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The study is suitable for publication after following minor changes.
(1) Both reviewers the prior version of the manuscript asked about the direct update of
canopy water content. | understand that the authors are following the approach of
Yilmaz et al. (2011; 2012) but this choice of updating canopy water content needs to
be discussed further in the manuscript. It could be done in the discussion section or in
the methods section.
Response: Thanks for your comment. The canopy’s water content (CWC) and snow
water equivalent (SWE) are related to the water budget. If the water budget constraint
is absent, they are normally not updated and the vegetation module transports the
water into the vegetation layer. However, the present study focused on the
assimilation with the water budget constraint, then updating CWC and SWE would
help to reduce the water budget residuals.

For the assimilation with the water budget constraint but without update of CWC

and SWE, the state variables related to the water budget are decomposed as

x=(,X ,X) where ;X comprises of SM and SIC (the soil moisture content and the
soil ice content at the 10 vertical levels listed in Table 1), ,X comprises of CWC and
SWE (the canopy’s water content and the snow water equivalent). C=( 1C 2C) is a
22-dimensional vector that converts the units of x=(,X,,X) to millimeters (mm).
The assimilation for not update of ,X can be achieved by substituting X and A,

in section 3.2 by ;X and .0, respectively, that is

T a T f f f
1Pnt = 1C 1Xn,t—1 + ZC 2Xn,t—1 + Pn - Evn,t - Rnn,t ) (22)

where Pr,, Evnfyt and Rnnf,t are diagnostic variables specifying the states of the
precipitation, evapotranspiration and runoff, respectively. By this way, the canopy’s
water content are not updated and the vegetation module transports the water into the
vegetation layer. In this study, the range of the estimated CWCs for all assimilations
with or without update of ,X is only about 0.005 mm. Considering the estimated
water budget residuals are between 0.05 mm and 0.14 mm and there is no SWE in the
summer peried, we conclude that update of CWC has a little impact on water balance

in this study.

This discussion was added in section 6.3 of the revised version. (Lines 539-561)



(2) The results in Fig. 6 indicate that WcEnKF results in the smallest water balance
residual relative to various WCENKF-Inf and WcEnKF-Inf-Loc. | realize that
WCcENKF-Inf and WcEnKF-Inf-Loc leads to smaller bias in soil moisture but if the
focus of a study or experiment is reducing water balance, does this result indicate that
WCENKF is a better choice? | assume it is computationally faster to implement
WCcENKF too. Please discuss this point.

Response: Thanks for your comment. We agree that if the focus of a study or
experiment is reducing water balance, WCENKF could be a better choice and
computationally faster than WCENKF-Inf and WCENKF-Inf-Loc schemes.
Accordingly, it is plainly obvious that the water balance residual of the scheme
WCENKF-Inf is larger than that of the scheme WCENKF. However, the objective in
this study is to reduce water balance without significantly increasing the analysis error.
Since the analysis errors for WCENKEF in the layers shallower than 36.6 cm are
significantly larger than those for the schemes with inflation, WCEnKF is not
preferred.

These texts have been added to the revised version. (Lines 468-476)

(3) Both Abstract and Conclusions section do not mention any quantitive measures
(e.g. % improvement in bias) of improvement in model performance after data
assimilation.

Response: Thanks for your comment. The main quantitive measures of the analysis
errors and water budget residuals are included in the abstract and conclusions.

For the more details, in abstract we added (Lines 27-35):

“The results of the assimilation process suggest that the inflation approach
effectively reduces the analysis error from 6.70% to 2.00% in shallow layers, but
increases from 6.38% to 12.49% in deep layers. The vertical localization approach
leads to 6.59% of the analysis error in deep layers, and the bias-aware assimilation
scheme further reduces to 6.05% . The spatial average of the water balance residual is
0.0487 mm of weakly constrained EnKF scheme, and 0.0737 mm of weakly
constrained EnKF with inflation and localization scheme, which are much smaller
than 0.1389 mm of the EnKF scheme.”

In the conclusion we added (Lines 589-593):

“The experiment results of synthetic study show that the WCENKF-Inf-Loc
assimilation scheme can reduce the analysis error from 6.70% to 2.00% in the shallow



layers, with both the short-lived analysis error and the analysis bias reduced. It also
leads to a rational water budget residual with spatial average 0.0737 mm, which is

much smaller than 0.1389 mm of the EnKF scheme.”

(4) Line 29: "Finnaly" should be "Finally".

Response: Revised.

(5) Line 78: "it suggests" should be "it is suggested".

Response: Revised.

(6) 4.2.3, please define the variables in the equation to calculate water balance

residuals.

Response: The variables are defined as follows: “N is the ensemble size, a, is the

number of assimilation time steps, and I, is the ensemble water budget residual at

time step t as defined in Eq. (6).”
This was added in section 4.2.3. (Lines 361-362)

(7): 6.3 "Notes" is a pretty vague heading for this section, perhaps "Broader
implications™ or "Global implementation” would be better.

Response: The heading has been changed to “Broader implications”.

Again, thanks for your valuable comments and recommendation.



The main changes are listed as follows.

(1) Lines 27-35: Added the main quantitive measures of the analysis errors and water

budget residuals in the abstract.

(2) Lines 361-362: Added the variables in the equation to calculate water balance

residuals (Eq. (21)).

(3) Lines 468-476: Added the discussion on WCENKF scheme.

(4) Lines 539-561: Added the discussion on updating of canopy water content.

(5) Lines 589-593: Added the main quantitive measures of the analysis errors and

water budget residuals in the conclusions.
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Abstract

Assimilating observations of shallow soil moisture content into land models is an
Important step in estimating soil moisture content. In this study, several modifications
of an ensemble Kalman filter (EnKF) are proposed for improving this assimilation. It
was found that a forecast error inflation-based approach improves the soil moisture
content in shallow layers, but it can increase the analysis error in deep layers. To
mitigate the problem in deep layers while maintaining the improvement in shallow
layers, a vertical localization-based approach was introduced in this study. During the
data assimilation process, although updating the forecast state using observations can
reduce the analysis error, the water balance based on the physics in the model could
be destroyed. To alleviate the imbalance in the water budget, a weak water balance
constrain filter is adopted.

The proposed weakly constrained EnKF that includes forecast error inflation and
vertical localization was applied to a synthetic experiment. An additional bias-aware
assimilation for reducing the analysis bias is also investigated. The results of the
assimilation process suggest that the inflation approach effectively reduces the
analysis error from 6.70% to 2.00% in shallow layers, but increases from 6.38% to
12.49% in deep layers. The vertical localization approach leads to 6.59% of the
analysis error in deep layers, and the bias-aware assimilation scheme further reduces
to 6.05% . The spatial average of the water balance residual is 0.0487 mm of weakly
constrained EnKF scheme, and 0.0737 mm of weakly constrained EnKF with inflation
and localization scheme, which are much smaller than 0.1389 mm of the EnKF

scheme.

Keywords soil moisture, water balance, data assimilation, forecast error inflation,
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1. Introduction

Soil moisture content is one of the most important variables that affect the water
cycle and energy balance through land-atmosphere interactions, especially
evaporation and precipitation (Han et al. 2014; Kumar et al. 2014; McColl et al. 2019;
Pinnington et al. 2018). Adequate knowledge of the horizontal and vertical
distributions of soil moisture at sub-seasonal to seasonal time scale could improve
weather and climate predictions (Delworth and Manabe 1988; Pielke 2001).
Alongside snow cover, soil moisture content is an important component of the
meteorological memory of the climate system over land (McColl et al. 2019; Robock
et al. 2000; Zhao and Yang 2018). It is also a primary water resource for the terrestrial
ecosystem and affects runoff (GUSEV and Novak 2007).

There are several ways to estimate the soil moisture content. Land surface
models can provide temporally and spatially continuous estimates of the soil moisture
content, but limited by the uncertainty in the models’ parameters, errors in the forcing
data and imperfect physical parameterizations (Bonan 1996; Dai et al. 2003;
Dickinson et al. 1993; Oleson et al. 2010; Yang et al. 2009). Compared with the
results of models, in-situ observations of the soil moisture content provide more
accurate profiles (Bosilovich and Lawford 2002; Dorigo et al. 2011; Robock et al.
2000); however, networks of in-situ observations are usually too sparse to estimate the
soil moisture content on a regional scale (Gruber et al. 2018; Loizu et al. 2018).
Satellite remote sensing retrievals could provide soil moisture content data on regional
scales (Bartalis et al. 2007; Crow et al. 2017; Entekhabi et al. 2010; Kerr et al. 2010;
Lu et al. 2015; Njoku et al. 2003), but they are only available for the shallow layer of
the soil and the quality is poor in vegetated area (Pinnington et al. 2018; Yang et al.

2009).
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Many studies indicated that a better approach to improving the estimates of soil
moisture contents on regional scales is to constrain land model predictions by
assimilating surface soil moisture data (Crow and Loon 2006; Crow and Wood 2003;
Reichle and Koster 2005). It can provide better estimates of the true soil moisture
content column states than the model forecasts (Crow et al. 2017; Lu et al. 2012; Lu
et al. 2015), and can further improve land surface model initial conditions for coupled
short-term weather prediction (Chen et al. 2014; Santanello et al. 2016; Yang et al.
2016). Especially, surface soil moisture data can be provided by in-situ observations
and passive microwave measurements (brightness temperatures) observed by remote
sensing.

A good estimate of the forecast error covariance matrix is crucial for the
compromise between uncertain observations and imperfect model predictions in data
assimilation (Anderson and Anderson 1999; Miyoshi 2011; Miyoshi et al. 2012; Wang
and Bishop 2003). For the Ensemble Kalman Filter (EnKF) assimilation method, the
forecast error covariance matrix is estimated using the sample covariance matrix of
the ensemble forecasts (Dumedah and Walker 2014; Evensen 1994; Han et al. 2014).
However, it is usually underestimated due to sampling and model errors, which can
eventually results in filter divergence (Anderson and Anderson 1999; Constantinescu
et al. 2007; Yang et al. 2015). To address this problem, it is suggested that the forecast
covariance matrix be multiplied by a factor (Dee and Da Silva 1999; Dee et al. 1999;
Li et al. 2012; Zheng 2009). This approach is referred to as inflation, and it becomes
particularly important when the error in the model is large (Bauser et al. 2018; El
Gharamti et al. 2019; Liang et al. 2012; Raanes et al. 2019; Wu et al. 2013).
Therefore, it could work well in this situation because of the enormous errors in the

land model.
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In this study, a scheme for assimilating synthetic observations of the soil
moisture content into land models was developed based on EnKF method, which can
provide a foundation for further satellite data assimilation. For the synthetic
experiment, the Version 4.0 of the Community Land Model (CLM 4.0, (Lawrence et
al. 2011; Oleson et al. 2010)) was used to generate the “true values” and the Common
Land Model (CoLM, (Dai et al. 2003)) was selected as the forecast operator. The
differences in these two models are referred to the model error in an imperfect land
surface model. The inflation factors are estimated at every observation time step
during the assimilation process by minimizing the -2log-likelihood of the difference
between the forecast and the observation (Liang et al. 2012; Zheng 2009). For
assimilating observations near the surface only, such inflation approach can improve
the estimates of the forecast error statistics in shallow soil layers but may artificially
enlarge the forecast error statistics in deep soil layers. To avoid the possibility of
decreasing the quality of the estimates in deep soil layers, a vertical localization with
weighting of observations is adopted (Janji¢ et al. 2011). In this approach, a
localization function multiplies the weights on the components of the state vector
according to the distance from state layer to the observation. Moreover, the method
based on the maximum likelihood estimation was proposed to estimate the optimal
localization scale factor.

A major objective of soil moisture data assimilation is to address biases in
models and observations (Koster et al. 2009; Reichle and Koster 2004). In this study,
we only assume that models could be biased, while the soil moisture observations are
assumed to be unbiased. Moreover, the soil moisture observations are restricted in
shallow layer, so there is no observation available to directly correct the modeled soil

moisture biases in deep layers. However, bias can be detected by monitoring
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observation-minus-forecast statistics in the assimilation system (Dee and Todling
2000). Then a bias-aware assimilation method can be designed to estimate and correct
the systematic errors sequentially with the model state variables (Dee 2005). Such
bias correction method is adopted in this study to detect the performance among
different assimilation schemes. Furthermore, the analysis error is decomposed to a
short-lived error (random error) and a bias (system error). It demonstrates that the
proposed scheme can reduce the both for soil moisture in shallow layers. These
improvements steps can also result in a resonable estimates of the soil moisture
content in the deep layers.

In addition to improve assimilation accuracy, this study also focuses on the
imbalance in the water budget that occurs during the process of assimilating the soil
moisture data. The terrestrial water budget is a key part of the global hydrologic cycle.
A better understanding of the budget can help us to improve our knowledge of
land-atmosphere water exchange and related physical mechanisms and therefore, can
improve our ability to develop models (Pan and Wood 2006). Generally speaking,
analyses do not conserve the water budget due to inconsistencies between predictions
made by models and observations (Li et al. 2012; Pan and Wood 2006; Wei et al.
2010; Yilmaz et al. 2011; Yilmaz et al. 2012). It is really a problem if the water
balance is violated in a systematic manner (for example, model is biased), which
suggests a trouble in data assimilation. Pan and Wood (2006) proposed a method
based on a strong constraint to reincorporate the water balance. However, this method
redistributes the error among the different terms in the water budget, which could
result in unrealistic estimates (Pan and Wood 2006; Yilmaz et al. 2011).

To overcome this shortcoming, Yilmaz et al. (2011) proposed using a weakly

constrained ensemble Kalman filter (WCENKEF) to reduce the imbalance in the water
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budget. In a synthetic study, they concluded that the accuracy of a WCEnKF-based
analysis is close to that of an EnKF-based analysis but the water budget balance
residuals are much smaller than that of an unconstrained filter. Nevertheless, the
observations of the soil moisture content cover the entire column, and a perfect model
was used in their studies. This is not generally true, especially when only satellite
observations are assimilated. In this study, the experiments were further designed to
assimilate surface observations into an imperfect land model.

The structure of this paper is arranged as follows: The data and models used in
this study are described in section 2. The details of the WCEnKF-based methods that
incorporate inflation, vertical localization and bias-aware assimilation are provided in
section 3. The experimental designs and evaluations of synthetic experiments are set
in sections 4. The primary results are given in section 5. The discussion and

conclusion comprise sections 6 and 7.

2. Models and data
2.1 Study area
The study area is located in the Mongolian Plateau and comprises approximately
9352 square kilometers between 46“and 46.5N and between 106.1259and 107<E.
The dominant biome is grassland, and no river flows through the area (see Figure 1).
The soil moisture content and related meteorological and hydrological parameters
are monitored by automatic stations maintained by the Coordinated Enhanced
Observing Period Asian Monsoon Project (CEOP AP) (Bosilovich and Lawford 2002;
Lawford et al. 2004). The CEOP AP was launched by the World Climate Research
Programme (WCRP) to develop an integrated global dataset that can be used to

address issues relating to water and energy budget simulations and predictions,
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monsoon processes and the prediction of river flows. More details can be found at

http://www.ceop.net.

2.2 Forcing data

In this study, synthetic experiments were conducted to explore the accuracy of the
assimilation schemes. The simulations were driven by forcing data (including
radiation, wind, pressure, humidity, precipitation and temperature) from the
0.125%0.125 ERA-Interim dataset (Dee et al. 2011) that had been scaled down to

provide a temporal resolution of one hour.

2.3 Models

The Common Land Model (CoLM) developed by Dai et al. (2003) is a
third-generation land surface model. It combines the best features of three successful
models: the Land Surface Model (LSM, (Bonan 1996)), the Biosphere-Atmosphere
Transfer Scheme (BATS, (Dickinson et al. 1993)) and the 1994 version of the Chinese
Academy of Sciences/Institute of Atmospheric Physics model (IAP94, (Dai et al.
2003)), and is being further developed. The primary characteristics of the model
include 10 unevenly spaced soil layers (see Table 1), one vegetation layer, 5 snow
layers (depending on the snow depth), explicit treatment of the mass of liquid water,
ice and phase changes within the system of the snow and soil, runoff parameterization
following the TOPMODEL concept, a tiled treatment of the sub-grid fraction of the
energy and water budget balance (Dai et al. 2003) and a canopy
photosynthesis-conductance mode that describes the simultaneous transfer of CO, and
water vapor into and out of the vegetation. The model parameters include data on the

global terrain, elevation, land use, vegetation, land-water mask and hybrid
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FAO/STATSGO soil types from the USGS, which are available at a resolution of 30
arc seconds.

Version 4.0 of the Community Land Model (CLM 4.0) (Lawrence et al. 2011,
Oleson et al. 2010) is the land surface parameterization used with the Community
Atmosphere Model (CAM 4.0) and the Community Climate System Model (CCSM
4.0). The CLM 4.0 includes bio-geophysics, the hydrologic cycle, biogeochemistry
and the dynamic vegetation. CLM 4.0 simulates the bio-geophysical processes in each
sub-grid unit independently and maintains its own prognostic variables. The
parameters used in the CLM4.0 differ from those used in the CoLM. For example, the
soil texture data are derived from the IGBP soil data, and the land use data are derived
from the UNH Transient Land Use and Land Cover Change Dataset
(http://luh.umd.edu/).

In addition to using different parameters, the two models have different structures.
For example, a model of groundwater-soil water interactions (Niu et al. 2007; Niu et
al. 2005) has been incorporated into the CLM 4.0, while zero water flux at the bottom
of a soil column is assumed in the CoLM. Besides, the CLM 4.0 has the same vertical
discretization scheme as the CoLM (see Table 1), which makes comparing the results

of the two models convenient.

3. Methods
3.1 Forecast and observation systems
Using notation similar to that used by Yilmaz et al. (2011), the forecast system

can be written as
yr]:,t =M, (ys,t—l)v 1)

where t=1, ..., T is the time index, n=1, ..., N represents an ensemble member (in this

10
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study, the ensemble size is set to 100), M, ,, isa CoLM forced by the n-th perturbed

1
atmospheric forcing, and y is a state vector containing 126 variables. The superscript
“f” and “@” specify the forecast and analysis, respectively.

Let x be the state variables related to the water budget, that comprises of SM
and SIC (the soil moisture content and the soil ice content in % at the 10 vertical
levels listed in Table 1), CWC and SWE (the canopy’s water content and the snow
water equivalent in kg/m?). In this study, only x is updated by data assimilation, while

the model propagates changes to the other variables over time.
For the traditional EnKF, the forecast error covariance matrix P, is

obtained from the ensemble of their anomalies,
1 yor f f £\"
P :N—Z(Xn,t =X )(Xn,t =% ) . (2)
where X,f]t is the component of ynf,t related to the water budget, X, is the ensemble

mean of an,t- To avoid overestimation of the co-variability between shallow

observations and soil moistures deeper than a threshold layer s (see section 3.2 for the

estimation of s), the following vertical localization function with weighting of

observations p, (Janji¢ et al. 2011) will be applied on P, i.e.,

p. (1) =exp(— |d —d|) 3)
where | represents for the I-level soil layer, d, and d, represent the depths of
l-level soil layer and observation, respectively. |d, —d,| is the Euclidian distance

between the two layers. u, is estimated by minimizing the following mean square

error between vertical localization function Eq (3) and a step function with threshold

layer s,

11
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M ()= X exp(~ld =0, [) 1] + 3 [exp(~ald, o, )] @)

I<s I>s
The estimated y, is listed in Table 2.
The observations of the soil moisture content are collected at a depth of 3 cm at
6:00 am every day (denoted by 0, ). The observation system is defined as
o, =hx, +¢, (5)
where observational operator h is a 22-dimensional vector which linearly interpolated
the soil moisture at depths of 2.8 cm and 6.2 cm to depth of 3 cm, X, represents the

true values of the state variables related to the water budget at the time step t and &,

is the observational error with mean zero and variance R,. Since, the main objective

of this study is for methodology related to linear observational operators. Choosing

the linear interpolation as observational operator is only for convenience.

3.2 Assimilation with water budget constraint

Assimilating data on the soil moisture content usually results in an imbalance in
the water budget. To reduce this imbalance, a weak constraint on the water budget
(Yilmaz et al. 2011) is adopted in this study. The ensemble water budget residual at

time step t can be expressed as

_ T
rn,t = ﬂn,t —C Xi,t ’ (6)
where
T f f
ﬂn,t =C Xﬁ,H + Prt - EVn,t - Rnn,t ) (7)

where ¢ is a 22-dimensional vector that converts the units to millimeters (mm) and
adds up the states in x, the diagnostic variables Pr,, Evnf't and Rnnf't (mm) are

scalars specifying the states of the precipitation, evapotranspiration and runoff,

12
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respectively, in each pixel.
The cost function used to estimate the state variables with the weak water budget

constraint (Eq. (6)) is

3, = (0, —hx)" R™ (0, —hx) + (x=x5, )T P (X=x0,)

T , ®
+(ﬂn,t _CTX) (Dt_l (ﬁn,t _CTX)

where

1 1 1y Y
tsz( W;ﬂj,tjx(ﬁn,t_ﬁgﬂj,tj 9)

n=1

is an estimate of the variance of f,, and P, represents a forecast error

covariance matrix defined by

RN L (10)

where P, is defined as Eq. (2); [p,] is a diagonal matrix which localizes the soil

moisture error (i.e. itis p, defined by Eq. (3) for the soil moisture contents and 1 for
other variables). [\/Z } is also a diagonal matrix which inflates the forecast soil

moisture error (i.e. it is a scalar 4, for the soil moisture contents and 1 for other

variable). 4, is estimated by minimizing the -2log-likelihood of the difference

between the forecast and the observation (Dee and Da Silva 1999; Liang et al. 2012;

Zheng 2009),
2L, (%) =In(hP,h" +R )+ (o, —hx! )" (hP,h" +R) (0, —hx'). (11)
The estimated forecast error inflation factor is denoted as 1[ . The perturbed analysis

states of the variables related to water budget can be derived by minimizing Eq. (8),

which has the analytic form

13
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X?,t = Xr:,t + PtahT Rtil (Ot Tén — hX;,t ) + PtaC(p;l (:Bn,t _CTX;,t ) ) (12)
where &, is generated from a normal distribution with mean zero and variance R,
and

_ _ _ -1

Pt =(h"R7h+P; +cpc’) (13)

its analysis error covariance matrix.

For estimating the optimal threshold layer, define the -2log-likelihood of the total

difference between the forecasts and the observations,

L= > (2,0, (14)

o

The optimal threshold layer § is selected as the smallest number s such that L, is

the minimum of {LZ,LS,-",LS+1}. The final analysis state is the selected

corresponding to the optimal threshold layer §. The complete assimilation procedure

with water budget constraint is shown in Figure 2.

3.3 Bias-aware assimilation
The bias-aware data assimilation proposed by Dee (2005) is adopted to correct

the analysis bias.

Let b, isthe estimated bias at time step tand set b, =0. For t>1,
~ ~ -1 -
bt = btfl _7/Ps,thT (hPS’thT + Rt ) (Ot - h(xtf - bt—l)) : (15)
where the scalar parameter 7 that controls the magnitude of the forecast bias is

estimated following Dee and Todling (2000) (see Eqgs (A5)-(A6) of Appendix A), >~<tf

is the ensemble mean of the perturbed forecast states an’t from the analysis state

oa

Xits F~’s,t is the corresponding adjusted forecast error covariance (see Eq. (A2) of

14
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Appendix A).
Then the perturbed assimilated states are
X?,t = )~(r:,t - bt—l + IstahTRtil (Ot Tén h (Xr:t - bt—l))

16
+|5taC¢;1 (Bn,t ~c' (X;t _bt—l)) ( )

where Bn,t,(b{l and P? are defined by Eqgs (A7)-(A9) in Appendix A respectively.

4. Synthetic experiments
4.1 Experimental design

To investigate the performance of the WCENKF-based methods that incorporate
inflation, vertical local localization and bias-awre assimilation, synthetic experiments
were performed using the CoLM. Unlike the “perfect model” assumption used in
Yilmaz et al. (2011), the assumptions of this study are accounted for the error in the
model, especially the structural error. Because there were structural differences in the
models of the water cycle (see section 2.3) used in the two models, CLM 4.0 was used
to generate the “true values” (i.e., to perform a reference run) for the synthetic
experiments and CoLM was selected as the forecast operator (i.e., to perform an
open-loop run). Therefore, the CLM 4.0 and the CoLM were both integrated on a
0.125 grid (see Figure 1 for the locations) with a time step of one hour. The
assimilation time was set to 6:00 am every day. The assimilation experiments were
conducted with 5 scenarios: the traditional ensemble Kalman filter (EnKF), a weakly
constrained ensemble Kalman filter (WCENKF), a weakly constrained ensemble
Kalman filter with inflation (WCENnKF-Inf), a weakly constrained ensemble Kalman
filter with inflation and localization (WCEnKF-Inf-Loc) and a weakly constrained
ensemble Kalman filter with inflation, localization and bias-aware assimilation

(WCENKF-Inf-Loc-BA).
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Synthetic observations were obtained by interpolating SM, to a depth of 3 cm

and adding noise with a normal distribution (N (x=0,0=0.5%)). The initial state

X, , was generated by running the CoLM from October 1, 2002 to June 1, 2003. Each
component of the initial state was perturbed using an independent standard Gaussian
random variable times 5% of magnitude of the component. The forcing data were
perturbed in the manner described in Yilmaz et al. (2011). The synthetic experiments
were conducted from June 1, 2003 to October 1, 2003. The state variables for each

pixel were updated independently.

4.2 Validation statistics
4.2.1 Model error and bias
The model errors are defined as the difference between the actual values and the

model’s predictions based on true initial values, and the bias is the average of the error

in the model during the relevant period. Let X, denote the true values of the soil

moisture content at time t for a location and vertical soil layer. X" denotes the model

predicted soil moisture from the true state at the previous time step t-1. The model’s
bias and error variance for one step can be written as

1 s

by =¥H(xt -%), (17)
s 2
Vy =atiZ(xtM -x), (18)

where @, is the number of time steps over which the observations made at 6:00 am

each day are assimilated.

4.2.2 Validation of analysis soil moisture
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The true soil moisture content values from 7:00 am to 5:00 am next day are used

to validate analysis states. For a location and vertical soil layer, let X, be the true
soil moisture content at hour h on day t, and thh represent the forecasted soil

moisture content at hour h from analysis state X’ at 6:00 am on day t. The analysis

bias is defined as
s 29 ;
ZQZZ()% _Xt,h)' (19)

=1 h=7

The analysis error variance is defined as

25

" 23@522( )
& 29 (20)
f 2
23atstz_1:hz7:(xm Xth_ba) +b

(See Appendix B for the proof)
4.2.3 Water balance
Following Yilmaz (2011), the water budget imbalance at location is evaluated

using the water balance residual,

_ Nizzrm , (21)

A 11 nL

—

where N is the ensemble size, @, isthe number of assimilation time steps, and I, is

the ensemble water budget residual at time step t as defined in Eq. (6).

5. Results

In the synthetic experiments, the magnitudes of the model’s bias and error were
calculated using Eqgs (17) and (18), respectively, and are shown in Figure 3. It shows
that the model’s bias was almost negative from Figure 3a. The negative bias in the

surface layer was the result of a combination of a lower surface roughness and a larger
17



369 |eaf area index in the CoLM; these values led to more soil evaporation and more
370 canopy interception and could result in a smaller amount of water infiltrating the soil
371 than the amount modeled using the CLM 4.0. In the CoLM, the porosity of each layer
372 as less than it was in the CLM 4.0, which retained less water and contributed to the
373 negative bias of the upper 9 layers. However, the magnitude of the bias increased to 2%
374 in the bottom layer. The significant difference between the two models at the bottom
375 Jayer could be ascribed to their different boundary conditions. Interactions between
376 the soil moisture content and the ground water at the bottom of the soil column were
377 modeled in the CLM 4.0 (Oleson et al. 2010) but not in the CoLM. The error in each
378 model (Figure 3b) fluctuated in a manner similar to that of the model’s bias. Unbiased
379 observations are necessary for correcting bias in a model, which is not possible in
380 many realistic applications, especially in assimilating remote sensing retrievals. Since
381 satellite observations of the soil moisture content of deep layers are unavailable, only
382 removing the bias in shallow layers would introduce error in model dynamics.

383

384 5.1 Forecast error inflation and vertical localization

385 In the synthetic experiments, the study domain comprised 40 pixels. At each point
386 in the grid-scale threshold layer, the localization scale factor s, was determined

387 independently. Therefore, totally 9 sets of experiments with different localization
388 gcale factor (see Table 2) were conducted separately. Among these experiments, the
389

“optimal” case for each pixel was defined as the case in which the column averaged

330 analysis error (Eq. (20)) was minimized (shown in Figure 4). According to Figure 4a,
391 the corresponding threshold layer s of s, was generally between 5 and 6 in both

392 cases, which could be ascribed to the homogeneous soil texture and land cover. In the

333 WCENKF-Inf-Loc, there were 19 pixels in which the threshold layers were “optimal,”
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and the layers selected in the other pixels were suboptimal (most were roughly one
layer away from the “optimal” case). As shown in Figure 4b, the spatial average of the
root analysis error variance (Eg. (20)) of the WCEnKF-Inf-Loc (4.09%) was
comparable with the optimal value (3.84%) even though s was not selected on the
basis of minimizing the analysis error.

The spatial average of the root analysis error variance in each layer in the
schemes with (WCENKF-Inf-Loc and WCENKF-Inf) and without (WCENKF)
inflation are displayed in Figure 5a. Above 36.6 cm, the analysis errors of the schemes
without inflation (6.70%) were substantially larger than those of the schemes with
inflation (2.00%) for the synthetic experiments. This suggested that inflation provided
a better estimate in the layers close to the observation. When no inflation was
performed, the accuracy of the soil moisture content was barely improved over that of
the open-loop (not shown here).

By comparing the schemes with (WCEnKF-Inf-Loc) and without (WCENKF-Inf)
vertical localization, the impact of this approach on the assimilation accuracy in each

layer is shown in Figure 5a. Because the threshold layer of the localization function
p, was layer 6 (36.6 cm) for 28 of the pixels (see Figure 4a), the spatial average of

root analysis error variance of the results of the WCEnKF-Inf-Loc is almost identical
to that of the results of the WCENKF-Inf for depths above 36.6 cm. In contrast,
inflation increased the analysis error in the soil moisture content of the deep layers in
the WCENKF-Inf from 6.38% to 12.49%. In this model, the sample error covariances
of the moisture contents of shallow and deep soil were inflated by a factor greater than
6 (the average inflation factor was 6.25). This could lead to larger assimilation errors
for deep soil moisture profiles in the WCEnKF-Inf. Therefore, inflation should be

used with vertical localization to reduce the spurious covariance resulting from the
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covariance inflation-based approach.

As it was in the synthetic experiments, vertical localization (WCEnKF-Inf-Loc)
was helpful in avoiding erroneous estimates of the soil moisture contents at lower
levels (in the WCENKF-Inf). A comparison of the analysis error at a depth of 3 cm
(i.e., the depth of the assimilated observations was 3 cm) in the models with
(WCENKF-Inf and WCENKF-Inf-Loc) and without (WCENKEF) inflation showed that
the inflation technique significantly reduces the analysis error at the depth at which
observations are made.

To investigate the role of bias correction, the spatial averaged root analysis error
variance (Eg. (20)) of WCENnKF-Inf-Loc-BA and WCENKF-Inf-Loc were compared.
According to Figure 5a, the spatial averaged root analysis error variances of the two
schemes were comparable with each other (2.12% for the WCENKF-Inf-Loc-BA and
2.16% for the WCENKF-Inf-Loc) in the layers that were shallower than 36.6 cm. This
could be due to that the observations are closer to the shallow layers and the vertical
localization approach is reasanable effective to reduced the bias. However, for the
layers that were deeper than 62.0 cm, the averaged root analysis error of the

WCENKF-Inf-Loc-BA (6.05%) was less than that of the WCEnKF-Inf-Loc (6.59%).

5.2 The water budget constraint

In the synthetic experiment, the weak constraint on the water budget reduced the
water balance residual significantly in each pixel and the results are shown in Figure 6.
It shows that, the spatial average of the water balance residual of WCEnKF scheme
was 0.0487 mm, which was much smaller than that of the EnKF scheme (0.1389 mm).
Therefore, the assimilation scheme with water budget constraint can indeed reduce the

water balance residuals relative to the assimilation scheme without water budget
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constraint which is consistent with the results of previous studies (Yilmaz et al. 2011,
Yilmaz et al. 2012). The interquartile range of the water balance residuals in the 40
pixels for the WCENKF scheme was 0.0042 mm, which was less than half of that for
the EnKF scheme (0.0098 mm). The reduced spread of the water balance residuals
signals a more stable water balance budget with the water budget constraint.

The spatial average of the water balance residual for WCENKF-Inf,
WCENKF-Inf-Loc and WCEnKF-Inf-Loc-BA was 0.0834 mm, 0.0737 mm and
0.0723 mm, respectively. The corresponding interquartile range was 0.0079 mm,
0.0051 mm and 0.0072 mm, respectively. They are still much smaller that those for
the EnKF scheme, despite there are bit increase than those for WCENKF. This
demonstrate the weak water budget constraint is still effective in reducing magnitude
and spread of the water inbalance, dispite of more complecated assimilation

approaches were associated.

6. Discussion
6.1 Covariance inflation and vertical localization

In this study, the cost function used to estimate the state variables with the weak
water budget constraint (Eg. (8)) consists of three parts, which are related with
observations, model forecasts and water residual (Yilmaz et al. 2012). It is represented
as a summation of three scalars, no matter how many observations are assimilated.
Therefore, inflating of one scalar (e.g., model forecasts) seems to have the similar
impact as deflating another one (e.g., water residual), particularly the weights
associated in this problem can be shown as function of the ratio of these three scalars.
Specifically, inflation of forecast error covariance has somewhat similar impact with

deflation of the water balance residual covariance. If the focus of a study or
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experiment is reducing water balance, WCEnKF could be a better choice and
computationally faster than WCEnKF-Inf and WCEnKF-Inf-Loc schemes.
Accordingly, it is plainly obvious that the water balance residual of the scheme
WCENKF-Inf is larger than that of the scheme WCENKF. However, the objective in
this study is to reduce water balance without significantly increasing the analysis error.
Since the analysis errors for WCENKF in the layers shallower than 36.6 cm are
significantly larger than those for the schemes with inflation, WCENKF is not
preferred.

According to Figure 5a, the covariance inflation improved the estimates of the
soil moisture content in the shallow layers independently of whether vertical
localization was used. This is primarily because the observation operator, h, is the
linear operator that was used to interpolate the soil moisture content at depths of 2.8
cm and 6.2 cm to a depth of 3 cm. Then, the likelihood function for the inflation
factor (Eg. (11)) depends only on the observations and predictions of the soil moisture
content in the 2" and 3™ layers. The mean value of the inflation factor is 6.25 for
WCENKF-Inf, indicating that the initial forecast spread is not large enough. This leads
to an improvement in the forecast error statistics in the shallow layers, and to further
improvements in the assimilated soil moisture contents of those layers.

However, the soil moisture contents of the deep layers are not directly related to
the inflation factor. Inflating the forecast errors in the deep layers leads to an
overestimation of the corresponding forecast error covariance, and could lead to larger
analysis errors in the deep layers (see WCENKF-Inf in Figure 5a). Therefore in this
study, the vertical localization approach was developed to prevent soil moisture over
fitting for deep layers. Using all observations for threshold s is only for model

selection (from the 10 layers), not for fitting parameter. When vertical localization is
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used, the soil moisture contents of the deep layers are not significantly updated.
Consequently, larger errors are avoided in the deep layers (see WCENKF-Inf-Loc in
Figure 5a).

Comparing to traditional EnKF without inflation and localization, although
mainly the soil moisture contents of layers above the threshold layer (usually the 5™ or
6™ layer) were updated at each time step during the assimilation process when the
WCENKF-Inf-Loc was used, Figure 5a shows that the soil moisture contents of the
layers below the threshold layer, especially the 6™ and 7™ layers, are also improved.
This may be because the model propagates changes in the shallow layers downward,
adjusting the soil moisture contents of the deep layers. Because the soil moisture
content of layers above the threshold layer was improved during the previous time
step, this process results in better predictions of the soil moisture contents of layers
below the threshold layer, and therefore, reduces the analysis error in layers below the

threshold layer.

6.2 Bias correction

Geophysical models are never perfect and usually produce estimates with biases
that vary in time and in space (Reichle 2008). Therefore, bias correction is important
for assimilating data into models. In this study, only soil moisture in shallow layers
can be observed (in order to mimic the satellite observation), so the bias for the soil
moisture in deeper layers can not be entirely removed only using the observations.
However, bias can be detected by monitoring statistics of observation-minus-forecast
residual in the assimilation systems. Therefore the bias-awre assimilation proposed by
Dee (2005) was further applied to reduce the bias of soil moisture in all layers.

For further evaluating the efficacy of the bias-awre assimilation scheme, the
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analysis error variance was decomposed to a short-lived component (Figure 5b) and a
bias component (Figure 5c) for the synthetic experiment. It shows that for the
bias-blind data assimilation scheme (WCENKF-Inf-Loc), both short-lived errors and
biases reduce in the layers close to observation, while maintain the similar levels as
those for EnKF for the deeper layers. The covariance inflation can play an important
role in bias reduction. Bias can only be seen during long assimilation period. At an
instant time, bias and error are mixed. For the traditional EnKF, the forecast error
covariance matrix obtained from the ensemble of their anomalies (Eq. (2)) mainly
represents short-lived error, so it has to be inflated to include error related to bias.
Moreover, the bias could be further reduced by the additional bias-aware assimilation.

There are other bias estimation approaches in data assimilation. For example,
treading bias as model variables and estimate in assimilation (De Lannoy et al. 2007;
Dee and Da Silva 1998), adjusting the state variable of the forecast model not only
their covariance matrix in each forecast step (Zhang et al. 2014; Zhang et al. 2015),
addressing the biases in the model and observations by rescaling their cumulative
distribution functions (Koster et al. 2009; Reichle and Koster 2004). The scheme
proposed here can provide a base line to validate the efficacy of these approaches and

could be further improved after these bias corrections.

6.3 Broader implications

In our schemes, the canopy’s water content was directly updated by the soil
moisture observations, following the approach of previous studies (Yilmaz et al. 2011;
Yilmaz et al. 2012). The canopy’s water content (CWC) and snow water equivalent
(SWE) are related to the water budget. If the water budget constraint is absent, they

are normally not updated and the vegetation module transports the water into the
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vegetation layer. However, the present study focused on the assimilation with the
water budget constraint, then updating CWC and SWE would help to reduce the water
budget residuals.

For the assimilation with the water budget constraint but without update of CWC

and SWE, the state variables related to the water budget are decomposed as

x=(,X% ,X) where ;X comprises of SM and SIC, ,X comprises of CWC and SWE.
c=(,C, ,€) converts the units of X=(,X, ,X) to millimeters (mm). The assimilation
for not update of ,X can be achieved by substituting X and A, in section 3.2 by
X and . p,, respectively, that is

By =1C" X8+, X! +Pr—Ev, —Rn/,, (22)
where Pr,, Evnf’t and Rnnf,t are diagnostic variables specifying the states of the

precipitation, evapotranspiration and runoff, respectively. By this way, the canopy’s
water content are not updated and the vegetation module transports the water into the

vegetation layer. In this study, the range of the estimated CWCs for all assimilations

with or without update of ,x is only about 0.005 mm. Considering the estimated

water budget residuals are between 0.05 mm and 0.14 mm and there is no SWE in the
summer peried, we conclude that update of CWC has a little impact on water balance
in this study.

The most computational cost in the assimilation system is on computing the
localization function at each model grid cell. For the synthetic experiments with
CoLM model and 40 grids, it takes about 24 hours running on the personal
workstation. For global data assimilation with 2° resolution it could take about 3
months. However, the super server and parallel computation can significantly shorten

the computational time. A regional scale using soil texture or climate regimes can also
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be used to delineate different regions. By this way, the computational time of global
data assimilation can be further reduced.

In the near future, we plan to validate the major conclusions under different soil
conditions and land cover types. Vertical localization, which uses adjacent
observations, should also be tested in future work. More detailed analyses of the bias
correction for assimilating remote sensing retrievals should be performed. The
response of the analytic soil moisture content to weather predictions also needs to be
investigated. Completing these studies should improve the state of research into

land-atmosphere interactions.

7. Conclusions

In this study, observations of the soil moisture content at a depth of 3 cm were
assimilated using an ensemble Kalman filter with several improvements. Firstly, an
adaptive forecast error inflation based on maximum-Ilikelihood estimation was
adopted to reduce the analysis error. This study supports the idea that the proper form
of the forecast error covariance matrix is crucial for reducing the analysis error near
the layers in which observations are made. Secondly, an adequate vertical localization
for the ensemble-based filter was proposed associated with the forecast error
covariance inflation, to avoid misestimates of the soil moisture contents of deep layers.
Lastly, a constraint on the water balance was used in this study to reduce the water
budget residual substantially without significantly changing the assimilation accuracy.
The experiment results of synthetic study show that the WCEnKF-Inf-Loc
assimilation scheme can reduce the analysis error from 6.70% to 2.00% in the shallow
layers, with both the short-lived analysis error and the analysis bias reduced. It also
leads to a rational water budget residual with spatial average 0.0737 mm, which is
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much smaller than 0.1389 mm of the EnKF scheme. The bias-aware assimilation
scheme is potentially useful to further reduce the analysis error arising from model

bias.
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Appendix A. A bias-aware assimilation scheme

For correcting the bias of the analysis states X;, in Eqg. (12), the bias-aware

assimilation (Dee 2005) is appied.
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Let b, is the forecast bias at time step t, and set b, =0. Then
~ ~ -1 N
b, =b,,—yP,h"(hP,h" +R) (ot ~h(x/ - bt_l)) . (A1)

where X, is the ensemble mean of the perturbed forecast states X, predicted from

the perturbed analysis state at previous time step X, the forecast error covariance

matrix is in the form

P =i o R ][V (2)

where the localization threshold s is adopted from the bias-blind scheme documented

in section 3.2,
~t = LZ‘,(y(r:t _th )(Xr:t _th )T a (A3)

and the inflation factor /it Is estimated by minimizing

-1

2L, (4)=In(hP,h" +R )+ (o, ~hx/) (hP,h" +R) (0,~hx/). (A4)
The scalar parameter 7 in Eq. (Al) that controls the magnitude of the forecast

bias estimates, is derived by

y=—+_(R+hRh")(hPh") ", (A5)

M
1-u
where 4 is estimated by minimizing the following objective function (Dee and

Todling 2000)

|:l—/,l/(1— (1_ ,u)e—eriAt/n )]|:Z(ot _ thf )EeriAt/n:| (Rt + hPthT )71

f(ﬂ)=znz{ —1} (A6)

Then the perturbed analysis states is calculated as
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Xnt = )~(rf|,t - bt—l + IstahTRt_l (Ot Té— h (Xr:t - bt—l))
Da~~-1( p T(of (A7)
+Pco, (:Bn,t —C (Xn,t _bt—l))
where
Bn,t = CT)N(ﬁ,tfl +Pr— Evnf,t - Rnnf,t ) (A8)

~—LN~_1N~X"_1N~T
(Dt_N_lZ(ﬂnt N;ﬁjtj (ﬂnt N;ﬂJtJ (A9)

n=1

and

B2 = (W'R*h+B +cgle’) (A10)

Appendix B. Proof of Eq. (20)
For a location and vertical soil layer, the analysis error variance in the synthetic

experiment is defined as

e D)
a 233.[5 e Xt,h Xt,h

1 &2, 2
:ﬁ;;(xt,h_xt,h_ba-l_ba) (Bl)
= L Sk ox b a2+ 2SSy
IS TR RL R DUCIELIELY

From the definition of analysis bias (Eq. (19)), the last term on the right hand side of

Is zero, so Eq. (20) is proved.
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880 |ocation of the synthetic study area (right plot).
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Table 1. The node depths (cm) of the 10 soil layers in the CoLM model.

Layer 1 2 3 4 5 6 7 8 9 10

Depth
(cm) 28 6.2 119 212 36.6 620 1038 1728 286.5
cm

Table 2. Estimated localization scale factor for different cases.

Layer 2 3 4 5 6 7 8 9 10

M, 0.2824 0.1256 0.0587 0.0300 0.0163 0.0093 0.0053 0.0025 0.0001
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