ೘

஺ఏೠ೘ோೠ೔೘
௟௠ߝ , = ఠ೗ఈೝ

మோ೘

஺ఏ೗೘ோ೗೘
௟௜௠ߝ , =40 

ఠ೗ఈೝ
మோ೘

஺ఏ೗೘ோ೗೔೘
. 41 

The analytical solution will be derived using the Laplace transform method and the Green’s 42 

functions method, and the detailed information could be seen in the following sections. 43 

 44 

S1.1 Solutions in the injection phase: Eqs. (25a) and (25f) 45 

Substituting the dimensionless parameters into Eqs. (5) - (6), one could obtain the 46 

dimensionless boundary conditions and dimensionless initial conditions for the injection phase: 47 

,஽ݎ)௠஽ܥ ஽)|௧ವୀ଴ݐ = ஽ݎ)௜௠஽ܥ , ஽)|௧ವୀ଴ݐ = ஽ݎ)௨௠஽ܥ , ,஽ݖ ஽)|௧ವୀ଴ݐ = ஽ݎ)௨௜௠஽ܥ , ,஽ݖ ஽)|௧ವୀ଴ݐ =48 

,஽ݎ)௟௠஽ܥ ,஽ݖ ஽)|௧ವୀ଴ݐ = ,஽ݎ)௟௜௠஽ܥ ,஽ݖ ஽)|௧ವୀ଴ݐ = 0,      (S4) 49 

,஽ݎ)௠஽ܥ ஽)|௥ವ→ஶݐ = ஽ݎ)௜௠஽ܥ , ஽)|௥ವ→ஶݐ = ஽ݎ)௨௠஽ܥ , ,஽ݖ ஽)|௭ವ→ஶݐ =50 

஽ݎ)௨௜௠஽ܥ , ,஽ݖ ஽)|௭ವ→ஶݐ = ,஽ݎ)௟௠஽ܥ ஽ݖ , ௭ವ→ିஶ|(ݐ = ,஽ݎ)௟௜௠஽ܥ ,஽ݖ ஽)|௭ವ→ିஶݐ = 0, (S5) 51 

,஽ݎ)௠஽ܥ (஽ݐ = ஽ݎ)௨௠஽ܥ , ஽ݖ = 1,  ஽),      (S6a) 52ݐ

,஽ݎ)௠஽ܥ (஽ݐ = ,஽ݎ)௟௠஽ܥ ஽ݖ = −1,  ஽).      (S6b) 53ݐ

Conducting Laplace transform to Eqs. (S2a) - (S2b), one has: 54 

௨̅௠஽ܥݏ =
ோ೘ఈೝ

మ஽ೠ

஺஻మோೠ೘

డమ஼̅ೠ೘ವ

డ௭ವ
మ −

ோ೘௩ೠ೘ఈೝ
మ

஺஻ோೠ೘

డ஼̅ೠ೘ವ

డ௭ವ
− ௨௠ߝ) + ௨௠஽ܥ̅(௨௠஽ߤ +  ௨̅௜௠஽， 55ܥ௨௠ߝ

஽ݖ  ≥ 1,          (S7a) 56 

௨̅௜௠஽ܥݏ = ௨̅௠஽ܥ)௨௜௠ߝ − (௨̅௜௠஽ܥ − ஽ݖ ,௨௜௠஽ܥ௨௜௠஽̅ߤ ≥ 1,   (S7b) 57 

Substituting Eq. (S7b) into Eq. (S7a) will lead to: 58 

௨̅௠஽ܥݏ =
ோ೘ఈೝ

మ஽ೠ

஺஻మோೠ೘

డమ஼̅ೠ೘ವ

డ௭ವ
మ −

ோ೘௩ೠ೘ఈೝ
మ

஺஻ ೠ೘

డ஼̅ೠ೘ವ

డ௭ವ
− ቀߝ௨௠ + ௨௠஽ߤ −

ఌೠ೘ఌೠ೔೘

௦ାఓೠ೔೘ವାఌೠ೔೘
ቁ  ௨௠஽， 59ܥ̅
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஽ݖ  ≥ 1,          (S8) 60 

Similarly, Eqs. (S3a) - (S3b) become: 61 

௟̅௠஽ܥݏ = ோ೘ఈೝ
మ஽೗

஺஻మோ೗೘

డమ஼̅೗೘ವ

డ௭ವ
మ + ோ೘௩೗೘ఈೝ

మ

஺஻ோ೗೘

డ஼̅೗೘ವ

డ௭ವ
− ௟௠ߝ) + ௟̅௠஽ܥ(௟௠஽ߤ +  ௟̅௜௠஽, 62ܥ௟௠ߝ

஽ݖ ≤ −1,          (S9a) 63 

௟̅௜௠஽ܥݏ = ௟̅௠஽ܥ)௟௜௠ߝ − (௟௜௠஽ܥ̅ − ஽ݖ ,௟̅௜௠஽ܥ௟௜௠஽ߤ ≤ −1,   (S9b) 64 

Substituting Eq. (S9b) into Eq.(S9a) results in: 65 

௟̅௠஽ܥݏ =
ோ೘ఈೝ

మ஽೗

஺஻మோ೗೘

డమ஼̅೗೘ವ

డ௭ವ
మ +

ோ೘௩೗೘ఈೝ
మ

஺஻ோ೗೘

డ஼̅೗೘ವ

డ௭ವ
− ቀߝ௟௠ + ௟௠஽ߤ −

ఌ೗೘ఌ೗೔೘

௦ାఓ೗೔೘ವାఌ೗೔೘
ቁ  ௟௠஽, 66ܥ̅

஽ݖ ≤ −1,          (S10) 67 

where overbar represents the variables in Laplace domain hereinafter; s is the Laplace transform 68 

parameter in respect to dimensionless time. 69 

Eqs. (S5), (S6a)-(S6b) and (S8) compose a model of the second-order ordinary differential 70 

equation (ODE) with boundary conditions, the general solution of Eq. (S8)  is: 71 

௨௠஽ܥ̅ = ଵ݁௔భ௭ವܣ +  ଵ݁௔మ௭ವ.       (S11a) 72ܤ

Similarly, the general solution of Eq. (S10)  is: 73 

௟௠஽ܥ̅ = ଶ݁௕భ௭ವܣ +  ଶ݁௕మ௭ವ.       (S11b) 74ܤ

where  ܽଵ =

ೃ೘ೡೠ೘ഀೝ
మ

ಲಳೃೠ೘
ାඨ൬

ೃ೘ೡೠ೘ഀೝ
మ

ಲಳೃೠ೘
൰

మ
ାସ

ೃ೘ഀೝ
మವೠ

ಲಳమೃೠ೘
൬௦ାఌೠ೘ାఓೠ೘ವି

ഄೠ೘ഄೠ೔೘
ೞశഋೠ೔೘ವశഄೠ೔೘

൰

ଶ
ೃ೘ഀೝ

మವೠ
ಲಳమೃೠ೘

, 75 

ܽଶ =

ೃ೘ೡೠ೘ഀೝ
మ

ಲಳೃೠ೘
ିඨ൬

ೃ೘ೡೠ೘ഀೝ
మ

ಲಳೃೠ೘
൰

మ

ାସ
ೃ೘ഀೝ

మವೠ
ಲಳమೃೠ೘

൬௦ାఌೠ೘ାఓೠ೘ವି
ഄೠ೘ഄೠ೔೘

ೞశഋೠ೔೘ವశഄೠ೔೘
൰

ଶ
ೃ೘ഀೝ

మವೠ
ಲಳమೃೠ೘

, 76 

ଵܾ =
ି

ೃ೘ೡ೗೘ഀೝ
మ

ಲಳೃ೗೘
ାඨ൬

ೃ೘ೡ೗೘ഀೝ
మ

ಲಳ ೗೘
൰

మ

ାସ
ೃ೘ഀೝ

మವ೗
ಲಳమೃ೗೘

൬௦ାఌ೗೘ାఓ೗೘ವି
ഄ೗೘ഄ೗೔೘

ೞశഋ೗೔೘ವశഄ೗೔೘
൰

ଶ
ೃ೘ഀೝ

మವ೗
ಲಳమೃ೗೘

 and  77 
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ܾଶ =
ି

ೃ೘ೡ೗೘ഀೝ
మ

ಲಳೃ೗೘
ି ඨ൬

ೃ೘ೡ೗೘ഀೝ
మ

ಲಳೃ೗೘
൰

మ

ାସ
ೃ೘ഀೝ

మವ೗
ಲಳమೃ೗೘

൬௦ାఌ೗೘ାఓ೗೘ವି
ഄ೗೘ഄ೗೔೘

ೞశഋ೗೔೘ವశഄ೗೔೘
൰

ଶ
ೃ೘ഀೝ

మವ೗
ಲಳమೃ೗೘

. 78 

Substituting Eqs. (S11a) - (S11b) into Eqs. (S5)-(S6b) leads to: 79 

௨௠஽ܥ̅ =  ଵ݁௔మ௭ವ.        (S12a) 80ܤ

௟௠஽ܥ̅ =  ଶ݁௕భ௭ವ.         (S12b) 81ܣ

where ܤଵ = ଶܤ ,(ଶܽ−) ݌ݔ௠஽݁ܥ̅ = ଵܣ ,0 = 0 and ܣଶ =  82 .(ଵܾ) ݌ݔ௠஽݁ܥ̅

Thus, we could obtain the solutions for the aquitards as: 83 

௨௠஽ܥ̅ = ஽ݖଶܽ) ݌ݔ௠̅஽݁ܥ − ܽଶ).       (S13a) 84 

௨௜௠஽ܥ̅ =
ఌೠ೔೘

௦ାఌೠ೔೘ାఓೠ೔೘ವ
 ௨̅௠஽,       (S13b) 85ܥ

௟௠஽ܥ̅ = ) ݌ݔ௠஽݁ܥ̅ ଵܾݖ஽ + ܾଵ).       (S14a) 86 

௟௜௠஽ܥ̅ =
ఌ೗೔೘

௦ାఌ೗೔೘ାఓ೗೔೘ವ
 ௟௠஽,       (S14b) 87ܥ̅

In the injection phase, the dimensional boundary conditions Eq. (8) and Eqs. (12a)-(12b) are 88 

transformed into their dimensionless forms: 89 

ቂܥ௠஽ − డ஼೘ವ(௥ವ,௧ವ)

డ௥ವ
ቃቚ

௥ୀ௥ೢವ

= 0 ,(஽ݐ)௜௡௝,௠஽ܥ < ஽ݐ ≤  ௜௡௝,஽   (S15) 90ݐ

௜௡௝ߚ
ௗ஼೔೙ೕ,೘ವ(௧ವ)

ௗ௧ವ
= 1 − 0 , (஽ݐ)௜௡௝,௠஽ܥ < ஽ݐ ≤  ௜௡௝,஽,     (S16a) 91ݐ

஽ݐ)௜௡௝,௠஽ܥ = 0) = 0,         (S16b) 92 

where ߚ௜௡௝ =
௏ೢ,೔೙ೕ௥ೢವ

కோ೘ఈೝ
. 93 

Conducting Laplace transform to Eqs. (S1a) - (S1b), one has: 94 

௠̅஽ܥݏ =
ଵ

௥ವ

డమ஼̅೘ವ

డ௥ವ
మ −

ଵ

௥ವ

డ஼̅೘ವ

డ௥ವ
− ௠ߝ) + ௠஽ܥ̅(௠஽ߤ + ௜௠஽ܥ௠̅ߝ −  95 

ቀఏೠ೘ఈೝ
మ௩ೠ೘

ଶ஺ఏ೘஻
௨௠஽ܥ̅ − ఏೠ೘ఈೝ

మ஽ೠ

ଶ஺ఏ೘஻మ

డ஼̅ೠ೘ವ

డ௭ವ
ቁቚ

௭ವୀଵ
+ ቀఏ೗೘ఈೝ

మ௩೗೘

ଶ஺ఏ೘஻
௟௠஽ܥ̅ − ఏ೗೘ఈೝ

మ஽೗

ଶ஺஻మఏ೘

డ஼̅೗೘ವ

డ௭ವ
ቁቚ

௭ವୀିଵ
 , 96 
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஽ݎ ≥ ௪஽ݎ .          (S17a) 97 

௜௠஽ܥ̅ = ఌ೔೘

(௦ାఓ೔೘ವାఌ೔೘)
஽ݎ ,௠̅஽ܥ ≥  ௪஽,      (S17b) 98ݎ

Substituting Eqs. (S13a), (S14a) and (S17b) into Eq. (S17a),one has: 99 

ଵ

௥ವ

డమ஼̅೘ವ

డ௥ವ
మ − ଵ

௥ವ

డ஼̅೘ವ

డ௥ವ
− ௠஽ܥ̅ܧ = 0.       (S18) 100 

where 101 

ܧ  = ݏ + ௠ߝ + ௠஽ߤ −
ఌ೘ఌ೔೘

௦ାఓ೔೘ವାఌ೔೘
+

ఏೠ೘ఈೝ
మ௩ೠ೘

ଶ஺ఏ೘஻
−

ఏ೗೘ఈೝ
మ௩೗೘

ଶ஺஻ఏ೘
−

௔మఏೠ೘ఈೝ
మ஽ೠ

ଶ஺ఏ೘஻మ +
௕భఏ೗೘ఈೝ

మ஽೗

ଶ஺஻మఏ೘
. 102 

The boundary conditions of the wellbore and infinity in the Laplace domain are: 103 

ቂܥ௠̅஽ − డ஼̅೘ವ(௥ವ,௦)

డ௥ವ
ቃቚ

௥ୀ௥ೢವ

=  104 (S19a)      ,(ݏ)௜௡௝,௠஽ܥ̅

,஽ݎ)௠̅஽ܥ ௥ವ→ஶ|(ݏ = 0.        (S19b) 105 

Conducting Laplace transform on Eqs. (S16a)- (S16b), one has: 106 

௪ݎ)௜௡௝,௠஽ܥ̅ , (ݏ = ଵ

௦൫௦ఉ೔೙ೕାଵ൯
,        (S20) 107 

Eqs. (S18), (S19a)-(S19b), and (S20) compose a model of the second-order ordinary 108 

differential equation (ODE) with boundary conditions. The general solution of Eq. (S18) is: 109 

,஽ݎ)௠஽ܥ̅ (ݏ = ߶ଵ ݌ݔ݁ ቀ
௬೔೙ೕ

ଶ
ቁ ௜௡௝൯ݕଵ/ଷܧ௜൫ܣ + ߶ଶexp ቀ

௬೔೙ೕ

ଶ
ቁ  ௜௡௝൯.  (S21) 110ݕଵ/ଷܧ௜൫ܤ

where ݕ௜௡௝ = ஽ݎ +
ଵ

ସா
௜௡௝,௪ݕ , = ௪஽ݎ +

ଵ

ସா
; ߶ଵ and ߶ଶ are constants which could be determined by 111 

the boundary conditions; ܣ௜(∙) and ܤ௜(∙) are the Airy functions of the first kind and second kind, 112 

respectively. As ܤ௜(ݎ஽) diverges when ݎ஽ → ∞ , ߶ଶ has to be zero. 113 

Substituting Eqs. (S21), (S20) and ߶ଶ = 0 into Eq. (S19a), the value of ߶ଵ is: 114 

߶ଵ =
ଵ

௦൫௦ఉ೔೙ೕାଵ൯

ଵ

௘௫௣ቀ
೤೔೙ೕ,ೢ

మ
ቁቈ

ಲ೔ቀಶభ/య೤೔೙ೕ,ೢቁ

మ
ିாభ/య஺೔

ᇲ൫ாభ/య௬೔೙ೕ൯቉

.    (S22) 115 

where ܣ௜
ᇱ(∙) is the derivative of the Airy function. 116 
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Substituting Eq. (S22) and ߶ଶ = 0 into Eqs. (S21) and (S17b), one could obtain the 117 

Laplace-domain analytical solution of solute transport in the injection phase of the SWPP test. 118 

 119 

S1.2 Solutions in the chaser phase: Eqs. (26a) - (26g) 120 

For the chaser phase, conducting Laplace transform on Eqs. (S2a)-(S2b), one has: 121 

ோ೘ఈೝ
మ஽ೠ

஺஻మோೠ೘

డమ஼̅ೠ೘ವ

డ௭ವ
మ −

ோ೘௩ೠ೘ఈೝ
మ

஺஻ோೠ೘

డ஼̅ೠ೘ವ

డ௭ವ
− ݏ) + ௨௠ߝ + ௨௠஽ܥ̅(௨௠஽ߤ + ௨̅௜௠஽ܥ௨௠ߝ +122 

,஽ݎ௨௠஽൫ܥ ,஽ݖ ௜௡௝,஽൯ݐ = ஽ݖ，0 ≥ 1,       (S23a) 123 

௨̅௜௠஽ܥݏ − ,஽ݎ௨௜௠஽൫ܥ ,஽ݖ ௜௡௝,஽൯ݐ = ௨௠஽ܥ̅)௨௜௠ߝ − (௨௜௠஽ܥ̅ −  ௨̅௜௠஽ ,  (S23b) 124ܥ௨௜௠஽ߤ

Eq. (S23b) could be rewritten as: 125 

௨̅௜௠஽ܥ =
ఌೠ೔೘

௦ାఌೠ೔೘ାఓೠ೔೘ವ
௨௠஽ܥ̅ +

஼ೠ೔೘ವ൫௥ವ,௭ವ,௧೔೙ೕ,ವ൯

௦ାఌೠ೔೘ାఓೠ೔೘ವ
,    (S23c)  126 

Substituting Eq. (S23c) into Eq. (S23a), one has: 127 

ோ೘ఈೝ
మ஽ೠ

஺஻మோೠ೘

డమ஼̅ೠ೘ವ

డ௭ವ
మ − ோ೘௩ೠ೘ఈೝ

మ

஺஻ோೠ೘

డ஼̅ೠ೘ವ

డ௭ವ
− ቀݏ + ௨௠ߝ + ௨௠஽ߤ − ఌೠ೘ఌೠ೔೘

௦ାఌೠ೔೘ାఓೠ೔೘ವ
ቁ ௨௠஽ܥ̅ +128 

,஽ݎ௨௠஽൫ܥ ,஽ݖ ௜௡௝,஽൯ݐ +
ఌೠ೘஼ೠ೔೘ವ൫௥ವ,௭ವ,௧೔೙ೕ,ವ൯

௦ାఌೠ೔೘ାఓೠ೔೘ವ
= ஽ݖ .0 ≥ 1,    (S24) 129 

Similarly, Eqs. (S3a) - (S3b) become: 130 

ோ೘ఈೝ
మ஽೗

஺஻మோ೗೘

డమ஼̅೗೘ವ

డ௭ವ
మ +

ோ೘௩೗೘ఈೝ
మ

஺஻ ೗೘

డ஼̅೗೘ವ

డ௭ವ
− ݏ) + ௟௠ߝ + ௟̅௠஽ܥ(௟௠஽ߤ + ௟௜௠஽ܥ௟௠̅ߝ +131 

஽ݎ௟௠஽൫ܥ , ,஽ݖ ௜௡௝,஽൯ݐ = ஽ݖ，0 ≤ −1,       (S25a) 132 

௟̅௜௠஽ܥݏ − ,஽ݎ௟௜௠஽൫ܥ ,஽ݖ ௜௡௝,஽൯ݐ = ௟̅௠஽ܥ)௟௜௠ߝ − (௟௜௠஽ܥ̅ −  ௟௜௠஽ ,  (S25b) 133ܥ௟௜௠஽ߤ

Eq. (S23b) could be rewritten as : 134 

௟̅௜௠஽ܥ =
ఌ೗೔೘

௦ାఌ೗೔೘ାఓ೗೔೘ವ
௟௠஽ܥ̅ +

஼೗೔೘ವ൫௥ವ,௭ವ,௧೔೙ೕ,ವ൯

௦ାఌ೗೔೘ାఓ೗೔೘ವ
,     (S25c) 135 

Substituting Eq. (S25c) into Eq. (S25a), one has: 136 
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ோ೘ఈೝ
మ஽೗

஺஻మோ೗೘

డమ஼̅೗೘ವ

డ௭ವ
మ + ோ೘௩೗೘ఈೝ

మ

஺஻ோ೗೘

డ஼̅೗೘ವ

డ௭ವ
− ቀݏ + ௟௠ߝ + ௟௠஽ߤ − ఌ೗೘ఌ೗೔೘

௦ାఌ೗೔೘ାఓ೗೔೘ವ
ቁ ௟̅௠஽ܥ +137 

஽ݎ௟௠஽൫ܥ , ,஽ݖ ௜௡௝,஽൯ݐ +
ఌ೗೘஼೗೔೘ವ൫௥ವ,௭ವ,௧೔೙ೕ,ವ൯

௦ାఌ೗೔೘ାఓ೗೔೘ವ
= ஽ݖ .0 ≤ −1,    (S26) 138 

where ܥ௨௠஽൫ݎ஽, ,஽ݖ ,஽ݎ௨௜௠஽൫ܥ ௜௡௝,஽൯ andݐ ,஽ݖ  ௜௡௝,஽൯ are respectively the mobile and immobile 139ݐ

concentrations [ML-3] of the upper aquitard at the end of the injection phase,  ܥ௟௠஽൫ݎ஽, ,஽ݖ  ௜௡௝,஽൯ 140ݐ

and ܥ௟௜௠஽൫ݎ஽ , ,஽ݖ  ௜௡௝,஽൯ are respectively the mobile and immobile concentrations [ML-3] of the 141ݐ

lower aquitard at the end of the injection phase. In this study, we use the Green’s function 142 

method to derive the analytical solution of Eqs. (S24) and (S26). 143 

Notice that the boundary condition of Eq. (S6a) is inhomogeneous, thus we need to 144 

homogenize it first. Letting ܥ௨̅௠஽ = (஽ݖ)ࣽ + ःଵ + ःଶݖ஽, and substituting them into Eqs. (S5) 145 

and (S6a) yields: 146 

ሾࣽ(ݖ஽)ሿ|௭ವ→ஶ = 0,         (S27a) 147 

ሾࣽ(ݖ஽)ሿ|௭ವୀଵ = 0,         (S27b) 148 

where ःଵ = −ःଶݖ௘஽ and ःଶ =
஼̅೘ವ(௥ವ,௦)

ଵି௭೐ವ
. 149 

Defining the spatial operator: ܮ௨ = − ൤ோ೘ఈೝ
మ஽ೠ

஺஻మோೠ೘

ௗమ

ௗ௭ವ
మ − ோ೘௩ೠ೘ఈೝ

మ

஺஻ோೠ೘

ௗ

ௗ௭ವ
−  ௨൨, one has: 150ܧ

௨௠஽ܥ௨̅ܮ = (஽ݖ)௨ሾࣽܮ + ःଵሿ =  151 (S28)       ,(஽ݖ)௨ܨ

Let ௨݂(ݖ஽) = (஽ݖ)௨ܨ − ௨ሾःଵܮ + ःଶݖ஽ሿ, one has: 152 

ோ೘ఈೝ
మ஽ೠ

஺஻మோೠ೘

ௗమࣽ

ௗ௭ವ
మ −

ோ೘௩ೠ೘ఈೝ
మ

஺஻ோೠ೘

ௗࣽ

ௗ௭ವ
− ௨ࣽܧ = − ௨݂(ݖ஽) ,     (S29) 153 

where ܧ௨ = ݏ + ௨௠ߝ + ௨௠ߤ − ఌೠ೘ఌೠ೔೘

௦ାఌೠ೔೘ାఓೠ೔೘ವ
, 154 

(஽ݖ)௨ܨ = ,஽ݎ௨௠஽൫ܥ ,஽ݖ ௜௡௝,஽൯ݐ +
ఌೠ೘஼ೠ೔೘ವ൫௥ವ,௭ವ,௧೔೙ೕ,ವ൯

௦ାఌೠ೔೘ାఓೠ೔೘ವ
 and ௨݂(ݖ஽) = ஽ݎ௨௠஽൫ܥ , ,஽ݖ ௜௡௝,஽൯ݐ +155 

ఌೠ೘஼ೠ೔೘ವ൫௥ವ,௭ವ,௧೔೙ೕ,ವ൯

௦ାఌೠ೔೘ାఓೠ೔೘ವ
−

ோ೘௩ೠ೘ఈೝ
మ

஺஻ ೠ೘
ःଶ − ௨(ःଵܧ + ःଶݖ஽). 156 
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The general solution of Eq. (S24) is: 157 

௨௠஽ܥ̅ = ׬ ݃௨(ݖ஽ , ;௨ܧ ௨)ஶߟ
ଵ ௨݂(ߟ௨)݀ߟ௨ + ௭ವି௭೐ವ

ଵି௭೐ವ
஽ݎ)௠̅஽ܥ , ஽ݖ ,(ݏ ≥ 1.   (S30) 158 

where ௨݂(ߟ௨) = ,஽ݎ௨௠஽൫ܥ ௨ߟ , ௜௡௝,஽൯ݐ +
ఌೠ೘஼ೠ೔೘ವ൫௥ವ,ఎೠ,௧೔೙ೕ,ವ൯

௦ାఌೠ೔೘ାఓೠ೔೘ವ
− ோ೘௩ೠ೘ఈೝ

మ

஺஻ோೠ೘
ःଶ − ௨(ःଵܧ + ःଶߟ௨), ߟ௨ 159 

is a positive value varying between 1 and ∞ (e.g. 1 ≤ ௨ߟ ≤ ∞); ݃௨(ݖ஽, ;௨ܧ  ௨) is the Green's 160ߟ

function, and could be expressed as : 161 

݃௨(ݖ஽, ;௨ܧ (௨ߟ = ൜
݃௨ଵ(ݖ஽, ;௨ܧ (௨ߟ = ଵܰ݁݌ݔ(ܽଵݖ஽) + ଶܰ݁݌ݔ(ܽଶݖ஽)   1 ≤ ஽ݖ < ௨ߟ

݃௨ଶ(ݖ஽, ;௨ܧ (௨ߟ = ଷܰ݁݌ݔ(ܽଵݖ஽) + ସܰ݁݌ݔ(ܽଶݖ஽)  ߟ௨ ≤ ஽ݖ < ∞
,  (S31) 162 

where ଵܰ， ଶܰ， ଷܰ and ସܰ are coefficients to be detrmined using the following conditions 163 

[Chen and Woodside ,1988]: 164 

a) ݃௨(ݖ஽, ;௨ܧ  ௨) satisfying the model of Eqs. (S29) and (S27a)-(S27b); 165ߟ

b) ݃௨ଵ(ݖ஽ , ;௨ܧ (௨ߟ = ݃௨ଶ(ݖ஽, ;௨ܧ  ௨); 166ߟ

c) 
ௗ௚ೠమ

ௗ௭ವ
ቚ

௭ವୀఎೠ
శ

− ௗ௚ೠభ

ௗ௭ವ
ቚ

௭ವୀఎೠ
ష

= − ஺஻మோೠ೘

ோ೘ఈೝ
మ஽ೠ

; 167 

Substituting Eq. (S31) into Eq. (S27a), one has: 168 

ଷܰ = 0,           (S32) 169 

Substituting Eq. (S31) into Eq. (S27b), one has: 170 

ଵܰ݁݌ݔ(ܽଵ) + ଶܰ݁݌ݔ(ܽଶ) = 0,        (S33a) 171 

According to Eq. (S33a), one has: 172 

ଵܰ = − ଶܰ݁݌ݔ(ܽଶ − ܽଵ)，       (S33b) 173 

According to above condition of b), one has: 174 

ଵܰ݁݌ݔ(ܽଵߟ௨) + ଶܰ݁݌ݔ(ܽଶߟ௨) = ସܰ݁݌ݔ(ܽଶߟ௨),     (S34) 175 

According to above condition of c), one has: 176 

ସܰܽଶ݁݌ݔ(ܽଶߟ௨) − ሾ ଵܰܽଵ݁݌ݔ(ܽଵߟ௨) + ଶܰܽଶ݁݌ݔ(ܽଶߟ௨)ሿ = − ஺஻మோೠ೘

ோ೘ఈೝ
మ஽ೠ

.  (S35) 177 
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In the chaser phase, the values of ଵܰ, ଶܰ , ଷܰand ସܰ could be determined by Eqs. (S33a) - 178 

(S35), namely: 179 

ଵܰ = − ଶܰ݁݌ݔ(ܽଶ − ܽଵ), ଶܰ = ି஺஻మோೠ೘

ோ೘ఈೝ
మ஽ೠሾ(௔భି௔మ)௘௫௣(௔మି௔భ)௘௫௣(௔భఎೠ)ሿ

, ଷܰ = 0 and  180 

ସܰ = ଶܰ− ଶܰ݁݌ݔ(ܽଶ − ܽଵ)݁݌ݔ(ܽଵߟ௨ − ܽଶߟ௨). 181 

As for the analytical solution of the lower aquitard, one could use a similar approach as that 182 

used for deriving the analytical solution of the upper aquitard to obtain, and the general solution 183 

of Eq. (S26) could be described as: 184 

௟௠஽ܥ̅ = ׬ ݃௟(ݖ஽, ;௟ܧ ௟)ିஶߟ
ିଵ ௟݂(ߟ௟)݀ߟ௟ + ௭೐ವା௭ವ

௭೐ವିଵ
,஽ݎ)௠̅஽ܥ ,஽ݖ ஽ݖ ,(ݏ ≤ −1. (S36a) 185 

݃௟(ݖ஽, ;௟ܧ (௟ߟ = ൜
݃௟ଵ(ݖ஽, ௟ܧ ; (௟ߟ = (஽ݖଵܾ)݌ݔଵ݁ܯ + −  (஽ݖଶܾ)݌ݔଶ݁ܯ 1 ≤ ஽ݖ < ௟ߟ

݃௟ଶ(ݖ஽, ;௟ܧ (௟ߟ = (஽ݖଵܾ)݌ݔଷ݁ܯ + ௟ߟ   (஽ݖଶܾ)݌ݔସ݁ܯ ≤ ஽ݖ < −∞
,  (S36b) 186 

௟݂(ߟ௟) = ,஽ݎ௟௠஽൫ܥ ௟ߟ , ௜௡௝,஽൯ݐ +
ఌ೗೘஼೗೔೘ವ൫௥ವ,ఎ೗,௧೔೙ೕ,ವ൯

௦ାఌ೗೔೘ାఓ೗೔೘ವ
+

ோ೘௩೗೘ఈೝ
మ

஺஻ோ೗೘

஼̅೘ವ

௭೐ವିଵ
− ௟ܧ௠஽ܥ̅

௭೐ವାఎ೗

௭೐ವିଵ
,  (S36c) 187 

where ߟ௟  is a negative value varying between −1 and −∞ (e.g.−1 ≤ ௟ߟ ≤ −∞); ݃௟(ݖ஽, ;௟ܧ  ௟) is 188ߟ

the Green's function, ܧ௟ = ݏ + ௟௠ߝ + ௟௠஽ߤ −
ఌ೗೘ఌ೗೔೘

௦ାఌ೗೔೘ାఓ೗೔೘ವ
, and the values of ܯଵ, ܯଶ , ܯଷand ܯସ 189 

could be described as: ܯଵ = ଵܾ)݌ݔଶ݁ܯ− − ܾଶ), ܯଶ = ି஺஻మோ೗೘

ோ೘ఈೝ
మ஽೗ሾ௘௫௣(௕మఎ೗ି௕భఎ೗)ି௕మ௘௫௣(௕మఎ೗)ሿ

, 190 

ଷܯ = ௟ߟଶܾ)݌ݔଶ݁ܯ − ଵܾߟ௟) − ଵܾ)݌ݔଶ݁ܯ − ܾଶ), ܯସ = 0, and the values of  ܽଵ, ܽଶ , ଵܾ and ܾଶ are 191 

the same as used in the injection phase.  192 

In the chaser phase, the dimensional boundary conditions Eqs. (15a)-(15b) are transformed 193 

into dimensionless forms as: 194 

௖௛௔,஽ߚ
డ஼೘ವ(௥ವ,௧ವ)

డ௧ವ
ቚ

௥ವୀ௥ೢವ

= ஽ݎ)௠஽ܥ , ௜௡௝,஽ݐ ,(஽ݐ < ஽ݐ ≤  ௖௛௔,஽,   (S37a) 195ݐ

஽ݎ)௖௛௔,௠஽ܥ , ஽)หݐ
௧ವୀ௧೔೙ೕ,ವ

= ஽ݎ)௜௡௝,௠஽ܥ , ஽)หݐ
௧ವୀ௧೔೙ೕ,ವ

௜௡௝,஽ݐ ,  < ஽ݐ ≤  ௖௛௔,஽. (S37b) 196ݐ

where ߚ௖௛௔,஽ = −
௏ೢ,೎೓ೌ௥ೢವ

కோ೘ఈೝ
. 197 



11 
 

Conducting Laplace transform on Eqs. (S1a)-(S1b) in the chaser phase, one has: 198 

௠̅஽ܥݏ − ,஽ݎ௠஽൫ܥ ௜௡௝,஽൯ݐ = ଵ

௥ವ

డమ஼̅೘ವ

డ௥ವ
మ − ଵ

௥ವ

డ஼̅೘ವ

డ௥ವ
− ௠ߝ) + ௠̅஽ܥ(௠஽ߤ + ௜̅௠஽ܥ௠ߝ −199 

ቀ
ఏೠ೘ఈೝ

మ௩ೠ೘

ଶ஺ఏ೘஻
௨̅௠஽ܥ −

ఏೠ೘ఈೝ
మ஽ೠ

ଶ஺ఏ೘஻మ

డ஼̅ೠ೘ವ

డ௭ವ
ቁቚ

௭ವୀଵ
+ ቀ

ఏ೗೘ఈೝ
మ௩೗೘

ଶ஺ఏ೘஻
௟௠஽ܥ̅ −

ఏ೗೘ఈೝ
మ஽೗

ଶ஺஻మఏ೘

డ஼̅೗೘ವ

డ௭ವ
ቁቚ

௭ವୀିଵ
, 200 

஽ݎ ≥  ௪஽.          (S38a) 201ݎ

௜௠஽ܥ̅ = ఌ೔೘

(௦ାఓ೔೘ವାఌ೔೘)
௠̅஽ܥ +

஼೔೘ವ൫௥ವ,௧೔೙ೕ,ವ൯

(௦ାఓ೔೘ವାఌ೔೘)
஽ݎ , ≥  ௪஽,    (S38b) 202ݎ

where ܥ௠஽൫ݎ஽, ,஽ݎ௜௠஽൫ܥ ௜௡௝,஽൯ andݐ  ௜௡௝,஽൯ are respectively the mobile and immobile 203ݐ

concentrations [ML-3] of the aquifer at the end of the injection phase, which could be calculated 204 

by Eqs. (S21) and (S17b).  205 

After substituting Eqs. (S30), (S36a)-(S36c) and (S38b) into Eq. (S38a), one has: 206 

ଵ

௥ವ

డమ஼̅೘ವ

డ௥ವ
మ − ଵ

௥ವ

డ஼̅೘ವ

డ௥ವ
− ௠̅஽ܥ௔ܧ + ܨ = ஽ݎ ,0 ≥ ௪஽ݎ ,    (S39) 207 

where ܧ௔ = ݏ + ௠ߝ + ௠஽ߤ −
ఌ೘ఌ೔೘

௦ାఓ೔೘ವାఌ೔೘
+

ఏೠ೘ఈೝ
మ௩ೠ೘

ଶ஺ఏ೘஻
−

ఏ೗೘ఈೝ
మ௩೗೘

ଶ஺஻మఏ೘
−

ଵ

ଵି௭೐ವ

ఏೠ೘ఈೝ
మ஽ೠ

ଶ஺ఏ೘஻మ +
ଵ

௭೐ವିଵ

ఏ೗೘ఈೝ
మ஽೗

ଶ஺஻మఏ೘
  208 

and ܨ = ,஽ݎ௠஽൫ܥ ௜௡௝,஽൯ݐ +
ఌ೘஼೔೘ವ൫௥ವ,௧೔೙ೕ൯

௦ାఓ೔೘ವାఌ೔೘
. 209 

The boundary conditions of Eqs. (S37a)-(S37b)  in Laplace domain becomes: 210 

௪஽ݎ)௖௛௔,௠஽ܥ̅ , (ݏ =
ఉ೎೓ೌ,ವ

௦ఉ೎೓ೌ,ವାଵ
,஽ݎ)௜௡௝,௠஽ܥ ஽)หݐ

௧ವୀ௧೔೙ೕ,ವ
.    (S40) 211 

The boundary conditions of the wellbore and infinity in Laplace domain are: 212 

ቂܥ௠̅஽ −
డ஼̅೘ವ(௥ವ,௦)

డ௥ವ
ቃቚ

௥ୀ௥ೢವ

=
ఉ೎೓ೌ,ವ

௦ఉ೎೓ೌ,ವାଵ
஽ݎ)௜௡௝,௠஽ܥ , ஽)หݐ

௧ವୀ௧೔೙ೕ,ವ
,   (S41a) 213 

௪஽ݎ)௖௛௔,௠஽ܥ̅ , ห(ݏ
௥ವ→ஶ

= 0,        (S41b) 214 

Similar to the model of the SWPP test in the injection phase, Eqs. (S39) and (S40)-(S41b) 215 

compose a model of the second-order ordinary differential equation (ODE) with boundary 216 
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conditions, however, the governing equation is an inhomogeneous differential equation. In this 217 

study, we use the Green’s function method to derive the analytical solution of Eq. (S39).  218 

Notice that the boundary condition of Eq. (S41a) is inhomogeneous, and we need to 219 

homogenize it first. Assigning ̅ܥ௠஽ = (஽ݎ)ߖ + ଵߜ +  ஽, and substituting it into Eqs. (S41a) 220ݎଶߜ

and (S41b) yields: 221 

ቂݎ)ߖ஽ , (ݏ −
డఅ(௥ವ,௦)

డ௥ವ
ቃቚ

௥ୀ௥ೢವ

= 0,       (S42a) 222 

஽ݎ)ߖ , ௥ವ→ஶ|(ݏ = 0,        (S42b) 223 

where  ߜଵ = −
ఉ೎೓ೌ,ವ

௦ఉ೎೓ೌ,ವାଵ

௥ವ|ೝವ→ಮ

൫௥ೢವି௥ವ|ೝವ→ಮିଵ൯
஽ݎ)௜௡௝,௠஽ܥ , ஽)หݐ

௧ವୀ௧೔೙ೕ,ವ
 and  224 

ଶߜ =
ఉ೎೓ೌ,ವ

௦ఉ೎೓ೌ,ವାଵ

ଵ

൫௥ೢವି௥ವ|ೝವ→ಮିଵ൯
,஽ݎ)௜௡௝,௠஽ܥ ஽)หݐ

௧ವୀ௧೔೙ೕ,ವ
. 225 

Defining a spatial operator:ܮ = − ൤ ௗమ

ௗ௥ವ
మ − ௗ

ௗ௥ವ
−  ௔൨, one has: 226ܧ஽ݎ

௠̅஽ܥܮ = (஽ݎ)ߖሾܮ + ଵߜ + ஽ሿݎଶߜ =  ஽,      (S43) 227ݎܨ

Let ߮(ݎ஽) = ஽ݎܨ − ଵߜ)ܮ +  ஽), one has: 228ݎଶߜ

డమఅ

డ௥ವ
మ −

డఅ

డ௥ವ
− ߖ௔ܧ஽ݎ =  229 (S44)        .(஽ݎ)߮−

where ߮(ݎ஽) = ஽ݎܨ − ሾߜଶ + ଵߜ)௔ܧ஽ݎ +  ஽)ሿ. 230ݎଶߜ

The general solution of Eqs. (S42a) - (S44) is: 231 

,஽ݎ)ߖ ;௔ܧ (ߟ = ׬ ஽ݎ)݃ , ;௔ܧ ஶ(ߟ
௥ೢವ

 232 (S45)      .ߟ݀(ߟ)߮

where ߟ is a positive value varying between ݎ௪஽ and ∞ (e.g. ݎ௪஽ ≤ ߟ ≤ ஽ݎ)݃ ;(∞ , ;௔ܧ  is the 233 (ߟ

Green's function, and could be expressed as : 234 

,஽ݎ)݃ ;௔ܧ (ߟ = ቐ
ଵ݃(ݎ஽, ;௔ܧ (ߟ = ଵ࣮݁݌ݔ (

௬೎೓ೌ

ଶ
௜ܣ( ቀܧ௔

భ
యݕ௖௛௔ቁ + ଶ࣮ ݌ݔ݁ ቀ

௬೎೓ೌ

ଶ
ቁ ௜ܤ ቀܧ௔

భ
యݕ௖௛௔ቁ ௪஽ݎ ≤ ௖௛௔ݕ ≤ ߟ

݃ଶ(ݎ஽, ;௔ܧ (ߟ = ଷ࣮݁݌ݔ (
௬೎೓ೌ

ଶ
௜ܣ( ቀܧ௔

భ
యݕ௖௛௔ቁ + ସ࣮ ݌ݔ݁ ቀ

௬೎೓ೌ

ଶ
ቁ ௜ܤ ቀܧ௔

భ
యݕ௖௛௔ቁ ߟ  ≤ ௖௛௔ݕ ≤ ∞

. (S46) 235 
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where ߮(ߟ) = ߟܨ − ሾߜଶ + ଵߜ)௔ܧߟ + ௖௛௔ݕ ,ሿ(ߟଶߜ = ஽ݎ +
ଵ

ସாೌ
. As ܤ௜(ݎ஽) diverges when ݎ஽ →236 

∞ , ସ࣮ has to be zero. Substituting Eq. (S45) into Eq. (S42a), one has: 237 

ቂ݃ଵ − డ௚భ

డ௥ವ
ቃቚ

௥ವୀ௥ೢವ

= 0,        (S47) 238 

According to Eq. (S47), one has: 239 

 ଵ࣮ = − ଶ࣮ܺ.          (S48) 240 

where ܺ =
భ
మ

஻೔൫ாೌ
భ/య௬೎೓ೌ,ೢ൯ିாೌ

భ/య஻೔
ᇲ൫ாೌ

భ/య௬೎೓ೌ,ೢ൯
భ
మ

஺೔൫ாೌ
భ/య௬೎೓ೌ,ೢ൯ିாೌ

భ/య஺೔
ᇲ൫ாೌ

భ/య௬೎೓ೌ,ೢ൯
 and  ݕ௖௛௔,௪ = ௪஽ݎ + ଵ

ସாೌ
. 241 

According to above condition of  b), one has: 242 

ଵ࣮ܣ௜ ቀܧ௔

భ
యݕ௖௛௔|௥ವୀఎశቁ + ଶ࣮ܤ௜ ቀܧ௔

భ
యݕ௖௛௔|௥ವୀఎశቁ = ଷ࣮ܣ௜൫ܧ௔

ଵ/ଷݕ௖௛௔|௥ವୀఎష൯.  (S49) 243 

According to above condition of  c), one has: 244 

ቂଵ

ଶ ଷ࣮ ݌ݔ݁ ቀ௬೎೓ೌ

ଶ
ቁ ௜ܣ ቀܧ௔

భ
యݕ௖௛௔ቁ + ௔ܧ

భ
య ଷ࣮ ݌ݔ݁ ቀ௬೎೓ೌ

ଶ
ቁ ௜ܣ

ᇱ ቀܧ௔

భ
యݕ௖௛௔ቁቃቚ

௥ವୀఎష
−245 

ቂ0.5 ଵ࣮ ݌ݔ݁ ቀ௬೎೓ೌ

ଶ
ቁ ௜ܣ ቀܧ௔

భ
యݕ௖௛௔ቁ + ௔ܧ

భ
య ଵ࣮ ݌ݔ݁ ቀ௬೎೓ೌ

ଶ
ቁ ௜ܣ

ᇱ ቀܧ௔

భ
యݕ௖௛௔ቁቃቚ

௥ವୀఎశ
−246 

ቂଵ

ଶ ଶ࣮ ݌ݔ݁ ቀ௬೎೓ೌ

ଶ
ቁ ௜ܤ ቀܧ௔

భ
యݕ௖௛௔ቁ + ௔ܧ

భ
య ଶ࣮ ݌ݔ݁ ቀ௬೎೓ೌ

ଶ
ቁ ௜ܤ

ᇱ ቀܧ௔

భ
యݕ௖௛௔ቁቃቚ

௥ವୀఎశ
= −1.  (S50) 247 

For solution in the chaser phase, the values of ଵ࣮, ଶ࣮ , ଷ࣮ and ସ࣮ could be determined by Eqs. 248 

(S48) - (S50), namely: 249 

ଵ࣮ = −
గ஺೔ቀ௬೐ೣ೟|ೝವసആశቁ

ாೌ
భ/య ܺ , ଶ࣮ =

గ஺೔ቀ௬೐ೣ೟|ೝವసആశቁ

ாೌ
భ/య , ଷ࣮ =

గ஺೔ቀ௬೐ೣ೟|ೝವసആశቁ

ாೌ
భ/య ቈ

஻೔ቀ௬೐ೣ೟|ೝವసആశቁ

஺೔ቀ௬೐ೣ೟|ೝವసആశቁ
− ܺ቉ and  250 

ସ࣮ = 0. 251 

 252 

S1.3 Solutions in the rest phase: Eqs. (27a) - (27f) 253 
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In the rest phase, the flow velocity become zero, and the advection and dispersion terms 254 

drop out of the governing equations. After conducting Laplace transform on Eqs. (S2a)-(S2b), 255 

the following equations would be obtained: 256 

ݏ) + ௨௠ߝ + ௨̅௠஽ܥ(௨௠஽ߤ − ௨௜௠஽ܥ௨௠̅ߝ − ,஽ݎ௨௠஽൫ܥ ஽ݖ , ௖௛௔,஽൯ݐ = ஽ݖ .0 ≥ 1. (S51a) 257 

௨̅௜௠஽ܥ = ఌೠ೔೘

௦ାఌೠ೔೘ାఓೠ೘ವ
௨௠஽ܥ̅ +

஼ೠ೔೘ವ൫௥ವ,௭ವ,௧೎೓ೌ,ವ൯

௦ାఌೠ೔೘ାఓೠ೘ವ
஽ݖ , ≥ 1,    (S51b) 258 

Substituting Eq. (S51b) into Eq. (S51a), one has: 259 

ቀݏ + ௨௠ߝ + ௨௠஽ߤ −
ఌೠ೘ఌೠ೔೘

௦ାఌೠ೔೘ାఓೠ೔೘ವ
ቁ ௨̅௠஽ܥ − ஽ݎ௨௠஽൫ܥ , ,஽ݖ ௖௛௔,஽൯ݐ −

ఌೠ೘஼ೠ೔೘ವ൫௥ವ,௭ವ,௧೎೓ೌ,ವ൯

௦ାఌೠ೔೘ାఓೠ೔೘ವ
=260 

஽ݖ .0 ≥ 1.       (S52) 261 

Similarly, Eqs. (S3a) - (S3b) become: 262 

ݏ) + ௟௠ߝ + ௟̅௠஽ܥ(௟௠஽ߤ − ௟௜௠஽ܥ௟௠̅ߝ − ஽ݎ௟௠஽൫ܥ , ,஽ݖ ௖௛௔,஽൯ݐ = ஽ݖ .0 ≤ −1. (S53a) 263 

௟̅௜௠஽ܥ =
ఌ೗೔೘

௦ାఌ೗೔೘ାఓ೗೘ವ
௟̅௠஽ܥ +

஼೗೔೘ವ൫௥ವ,௭ವ,௧೎೓ೌ,ವ൯

௦ାఌ೗೔೘ାఓ೗೘ವ
஽ݖ  , ≤ −1,   (S53b) 264 

Substituting Eq. (S45b) into Eq. (S45a), one has: 265 

ቀݏ + ௟௠ߝ + ௟௠஽ߤ − ఌ೗೘ఌ೗೔೘

௦ାఌ೗೔೘ାఓ೗೔೘ವ
ቁ ௟௠஽ܥ̅ − ,஽ݎ௟௠஽൫ܥ ஽ݖ , ௖௛௔,஽൯ݐ −

ఌ೗೘஼೗೔೘ವ൫௥ವ,௭ವ,௧೎೓ೌ,ವ൯

௦ାఌ೗೔೘ାఓ೗೔೘ವ
=266 

஽ݖ .0 ≤ −1.       (S54) 267 

According to Eqs. (S52) and (S54), one has: 268 

௨௠஽ܥ̅ =
஼ೠ೘ವ൫௥ವ,௭ವ,௧೎೓ೌ,ವ൯ା

ഄೠ೘಴ೠ೔೘ವቀೝವ,೥ವ,೟೎೓ೌ,ವቁ

ೞశഄೠ೔೘శഋೠ೔೘ವ

൬௦ାఌೠ೘ାఓೠ೘ವି
ഄೠ೘ഄೠ೔೘

ೞశഄೠ೔೘శഋೠ೔೘ವ
൰

஽ݖ , ≥ 1,   (S55a) 269 

௟௠஽ܥ̅ =
஼೗೘ವ൫௥ವ,௭ವ,௧೎೓ೌ,ವ൯ା

ഄ೗೘಴೗೔೘ವቀೝವ,೥ವ,೟೎೓ೌ,ವቁ

ೞశഄ೗೔೘శഋ೗೔೘ವ

൬௦ାఌ೗೘ାఓ೗೘ವି
ഄ೗೘ഄ೗೔೘

ೞశഄ೗೔೘శഋ೗೔೘ವ
൰

஽ݖ , ≤ −1,   (S55b) 270 

where ܥ௨௠஽൫ݎ஽, ,஽ݖ ,஽ݎ௨௜௠஽൫ܥ ௖௛௔,஽൯andݐ ,஽ݖ  ௖௛௔,஽൯ are respectively the mobile and immobile 271ݐ

concentrations [ML-3] of the upper aquitard at the end of the chaser phase,  ܥ௟௠஽൫ݎ஽ , ஽ݖ ,  ௖௛௔,஽൯ 272ݐ
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and ܥ௟௜௠஽൫ݎ஽ , ,஽ݖ  ௖௛௔,஽൯ are respectively the mobile and immobile concentrations [ML-3] of the 273ݐ

lower aquitard at the end of the chaser phase. 274 

Similarly, the dimensionless governing equation of the mobile zone during the rest phase is: 275 

డ஼೘ವ

డ௧ವ
= ௠஽ܥ)௠ߝ− − (௜௠஽ܥ − ஽ݎ ,௠஽ܥ௠஽ߤ ≥ ௪஽ݎ .    (S56a) 276 

డ஼೔೘ವ

డ௧ವ
= ௠஽ܥ)௜௠ߝ − (௜௠஽ܥ − ஽ݎ ,௜௠஽ܥ௜௠஽ߤ ≥ ௪஽ݎ ,    (S56b) 277 

Conducting Laplace transform to Eqs. (S56a) and (S56b) for the rest phase, one has: 278 

௠̅஽ܥݏ − ,஽ݎ)௠஽ܥ (௖௛௔,஽ݐ = ௠̅஽ܥ)௠ߝ− − (௜̅௠஽ܥ − ஽ݎ ,௠஽ܥ௠஽̅ߤ ≥ ௪஽ݎ .  (S57a) 279 

௜̅௠஽ܥݏ − ஽ݎ)௜௠஽ܥ , (௖௛௔,஽ݐ = ௠஽ܥ̅)௜௠ߝ − (௜̅௠஽ܥ − ஽ݎ ,௜̅௠஽ܥ௜௠஽ߤ ≥  ௪஽, (S57b) 280ݎ

According to Eqs. (S57a)-(S57b) , one has: 281 

௠஽ܥ̅ =
஼೘ವ(௥ವ,௧೎೓ೌ,ವ)ା

ഄ೘಴೔೘ವቀೝವ,೟೎೓ೌ,ವቁ

൫ೞశഋ೔೘ವశഄ೔೘൯

൤௦ାఌ೘ାఓ೘ವି
ഄ೘ഄ೔೘

൫ೞశഋ೔೘ವశഄ೔೘൯
൨

.       (S58a) 282 

௜௠஽ܥ̅ =
஼೔೘ವ൫௥ವ,௧೎೓ೌ,ವ൯

(௦ାఓ೔೘ವାఌ೔೘)
+

ఌ೔೘஼̅೘ವ

(௦ାఓ೔೘ವାఌ೔೘)
.      (S58b) 283 

 284 

S1.4 Solutions in the extraction phase: Eqs. (28a) - (28g) 285 

Contrary to the injection and chaser phases, the direction of advective flux is reversed in the 286 

extraction stage, Eqs. (S2a) and (S3a) are modified as: 287 

డ஼ೠ೘ವ

డ௧ವ
=

ோ೘ఈೝ
మ஽ೠ

஺஻మோೠ೘

డమ஼ೠ೘ವ

డ௭ವ
మ +

ோ೘௩ೠ೘ఈೝ
మ

஺஻ோೠ೘

డ஼ೠ೘஽

డ௭ವ
− ௨௠஽ܥ)௨௠ߝ − (௨௜௠஽ܥ −  ௨௠஽, 288ܥ௨௠஽ߤ

஽ݖ ≥ 1,          (S59a) 289 

డ஼೗೘ವ

డ௧ವ
=

ோ೘ఈೝ
మ஽೗

஺஻మோ೗೘

డమ஼೗೘ವ

డ௭ವ
మ −

ோ೘௩೗೘ఈೝ
మ

஺஻ோ೗೘

డ஼೗೘ವ

డ௭ವ
− ௟௠஽ܥ)௟௠ߝ − (௟௜௠஽ܥ −  ௟௠஽, 290ܥ௟௠஽ߤ

஽ݖ ≤ −1,          (S59b) 291 

Conducting Laplace transform on Eqs. (S2b) and (S59a), one has: 292 
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௨̅௠஽ܥݏ − ஽ݎ௨௠஽൫ܥ , ,஽ݖ ௥௘௦,஽൯ݐ = ோ೘ఈೝ
మ஽ೠ

஺஻మோೠ೘

డమ஼̅ೠ೘ವ

డ௭ವ
మ + ோ೘௩ೠ೘ఈೝ

మ

஺஻ோೠ೘

డ஼̅ೠ೘ವ

డ௭ವ
− ௨௠஽ܥ̅)௨௠ߝ − (௨̅௜௠஽ܥ −293 

஽ݖ ,௨௠஽ܥ௨௠஽̅ߤ ≥ 1,       (S60a) 294 

௨̅௜௠஽ܥ = ఌೠ೔೘஼̅ೠ೘ವ

௦ାఌೠ೔೘ାఓೠ೔೘ವ
+

஼ೠ೔೘ವ൫௥ವ,௭ವ,௧ೝ೐ೞ,ವ൯

௦ାఌೠ೔೘ାఓೠ೔೘ವ
஽ݖ , ≥ 1,    (S60b) 295 

Substituting Eqs. (S60b) into Eq. (S60a) ,one can has: 296 

ோ೘ఈೝ
మ஽ೠ

஺஻మோೠ೘

డమ஼̅ೠ೘ವ

డ௭ವ
మ +

ோ೘௩ೠ೘ఈೝ
మ

஺஻ோೠ೘

డ஼̅ೠ೘ವ

డ௭ವ
− ቀݏ + ௨௠ߝ + ௨௠஽ߤ −

ఌೠ೘ఌೠ೔೘

௦ାఌೠ೔೘ାఓೠ೔೘ವ
ቁ ௨௠஽ܥ̅ +297 

,஽ݎ௨௠஽൫ܥ ,஽ݖ ௥௘௦,஽൯ݐ +
ఌೠ೘஼ೠ೔೘ವ൫௥ವ,௭ವ,௧ೝ೐ೞ,ವ൯

௦ାఌೠ೔೘ାఓೠ೔೘ವ
= ஽ݖ .0 ≥ 1,    (S61) 298 

Similarly, conducting Laplace transform on Eqs. (S3b) and (S59b), one has: 299 

௟̅௠஽ܥݏ − ஽ݎ௟௠஽൫ܥ , ,஽ݖ ௥௘௦,஽൯ݐ = ோ೘ఈೝ
మ஽೗

஺஻మோ೗೘

డమ஼̅೗೘ವ

డ௭ವ
మ − ோ೘௩೗೘ఈೝ

మ

஺஻ ೗೘

డ஼̅೗೘ವ

డ௭ವ
− ௟̅௠஽ܥ)௟௠ߝ − (௟௜௠஽ܥ̅ −300 

஽ݖ ,௟௠஽ܥ௟௠஽̅ߤ ≤ −1,       (S62a) 301 

௟̅௜௠஽ܥ = ఌ೗೔೘஼̅೗೘ವ

௦ାఌ೗೔೘ାఓ೗೔೘ವ
+

஼೗೔೘ವ൫௥ವ,௭ವ,௧ೝ೐ೞ,ವ൯

௦ାఌ೗೔೘ାఓ೗೔೘ವ
஽ݖ , ≤ −1,    (S62b) 302 

Substituting Eqs. (S62b) into Eq.(S62a), one has: 303 

ோ೘ఈೝ
మ஽೗

஺஻మோ೗೘

డమ஼̅೗೘ವ

డ௭ವ
మ −

ோ೘௩೗೘ఈೝ
మ

஺஻ோ೗೘

డ஼̅೗೘ವ

డ௭ವ
− ቀݏ + ௟௠ߝ + ௟௠஽ߤ −

ఌ೗೘ఌ೗೔೘

௦ାఌ೗೔೘ାఓ೗೔೘ವ
ቁ ௟̅௠஽ܥ +304 

஽ݎ௟௠஽൫ܥ , ,஽ݖ ௥௘௦,஽൯ݐ +
ఌ೗೘஼೗೔೘ವ൫௥ವ,௭ವ,௧ೝ೐ೞ,ವ൯

௦ାఌ೗೔೘ାఓ೗೔೘ವ
= ஽ݖ .0 ≤ −1,    (S63) 305 

where ܥ௨௠஽൫ݎ஽, ,஽ݖ ,஽ݎ௨௜௠஽൫ܥ ௥௘௦,஽൯andݐ ,஽ݖ  ௥௘௦,஽൯ are respectively the mobile and immobile 306ݐ

concentrations [ML-3] of the upper aquitard at the end of the rest phase,  ܥ௟௠஽൫ݎ஽, ஽ݖ ,  ௥௘௦,஽൯ and 307ݐ

,஽ݎ௟௜௠஽൫ܥ ,஽ݖ  ௥௘௦,஽൯ are respectively the mobile and immobile concentrations [ML-3] of the 308ݐ

lower aquitard at the end of the rest phase. 309 

One could use a similar approach of obtaining the analytical solution of aquitards in the 310 

chaser phase to derive the solution of aquitards in the extraction phase. The general solution of 311 

(S61) is: 312 
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௨௠஽ܥ̅ = ׬ ݃௨(ݖ஽ , ;௨ܧ ௨ࣶ)ஶ
ଵ ௨݂( ௨ࣶ)݀ ௨ࣶ + ௭ವି௭೐ವ

ଵି௭೐ವ
஽ݎ)௠஽ܥ̅ , ஽ݖ ,(ݏ ≥ 1,   (S64a) 313 

݃௨(ݖ஽, ;௨ܧ ௨ࣶ) = ൜
݃௨ଵ(ݖ஽, ;௨ܧ ࣶ௨) = (஽ݖଵ݉)݌ݔଵ݁ܪ + 1    (஽ݖଶ݉)݌ݔଶ݁ܪ ≤ ஽ݖ < ࣶ௨

݃௨ଶ(ݖ஽, ;௨ܧ ௨ࣶ) = (஽ݖଵ݉)݌ݔଷ݁ܪ + ௨ࣶ   (஽ݖଶ݉)݌ݔସ݁ܪ ≤ ஽ݖ < ∞
,  (S64b) 314 

௨݂( ௨ࣶ) =315 

,஽ݎ௨௠஽൫ܥ ࣶ௨, ௥௘௦,஽൯ݐ +
ఌೠ೘஼ೠ೔೘ವ൫௥ವ,ࣶೠ,௧ೝ೐ೞ,ವ൯

௦ାఌೠ೔೘ାఓೠ೔೘ವ
+

ோ೘௩ೠ೘ఈೝ
మ

஺஻ோೠ೘

஼̅೘ವ(௥ವ,௦)

ଵି௭೐ವ
−

ࣶೠି௭೐ವ

ଵି௭೐ವ
஽ݎ)௠஽ܥ௨̅ܧ ,  316   ,(ݏ

       (S64c) 317 

The general solution of Eq. (S63) could be described as: 318 

௟௠஽ܥ̅ = ׬ ݃௟(ݖ஽, ;௟ܧ ࣶ௟)
ିஶ

ିଵ ௟݂(ࣶ௟)ࣶ݀௟ + ௭ವା௭೐ವ

௭೐ವିଵ
஽ݎ)௠஽ܥ̅ , ஽ݖ ,(ݏ ≤ −1,   (S65a) 319 

݃௟(ݖ஽, ;௟ܧ ࣶ݈) = ൜
݃௟ଵ(ݖ஽, ;௟ܧ ࣶ݈) = (஽ݖଵ݊)݌ݔଵ݁ܫ + (஽ݖଶ݊)݌ݔଶ݁ܫ   − 1 ≤ ஽ݖ < ࣶ݈
݃௟ଶ(ݖ஽, ;௟ܧ ࣶ݈) = (஽ݖଵ݊)݌ݔଷ݁ܫ + ݈ࣶ   (஽ݖଶ݊)݌ݔସ݁ܫ ≤ ஽ݖ < −∞

,  (S65b) 320 

௟݂(ࣶ௟) =321 

஽ݎ௠஽൫ܥ , ࣶ௟, ௥௘௦,஽൯ݐ +
ఌ೗೘஼೗೔೘ವ൫௥ವ,ࣶ೗,௧ೝ೐ೞ,ವ൯

௦ାఌ೗೔೘ାఓ೗೔೘ವ
−

ோ೘௩೗೘ఈೝ
మ

஺஻ோ೗೘

஼̅೘ವ(௥ವ,௦)

௭೐ವିଵ
−

ࣶ೗ା௭೐ವ

௭೐ವିଵ
,஽ݎ)௠̅஽ܥ௟ܧ  322   ,(ݏ

       (S65c) 323 

where ௨ࣶ is a positive value varying between 1 and ∞; ࣶ௟ is a negative value varying between 324 

−1 and −∞; ݃௨(ݖ஽, ;௨ܧ ௨ࣶ) and ݃௟(ݖ஽, ;௟ܧ ࣶ௟) are the Green's functions, ܪଵ~ܪସ and ܫଵ~ܫସ are 325 

contants which could be determined by the boundary conditions and conditions of a)~c), the 326 

values of ܪଵ~ܪସ and ܫଵ~ܫସ are as follows: ܪଵ = ଶ݉)݌ݔଶ݁ܪ− − ݉ଵ),  327 

ଶܪ =
ି஺ோೠ೘஻మ

ݎߙܴ݉
ሿ(ݑ௠భࣶ)݌ݔ݁(௠మି௠భ)݌ݔ݁ሾ(௠భି௠మ)ݑܦ2

ଷܪ , = ସܪ ,0 = ଶܪ − ଶ݉)݌ݔଶ݁ܪ − ݉ଵ)݁݌ݔ(݉ଵࣶݑ − ݉ଶࣶ328 ,(ݑ 

ଵܫ = ଵ݊)݌ݔଶ݁ܫ− − ݊ଶ), ܫଶ = ି஺஻మோ೗೘

ோ೘ఈೝ
మ஽೗ሾ௘௫௣(௡మࣶ೗ି௡భࣶ೗)ି௡మ௘௫௣(௡మࣶ೗)ሿ

, 329 

ଷܫ = ଶࣶ௟݊)݌ݔଶ݁ܫ − ݊ଵࣶ௟) − ଵ݊)݌ݔଶ݁ܫ − ݊ଶ), ܫସ = 0,  330 

݉ଵ =
ݎߙ݉ݑݒܴ݉−

2

ܤܣ ݉ݑ
+ඨቆ

ݎߙ݉ݑݒܴ݉
2

݉ݑܴܤܣ
ቇ

2

+4
ݎߙܴ݉

ݑܦ2
݉ݑ2ܴܤܣ

൬ܦ݉ݑߤ+݉ݑߝ+ݏ−
݉݅ݑߝ݉ݑߝ

݉݅ݑߝ+ܦ݉݅ݑߤ+ݏ
൰

2
ݎߙܴ݉

ݑܦ2
݉ݑ2ܴܤܣ

, 331 
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݉ଶ =
ݎߙ݉ݑݒܴ݉−

2

݉ݑܴܤܣ
−ඨቆ

ݎߙ݉ݑݒܴ݉
2

݉ݑܴܤܣ
ቇ

2

+4
ݎߙܴ݉

ݑܦ2
݉ݑ2ܴܤܣ

൬ܦ݉ݑߤ+݉ݑߝ+ݏ−
݉݅ݑߝ݉ݑߝ

݉݅ݑߝ+ܦ݉݅ݑߤ+ݏ
൰

2
ݎߙܴ݉

ݑܦ2
݉ݑ2ܴܤܣ

, 332 

݊ଵ =

ݎߙ݈݉ݒܴ݉
2

݈ܴ݉ܤܣ
+ඩቆ

ݎߙ݈݉ݒܴ݉
2

݈ܴ݉ܤܣ
ቇ

2

+4
ݎߙܴ݉

݈ܦ2
2ܴ݈݉ܤܣ

൬ܦ݈݉ߤ+݈݉ߝ+ݏ−
݈݉݅ߝ݈݉ߝ

݈݉݅ߝ+ܦ݈݉݅ߤ+ݏ
൰

2
ݎߙܴ݉

݈ܦ2
2ܴ݈݉ܤܣ

 and  333 

݊ଶ =

ݎߙ݈݉ݒܴ݉
2

݈ܴ݉ܤܣ
− ඩቆ

ݎߙ݈݉ݒܴ݉
2

݈ܴ݉ܤܣ
ቇ

2

+4
ݎߙܴ݉

݈ܦ2
2ܴ݈݉ܤܣ

൬ܦ݈݉ߤ+݈݉ߝ+ݏ−
݈݉݅ߝ݈݉ߝ

݈݉݅ߝ+ܦ݈݉݅ߤ+ݏ
൰

2
ݎߙܴ݉

݈ܦ2
2ܴ݈݉ܤܣ

. 334 

Similarly, contrary to the injection and chaser phases, the direction of advective flux is 335 

reversed in the extraction stage, and Eq. (S1a) is modified as: 336 

డ஼೘ವ

డ௧ವ
= ଵ

௥ವ

డమ஼೘ವ

డ௥ವ
మ + ଵ

௥ವ

డ஼೘ವ

డ௥ವ
− ௠஽ܥ)௠ߝ − (௜௠஽ܥ − ௠஽ܥ௠஽ߤ − ቀ− ఏೠ೘ఈೝ

మ௩ೠ೘

ଶ஺ఏ೘஻
௨௠஽ܥ −337 

ఏೠ೘ఈೝ
మ஽ೠ

ଶ஺ఏ೘஻

డ஼ೠ೘ವ

డ௭ವ
ቁቚ

௭ୀଵ
+ ቀ−

ఏ೗೘ఈೝ
మ௩೗೘

ଶ஺஻మఏ೘
௟௠஽ܥ −

ఏ೗೘ఈೝ
మ஽೗

ଶ஺஻మఏ೘

డ஼೗೘ವ

డ௭ವ
ቁቚ

௭ୀିଵ
஽ݎ , ≥  ௪஽.  (S66) 338ݎ

In the extraction phase, the dimensional boundary conditions Eqs. (14a)-(14b) are 339 

transformed to the dimensionless format: 340 

௘௫௧,஽ߚ
డ஼೘ವ(௥ವ,௧ವ)

డ௧ವ
ቚ

௥ವୀ௥ೢವ

= డ஼೘ವ(௥ವ,௧ವ)

డ௥ವ
ቚ

௥ವୀ௥ೢವ

௥௘௦,஽ݐ , < ஽ݐ ≤  ௘௫௧,஽  (S67a)  341ݐ

,஽ݎ)௠஽ܥ ஽)|௧ವୀ௧ೝ೐ೞ,ವݐ
= ,஽ݎ)௥௘௦,௠஽ܥ ஽)หݐ

௧ವୀ௧ೝ೐ೞ,ವ
.    (S67b)  342 

where ߚ௘௫௧,஽ = −
௏ೢ ,೐ೣ೟௥ೢವ

కோ೘ఈೝ
. 343 

Conducting Laplace transform on Eqs. (S58) and (S1b) in the extraction phase, one has: 344 

௠̅஽ܥݏ − ,஽ݎ)௠஽ܥ (௥௘௦ݐ =
1
஽ݎ

߲ଶ̅ܥ௠஽

஽ݎ߲
ଶ +

1
஽ݎ

௠̅஽ܥ߲

஽ݎ߲
− ௠ߝ) + ௠̅஽ܥ(௠஽ߤ + ௜̅௠஽ܥ௠ߝ − 

ቀ− ఏೠ೘ఈೝ
మ௩ೠ೘஼̅ೠ೘ವ

ଶ஺ఏ೘௕
− ఏೠ೘ఈೝ

మ஽ೠ

ଶ஺ఏ೘௕

డ஼̅ೠ೘ವ

డ௭ವ
ቁቚ

௭ವୀଵ
− ቀఏ೗೘ఈೝ

మ௩೗೘஼̅೗೘ವ

ଶ஺௕మఏ೘
+ ఏ೗೘ఈೝ

మ஽೗

ଶ஺௕మఏ೘

డ஼̅೗೘ವ

డ௭ವ
ቁቚ

௭ವୀିଵ
, 345 

஽ݎ ≥ ௪஽ݎ .          (S68a) 346 
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௜௠஽ܥ̅ =
ఌ೔೘

(௦ାఓ೔೘ವାఌ೔೘)
௠̅஽ܥ +

஼೔೘ವ(௥ವ,௧ೝ೐ೞ)

௦ାఓ೔೘ವାఌ೔೘
஽ݎ , ≥  ௪஽,     (S68b)  347ݎ

After substituting Eqs. (S64a)- (S65c) and Eq. (S68b) into Eq. (S68a), one has 348 

డమ஼̅೘ವ

డ௥ವ
మ + డ஼̅೘ವ

డ௥ವ
− ௠̅஽ܥߞ஽ݎ + ஽Λݎ = 0.       (S69) 349 

where ߞ = ݏ + ௠ߝ + ௠஽ߤ − ఌ೔೘ఌ೘

௦ାఓ೔೘ವାఌ೔೘
− ఏೠ೘ఈೝ

మ௩ೠ೘

ଶ஺ఏ೘஻
+ ఏ೗೘ఈೝ

మ௩೗೘

ଶ஺஻మఏ೘
− ଵ

ଵି௭೐ವ

ఏೠ೘ఈೝ
మ஽ೠ

ଶ஺ఏ೘௕
+ ଵ

௭೐ವିଵ

ఏ೗೘ఈೝ
మ஽೗

ଶ஺௕మఏ೘
, 350 

Λ = ஽ݎ)௠஽ܥ , (௥௘௦ݐ + ఌ೘஼೔೘ವ(௥ವ,௧ೝ೐ೞ)

௦ାఓ೔೘ವାఌ೔೘
஽ݎ)௜௠஽ܥ ; , ,஽ݎ)௠஽ܥ ௥௘௦) andݐ  ௥௘௦) represent the initial 351ݐ

concentrations in the immobile and mobile domains of the SWPP test in the rest phase. 352 

The boundary condition of Eqs. (S67a)-(S67b) in Laplace domain becomes: 353 

,஽ݎ)௠̅஽ܥ௘௫௧,஽ߚݏ ௥ವୀ௥ೢವ|(ݏ − ஽ݎ)௥௘௦,௠ܥ௘௫௧,஽ߚ , ஽)หݐ
௧ವୀ௧ೝ೐ೞ,ವ

=
డ஼̅೘ವ(௥ವ,௦)

డ௥ವ
ቚ

௥ವୀ௥ೢವ

. (S70)  354 

Similar to the model of the SWPP test in the injection phase, Eqs. (S5), (S61) and (S70) 355 

compose a model of the second-order ordinary differential equation (ODE) with boundary 356 

conditions. However, the governing equation is an inhomogeneous differential equation. In this 357 

study, we use the Green’s function method to derive the analytical solution of Eq. (S69).  358 

Similar to Chen and Woodside [1988], Eq. (S69) could be transferred into a self-adjoint 359 

form: 360 

డమீ

డ௥ವ
మ − ቀݎ஽ߞ +

ଵ

ସ
ቁ ܩ = −ℓ(ݎ஽).        (S71) 361 

where ܩ = (஽ݎ)௠஽ and ℓܥ̅(஽/2ݎ)݌ݔ݁ =  ஽Λ. 362ݎ(஽/2ݎ)݌ݔ݁

The boundary conditions of Eqs. (S5) and (S70) could be rewritten as： 363 

,஽ݎ)ܩ ௥ವୀஶ|(ݏ = 0,         (S72a) 364 

ቂቀߚݏ௘௫௧,஽ + ଵ

ଶ
ቁ ܩ − డீ

డ௥ವ
ቃቚ

௥ವୀ௥ೢವ

= ,௪஽ݎ௠஽൫ܥ(௪஽/2ݎ)݌ݔ௘௫௧,஽݁ߚ  ௥௘௦,஽൯,  (S72b) 365ݐ
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One could find that the boundary condition of Eq. (S72b) is inhomogeneous, and we need to 366 

homogenize it first. Assigning ܩ = (஽ݎ)ܷ + (஽ݎ)ܸ and (஽ݎ)ܸ = ଵߪ +  ஽, and substituting 367ݎଶߪ

them into Eqs. (S72a) and (S72b) yields: 368 

஽ݎ)ܷ , ௥ವୀஶ|(ݏ = 0,         (S73a) 369 

ቂቀߚݏ௘௫௧,஽ +
ଵ

ଶ
ቁ ܷ −

డ௎

డ௥ವ
ቃቚ

௥ವୀ௥ೢವ

= 0,       (S73b) 370 

where ߪଵ = −
ఉ೐ೣ೟,ವ௘௫௣(௥ೢವ/ଶ)஼೘ವ൫௥ೢವ,௧ೝ೐ೞ,ವ൯

ቀ௦ఉ೐ೣ೟,ವା
భ
మ

ቁ௥ೢವିଵିቀ௦ఉ೐ೣ೟,ವା
భ
మ

ቁ௥ವ|ೝವ→ಮ
 ஽|௥ವ→ஶ, 371ݎ

ଶߪ =
ఉ೐ೣ೟,ವ௘௫௣(௥ೢವ/ଶ)஼೘ವ൫௥ೢವ,௧ೝ೐ೞ,ವ൯

ቀ௦ఉ೐ೣ೟,ವା
భ
మ

ቁ௥ೢವିଵିቀ௦ఉ೐ೣ೟,ವା
భ
మ

ቁ௥ವ|ೝವ→ಮ
. 372 

After defining a spatial operator:L = − ௗమ

ௗ௥ವ
మ + ቀݎ஽ߞ + ଵ

ସ
ቁ, one has: 373 

ܩܮ = (஽ݎ)ܷܮ + (஽ݎ)ܸܮ = ℓ(ݎ஽),       (S74)  374 

and  375 

(஽ݎ)ܷܮ = ℓ(ݎ஽) −  376 (S75)       .(஽ݎ)ܸܮ

Let ݂(ݎ஽) = ℓ(ݎ஽) −  one has: 377 ,(஽ݎ)ܸܮ

డమ௎

డ௥ವ
మ − ቀݎ஽ߞ + ଵ

ସ
ቁ ܷ =  378 (S76)        .(஽ݎ)݂−

where ݂(ݎ஽) = ஽Λݎ(஽/2ݎ)݌ݔ݁ − ቀݎ஽ߞ +
ଵ

ସ
ቁ ଵߪ) +  ஽). 379ݎଶߪ

Right now, the model with an inhomogeneous boundary condition becomes a regular 380 

Sturm-Louisville problem. The general solution of Eqs. (S73a) - (S73b) and (S76) is: 381 

஽ݎ)ܷ , ;ߞ (ߝ = ׬ ,஽ݎ)݃ ;ߞ ∞(ߝ

௥ೢವ
 382 (S77)      .ߝ݀(ߝ)݂

where ߝ is a positive value varying between ݎ௪஽ and ∞ (e.g. ݎ௪஽ ≤ ߝ ≤ ஽ݎ)݃ ;(∞ , ;ߞ  is the 383 (ߝ

Green's function, and could be expressed as : 384 

஽ݎ)݃ , ;ߞ (ߝ = ൜
݃ଵ(ݎ஽ , ;ߞ (ߝ = ଵܲܣ௜(ݕ௘௫௧) + ଶܲܤ௜(ݕ௘௫௧)       ݎ௪஽ ≤ ௘௫௧ݕ ≤ ߝ
݃ଶ(ݎ஽ , ;ߞ (ߝ = ଷܲܣ௜(ݕ௘௫௧) + ସܲܤ௜(ݕ௘௫௧)          ߝ ≤ ௘௫௧ݕ ≤ ∞

, (S78) 385 
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where ݂(ߝ) = Λߝ(2/ߝ)݌ݔ݁ − ቀߞߝ +
ଵ

ସ
ቁ ଵߪ) + ௘௫௧ݕ ,(ߝଶߪ = ଵ/ଷߞ ቀݎ஽ +

ଵ

ସ఍
ቁ， ଵܲ， ଶܲ， ଷܲ and ସܲ 386 

are coefficients to be determined. As ܤ௜(ݎ஽) diverges when ݎ஽ → ∞ , ସܲ has to be zero. 387 

Substituting Eq. (S78) into Eq. (S73b), one has: 388 

ቂቀߚݏ௘௫௧,஽ +
ଵ

ଶ
ቁ ݃ଵ −

డ௚భ

డ௥ವ
ቃቚ

௥ವୀ௥ೢವ

= 0,       (S79) 389 

which leads to 390 

ଵܲ = − ଶܹܲ.          (S80) 391 

where ܹ =
ቀ௦ఉ೐ೣ೟,ವା

భ
మ

ቁ஻೔൫௬೐ೣ೟,ೢ൯ି఍భ/య஻೔
ᇲ൫௬೐ೣ೟,ೢ൯

ቀ௦ఉ೐ೣ೟,ವା
భ
మ

ቁ஺೔൫௬೐ೣ೟,ೢ൯ି఍భ/య஺೔
ᇲ൫௬೐ೣ೟,ೢ൯

௘௫௧,௪ݕ , = ଵ/ଷߞ ቀݎ௪஽ + ଵ

ସ఍
ቁ. 392 

According to the properties of Green’s function , one has: 393 

ଵܲܣ௜൫ݕ௘௫௧|௥ವୀఌశ൯ + ଶܲܤ௜൫ݕ௘௫௧|௥ವୀఌశ൯ = ଷܲܣ௜൫ݕ௘௫௧|௥ವୀఌష൯.    (S81) 394 

ൣ ଷܲߞଵ/ଷܣ௜
ᇱ(ݕ௘௫௧)൧

௥ವୀఌష − ቂ ଵܲߞ
భ
యܣ௜

ᇱ(ݕ௘௫௧) + ଶܲߞ
భ
యܤ௜

ᇱ(ݕ௘௫௧)ቃ
௥ವୀఌశ

= −1.  (S82) 395 

The values of ଵܲ， ଶܲ and ଷܲ could be determined by Eqs. (S69) - (S71), namely: 396 

ଵܲ = −
గ஺೔ቀ௬೐ೣ೟|ೝವసഄశቁ

఍భ/య ܹ ， ଶܲ =
గ஺೔ቀ௬೐ೣ೟|ೝವసഄశቁ

఍భ/య ,  397 

 ଷܲ =
గ஺೔ቀ௬೐ೣ೟|ೝವసഄశቁ

఍భ/య ቈ
஻೔ቀ௬೐ೣ೟|ೝವసഄశቁ

஺೔ቀ௬೐ೣ೟|ೝವసഄశቁ
− ܹ቉. 398 
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Figure S1. The initial drawdown and the initial concentration are 0 for aquifer and aquitards. The 406 

hydraulic parameters are: ܭ௔=0.1 m/day, ܵ௔= ܵ௨= ௟ܵ=10-4 m-1, and the other parameters 407 

are ܴ௠ = ܴ௜௠ = ܴ௨௠ = ܴ௨௜௠ = ܴ௟௠ = ܴ௟௜௠=1, ߠ௨௠ = ௟௠ߠ = ௥ߙ ,0.1 = 2.5m, ߙ௨ = ௟ߙ = 0.5m, 408 
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approach the boundary. 414 

 415 

Figure S1. The grid mesh of the aquifer-aquitard system used in the Galerkin finite element 416 

program using COMSOL Multiphysics. 417 



23 
 

 418 
Figure S2. Spatial distribution of the flow velocity for different time. The parameters are the 419 

same with ones in Figures 2 and 3. 420 

 421 
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S4. Parameter range used in sensitivity analysis 454 

Table S1: parameter range used in sensitivity analysis 455 
Parameter Unit Range 

 ௨ m 0.05-0.50ߙ
 ௥ m 0.50-1.00ߙ

 ௨௠ m/d 0-0.01ݒ
 ௨௠ - 0-0.2ߠ

ω 1/s 0.0001-0.001 
 ௠ - 0.20-0.40ߠ

௪ܸ m3 0.10-500 
“-” represents dimensionless unit.  456 

 457 




