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Abstract 13 

Incorporating observations of shallow soil moisture content into land models is an 14 

important step in assimilating satellite observations of soil moisture content. In this 15 

study, several modifications of an ensemble Kalman filter (EnKF) are proposed for 16 

improving this assimilation. It was found that a forecast error inflation-based 17 

approach improves the soil moisture content in shallow layers, but it can increase the 18 

analysis error in deep layers. To mitigate the problem in deep layers while maintaining 19 

the improvement in shallow layers, a vertical localization-based approach was 20 

introduced in this study. During the data assimilation process, although updating the 21 

forecast state using observations can reduce the analysis error, the water balance 22 

based on the physics in the model could be destroyed. To alleviate the imbalance in 23 

the water budget, a weak water balance constrain filter is adopted.  24 

The proposed weakly constrained EnKF that includes forecast error inflation and 25 

vertical localization was applied to a synthetic experiment and two real data 26 

experiments. The results of the assimilation process suggest that the inflation 27 

approach effectively reduce both the short-lived analysis error and the analysis bias in 28 

shallow layers, while the vertical localization approach avoids increase in analysis 29 

error in deep layers. The weak constraint on the water balance reduces the degree of 30 

the water budget imbalance at the price of a small increase in the analysis error. 31 

 32 
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1. Introduction 37 

Soil moisture content is one of the most important variables that affect the water 38 

cycle and energy balance through land-atmosphere interactions, especially 39 

evaporation and precipitation (Han et al. 2014; Kumar et al. 2014; McColl et al. 2019; 40 

Pinnington et al. 2018). Adequate knowledge of the horizontal and vertical 41 

distributions of soil moisture could improve weather and climate predictions 42 

(Delworth and Manabe 1988; Pielke 2001). Alongside snow cover, soil moisture 43 

content is an important component of the meteorological memory of the climate 44 

system over land (McColl et al. 2019; Robock et al. 2000; Zhao and Yang 2018). It is 45 

also a primary water resource for the terrestrial ecosystem and affects runoff (GUSEV 46 

and Novak 2007).  47 

There are several ways to estimate the soil moisture content. Land surface 48 

models can provide temporally and spatially continuous estimates of the soil moisture 49 

content, but these estimates are limited by the uncertainty in the models’ parameters, 50 

errors in the forcing data and imperfect physical parameterizations (Bonan 1996; Dai 51 

et al. 2003; Dickinson et al. 1993; Oleson et al. 2010; Yang et al. 2009). Compared 52 

with the results of models, in-situ observations of the soil moisture content provide 53 

more accurate profiles (Bosilovich and Lawford 2002; Dorigo et al. 2011; Robock et 54 

al. 2000); however, networks of in-situ observations are usually too sparse to estimate 55 

the soil moisture content on a regional scale (Gruber et al. 2018; Loizu et al. 2018). 56 

Satellite remote sensing retrievals could provide soil moisture content data on regional 57 

scales (Bartalis et al. 2007; Crow et al. 2017; Entekhabi et al. 2010; Kerr et al. 2010; 58 

Lu et al. 2015; Njoku et al. 2003), but they are only available for the shallow layer of 59 

the soil and the quality is poor in vegetated area (Pinnington et al. 2018; Yang et al. 60 

2009).  61 
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A much better approach to improving estimates of soil moisture contents on 62 

regional scales is to constrain land model prediction by assimilating data from 63 

large-scale remote sensing observations of the soil moisture content (Crow and Loon 64 

2006; Crow and Wood 2003; Reichle and Koster 2005). The assimilation of passive 65 

microwave measurements (brightness temperatures) into land surface models can 66 

successfully increases the spatial and temporal coverage by interpolation and 67 

extrapolation to unobserved times and locations, and also provide various land surface 68 

state and flux estimates with reduced uncertainty (De Lannoy and Reichle 2016; 69 

Reichle et al. 2017). Therefore, land surface data assimilation has significantly 70 

improved the utility of surface soil moisture data sets (Crow et al. 2017; Lu et al. 2012; 71 

Lu et al. 2015), and can further improve land surface model initial conditions for 72 

coupled short-term weather prediction (Chen et al. 2014; Santanello et al. 2016; Yang 73 

et al. 2016). 74 

A good estimate of the forecast error covariance matrix is crucial for the 75 

compromise between uncertain observations and imperfect model predictions in data 76 

assimilation (Anderson and Anderson 1999; Miyoshi 2011; Miyoshi et al. 2012; Wang 77 

and Bishop 2003). For the Ensemble Kalman Filter (EnKF) assimilation method, the 78 

forecast error covariance matrix is estimated using the sample covariance matrix of 79 

the ensemble forecasts (Dumedah and Walker 2014; Evensen 1994; Han et al. 2014). 80 

However, it is usually underestimated due to sampling and model errors, which can 81 

eventually results in filter divergence (Anderson and Anderson 1999; Constantinescu 82 

et al. 2007; Yang et al. 2015). To address this problem, it suggests that the forecast 83 

covariance matrix be multiplied by an inflation factor (Dee and Da Silva 1999; Dee et 84 

al. 1999; Li et al. 2012; Zheng 2009). This approach is referred to as inflation, and it 85 

becomes particularly important when the error in the model is large (Bauser et al. 86 
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2018; El Gharamti et al. 2019; Liang et al. 2012; Raanes et al. 2019; Wu et al. 2013). 87 

Therefore, it could work well in this situation because of the enormous errors in the 88 

land model. 89 

In this study, a scheme for assimilating synthetic and in-situ shallow observations 90 

of the soil moisture content into land models was developed based on EnKF method, 91 

which can provide a foundation for further satellite data assimilation. For the synthetic 92 

experiment, the CLM 4.0 (Version 4.0 of the Community Land Model, (Lawrence et 93 

al. 2011; Oleson et al. 2010)) was used to generate the “true values” and the CoLM 94 

(Common Land Model, (Dai et al, 2003)) was selected as the forecast operator. The 95 

differences in these two models are referred to the model error in an imperfect land 96 

surface model. The inflation factors are estimated at every observation time step 97 

during the assimilation process by minimizing the -2log-likelihood of the difference 98 

between the forecast and the observation (Liang et al. 2012; Zheng 2009). For 99 

assimilating observations near the surface only, such inflation approach can improve 100 

the estimates of the forecast error statistics in shallow soil layers but may artificially 101 

enlarge the forecast error statistics in deep soil layers. To avoid the possibility of 102 

decreasing the quality of the estimates in deep soil layers, a vertical localization with 103 

weighting of observations is adopted (Janjić et al. 2011). In this approach, a 104 

localization function multiplies the weights on the components of the state vector 105 

according to the distance from state layer to the observation. Moreover, the method 106 

based on the maximum likelihood estimation was proposed to estimate the optimal 107 

localization scale factor. These steps can result in a better prediction of the soil 108 

moisture content in the deep layers. 109 

A major objective of soil moisture data assimilation is to address biases in 110 

models and observations (Koster et al. 2009; Reichle and Koster 2004). In this study, 111 
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we only assume that models could be biased, while the soil moisture observations are 112 

assumed to be unbiased. Moreover, the soil moisture observations are restricted in 113 

shallow layer, so there is no observation available to correct the modeled soil moisture 114 

biases in deep layers. If one only removes the bias in shallow layer, it would introduce 115 

error in model dynamics. Therefore in this study, we still use traditional bias-blind 116 

data assimilation framework. Nevertheless, the analysis error is further decomposed to 117 

a short-lived error (random error) and a bias (system error). It demonstrates that the 118 

proposed scheme can reduce the both for soil moisture in shallow layer. 119 

In addition to improve assimilation accuracy, this study also focuses on the 120 

imbalance in the water budget that occurs during the process of assimilating the soil 121 

moisture data. The terrestrial water budget is a key part of the global hydrologic cycle. 122 

A better understanding of the budget can help us to improve our knowledge of 123 

land-atmosphere water exchange and related physical mechanisms and therefore, can 124 

improve our ability to develop models (Pan and Wood 2006). Generally speaking, 125 

analyses do not conserve the water budget due to inconsistencies between predictions 126 

made by models and observations (Li et al. 2012; Pan and Wood 2006; Wei et al. 2010; 127 

Yilmaz et al. 2011; Yilmaz et al. 2012). It is really a problem if the water balance is 128 

violated in a systematic manner (for example, model is biased), which suggests a 129 

trouble in data assimilation. Pan and Wood (2006) proposed a method based on a 130 

strong constraint to reincorporate the water balance. However, this method 131 

redistributes the error among the different terms in the water budget, which could 132 

result in unrealistic estimates (Pan and Wood 2006; Yilmaz et al. 2011).  133 

To overcome this shortcoming, Yilmaz et al. (2011) proposed using a weakly 134 

constrained ensemble Kalman filter (WCEnKF) to reduce the imbalance in the water 135 

budget. In a synthetic study, they concluded that the accuracy of a WCEnKF-based 136 
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analysis is close to that of an EnKF-based analysis but the water budget balance 137 

residuals are much smaller than that of an unconstrained filter. Nevertheless, the 138 

observations of the soil moisture content cover the entire column, and a perfect model 139 

was used in their studies. This is not generally true, especially when only satellite 140 

observations are assimilated. In this study, the experiments were further designed to 141 

assimilate surface observations into an imperfect land model. 142 

The structure of this paper is arranged as follows: The data and models used in 143 

this study are described in section 2. The details of the WCEnKF-based method that 144 

incorporates inflation and vertical localization (WCEnKF-Inf-Loc) are provided in 145 

section 3. The experimental designs and evaluations of synthetic and real data 146 

experiments are set in sections 4 and 5. The primary results of the synthetic and real 147 

experiments are given in section 6. The discussion and conclusion comprise sections 7 148 

and 8. 149 

 150 

2. Models and data 151 

2.1 Study area and in-situ stations 152 

The study area is located in the Mongolian Plateau and comprises approximately 153 

9352 square kilometers between 46º and 46.5ºN and between 106.125º and 107ºE. 154 

The dominant biome is grassland, and no river flows through the area (see Figure 1).  155 

The soil moisture content and related meteorological and hydrological parameters 156 

are monitored by automatic stations maintained by the Coordinated Enhanced 157 

Observing Period Asian Monsoon Project (CEOP AP) (Bosilovich and Lawford 2002; 158 

Lawford et al. 2004). The CEOP AP was launched by the World Climate Research 159 

Programme (WCRP) to develop an integrated global dataset that can be used to 160 

address issues relating to water and energy budget simulations and predictions, 161 
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monsoon processes and the prediction of river flows. More details can be found at 162 

http://www.ceop.net. In this study, observations of the soil moisture content from two 163 

stations, the Bayantsagaan Station (BTS 46.7765ºN, 107.14228ºE) and the 164 

Delgertsgot Station (DGS 46.12731ºN, 106.36856ºE), were used to validate the 165 

assimilation method. At the BTS, the soil moisture content is measured every half 166 

hour at 3, 10, 20 and 40 cm below the surface. At the DGS, measurements are made at 167 

depths of 3, 10, 40 and 100 cm with the same frequency. Only the observations made 168 

at 6:00 am (same with the overpass time of SMOS satellite) are assimilated, while the 169 

others are used for validation. 170 

 171 

2.2 Forcing data 172 

In this study, both synthetic and realistic experiments were conducted to explore 173 

the accuracy of the assimilation schemes. In the synthetic experiments, the 174 

simulations were driven by forcing data (including radiation, wind, pressure, humidity, 175 

precipitation and temperature) from the 0.125̊x0.125̊ ERA-Interim dataset (Dee et al. 176 

2011) that had been scaled down to provide a temporal resolution of one hour.  177 

In the realistic experiments, the forcing data comprised hourly measurements of 178 

the wind speed, near-surface air temperature, relative humidity precipitation and 179 

surface pressure at local stations (the BTS and DGS). The downward shortwave and 180 

longwave radiation data used were from model output time series data for the study 181 

area provided by the Japanese Meteorological Agency (Huang et al. 2008). 182 

 183 

2.3 Models  184 

The Common Land Model (CoLM) developed by Dai et al. (2003) is a 185 

third-generation land surface model. It combines the best features of three successful 186 
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models: the Land Surface Model (LSM, (Bonan 1996)), the Biosphere-Atmosphere 187 

Transfer Scheme (BATS, (Dickinson et al. 1993)) and the 1994 version of the Chinese 188 

Academy of Sciences/Institute of Atmospheric Physics model (IAP94, (Dai et al. 189 

2003)), and is being further developed. The primary characteristics of the model 190 

include 10 unevenly spaced soil layers (see Table 1), one vegetation layer, 5 snow 191 

layers (depending on the snow depth), explicit treatment of the mass of liquid water, 192 

ice and phase changes within the system of the snow and soil, runoff parameterization 193 

following the TOPMODEL concept, a tiled treatment of the sub-grid fraction of the 194 

energy and water budget balance (Dai et al. 2003) and a canopy 195 

photosynthesis-conductance mode that describes the simultaneous transfer of CO2 and 196 

water vapor into and out of the vegetation. The model parameters include data on the 197 

global terrain, elevation, land use, vegetation, land-water mask and hybrid 198 

FAO/STATSGO soil types from the USGS, which are available at a resolution of 30 199 

arc seconds.  200 

Version 4.0 of the Community Land Model (CLM 4.0) (Lawrence et al. 2011; 201 

Oleson et al. 2010) is the land surface parameterization used with the Community 202 

Atmosphere Model (CAM 4.0) and the Community Climate System Model (CCSM 203 

4.0). The CLM 4.0 includes bio-geophysics, the hydrologic cycle, biogeochemistry 204 

and the dynamic vegetation. CLM 4.0 simulates the bio-geophysical processes in each 205 

sub-grid unit independently and maintains its own prognostic variables. The 206 

parameters used in the CLM4.0 differ from those used in the CoLM. For example, the 207 

soil texture data are derived from the IGBP soil data, and the land use data are derived 208 

from the UNH Transient Land Use and Land Cover Change Dataset 209 

(http://luh.umd.edu/). 210 

In addition to using different parameters, the two models have different structures. 211 
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For example, a model of groundwater-soil water interactions (Niu et al. 2007; Niu et 212 

al. 2005) has been incorporated into the CLM 4.0, while zero water flux at the bottom 213 

of a soil column is assumed in the CoLM. In addition, the CLM 4.0 has the same 214 

vertical discretization scheme as the CoLM (see Table 1), which makes comparing the 215 

results of the two models convenient. 216 

 217 

3. Methods 218 

3.1 Forecast and observation systems  219 

Using notation similar to that used by Yilmaz et al. (2011), the forecast system 220 

can be written as 221 

 , , 1 , 1Mf a

n t n t n t y y , (1) 222 

where t=1, …, T is the time index, n=1, …, N represents an ensemble member (in this 223 

study, the ensemble size is set to 100),
 , 1Mn t

 is a CoLM forced by the n-th perturbed 224 

atmospheric forcing, and y is a state vector containing 126 variables. The superscript 225 

“f” and “a” specify the forecast and analysis, respectively.
 

226 

Let x be the state variables related to the water budget, that comprises of SM  and 227 

SIC  (the soil moisture content and the soil ice content in % at the 10 vertical levels 228 

listed in Table 1), CWC and SWE (the canopy’s water content and the snow water 229 

equivalent in kg/m2). In this study, only x is updated by data assimilation, while the 230 

model propagates changes to the other variables over time. 231 

For the traditional EnKF, the forecast error covariance matrix tP  is 232 

obtained from the ensemble of their anomalies, 233 

T

, , , ,

1 1 1

1 1 1

1

N N N
f f f f

t n t j t n t j t

n j jN N N  

  
    

   
  P x x x x . (2) 234 

To avoid overestimation of the co-variability between shallow observations and soil 235 
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moistures deeper than a threshold layer s, the following vertical localization function 236 

with weighting of observations sρ  (Janjić et al. 2011) will be applied on tP , i.e., 237 

   exps s l ol d d  ρ  (3) 238 

where l represents for the l-level soil layer, ld  and od  represent the depths of 239 

l-level soil layer and observation, respectively. l od d  is the Euclidian distance 240 

between the two layers. s  is estimated by minimizing the following mean square 241 

error between vertical localization function Eq (3) and a step function with threshold 242 

layer s, 243 

     
2 2

exp 1 expl o l o

l s l s

M d d d d  
 

               (4) 244 

The estimated s  is listed in Table 2.  245 

The observations of the soil moisture content are collected at a depth of 3 cm at 246 

6:00 am every day (denoted by ). The observation system is defined as 247 

t t to  hx , (5) 248 

where observational operator h is a 22-dimensional vector which linearly interpolated 249 

the soil moisture at depths of 2.8 cm and 6.2 cm to depth of 3 cm, tx  represents the 250 

true values of the state variables related to the water budget at the time step t and t  251 

is the observational error with mean zero and variance tR . Since, the main objective 252 

of this study is for methodology related to linear observational operators. Choosing 253 

the linear interpolation as observational operator is only for convenience. 254 

 255 

3.2 Assimilation with water budget constraint 256 

Assimilating data on the soil moisture content usually results in an imbalance in 257 

to
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the water budget. To reduce this imbalance, a weak constraint on the water budget 258 

(Yilmaz et al. 2011) is adopted in this study. The ensemble water budget residual at 259 

time step t can be expressed as 260 

T

, , ,

a

n t n t n tr  c x , (6) 261 

where 262 

T

, , 1 , ,

a f f

n t n t t n t n tPr Ev Rn    c x , (7) 263 

where c is a 22-dimensional vector that converts the units to millimeters (mm) and 264 

adds up the states in x, the diagnostic variables tPr , ,

f

n tEv  and ,

f

n tRn  (mm) are 265 

scalars specifying the states of the precipitation, evapotranspiration and runoff, 266 

respectively, in each pixel. 267 

 The cost function used to estimate the state variables with the weak water budget 268 

constraint (Eq. (6)) is 269 

       

   

TT 1 1

, , , ,

T
T 1 T

, ,

( ) f f

n t t t t n t s t n t

n t t n t

J o R o

  

 



     

  

x hx hx x x P x x

c x c x
, (8) 270 

where 271 

T

, , , ,

1 1 1

1 1 1

1

N N N

t n t j t n t j t

n j jN N N
    

  

   
      

    
    (9) 272 

is an estimate of the variance of ,n t  and ,s tP  represents a forecast error 273 

covariance matrix defined by 274 

   ,s t t s t s t
   
   

P λ ρ P ρ λ . (10) 275 

where tP  is defined as Eq. (2);  sρ  is a diagonal matrix which localizes the soil 276 

moisture error (i.e. it is sρ  defined by Eq. (3) for the soil moisture contents and 1 for 277 

other variables). t
 
 
λ  is also a diagonal matrix which inflates the forecast soil 278 
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moisture error (i.e. it is a scalar t  for the soil moisture contents and 1 for other 279 

variable). t  is estimated by minimizing the -2log-likelihood of the difference 280 

between the forecast and the observation (Dee and Da Silva 1999; Liang et al. 2012; 281 

Zheng 2009), 282 

       
T 1

T T

, , ,2 ( ) ln f f

s t t s t t t t s t t t tL R o R o


      hP h hx hP h hx . (11) 283 

The estimated forecast error inflation factor is denoted as ˆ
t . The perturbed analysis 284 

states of the variables related to water budget can be derived by minimizing Eq. (8), 285 

which has the analytic form 286 

   T 1 1 T

, , , , , ,

a f a f a f

n t n t t t t n t n t t t n t n tR o         x x P h hx P c c x , (12) 287 

where ,n t  is generated from a normal distribution with mean zero and variance tR , 288 

and its error covariance matrix is 289 

 
1

T 1 1 1 Ta

t t t tR 


    P h h P c c , (13) 290 

For estimating the optimal threshold layer, define the -2log-likelihood of the total 291 

difference between the forecasts and the observations, 292 

,

1

ˆ( 2 ( ))
T

s s t t

t

L L 


  . (14) 293 

The optimal threshold layer ŝ  is selected as the smallest number s such that sL  is 294 

the minimum of  2 3 1, , sL L L  . The final analysis state is the selected corresponding 295 

to the optimal threshold layer ŝ . The complete assimilation procedure is shown in 296 

Figure 2. 297 

 298 

4. Synthetic experiments 299 

4.1 Experimental design 300 
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To investigate the performance of the WCEnKF-based method that incorporates 301 

inflation and vertical local decomposition, synthetic experiments were performed 302 

using the CoLM. Unlike the “perfect model” assumption used in Yilmaz et al. (2011), 303 

the assumptions of this study are accounted for the error in the model, especially the 304 

structural error. Because there were structural differences in the models of the water 305 

cycle (see section 2.3) used in the two models, CLM 4.0 was used to generate the 306 

“true values” (i.e., to perform a reference run) for the synthetic experiments and 307 

CoLM was selected as the forecast operator (i.e., to perform an open-loop run). 308 

Therefore, the CLM 4.0 and the CoLM were both integrated on a 0.125̊ grid (see 309 

Figure 1 for the locations) with a time step of one hour. The assimilation time was set 310 

to 6:00 am every day. The assimilation experiments were conducted with 4 scenarios: 311 

a weakly constrained ensemble Kalman filter (WCEnKF), a weakly constrained 312 

ensemble Kalman filter with inflation (WCEnKF-Inf), a weakly constrained ensemble 313 

Kalman filter with inflation and localization (WCEnKF-Inf-Loc) and an ensemble 314 

Kalman filter with inflation and localization (EnKF-Inf-Loc). 315 

Synthetic observations were obtained by interpolating 
tSM  to a depth of 3 cm 316 

and adding noise with a normal distribution ( ). The initial state 317 

, was generated by running the CoLM from October 1, 2002 to June 1, 2003. Each 318 

component of the initial state was perturbed using an independent standard Gaussian 319 

random variable times 5% of magnitude of the component. The forcing data were 320 

perturbed in the manner described in Yilmaz et al. (2011). The synthetic experiments 321 

were conducted from June 1, 2003 to October 1, 2003. The state variables for each 322 

pixel were updated independently. 323 

 324 

 0, 0.5%N   

0x
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4.2 Validation statistics 325 

4.2.1 Model error and bias 326 

The model errors are defined as the difference between the actual values and the 327 

model’s predictions based on true initial values, and the bias is the average of the error 328 

in the model during the relevant period. Let tx  denote the true values of the soil 329 

moisture content at time t for a location and vertical soil layer. 
M

tx  denotes the model 330 

predicted soil moisture from the true state at the previous time step t-1. The model’s 331 

bias and error variance for one step can be written as 332 

 
1

1 tsa
M

M t t

tts

b x x
a 

  , (15) 333 

 
2

1

1 tsa
M

M t t

tts

v x x
a 

  , (16) 334 

where tsa  is the number of time steps over which the observations made at 6:00 am 335 

each day are assimilated. 336 

4.2.2 Validation of analysis soil moisture  337 

The true soil moisture content values from 7:00 am to 5:00 am next day are used 338 

to validate analysis states. For a location and vertical soil layer, let ,t hx  be the true 339 

soil moisture content at hour h on day t, and ,

f

t hx  represent the forecasted soil 340 

moisture content at hour h from analysis state 
a

tx  at 6:00 am on day t. The analysis 341 

bias is defined as 342 

 
29

, ,

1 7

1

23

tsa
f

a t h t h

t hts

b x x
a  

  . (17) 343 

The analysis error variance is defined as 344 
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29
2

, ,

1 7

29
2

2

, ,

1 7

1

23

1

23

ts

ts

a
f

a t h t h

t hts

a
f

t h t h a a

t hts

v x x
a

x x b b
a

 

 

 

   




. (18) 345 

(See Appendix A for the proof) 346 

4.2.3 Water balance  347 

Following Yilmaz (2011), the water budget imbalance at location is evaluated 348 

using the water balance residual, 349 

,

1 1

1 tsa N

n t

t nts

R r
Na  

  . (19) 350 

 351 

5.  Real data experiments 352 

In addition to the synthetic experiments, experiments in which the soil moisture 353 

content observed at the DGS and BTS were assimilated into the CoLM were 354 

conducted. In these experiments, the value of soil moisture was extracted from the 355 

output of the Global Land Data Assimilation (GLDAS)/CLM 2.0 model, which has 356 

been integrated continuously since 1979 (Rodell et al. 2004), and used to initialize the 357 

CoLM. Then, the model was run from October 1, 2002 to June 1, 2003. The states 358 

obtained at the end of the period were used as the initial states. In these experiments, 359 

the initial perturbation scheme, observation error variance, assimilation frequency and 360 

assimilation time were adopted from the synthetic experiments. The forcing data sets 361 

were in-situ observed; they were much more accurate than the ERA-Interim reanalysis 362 

data and were not perturbed. 363 

In the realistic assimilation experiments, the truth is not known. Observations of 364 

the soil moisture content at hours not assimilated (7:00 am to 5:00 am next day) were 365 

used for validation. The analysis bias is estimated as 366 
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, (20) 367 

and the analysis error variance is estimated as 368 
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 (21) 369 

where C is a constant which is independent of prediction schemes (See Appendix B 370 

for the proof) 371 

Finally, the water balance residual is defined similar to Eq. (19).  372 

 373 

6. Results 374 

In the synthetic experiments, the magnitudes of the model’s bias and error were 375 

calculated using Eqs (15) and (16), respectively, and are shown in Figure 3. It shows 376 

that the model’s bias was almost negative from Figure 3a. The negative bias in the 377 

surface layer was the result of a combination of a lower surface roughness and a larger 378 

leaf area index in the CoLM; these values led to more soil evaporation and more 379 

canopy interception and could result in a smaller amount of water infiltrating the soil 380 

than the amount modeled using the CLM 4.0. In the CoLM, the porosity of each layer 381 

was less than it was in the CLM 4.0, which retained less water and contributed to the 382 

negative bias of the upper 9 layers. However, the magnitude of the bias increased to 2% 383 

in the bottom layer. The significant difference between the two models at the bottom 384 

layer could be ascribed to their different boundary conditions. Interactions between 385 

the soil moisture content and the ground water at the bottom of the soil column were 386 

modeled in the CLM 4.0 (Oleson et al. 2010) but not in the CoLM. The error in each 387 

https://doi.org/10.5194/hess-2019-696
Preprint. Discussion started: 3 February 2020
c© Author(s) 2020. CC BY 4.0 License.



18 
 

model (Figure 3b) fluctuated in a manner similar to that of the model’s bias. Unbiased 388 

observations are necessary for correcting bias in a model, which is not possible in 389 

many realistic applications, especially in assimilating remote sensing retrievals. Since 390 

satellite observations of the soil moisture content of deep layers are unavailable, only 391 

removing the bias in shallow layers would introduce error in model dynamics. 392 

 393 

6.1 Forecast error inflation and vertical localization 394 

In the synthetic experiments, the study domain comprised 40 pixels. Each point in 395 

the grid-scale threshold layer, the localization scale factor s , was determined 396 

independently. Therefore, totally 9 sets of experiments with different localization 397 

scale factor (see Table 2) were conducted separately. Among these experiments, the 398 

“optimal” case for each pixel was defined as the case in which the column averaged 399 

analysis error (Eq. (18)) was minimized (shown in Figure 4). According to Figure 4a, 400 

the corresponding threshold layer s of s  was generally between 5 and 6 in both 401 

cases, which could be ascribed to the homogeneous soil texture and land cover. In the 402 

WCEnKF-Inf-Loc, there were 19 pixels in which the threshold layers were “optimal,” 403 

and the layers selected in the other pixels were suboptimal (most were roughly one 404 

layer away from the “optimal” case). As shown in Figure 4b, the spatial average of the 405 

root analysis error variance (Eq. (18)) of the WCEnKF-Inf-Loc (4.09%) was 406 

comparable with the optimal value (3.84%) even though s was not selected on the 407 

basis of minimizing the analysis error. 408 

The spatial average of the root analysis error variance in each layer in the 409 

schemes with (WCEnKF-Inf-Loc and WCEnKF-Inf) and without (WCEnKF) 410 

inflation are displayed in Figure 5a. Above 62.0 cm, the analysis errors of the schemes 411 

without inflation were substantially larger than those of the schemes with inflation for 412 
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the synthetic experiments. This suggested that inflation provided a better estimate in 413 

the layers close to observation. When no inflation was performed, the accuracy of the 414 

soil moisture content was barely improved over that of the simulation case (shown in 415 

Figure 5a).  416 

By comparing the schemes with (WCEnKF-Inf-Loc) and without (WCEnKF-Inf) 417 

vertical localization, the impact of this approach on the assimilation accuracy in each 418 

layer is shown in Figure 5a. Because the threshold layer of the localization function 419 

sρ  was layer 6 (36.6 cm) for 28 of the pixels (see Figure 4a), the spatial average of 420 

root analysis error variance of the results of the WCEnKF-Inf-Loc is almost identical 421 

to that of the results of the WCEnKF-Inf for depths above 36.6 cm. In contrast, 422 

inflation increased the analysis error in the soil moisture content of the deep layers in 423 

the WCEnKF-Inf. In this model, the sample error covariances of the moisture contents 424 

of shallow and deep soil were inflated by a factor greater than 6 (the average inflation 425 

factor was 6.25). This could lead to larger assimilation errors for deep soil moisture 426 

profiles in the WCEnKF-Inf. Therefore, inflation should be used with vertical 427 

localization to reduce the spurious covariance resulting from the covariance 428 

inflation-based approach. 429 

As it was in the synthetic experiments, vertical localization (WCEnKF-Inf-Loc) 430 

was helpful in avoiding erroneous estimates of the soil moisture contents at lower 431 

levels (in the WCEnKF-Inf). A comparison of the analysis error at a depth of 3 cm 432 

(i.e., the depth of the assimilated observations was 3 cm) in the models with 433 

(WCEnKF-Inf and WCEnKF-Inf-Loc) and without (WCEnKF) inflation showed that 434 

the inflation technique significantly reduces the analysis error at the depth at which 435 

observations are made. 436 

In the real data experiments, the spatial averages of root analysis error variance 437 
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in each layer (Eq. (21)) are shown in Figures 6a and 7a. To validate the effect of the 438 

vertical localization, the results of the “optimal” (based on the minimum analysis error 439 

at the four observation sites) and WCEnKF-Inf-Loc were compared. In the 440 

experiments using the data from the DGS, the threshold, s, was set to layer 2 (2.8 cm) 441 

for the “optimal” case and layer 5 (21.2 cm) for the WCEnKF-Inf-Loc. However, the 442 

analysis error in the two models at each layer in which observations were made 443 

remained comparable. In the experiments using the data from the BTS, the value of s 444 

was set to 3 (6.2 cm) in both models, which resulted in equivalent analysis errors. 445 

Unlike the truth at all model depths are available in the synthetic experiments, 446 

the observations only available at the four depths for the two stations, which did not 447 

cover the all model layers. Therefore, the analysis error in layers deeper than the 448 

observation could not be checked. 449 

 450 

6.2 The water budget constraint 451 

In the synthetic experiment, the weak constraint on the water budget reduced the 452 

water balance residual significantly in each pixel and the results are shown in Figure 8. 453 

It shows that, the water balance residuals for the assimilation scheme with water 454 

budget constraint are smaller than those without water budget constraint. The forecast 455 

error covariance matrix inflation can lead to the increase of water balance residual, 456 

while the vertical localization technique (i.e. WCEnKF-Inf-Loc scheme) can restrict it 457 

in a rational range. In the WCEnKF-Inf-Loc, the spatial average of the water balance 458 

residual was 0.0742 mm, which was much less than that of the EnKF-Inf-Loc (0.2259 459 

mm). The spread of the water balance residual was also smaller in the 460 

WCEnKF-Inf-Loc, which signals a more stable water balance budget. Therefore, the 461 

weak constraint on the water budget resulted in an assimilation accuracy that was 462 
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comparable to that of unconstrained filters but had a much smaller water budget 463 

residual, which is consistent with the results of previous studies (Yilmaz et al. 2011; 464 

Yilmaz et al. 2012). 465 

To investigate the role of the water budget constraint in the assimilation process 466 

in the synthetic experiment, the spatial averaged root analysis error variance (Eq. (18)) 467 

of the schemes with (WCEnKF-Inf-Loc) and without (EnKF-Inf-Loc) the water 468 

budget constraint were compared. In the EnKF-Inf-Loc, the threshold layers were 469 

adopted from the WCEnKF-Inf-Loc. According to Figure 5a, the spatial averaged root 470 

analysis error variances of the two models were almost identical (1.83% for the 471 

WCEnKF-Inf-Loc and 2.00% for the EnKF-Inf-Loc) in the layers that were shallower 472 

than 21.2 cm. However, for the layers that were deeper than 36.6 cm, the average 473 

RSME of the EnKF-Inf-Loc (4.95%) was less than that of the WCEnKF-Inf-Loc 474 

(5.87%). This could be the compensation for the reduction in the water balance 475 

residual. 476 

In the real data experiments, consistent reductions in the water budget residual 477 

were obtained from the different experiments. The water balance residuals (Eq. (19)) 478 

in the EnKF-Inf-Loc at the DGS and BTS were 0.1545 mm and 0.1792 mm, 479 

respectively. In contrast, the residuals were reduced to 0.0386 mm and 0.0131 mm, 480 

respectively, at the two stations in the WCEnKF-Inf-Loc, which supports the 481 

robustness of the weak constraint on the water budget. 482 

 483 

7. Discussion 484 

7.1 Covariance inflation and vertical localization  485 

In this study, the cost function used to estimate the state variables with the weak 486 

water budget constraint (Eq. (8)) consists of three parts, which are related with 487 
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observations, model forecasts and water residual (Yilmaz et al. 2012). It is represented 488 

as a summation of three scalars, no matter how many observations are assimilated. 489 

Therefore, inflating of one scalar (e.g., model forecasts) seems to have the similar 490 

impact as deflating another one (e.g., water residual), particularly the weights 491 

associated in this problem can be shown as function of the ratio of these three scalars. 492 

Specifically, inflation of forecast error covariance has somewhat similar impact with 493 

deflation the water balance residual covariance. Accordingly, it is plain obvious that 494 

the water balance residual of the scheme WCEnKF-Inf is larger than that of the 495 

scheme WCEnKF.According to Figures 5a-7a, the covariance inflation improved the 496 

estimates of the soil moisture content in the shallow layers independently of whether 497 

vertical localization was used. This is primarily because the observation operator, h, is 498 

the linear operator that was used to interpolate the soil moisture content at depths of 499 

2.8 cm and 6.2 cm to a depth of 3 cm. Then, the likelihood function for the inflation 500 

factor (Eq. (11)) depends only on the observations and predictions of the soil moisture 501 

content in the 2nd and 3rd layers. The mean value of the inflation factor is 6.25 for 502 

WCEnKF-Inf, indicating that the initial forecast spread is not large enough. This leads 503 

to an improvement in the forecast error statistics in the shallow layers, and to further 504 

improvements in the soil moisture contents of those layers. However, the soil moisture 505 

contents of the deep layers are not directly related to the inflation factor. Inflating the 506 

forecast errors in the deep layers leads to an overestimation of the corresponding 507 

forecast error covariance, and could lead to larger analysis errors in the deep layers 508 

(see WCEnKF-Inf in Figure 5a). Therefore in this study, the vertical localization 509 

approach was developed to prevent soil moisture over fitting for deep layers. Using all 510 

observations for shreshould s is only for model selection (from the 10 layers), not for 511 

fitting parameter.When vertical localization is used, the soil moisture contents of the 512 
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deep layers are not significantly updated. Consequently, larger errors are avoided in 513 

the deep layers (see WCEnKF-Inf-Loc in Figure 5a). 514 

Comparing to traditional EnKF without inflation and localization, although 515 

mainly the soil moisture contents of layers above the threshold layer (usually the 5
th

 or 516 

6
th

 layer) were updated at each time step during the assimilation process when the 517 

WCEnKF-Inf-Loc was used, Figure 5a shows that the soil moisture contents of the 518 

layers below the threshold layer, especially the 6
th

 and 7
th

 layers, are also improved. 519 

This may be because the model propagates changes in the shallow layers downward, 520 

adjusting the soil moisture contents of the deep layers. Because the soil moisture 521 

content of layers above the threshold layer was improved during the previous time 522 

step, this process results in better predictions of the soil moisture contents of layers 523 

below the threshold layer, and therefore, reduces the analysis error in layers below the 524 

threshold layer. 525 

 526 

7.2 Bias correction 527 

Geophysical models are never perfect and usually produce estimates with biases 528 

that vary in time and in space (Reichle 2008). Therefore bias correction is important 529 

for assimilating data into models. The model bias can be removed when all model 530 

variables are observed, such as the case studied by Yilmaz et al (2011). However in 531 

this study only soil moisture in shallow layers can be observed (in order to mimic the 532 

satellite observation). There is no observation available to correct the bias of soil 533 

moistures in deeper layers. If only remove the bias in shallow layers, it would 534 

introduce error in model dynamics. Therefore in this study, we still use traditional 535 

(bias-blind) data assimilation framework. 536 

However in the present study, the analysis error variance was decomposed to a 537 

https://doi.org/10.5194/hess-2019-696
Preprint. Discussion started: 3 February 2020
c© Author(s) 2020. CC BY 4.0 License.



24 
 

short-lived component (Figures 5b-7b) and a bias component (Figures 5c-7c) for the 538 

synthetic experiment and the two real data experiments, respectively. It shows that for 539 

our proposed bias-blind data assimilation scheme (WCEnKF-Inf-Loc), both 540 

short-lived errors and biases reduce in the layers close to observation, while maintain 541 

the similar levels for the deeper layers. The covariance inflation can play an important 542 

role in bias reduction. Bias can only be seen during whole assimilation period. At an 543 

instant time, bias and error are mixed. For the traditional EnKF, the forecast error 544 

covariance matrix obtained from the ensemble of their anomalies (Eq. (2)) mainly 545 

represents short-lived error, so it has to be inflated to include error related to bias. 546 

There are other bias estimation approaches in data assimilation. For example, 547 

treading bias as model variables and estimate in assimilation (De Lannoy et al. 2007; 548 

Dee and Da Silva 1997; Dee and Da Silva 1998), adjusting the state variable of the 549 

forecast model not only their covariance matrix in each forecast step (Zhang et al. 550 

2015; Zhang et al. 2014), addressing the biases in the model and observations by 551 

rescaling their cumulative distribution functions (Koster et al. 2009; Reichle and 552 

Koster 2004). The scheme proposed here can provide a base line to validate the 553 

efficacy of these approaches and could be further improved after these bias 554 

corrections. 555 

 556 

8. Conclusions 557 

In this study, observations of the soil moisture content at a depth of 3 cm were 558 

assimilated using an ensemble Kalman filter with three improvements. Firstly, an 559 

adaptive forecast error inflation based on maximum-likelihood estimation was 560 

adopted to reduce the analysis error. This study supports the idea that the proper form 561 

of the forecast error covariance matrix is crucial for reducing the analysis error near 562 
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the layers in which observations are made. Secondly, an adequate vertical localization 563 

for the ensemble-based filter was proposed associated with the forecast error 564 

covariance inflation, to avoid misestimates of the soil moisture contents of deep layers. 565 

Lastly, a constraint on the water balance was used in this study to reduce the water 566 

budget residual substantially without significantly changing the assimilation accuracy. 567 

The experiment results of synthetic study and real data show that the 568 

WCEnKF-Inf-Loc assimilation scheme can reduce both the short-lived analysis error 569 

and the analysis bias in the shallow layers, which also lead to a rational water budget 570 

residual.  571 

The work presented in this paper may have some limitations. For example, the 572 

iterations involved in the optimization process reduce the computational efficiency, 573 

and the study area was homogeneous grassland without a compound type of land 574 

cover. Because the accuracy of the microwave soil moisture content is significantly 575 

affected by the land cover type (Dorigo et al. 2010), it is necessary to perform more 576 

experiments using other regions.  577 

In the near future, we plan to validate the major conclusions under different soil 578 

conditions and land cover types. Vertical localization, which uses adjacent 579 

observations, should also be tested in future work. More detailed analyses of the bias 580 

correction for assimilating remote sensing retrievals should be performed. The 581 

response of the analytic soil moisture content to weather predictions also needs to be 582 

investigated. Completing these studies should improve the state of research into 583 

land-atmosphere interactions. 584 

 585 
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 604 

Appendix A. Proof of Eq. (18) 605 

For a location and vertical soil layer, the analysis error variance in the synthetic 606 

experiment is defined as 607 
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 (A1) 608 

From the definition of analysis bias (Eq. (17)), the last term on the right hand side of 609 

is zero, so Eq. (18) is proved.  610 

  611 

Appendix B. Proof of Eqs. (20)-(21) 612 

Since 613 
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 (B1) 614 

The second term of the right-hand side of Eq. (B1) is approximate zero, because the 615 

observation error ,t h  has zero mean. Therefore Eq. (20) holds. 616 

Since  617 
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The third term of the right-hand side Eq. (B2) is denoted as C, it is determined by all 619 

the true values and observations, but not related to any prediction scheme. By the 620 

definition of analysis bias aB  (Eq. 20), the fourth term of the right-hand side Eq. (B1) 621 

is approximate zero; since the observation error ,t h  has zero mean and is 622 

statistically independent of the forecast error  , ,

f

t h t hxh x , the fifth and sixth terms 623 

of the right-hand side Eq. (B1) are approximate zero too. Therefore, Eq. (21) holds. 624 

   625 
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Figure captions 873 

Figure 1. The topography and river distribution (left plot) and the geographical 874 

location of the synthetic study area and the two application stations, the DGS and the 875 

BTS (right plot).  876 

 877 

Figure 2. The assimilation procedure and localization scale factor estimation in the 878 

experiments. All of the equations are in accordance with that described in the text. 879 

 880 

Figure 3. The areal average of the model’s bias (a) and error (b) for one step in the soil 881 

moisture content between the CoLM and the CLM 4.0. The horizontal axis represents 882 

the layer depth. 883 

 884 

Figure 4. The threshold layers and analysis error for each pixel in the synthetic 885 

experiment. Graph (a) illustrates the optimal and WCEnKF-Inf-Loc threshold layers 886 

of each pixel. Graph (b) shows the column RSME of each pixel in different schemes 887 

with water balance constraint (Optimal, WCEnKF-Inf-Loc, WCEnKF-Inf and 888 

WCEnKF). The horizontal axes of (a) and (b) represent the 40 pixels in the study 889 

domain. 890 

 891 

Figure 5. The assimilation results in each layer for an ensemble Kalman filter with 892 

forecast error inflation and vertical localization (EnKF-Inf-Loc), a weakly constrained 893 

ensemble Kalman filter with forecast error inflation and vertical localization 894 

(WCEnKF-Inf-Loc), a weakly constrained ensemble Kalman filter with forecast error 895 

inflation (WCEnKF-Inf), a weakly constrained ensemble Kalman filter (WCEnKF), 896 

traditional assimilation (EnKF) and an open-loop simulation. Graphic (a) is for spatial 897 
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averaged analysis error of the soil moisture content, (b) is for the short-lived error and 898 

(c) is for the analysis bias. 899 

 900 

Figure 6. The assimilation results in each observation layer for an ensemble Kalman 901 

filter with forecast error inflation and vertical localization (EnKF-Inf-Loc), a weakly 902 

constrained ensemble Kalman filter with forecast error inflation and vertical 903 

localization (WCEnKF-Inf-Loc), a weakly constrained ensemble Kalman filter with 904 

forecast error inflation (WCEnKF-Inf), a weakly constrained ensemble Kalman filter 905 

(WCEnKF), traditional assimilation (EnKF) and an open-loop simulation. Graphic (a) 906 

is for spatial averaged analysis error of the soil moisture content, (b) is for the 907 

short-lived error and (c) is for the analysis bias. 908 

 909 

Figure 7. Same as Figure 6, but for BTS station.  910 

 911 

Figure 8. The box plot of the water balance residual in all 40 pixels for the 912 

EnKF-Inf-Loc, WCEnKF-Inf-Loc,WCEnKF-Inf, WCEnKF and EnKF assimilation 913 

schemes. 914 

 915 
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 917 

 918 

Figure 1. The topography and river distribution (left plot) and the geographical 919 

location of the synthetic study area and the two application stations, the DGS and the 920 

BTS (right plot).  921 
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 923 

 924 

Figure 2. The assimilation procedure and localization scale factor estimation in the 925 

experiments. All of the equations are in accordance with that described in the text. 926 

 927 
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 929 

Figure 3. The areal average of the model’s bias (a) and error (b) for one step in the soil 930 

moisture content between the CoLM and the CLM 4.0. The horizontal axis represents 931 

the layer depth. 932 
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 934 

Figure 4. The threshold layers and analysis error for each pixel in the synthetic 935 

experiment. Graph (a) illustrates the optimal and WCEnKF-Inf-Loc threshold layers 936 

of each pixel. Graph (b) shows the column RSME of each pixel in different schemes 937 

with water balance constraint (Optimal, WCEnKF-Inf-Loc, WCEnKF-Inf and 938 

WCEnKF). The horizontal axes of (a) and (b) represent the 40 pixels in the study 939 

domain. 940 

 941 
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 943 

 944 

Figure 5. The assimilation results in each layer for an ensemble Kalman filter with 945 

forecast error inflation and vertical localization (EnKF-Inf-Loc), a weakly constrained 946 

ensemble Kalman filter with forecast error inflation and vertical localization 947 

(WCEnKF-Inf-Loc), a weakly constrained ensemble Kalman filter with forecast error 948 

inflation (WCEnKF-Inf), a weakly constrained ensemble Kalman filter (WCEnKF), 949 

traditional assimilation (EnKF) and an open-loop simulation. Graphic (a) is for spatial 950 

averaged analysis error of the soil moisture content, (b) is for the short-lived error and 951 

(c) is for the analysis bias. 952 
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 954 

Figure 6. The assimilation results in each observation layer for an ensemble Kalman 955 

filter with forecast error inflation and vertical localization (EnKF-Inf-Loc), a weakly 956 

constrained ensemble Kalman filter with forecast error inflation and vertical 957 

localization (WCEnKF-Inf-Loc), a weakly constrained ensemble Kalman filter with 958 
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forecast error inflation (WCEnKF-Inf), a weakly constrained ensemble Kalman filter 959 

(WCEnKF), traditional assimilation (EnKF) and an open-loop simulation. Graphic (a) 960 

is for spatial averaged analysis error of the soil moisture content, (b) is for the 961 

short-lived error and (c) is for the analysis bias. 962 
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 964 

Figure 7. Same as Figure 6, but for BTS station. 965 
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 967 

Figure 8. The box plot of the water balance residual in all 40 pixels for the 968 

EnKF-Inf-Loc, WCEnKF-Inf-Loc,WCEnKF-Inf, WCEnKF and EnKF assimilation 969 

schemes. 970 

  971 

https://doi.org/10.5194/hess-2019-696
Preprint. Discussion started: 3 February 2020
c© Author(s) 2020. CC BY 4.0 License.



50 
 

Table 1. The node depths (cm) of the 10 soil layers in the CoLM model. 972 

 973 

Layer 1 2 3 4 5 6 7 8 9 10 

Depth 

(cm) 
0.7 2.8 6.2 11.9 21.2 36.6 62.0 103.8 172.8 286.5 

 974 

 975 

 976 

Table 2. Estimated localization scale factor for different cases. 977 

Layer 2 3 4 5 6 7 8 9 10 

s  0.2824 0.1256 0.0587 0.0300 0.0163 0.0093 0.0053 0.0025 0.0001 

 978 
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