

Journal: Hydrology and Earth System Sciences

Title: Assimilating Shallow Soil Moisture Observations into Land Models with a Water Budget Constraint

Authors: Bo Dan, Xiaogu Zheng, Guocan Wu, and Tao Li

MS NO.: hess-2019-696

MS Type: Research Article

The authors highly appreciate the anonymous reviewer for his/her very helpful and insightful comments that lead to the considerable improvement of the quality of this manuscript. We have checked our work carefully according to these comments and made the requested changes. The main improvement is the discussions on updating the canopy water content and WCEnKF in reducing water budget residual. The Abstract and Conclusions sections are also revised with adding necessary quantitative measures.

Below we indicate the comments and use blue font for our responses. The corresponding revised texts are also used blue font in the revised version of our manuscript.

The study is suitable for publication after following minor changes.

(1) Both reviewers the prior version of the manuscript asked about the direct update of canopy water content. I understand that the authors are following the approach of Yilmaz et al. (2011; 2012) but this choice of updating canopy water content needs to be discussed further in the manuscript. It could be done in the discussion section or in the methods section.

Response: Thanks for your comment. The canopy's water content (CWC) and snow water equivalent (SWE) are related to the water budget. If the water budget constraint is absent, they are normally not updated and the vegetation module transports the water into the vegetation layer. However, the present study focused on the assimilation with the water budget constraint, then updating CWC and SWE would help to reduce the water budget residuals.

For the assimilation with the water budget constraint but without update of CWC and SWE, the state variables related to the water budget are decomposed as $\mathbf{x} = ({}_1\mathbf{x}, {}_2\mathbf{x})$ where ${}_1\mathbf{x}$ comprises of SM and SIC (the soil moisture content and the soil ice content at the 10 vertical levels listed in Table 1), ${}_2\mathbf{x}$ comprises of CWC and SWE (the canopy's water content and the snow water equivalent). $\mathbf{c} = ({}_1\mathbf{c}, {}_2\mathbf{c})$ is a 22-dimensional vector that converts the units of $\mathbf{x} = ({}_1\mathbf{x}, {}_2\mathbf{x})$ to millimeters (mm).

The assimilation for not update of ${}_2\mathbf{x}$ can be achieved by substituting \mathbf{x} and $\beta_{n,t}$ in section 3.2 by ${}_1\mathbf{x}$ and ${}_1\beta_{n,t}$ respectively, that is

$${}_1\beta_{n,t} = {}_1\mathbf{c}^T {}_1\mathbf{x}_{n,t-1}^a + {}_2\mathbf{c}^T {}_2\mathbf{x}_{n,t-1}^f + Pr_t - Ev_{n,t}^f - Rn_{n,t}^f, \quad (22)$$

where Pr_t , $Ev_{n,t}^f$ and $Rn_{n,t}^f$ are diagnostic variables specifying the states of the precipitation, evapotranspiration and runoff, respectively. By this way, the canopy's water content are not updated and the vegetation module transports the water into the vegetation layer. In this study, the range of the estimated CWCs for all assimilations with or without update of ${}_2\mathbf{x}$ is only about 0.005 mm. Considering the estimated water budget residuals are between 0.05 mm and 0.14 mm and there is no SWE in the summer period, we conclude that update of CWC has a little impact on water balance in this study.

This discussion was added in section 6.3 of the revised version. (Lines 539-561)

(2) The results in Fig. 6 indicate that WcEnKF results in the smallest water balance residual relative to various WcEnKF-Inf and WcEnKF-Inf-Loc. I realize that WcEnKF-Inf and WcEnKF-Inf-Loc leads to smaller bias in soil moisture but if the focus of a study or experiment is reducing water balance, does this result indicate that WcEnKF is a better choice? I assume it is computationally faster to implement WcEnKF too. Please discuss this point.

Response: Thanks for your comment. We agree that if the focus of a study or experiment is reducing water balance, WCEnKF could be a better choice and computationally faster than WCEnKF-Inf and WCEnKF-Inf-Loc schemes. Accordingly, it is plainly obvious that the water balance residual of the scheme WCEnKF-Inf is larger than that of the scheme WCEnKF. However, the objective in this study is to reduce water balance without significantly increasing the analysis error. Since the analysis errors for WCEnKF in the layers shallower than 36.6 cm are significantly larger than those for the schemes with inflation, WCEnKF is not preferred.

These texts have been added to the revised version. (Lines 468-476)

(3) Both Abstract and Conclusions section do not mention any quantitative measures (e.g. % improvement in bias) of improvement in model performance after data assimilation.

Response: Thanks for your comment. The main quantitative measures of the analysis errors and water budget residuals are included in the abstract and conclusions.

For the more details, in abstract we added (Lines 27-35):

“The results of the assimilation process suggest that the inflation approach effectively reduces the analysis error from 6.70% to 2.00% in shallow layers, but increases from 6.38% to 12.49% in deep layers. The vertical localization approach leads to 6.59% of the analysis error in deep layers, and the bias-aware assimilation scheme further reduces to 6.05%. The spatial average of the water balance residual is 0.0487 mm of weakly constrained EnKF scheme, and 0.0737 mm of weakly constrained EnKF with inflation and localization scheme, which are much smaller than 0.1389 mm of the EnKF scheme.”

In the conclusion we added (Lines 589-593):

“The experiment results of synthetic study show that the WCEnKF-Inf-Loc assimilation scheme can reduce the analysis error from 6.70% to 2.00% in the shallow

layers, with both the short-lived analysis error and the analysis bias reduced. It also leads to a rational water budget residual with spatial average 0.0737 mm, which is much smaller than 0.1389 mm of the EnKF scheme.”

(4) Line 29: "Finnaly" should be "Finally".

Response: Revised.

(5) Line 78: "it suggests" should be "it is suggested".

Response: Revised.

(6) 4.2.3, please define the variables in the equation to calculate water balance residuals.

Response: The variables are defined as follows: “ N is the ensemble size, a_{ts} is the number of assimilation time steps, and $r_{n,t}$ is the ensemble water budget residual at time step t as defined in Eq. (6).”

This was added in section 4.2.3. (Lines 361-362)

(7): 6.3 "Notes" is a pretty vague heading for this section, perhaps "Broader implications" or "Global implementation" would be better.

Response: The heading has been changed to “Broader implications”.

Again, thanks for your valuable comments and recommendation.

The main changes are listed as follows.

- (1) Lines 27-35: Added the main quantitative measures of the analysis errors and water budget residuals in the abstract.
- (2) Lines 361-362: Added the variables in the equation to calculate water balance residuals (Eq. (21)).
- (3) Lines 468-476: Added the discussion on WCEnKF scheme.
- (4) Lines 539-561: Added the discussion on updating of canopy water content.
- (5) Lines 589-593: Added the main quantitative measures of the analysis errors and water budget residuals in the conclusions.

Assimilating Shallow Soil Moisture Observations into Land Models with a Water Budget Constraint

Bo Dan¹, Xiaogu Zheng², Guocan Wu^{3*}, and Tao Li⁴

¹ National Marine Data and Information Service, Tianjin, China

²Key Laboratory of Regional Climate-Environment Research for East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

³College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

⁴Institute of Statistics, Xi'an University of Finance and Economics, Xi'an, China

12

*Corresponding author: Guocan Wu
E-mail: gcwu@bnu.edu.cn

13 **Abstract**

14 Assimilating observations of shallow soil moisture content into land models is an
15 important step in estimating soil moisture content. In this study, several modifications
16 of an ensemble Kalman filter (EnKF) are proposed for improving this assimilation. It
17 was found that a forecast error inflation-based approach improves the soil moisture
18 content in shallow layers, but it can increase the analysis error in deep layers. To
19 mitigate the problem in deep layers while maintaining the improvement in shallow
20 layers, a vertical localization-based approach was introduced in this study. During the
21 data assimilation process, although updating the forecast state using observations can
22 reduce the analysis error, the water balance based on the physics in the model could
23 be destroyed. To alleviate the imbalance in the water budget, a weak water balance
24 constrain filter is adopted.

25 The proposed weakly constrained EnKF that includes forecast error inflation and
26 vertical localization was applied to a synthetic experiment. An additional bias-aware
27 assimilation for [reducing](#) the analysis bias is [also](#) investigated. [The results of the](#)
28 [assimilation process suggest that the inflation approach effectively reduces the](#)
29 [analysis error from 6.70% to 2.00% in shallow layers, but increases from 6.38% to](#)
30 [12.49% in deep layers. The vertical localization approach leads to 6.59% of the](#)
31 [analysis error in deep layers, and the bias-aware assimilation scheme further reduces](#)
32 [to 6.05% . The spatial average of the water balance residual is 0.0487 mm of weakly](#)
33 [constrained EnKF scheme, and 0.0737 mm of weakly constrained EnKF with inflation](#)
34 [and localization scheme, which are much smaller than 0.1389 mm of the EnKF](#)
35 [scheme.](#)

36

37 **Keywords** soil moisture, water balance, data assimilation, forecast error inflation,

38 vertical localization

39

40 **1. Introduction**

41 Soil moisture content is one of the most important variables that affect the water
42 cycle and energy balance through land-atmosphere interactions, especially
43 evaporation and precipitation (Han *et al.* 2014; Kumar *et al.* 2014; McColl *et al.* 2019;
44 Pinnington *et al.* 2018). Adequate knowledge of the horizontal and vertical
45 distributions of soil moisture at sub-seasonal to seasonal time scale could improve
46 weather and climate predictions (Delworth and Manabe 1988; Pielke 2001).
47 Alongside snow cover, soil moisture content is an important component of the
48 meteorological memory of the climate system over land (McColl *et al.* 2019; Robock
49 *et al.* 2000; Zhao and Yang 2018). It is also a primary water resource for the terrestrial
50 ecosystem and affects runoff (GUSEV and Novak 2007).

51 There are several ways to estimate the soil moisture content. Land surface
52 models can provide temporally and spatially continuous estimates of the soil moisture
53 content, but limited by the uncertainty in the models' parameters, errors in the forcing
54 data and imperfect physical parameterizations (Bonan 1996; Dai *et al.* 2003;
55 Dickinson *et al.* 1993; Oleson *et al.* 2010; Yang *et al.* 2009). Compared with the
56 results of models, in-situ observations of the soil moisture content provide more
57 accurate profiles (Bosilovich and Lawford 2002; Dorigo *et al.* 2011; Robock *et al.*
58 2000); however, networks of in-situ observations are usually too sparse to estimate the
59 soil moisture content on a regional scale (Gruber *et al.* 2018; Loizu *et al.* 2018).
60 Satellite remote sensing retrievals could provide soil moisture content data on regional
61 scales (Bartalis *et al.* 2007; Crow *et al.* 2017; Entekhabi *et al.* 2010; Kerr *et al.* 2010;
62 Lu *et al.* 2015; Njoku *et al.* 2003), but they are only available for the shallow layer of
63 the soil and the quality is poor in vegetated area (Pinnington *et al.* 2018; Yang *et al.*
64 2009).

65 Many studies indicated that a better approach to improving the estimates of soil
66 moisture contents on regional scales is to constrain land model predictions by
67 assimilating surface soil moisture data (Crow and Loon 2006; Crow and Wood 2003;
68 Reichle and Koster 2005). It can provide better estimates of the true soil moisture
69 content column states than the model forecasts (Crow *et al.* 2017; Lu *et al.* 2012; Lu
70 *et al.* 2015), and can further improve land surface model initial conditions for coupled
71 short-term weather prediction (Chen *et al.* 2014; Santanello *et al.* 2016; Yang *et al.*
72 2016). Especially, surface soil moisture data can be provided by in-situ observations
73 and passive microwave measurements (brightness temperatures) observed by remote
74 sensing.

75 A good estimate of the forecast error covariance matrix is crucial for the
76 compromise between uncertain observations and imperfect model predictions in data
77 assimilation (Anderson and Anderson 1999; Miyoshi 2011; Miyoshi *et al.* 2012; Wang
78 and Bishop 2003). For the Ensemble Kalman Filter (EnKF) assimilation method, the
79 forecast error covariance matrix is estimated using the sample covariance matrix of
80 the ensemble forecasts (Dumedah and Walker 2014; Evensen 1994; Han *et al.* 2014).
81 However, it is usually underestimated due to sampling and model errors, which can
82 eventually results in filter divergence (Anderson and Anderson 1999; Constantinescu
83 *et al.* 2007; Yang *et al.* 2015). To address this problem, it is suggested that the forecast
84 covariance matrix be multiplied by a factor (Dee and Da Silva 1999; Dee *et al.* 1999;
85 Li *et al.* 2012; Zheng 2009). This approach is referred to as inflation, and it becomes
86 particularly important when the error in the model is large (Bauser *et al.* 2018; El
87 Gharamti *et al.* 2019; Liang *et al.* 2012; Raanes *et al.* 2019; Wu *et al.* 2013).
88 Therefore, it could work well in this situation because of the enormous errors in the
89 land model.

90 In this study, a scheme for assimilating synthetic observations of the soil
91 moisture content into land models was developed based on EnKF method, which can
92 provide a foundation for further satellite data assimilation. For the synthetic
93 experiment, the Version 4.0 of the Community Land Model (CLM 4.0, (Lawrence *et*
94 *al.* 2011; Oleson *et al.* 2010)) was used to generate the “true values” and the Common
95 Land Model (CoLM, (Dai *et al.* 2003)) was selected as the forecast operator. The
96 differences in these two models are referred to the model error in an imperfect land
97 surface model. The inflation factors are estimated at every observation time step
98 during the assimilation process by minimizing the -2log-likelihood of the difference
99 between the forecast and the observation (Liang *et al.* 2012; Zheng 2009). For
100 assimilating observations near the surface only, such inflation approach can improve
101 the estimates of the forecast error statistics in shallow soil layers but may artificially
102 enlarge the forecast error statistics in deep soil layers. To avoid the possibility of
103 decreasing the quality of the estimates in deep soil layers, a vertical localization with
104 weighting of observations is adopted (Janjić *et al.* 2011). In this approach, a
105 localization function multiplies the weights on the components of the state vector
106 according to the distance from state layer to the observation. Moreover, the method
107 based on the maximum likelihood estimation was proposed to estimate the optimal
108 localization scale factor.

109 A major objective of soil moisture data assimilation is to address biases in
110 models and observations (Koster *et al.* 2009; Reichle and Koster 2004). In this study,
111 we only assume that models could be biased, while the soil moisture observations are
112 assumed to be unbiased. Moreover, the soil moisture observations are restricted in
113 shallow layer, so there is no observation available to directly correct the modeled soil
114 moisture biases in deep layers. However, bias can be detected by monitoring

115 observation-minus-forecast statistics in the assimilation system (Dee and Todling
116 2000). Then a bias-aware assimilation method can be designed to estimate and correct
117 the systematic errors sequentially with the model state variables (Dee 2005). Such
118 bias correction method is adopted in this study to detect the performance among
119 different assimilation schemes. Furthermore, the analysis error is decomposed to a
120 short-lived error (random error) and a bias (system error). It demonstrates that the
121 proposed scheme can reduce the both for soil moisture in shallow layers. These
122 improvements steps can also result in a resonable estimates of the soil moisture
123 content in the deep layers.

124 In addition to improve assimilation accuracy, this study also focuses on the
125 imbalance in the water budget that occurs during the process of assimilating the soil
126 moisture data. The terrestrial water budget is a key part of the global hydrologic cycle.
127 A better understanding of the budget can help us to improve our knowledge of
128 land-atmosphere water exchange and related physical mechanisms and therefore, can
129 improve our ability to develop models (Pan and Wood 2006). Generally speaking,
130 analyses do not conserve the water budget due to inconsistencies between predictions
131 made by models and observations (Li *et al.* 2012; Pan and Wood 2006; Wei *et al.*
132 2010; Yilmaz *et al.* 2011; Yilmaz *et al.* 2012). It is really a problem if the water
133 balance is violated in a systematic manner (for example, model is biased), which
134 suggests a trouble in data assimilation. Pan and Wood (2006) proposed a method
135 based on a strong constraint to reincorporate the water balance. However, this method
136 redistributes the error among the different terms in the water budget, which could
137 result in unrealistic estimates (Pan and Wood 2006; Yilmaz *et al.* 2011).

138 To overcome this shortcoming, Yilmaz *et al.* (2011) proposed using a weakly
139 constrained ensemble Kalman filter (WCEnKF) to reduce the imbalance in the water

140 budget. In a synthetic study, they concluded that the accuracy of a WCEnKF-based
141 analysis is close to that of an EnKF-based analysis but the water budget balance
142 residuals are much smaller than that of an unconstrained filter. Nevertheless, the
143 observations of the soil moisture content cover the entire column, and a perfect model
144 was used in their studies. This is not generally true, especially when only satellite
145 observations are assimilated. In this study, the experiments were further designed to
146 assimilate surface observations into an imperfect land model.

147 The structure of this paper is arranged as follows: The data and models used in
148 this study are described in section 2. The details of the WCEnKF-based methods that
149 incorporate inflation, vertical localization and bias-aware assimilation are provided in
150 section 3. The experimental designs and evaluations of synthetic experiments are set
151 in sections 4. The primary results are given in section 5. The discussion and
152 conclusion comprise sections 6 and 7.

153

154 **2. Models and data**

155 **2.1 Study area**

156 The study area is located in the Mongolian Plateau and comprises approximately
157 9352 square kilometers between 46° and 46.5° N and between 106.125° and 107° E.
158 The dominant biome is grassland, and no river flows through the area (see Figure 1).

159 The soil moisture content and related meteorological and hydrological parameters
160 are monitored by automatic stations maintained by the Coordinated Enhanced
161 Observing Period Asian Monsoon Project (CEOP AP) (Bosilovich and Lawford 2002;
162 Lawford *et al.* 2004). The CEOP AP was launched by the World Climate Research
163 Programme (WCRP) to develop an integrated global dataset that can be used to
164 address issues relating to water and energy budget simulations and predictions,

165 monsoon processes and the prediction of river flows. More details can be found at
166 <http://www.ceop.net>.

167

168 2.2 Forcing data

169 In this study, synthetic experiments were conducted to explore the accuracy of the
170 assimilation schemes. The simulations were driven by forcing data (including
171 radiation, wind, pressure, humidity, precipitation and temperature) from the
172 0.125°x0.125° ERA-Interim dataset (Dee *et al.* 2011) that had been scaled down to
173 provide a temporal resolution of one hour.

174

175 2.3 Models

176 The Common Land Model (CoLM) developed by Dai *et al.* (2003) is a
177 third-generation land surface model. It combines the best features of three successful
178 models: the Land Surface Model (LSM, (Bonan 1996)), the Biosphere-Atmosphere
179 Transfer Scheme (BATS, (Dickinson *et al.* 1993)) and the 1994 version of the Chinese
180 Academy of Sciences/Institute of Atmospheric Physics model (IAP94, (Dai *et al.*
181 2003)), and is being further developed. The primary characteristics of the model
182 include 10 unevenly spaced soil layers (see Table 1), one vegetation layer, 5 snow
183 layers (depending on the snow depth), explicit treatment of the mass of liquid water,
184 ice and phase changes within the system of the snow and soil, runoff parameterization
185 following the TOPMODEL concept, a tiled treatment of the sub-grid fraction of the
186 energy and water budget balance (Dai *et al.* 2003) and a canopy
187 photosynthesis-conductance mode that describes the simultaneous transfer of CO₂ and
188 water vapor into and out of the vegetation. The model parameters include data on the
189 global terrain, elevation, land use, vegetation, land-water mask and hybrid

190 FAO/STATSGO soil types from the USGS, which are available at a resolution of 30
191 arc seconds.

192 Version 4.0 of the Community Land Model (CLM 4.0) (Lawrence *et al.* 2011;
193 Oleson *et al.* 2010) is the land surface parameterization used with the Community
194 Atmosphere Model (CAM 4.0) and the Community Climate System Model (CCSM
195 4.0). The CLM 4.0 includes bio-geophysics, the hydrologic cycle, biogeochemistry
196 and the dynamic vegetation. CLM 4.0 simulates the bio-geophysical processes in each
197 sub-grid unit independently and maintains its own prognostic variables. The
198 parameters used in the CLM4.0 differ from those used in the CoLM. For example, the
199 soil texture data are derived from the IGBP soil data, and the land use data are derived
200 from the UNH Transient Land Use and Land Cover Change Dataset
201 (<http://luh.umd.edu/>).

202 In addition to using different parameters, the two models have different structures.
203 For example, a model of groundwater-soil water interactions (Niu *et al.* 2007; Niu *et*
204 *al.* 2005) has been incorporated into the CLM 4.0, while zero water flux at the bottom
205 of a soil column is assumed in the CoLM. Besides, the CLM 4.0 has the same vertical
206 discretization scheme as the CoLM (see Table 1), which makes comparing the results
207 of the two models convenient.

208

209 **3. Methods**

210 3.1 Forecast and observation systems

211 Using notation similar to that used by Yilmaz *et al.* (2011), the forecast system
212 can be written as

$$213 \mathbf{y}_{n,t}^f = \mathbf{M}_{n,t-1} \left(\mathbf{y}_{n,t-1}^a \right), \quad (1)$$

214 where $t=1, \dots, T$ is the time index, $n=1, \dots, N$ represents an ensemble member (in this

215 study, the ensemble size is set to 100), $\mathbf{M}_{n,t-1}$ is a CoLM forced by the n -th perturbed
 216 atmospheric forcing, and \mathbf{y} is a state vector containing 126 variables. The superscript
 217 “ f ” and “ a ” specify the forecast and analysis, respectively.

218 Let \mathbf{x} be the state variables related to the water budget, that comprises of **SM**
 219 and **SIC** (the soil moisture content and the soil ice content in % at the 10 vertical
 220 levels listed in Table 1), CWC and SWE (the canopy’s water content and the snow
 221 water equivalent in kg/m²). In this study, only \mathbf{x} is updated by data assimilation, while
 222 the model propagates changes to the other variables over time.

223 For the traditional EnKF, the forecast error covariance matrix \mathbf{P}_t is
 224 obtained from the ensemble of their anomalies,

$$225 \quad \mathbf{P}_t = \frac{1}{N-1} \sum_{n=1}^N (\mathbf{x}_{n,t}^f - \mathbf{x}_t^f)(\mathbf{x}_{n,t}^f - \mathbf{x}_t^f)^T. \quad (2)$$

226 where $\mathbf{x}_{n,t}^f$ is the component of $\mathbf{y}_{n,t}^f$ related to the water budget, \mathbf{x}_t^f is the ensemble
 227 mean of $\mathbf{x}_{n,t}^f$. To avoid overestimation of the co-variability between shallow
 228 observations and soil moistures deeper than a threshold layer s (see section 3.2 for the
 229 estimation of s), the following vertical localization function with weighting of
 230 observations \mathbf{p}_s (Janjić *et al.* 2011) will be applied on \mathbf{P}_t , i.e.,

$$231 \quad \mathbf{p}_s(l) = \exp(-\mu_s |d_l - d_o|) \quad (3)$$

232 where l represents for the l -level soil layer, d_l and d_o represent the depths of
 233 l -level soil layer and observation, respectively. $|d_l - d_o|$ is the Euclidian distance
 234 between the two layers. μ_s is estimated by minimizing the following mean square
 235 error between vertical localization function Eq (3) and a step function with threshold
 236 layer s ,

237
$$M(\mu) = \sum_{l \leq s} \left[\exp(-\mu|d_l - d_o|) - 1 \right]^2 + \sum_{l > s} \left[\exp(-\mu|d_l - d_o|) \right]^2 \quad (4)$$

238 The estimated μ_s is listed in Table 2.

239 The observations of the soil moisture content are collected at a depth of 3 cm at
240 6:00 am every day (denoted by o_t). The observation system is defined as

241
$$o_t = \mathbf{h} \mathbf{x}_t + \varepsilon_t, \quad (5)$$

242 where observational operator \mathbf{h} is a 22-dimensional vector which linearly interpolated
243 the soil moisture at depths of 2.8 cm and 6.2 cm to depth of 3 cm, \mathbf{x}_t represents the
244 true values of the state variables related to the water budget at the time step t and ε_t
245 is the observational error with mean zero and variance R_t . Since, the main objective
246 of this study is for methodology related to linear observational operators. Choosing
247 the linear interpolation as observational operator is only for convenience.

248

249 3.2 Assimilation with water budget constraint

250 Assimilating data on the soil moisture content usually results in an imbalance in
251 the water budget. To reduce this imbalance, a weak constraint on the water budget
252 (Yilmaz *et al.* 2011) is adopted in this study. The ensemble water budget residual at
253 time step t can be expressed as

254
$$r_{n,t} \equiv \beta_{n,t} - \mathbf{c}^T \mathbf{x}_{n,t}^a, \quad (6)$$

255 where

256
$$\beta_{n,t} = \mathbf{c}^T \mathbf{x}_{n,t-1}^a + Pr_t - Ev_{n,t}^f - Rn_{n,t}^f, \quad (7)$$

257 where \mathbf{c} is a 22-dimensional vector that converts the units to millimeters (mm) and
258 adds up the states in \mathbf{x} , the diagnostic variables Pr_t , $Ev_{n,t}^f$ and $Rn_{n,t}^f$ (mm) are
259 scalars specifying the states of the precipitation, evapotranspiration and runoff,

260 respectively, in each pixel.

261 The cost function used to estimate the state variables with the weak water budget
262 constraint (Eq. (6)) is

$$263 J_{n,t}(\mathbf{x}) = (\mathbf{o}_t - \mathbf{h}\mathbf{x})^T R_t^{-1} (\mathbf{o}_t - \mathbf{h}\mathbf{x}) + (\mathbf{x} - \mathbf{x}_{n,t}^f)^T \mathbf{P}_{s,t}^{-1} (\mathbf{x} - \mathbf{x}_{n,t}^f) + (\beta_{n,t} - \mathbf{c}^T \mathbf{x})^T \varphi_t^{-1} (\beta_{n,t} - \mathbf{c}^T \mathbf{x}), \quad (8)$$

264 where

$$265 \varphi_t = \frac{1}{N-1} \sum_{n=1}^N \left(\beta_{n,t} - \frac{1}{N} \sum_{j=1}^N \beta_{j,t} \right) \times \left(\beta_{n,t} - \frac{1}{N} \sum_{j=1}^N \beta_{j,t} \right)^T \quad (9)$$

266 is an estimate of the variance of $\beta_{n,t}$ and $\mathbf{P}_{s,t}$ represents a forecast error
267 covariance matrix defined by

$$268 \mathbf{P}_{s,t} = \left[\sqrt{\lambda_t} \right] [\mathbf{p}_s] \mathbf{P}_t [\mathbf{p}_s] \left[\sqrt{\lambda_t} \right]. \quad (10)$$

269 where \mathbf{P}_t is defined as Eq. (2); $[\mathbf{p}_s]$ is a diagonal matrix which localizes the soil
270 moisture error (i.e. it is \mathbf{p}_s defined by Eq. (3) for the soil moisture contents and 1 for
271 other variables). $\left[\sqrt{\lambda_t} \right]$ is also a diagonal matrix which inflates the forecast soil
272 moisture error (i.e. it is a scalar λ_t for the soil moisture contents and 1 for other
273 variable). λ_t is estimated by minimizing the -2log-likelihood of the difference
274 between the forecast and the observation (Dee and Da Silva 1999; Liang *et al.* 2012;
275 Zheng 2009),

$$276 -2L_{s,t}(\lambda_t) = \ln(\mathbf{h}\mathbf{P}_{s,t}\mathbf{h}^T + R_t) + (\mathbf{o}_t - \mathbf{h}\mathbf{x}_t^f)^T (\mathbf{h}\mathbf{P}_{s,t}\mathbf{h}^T + R_t)^{-1} (\mathbf{o}_t - \mathbf{h}\mathbf{x}_t^f). \quad (11)$$

277 The estimated forecast error inflation factor is denoted as $\hat{\lambda}_t$. The perturbed analysis
278 states of the variables related to water budget can be derived by minimizing Eq. (8),
279 which has the analytic form

280 $\mathbf{x}_{n,t}^a = \mathbf{x}_{n,t}^f + \mathbf{P}_t^a \mathbf{h}^T R_t^{-1} (o_t + \varepsilon_{n,t} - \mathbf{h} \mathbf{x}_{n,t}^f) + \mathbf{P}_t^a \mathbf{c} \varphi_t^{-1} (\beta_{n,t} - \mathbf{c}^T \mathbf{x}_{n,t}^f), \quad (12)$

281 where $\varepsilon_{n,t}$ is generated from a normal distribution with mean zero and variance R_t ,
 282 and

283 $\mathbf{P}_t^a = (\mathbf{h}^T R_t^{-1} \mathbf{h} + \mathbf{P}_{s,t}^{-1} + \mathbf{c} \varphi_t^{-1} \mathbf{c}^T)^{-1}, \quad (13)$

284 its analysis error covariance matrix.

285 For estimating the optimal threshold layer, define the -2log-likelihood of the total
 286 difference between the forecasts and the observations,

287 $L_s \equiv \sum_{t=1}^T (-2L_{s,t}(\hat{\lambda}_t)). \quad (14)$

288 The optimal threshold layer \hat{s} is selected as the smallest number s such that L_s is
 289 the minimum of $\{L_2, L_3, \dots, L_{s+1}\}$. The final analysis state is the selected
 290 corresponding to the optimal threshold layer \hat{s} . The complete assimilation procedure
 291 with water budget constraint is shown in Figure 2.

292

293 3.3 Bias-aware assimilation

294 The bias-aware data assimilation proposed by Dee (2005) is adopted to correct
 295 the analysis bias.

296 Let \mathbf{b}_t is the estimated bias at time step t and set $\mathbf{b}_1 = 0$. For $t > 1$,

297 $\mathbf{b}_t = \mathbf{b}_{t-1} - \gamma \tilde{\mathbf{P}}_{s,t} \mathbf{h}^T (\mathbf{h} \tilde{\mathbf{P}}_{s,t} \mathbf{h}^T + R_t)^{-1} (o_t - \mathbf{h} (\tilde{\mathbf{x}}_t^f - \mathbf{b}_{t-1})), \quad (15)$

298 where the scalar parameter γ that controls the magnitude of the forecast bias is
 299 estimated following Dee and Todling (2000) (see Eqs (A5)-(A6) of Appendix A), $\tilde{\mathbf{x}}_t^f$
 300 is the ensemble mean of the perturbed forecast states $\tilde{\mathbf{x}}_{n,t}^f$ from the analysis state
 301 $\tilde{\mathbf{x}}_{n,t-1}^a$, $\tilde{\mathbf{P}}_{s,t}$ is the corresponding adjusted forecast error covariance (see Eq. (A2) of

302 Appendix A).

303 Then the perturbed assimilated states are

$$304 \quad \tilde{\mathbf{x}}_{n,t}^a = \tilde{\mathbf{x}}_{n,t}^f - \mathbf{b}_{t-1} + \tilde{\mathbf{P}}_t^a \mathbf{h}^T R_t^{-1} \left(o_t + \varepsilon_{n,t} - \mathbf{h} \left(\tilde{\mathbf{x}}_{n,t}^f - \mathbf{b}_{t-1} \right) \right) \\ + \tilde{\mathbf{P}}_t^a \mathbf{c} \tilde{\varphi}_t^{-1} \left(\tilde{\beta}_{n,t} - \mathbf{c}^T \left(\tilde{\mathbf{x}}_{n,t}^f - \mathbf{b}_{t-1} \right) \right) \quad (16)$$

305 where $\tilde{\beta}_{n,t}$, $\tilde{\varphi}_t^{-1}$ and $\tilde{\mathbf{P}}_t^a$ are defined by Eqs (A7)-(A9) in Appendix A respectively.

306

307 4. Synthetic experiments

308 4.1 Experimental design

309 To investigate the performance of the WCEnKF-based methods that incorporate
310 inflation, vertical local localization and bias-aware assimilation, synthetic experiments
311 were performed using the CoLM. Unlike the “perfect model” assumption used in
312 Yilmaz et al. (2011), the assumptions of this study are accounted for the error in the
313 model, especially the structural error. Because there were structural differences in the
314 models of the water cycle (see section 2.3) used in the two models, CLM 4.0 was used
315 to generate the “true values” (i.e., to perform a reference run) for the synthetic
316 experiments and CoLM was selected as the forecast operator (i.e., to perform an
317 open-loop run). Therefore, the CLM 4.0 and the CoLM were both integrated on a
318 0.125° grid (see Figure 1 for the locations) with a time step of one hour. The
319 assimilation time was set to 6:00 am every day. The assimilation experiments were
320 conducted with 5 scenarios: the traditional ensemble Kalman filter (EnKF), a weakly
321 constrained ensemble Kalman filter (WCEnKF), a weakly constrained ensemble
322 Kalman filter with inflation (WCEnKF-Inf), a weakly constrained ensemble Kalman
323 filter with inflation and localization (WCEnKF-Inf-Loc) and a weakly constrained
324 ensemble Kalman filter with inflation, localization and bias-aware assimilation
325 (WCEnKF-Inf-Loc-BA).

326 Synthetic observations were obtained by interpolating \mathbf{SM}_t to a depth of 3 cm
 327 and adding noise with a normal distribution ($N(\mu=0, \sigma=0.5\%)$). The initial state
 328 \mathbf{x}_0 , was generated by running the CoLM from October 1, 2002 to June 1, 2003. Each
 329 component of the initial state was perturbed using an independent standard Gaussian
 330 random variable times 5% of magnitude of the component. The forcing data were
 331 perturbed in the manner described in Yilmaz et al. (2011). The synthetic experiments
 332 were conducted from June 1, 2003 to October 1, 2003. The state variables for each
 333 pixel were updated independently.

334

335 4.2 Validation statistics

336 4.2.1 Model error and bias

337 The model errors are defined as the difference between the actual values and the
 338 model's predictions based on true initial values, and the bias is the average of the error
 339 in the model during the relevant period. Let x_t denote the true values of the soil
 340 moisture content at time t for a location and vertical soil layer. x_t^M denotes the model
 341 predicted soil moisture from the true state at the previous time step $t-1$. The model's
 342 bias and error variance for one step can be written as

$$343 b_M = \frac{1}{a_{ts}} \sum_{t=1}^{a_{ts}} (x_t^M - x_t), \quad (17)$$

$$344 v_M = \frac{1}{a_{ts}} \sum_{t=1}^{a_{ts}} (x_t^M - x_t)^2, \quad (18)$$

345 where a_{ts} is the number of time steps over which the observations made at 6:00 am
 346 each day are assimilated.

347 4.2.2 Validation of analysis soil moisture

348 The true soil moisture content values from 7:00 am to 5:00 am next day are used
 349 to validate analysis states. For a location and vertical soil layer, let $x_{t,h}$ be the true
 350 soil moisture content at hour h on day t , and $x_{t,h}^f$ represent the forecasted soil
 351 moisture content at hour h from analysis state x_t^a at 6:00 am on day t . The analysis
 352 bias is defined as

$$353 \quad b_a = \frac{1}{23a_{ts}} \sum_{t=1}^{a_{ts}} \sum_{h=7}^{29} (x_{t,h}^f - x_{t,h}). \quad (19)$$

354 The analysis error variance is defined as

$$355 \quad v_a = \frac{1}{23a_{ts}} \sum_{t=1}^{a_{ts}} \sum_{h=7}^{29} (x_{t,h}^f - x_{t,h})^2 \\ = \frac{1}{23a_{ts}} \sum_{t=1}^{a_{ts}} \sum_{h=7}^{29} (x_{t,h}^f - x_{t,h} - b_a)^2 + b_a^2. \quad (20)$$

356 (See Appendix B for the proof)

357 4.2.3 Water balance

358 Following Yilmaz (2011), the water budget imbalance at location is evaluated
 359 using the water balance residual,

$$360 \quad R = \frac{1}{Na_{ts}} \sum_{t=1}^{a_{ts}} \sum_{n=1}^N r_{n,t}. \quad (21)$$

361 where N is the ensemble size, a_{ts} is the number of assimilation time steps, and $r_{n,t}$ is
 362 the ensemble water budget residual at time step t as defined in Eq. (6).

363

364 5. Results

365 In the synthetic experiments, the magnitudes of the model's bias and error were
 366 calculated using Eqs (17) and (18), respectively, and are shown in Figure 3. It shows
 367 that the model's bias was almost negative from Figure 3a. The negative bias in the
 368 surface layer was the result of a combination of a lower surface roughness and a larger

369 leaf area index in the CoLM; these values led to more soil evaporation and more
370 canopy interception and could result in a smaller amount of water infiltrating the soil
371 than the amount modeled using the CLM 4.0. In the CoLM, the porosity of each layer
372 was less than it was in the CLM 4.0, which retained less water and contributed to the
373 negative bias of the upper 9 layers. However, the magnitude of the bias increased to 2%
374 in the bottom layer. The significant difference between the two models at the bottom
375 layer could be ascribed to their different boundary conditions. Interactions between
376 the soil moisture content and the ground water at the bottom of the soil column were
377 modeled in the CLM 4.0 (Oleson *et al.* 2010) but not in the CoLM. The error in each
378 model (Figure 3b) fluctuated in a manner similar to that of the model's bias. Unbiased
379 observations are necessary for correcting bias in a model, which is not possible in
380 many realistic applications, especially in assimilating remote sensing retrievals. Since
381 satellite observations of the soil moisture content of deep layers are unavailable, only
382 removing the bias in shallow layers would introduce error in model dynamics.

383

384 5.1 Forecast error inflation and vertical localization

385 In the synthetic experiments, the study domain comprised 40 pixels. At each point
386 in the grid-scale threshold layer, the localization scale factor μ_s , was determined
387 independently. Therefore, totally 9 sets of experiments with different localization
388 scale factor (see Table 2) were conducted separately. Among these experiments, the
389 “optimal” case for each pixel was defined as the case in which the column averaged
390 analysis error (Eq. (20)) was minimized (shown in Figure 4). According to Figure 4a,
391 the corresponding threshold layer s of μ_s was generally between 5 and 6 in both
392 cases, which could be ascribed to the homogeneous soil texture and land cover. In the
393 WCEnKF-Inf-Loc, there were 19 pixels in which the threshold layers were “optimal,”

394 and the layers selected in the other pixels were suboptimal (most were roughly one
395 layer away from the “optimal” case). As shown in Figure 4b, the spatial average of the
396 root analysis error variance (Eq. (20)) of the WCEnKF-Inf-Loc (4.09%) was
397 comparable with the optimal value (3.84%) even though s was not selected on the
398 basis of minimizing the analysis error.

399 The spatial average of the root analysis error variance in each layer in the
400 schemes with (WCEnKF-Inf-Loc and WCEnKF-Inf) and without (WCEnKF)
401 inflation are displayed in Figure 5a. Above 36.6 cm, the analysis errors of the schemes
402 without inflation (6.70%) were substantially larger than those of the schemes with
403 inflation (2.00%) for the synthetic experiments. This suggested that inflation provided
404 a better estimate in the layers close to the observation. When no inflation was
405 performed, the accuracy of the soil moisture content was barely improved over that of
406 the open-loop (not shown here).

407 By comparing the schemes with (WCEnKF-Inf-Loc) and without (WCEnKF-Inf)
408 vertical localization, the impact of this approach on the assimilation accuracy in each
409 layer is shown in Figure 5a. Because the threshold layer of the localization function
410 ρ_s was layer 6 (36.6 cm) for 28 of the pixels (see Figure 4a), the spatial average of
411 root analysis error variance of the results of the WCEnKF-Inf-Loc is almost identical
412 to that of the results of the WCEnKF-Inf for depths above 36.6 cm. In contrast,
413 inflation increased the analysis error in the soil moisture content of the deep layers in
414 the WCEnKF-Inf from 6.38% to 12.49%. In this model, the sample error covariances
415 of the moisture contents of shallow and deep soil were inflated by a factor greater than
416 6 (the average inflation factor was 6.25). This could lead to larger assimilation errors
417 for deep soil moisture profiles in the WCEnKF-Inf. Therefore, inflation should be
418 used with vertical localization to reduce the spurious covariance resulting from the

419 covariance inflation-based approach.

420 As it was in the synthetic experiments, vertical localization (WCEnKF-Inf-Loc)
421 was helpful in avoiding erroneous estimates of the soil moisture contents at lower
422 levels (in the WCEnKF-Inf). A comparison of the analysis error at a depth of 3 cm
423 (i.e., the depth of the assimilated observations was 3 cm) in the models with
424 (WCEnKF-Inf and WCEnKF-Inf-Loc) and without (WCEnKF) inflation showed that
425 the inflation technique significantly reduces the analysis error at the depth at which
426 observations are made.

427 To investigate the role of bias correction, the spatial averaged root analysis error
428 variance (Eq. (20)) of WCEnKF-Inf-Loc-BA and WCEnKF-Inf-Loc were compared.
429 According to Figure 5a, the spatial averaged root analysis error variances of the two
430 schemes were comparable with each other (2.12% for the WCEnKF-Inf-Loc-BA and
431 2.16% for the WCEnKF-Inf-Loc) in the layers that were shallower than 36.6 cm. This
432 could be due to that the observations are closer to the shallow layers and the vertical
433 localization approach is reasonable effective to reduce the bias. However, for the
434 layers that were deeper than 62.0 cm, the averaged root analysis error of the
435 WCEnKF-Inf-Loc-BA (6.05%) was less than that of the WCEnKF-Inf-Loc (6.59%).

436

437 5.2 The water budget constraint

438 In the synthetic experiment, the weak constraint on the water budget reduced the
439 water balance residual significantly in each pixel and the results are shown in Figure 6.
440 It shows that, the spatial average of the water balance residual of WCEnKF scheme
441 was 0.0487 mm, which was much smaller than that of the EnKF scheme (0.1389 mm).
442 Therefore, the assimilation scheme with water budget constraint can indeed reduce the
443 water balance residuals relative to the assimilation scheme without water budget

444 constraint which is consistent with the results of previous studies (Yilmaz *et al.* 2011;
445 Yilmaz *et al.* 2012). The interquartile range of the water balance residuals in the 40
446 pixels for the WCEnKF scheme was 0.0042 mm, which was less than half of that for
447 the EnKF scheme (0.0098 mm). The reduced spread of the water balance residuals
448 signals a more stable water balance budget with the water budget constraint.

449 The spatial average of the water balance residual for WCEnKF-Inf,
450 WCEnKF-Inf-Loc and WCEnKF-Inf-Loc-BA was 0.0834 mm, 0.0737 mm and
451 0.0723 mm, respectively. The corresponding interquartile range was 0.0079 mm,
452 0.0051 mm and 0.0072 mm, respectively. They are still much smaller than those for
453 the EnKF scheme, despite there are bit increase than those for WCEnKF. This
454 demonstrate the weak water budget constraint is still effective in reducing magnitude
455 and spread of the water imbalance, dispite of more complecated assimilation
456 approaches were associated.

457

458 **6. Discussion**

459 6.1 Covariance inflation and vertical localization

460 In this study, the cost function used to estimate the state variables with the weak
461 water budget constraint (Eq. (8)) consists of three parts, which are related with
462 observations, model forecasts and water residual (Yilmaz *et al.* 2012). It is represented
463 as a summation of three scalars, no matter how many observations are assimilated.
464 Therefore, inflating of one scalar (e.g., model forecasts) seems to have the similar
465 impact as deflating another one (e.g., water residual), particularly the weights
466 associated in this problem can be shown as function of the ratio of these three scalars.
467 Specifically, inflation of forecast error covariance has somewhat similar impact with
468 deflation of the water balance residual covariance. [If the focus of a study or](#)

469 experiment is reducing water balance, WCEnKF could be a better choice and
470 computationally faster than WCEnKF-Inf and WCEnKF-Inf-Loc schemes.
471 Accordingly, it is plainly obvious that the water balance residual of the scheme
472 WCEnKF-Inf is larger than that of the scheme WCEnKF. However, the objective in
473 this study is to reduce water balance without significantly increasing the analysis error.
474 Since the analysis errors for WCEnKF in the layers shallower than 36.6 cm are
475 significantly larger than those for the schemes with inflation, WCEnKF is not
476 preferred.

477 According to Figure 5a, the covariance inflation improved the estimates of the
478 soil moisture content in the shallow layers independently of whether vertical
479 localization was used. This is primarily because the observation operator, \mathbf{h} , is the
480 linear operator that was used to interpolate the soil moisture content at depths of 2.8
481 cm and 6.2 cm to a depth of 3 cm. Then, the likelihood function for the inflation
482 factor (Eq. (11)) depends only on the observations and predictions of the soil moisture
483 content in the 2nd and 3rd layers. The mean value of the inflation factor is 6.25 for
484 WCEnKF-Inf, indicating that the initial forecast spread is not large enough. This leads
485 to an improvement in the forecast error statistics in the shallow layers, and to further
486 improvements in the assimilated soil moisture contents of those layers.

487 However, the soil moisture contents of the deep layers are not directly related to
488 the inflation factor. Inflating the forecast errors in the deep layers leads to an
489 overestimation of the corresponding forecast error covariance, and could lead to larger
490 analysis errors in the deep layers (see WCEnKF-Inf in Figure 5a). Therefore in this
491 study, the vertical localization approach was developed to prevent soil moisture over
492 fitting for deep layers. Using all observations for threshold s is only for model
493 selection (from the 10 layers), not for fitting parameter. When vertical localization is

494 used, the soil moisture contents of the deep layers are not significantly updated.
495 Consequently, larger errors are avoided in the deep layers (see WCEnKF-Inf-Loc in
496 Figure 5a).

497 Comparing to traditional EnKF without inflation and localization, although
498 mainly the soil moisture contents of layers above the threshold layer (usually the 5th or
499 6th layer) were updated at each time step during the assimilation process when the
500 WCEnKF-Inf-Loc was used, Figure 5a shows that the soil moisture contents of the
501 layers below the threshold layer, especially the 6th and 7th layers, are also improved.
502 This may be because the model propagates changes in the shallow layers downward,
503 adjusting the soil moisture contents of the deep layers. Because the soil moisture
504 content of layers above the threshold layer was improved during the previous time
505 step, this process results in better predictions of the soil moisture contents of layers
506 below the threshold layer, and therefore, reduces the analysis error in layers below the
507 threshold layer.

508

509 6.2 Bias correction

510 Geophysical models are never perfect and usually produce estimates with biases
511 that vary in time and in space (Reichle 2008). Therefore, bias correction is important
512 for assimilating data into models. In this study, only soil moisture in shallow layers
513 can be observed (in order to mimic the satellite observation), so the bias for the soil
514 moisture in deeper layers can not be entirely removed only using the observations.
515 However, bias can be detected by monitoring statistics of observation-minus-forecast
516 residual in the assimilation systems. Therefore the bias-aware assimilation proposed by
517 Dee (2005) was further applied to reduce the bias of soil moisture in all layers.

518 For further evaluating the efficacy of the bias-aware assimilation scheme, the

519 analysis error variance was decomposed to a short-lived component (Figure 5b) and a
520 bias component (Figure 5c) for the synthetic experiment. It shows that for the
521 bias-blind data assimilation scheme (WCEnKF-Inf-Loc), both short-lived errors and
522 biases reduce in the layers close to observation, while maintain the similar levels as
523 those for EnKF for the deeper layers. The covariance inflation can play an important
524 role in bias reduction. Bias can only be seen during long assimilation period. At an
525 instant time, bias and error are mixed. For the traditional EnKF, the forecast error
526 covariance matrix obtained from the ensemble of their anomalies (Eq. (2)) mainly
527 represents short-lived error, so it has to be inflated to include error related to bias.
528 Moreover, the bias could be further reduced by the additional bias-aware assimilation.

529 There are other bias estimation approaches in data assimilation. For example,
530 treating bias as model variables and estimate in assimilation (De Lannoy *et al.* 2007;
531 Dee and Da Silva 1998), adjusting the state variable of the forecast model not only
532 their covariance matrix in each forecast step (Zhang *et al.* 2014; Zhang *et al.* 2015),
533 addressing the biases in the model and observations by rescaling their cumulative
534 distribution functions (Koster *et al.* 2009; Reichle and Koster 2004). The scheme
535 proposed here can provide a base line to validate the efficacy of these approaches and
536 could be further improved after these bias corrections.

537

538 6.3 Broader implications

539 In our schemes, the canopy's water content was directly updated by the soil
540 moisture observations, following the approach of previous studies (Yilmaz *et al.* 2011;
541 Yilmaz *et al.* 2012). The canopy's water content (CWC) and snow water equivalent
542 (SWE) are related to the water budget. If the water budget constraint is absent, they
543 are normally not updated and the vegetation module transports the water into the

544 vegetation layer. However, the present study focused on the assimilation with the
545 water budget constraint, then updating CWC and SWE would help to reduce the water
546 budget residuals.

547 For the assimilation with the water budget constraint but without update of CWC
548 and SWE, the state variables related to the water budget are decomposed as
549 $\mathbf{x} = ({}_1\mathbf{x}, {}_2\mathbf{x})$ where ${}_1\mathbf{x}$ comprises of SM and SIC, ${}_2\mathbf{x}$ comprises of CWC and SWE.
550 $\mathbf{c} = ({}_1\mathbf{c}, {}_2\mathbf{c})$ converts the units of $\mathbf{x} = ({}_1\mathbf{x}, {}_2\mathbf{x})$ to millimeters (mm). The assimilation
551 for not update of ${}_2\mathbf{x}$ can be achieved by substituting \mathbf{x} and $\beta_{n,t}$ in section 3.2 by
552 ${}_1\mathbf{x}$ and ${}_1\beta_{n,t}$ respectively, that is

$$553 \quad {}_1\beta_{n,t} = {}_1\mathbf{c}^T {}_1\mathbf{x}_{n,t-1}^a + {}_2\mathbf{c}^T {}_2\mathbf{x}_{n,t-1}^f + Pr_t - Ev_{n,t}^f - Rn_{n,t}^f, \quad (22)$$

554 where Pr_t , $Ev_{n,t}^f$ and $Rn_{n,t}^f$ are diagnostic variables specifying the states of the
555 precipitation, evapotranspiration and runoff, respectively. By this way, the canopy's
556 water content are not updated and the vegetation module transports the water into the
557 vegetation layer. In this study, the range of the estimated CWCs for all assimilations
558 with or without update of ${}_2\mathbf{x}$ is only about 0.005 mm. Considering the estimated
559 water budget residuals are between 0.05 mm and 0.14 mm and there is no SWE in the
560 summer peried, we conclude that update of CWC has a little impact on water balance
561 in this study.

562 The most computational cost in the assimilation system is on computing the
563 localization function at each model grid cell. For the synthetic experiments with
564 CoLM model and 40 grids, it takes about 24 hours running on the personal
565 workstation. For global data assimilation with 2° resolution it could take about 3
566 months. However, the super server and parallel computation can significantly shorten
567 the computational time. A regional scale using soil texture or climate regimes can also

568 be used to delineate different regions. By this way, the computational time of global
569 data assimilation can be further reduced.

570 In the near future, we plan to validate the major conclusions under different soil
571 conditions and land cover types. Vertical localization, which uses adjacent
572 observations, should also be tested in future work. More detailed analyses of the bias
573 correction for assimilating remote sensing retrievals should be performed. The
574 response of the analytic soil moisture content to weather predictions also needs to be
575 investigated. Completing these studies should improve the state of research into
576 land-atmosphere interactions.

577

578 **7. Conclusions**

579 In this study, observations of the soil moisture content at a depth of 3 cm were
580 assimilated using an ensemble Kalman filter with several improvements. Firstly, an
581 adaptive forecast error inflation based on maximum-likelihood estimation was
582 adopted to reduce the analysis error. This study supports the idea that the proper form
583 of the forecast error covariance matrix is crucial for reducing the analysis error near
584 the layers in which observations are made. Secondly, an adequate vertical localization
585 for the ensemble-based filter was proposed associated with the forecast error
586 covariance inflation, to avoid misestimates of the soil moisture contents of deep layers.
587 Lastly, a constraint on the water balance was used in this study to reduce the water
588 budget residual substantially without significantly changing the assimilation accuracy.
589 The experiment results of synthetic study show that the WCEnKF-Inf-Loc
590 assimilation scheme can reduce [the analysis error from 6.70% to 2.00% in the shallow](#)
591 [layers](#), with both the short-lived analysis error and the analysis bias reduced. It also
592 leads to a rational water budget residual [with spatial average 0.0737 mm, which is](#)

593 much smaller than 0.1389 mm of the EnKF scheme. The bias-aware assimilation
594 scheme is potentially useful to further reduce the analysis error arising from model
595 bias.

596

597 **Data availability** The soil moisture observations are available at <http://www.ceop.net>.
598 The ERA-interim forcing data used in the synthetic experiments is obtained from
599 <https://apps.ecmwf.int/datasets>.

600

601 **Author Contributions** BD performed the simulations and assimilations. XZ designed
602 the research. GW analyzed the results. TL collected and preprocessed the data. GW
603 and XZ prepared the manuscript with contributions from all co-authors.

604

605 **Conflicts of Interest** The authors declare that they have no conflict of interest.

606

607 **Acknowledgement** This study was funded by the the National Key R&D Program of
608 China (2019YFC1510002, 2015CB953703) and the National Natural Science
609 Foundation of China (41705086). We would like to thank the Editor and two
610 anonymous reviewers for their insightful comments in improving the manuscript. We
611 also thank Drs. Yongjiu Dai and Qingyun Duan for their help in land surface model.

612

613 **Appendix A. A bias-aware assimilation scheme**

614 For correcting the bias of the analysis states $\mathbf{x}_{n,t}^a$ in Eq. (12), the bias-aware
615 assimilation (Dee 2005) is applied.

616 Let \mathbf{b}_t is the forecast bias at time step t, and set $\mathbf{b}_1 = 0$. Then

617
$$\mathbf{b}_t = \mathbf{b}_{t-1} - \gamma \tilde{\mathbf{P}}_{s,t} \mathbf{h}^T \left(\mathbf{h} \tilde{\mathbf{P}}_{s,t} \mathbf{h}^T + R_t \right)^{-1} \left(o_t - \mathbf{h} \left(\tilde{\mathbf{x}}_t^f - \mathbf{b}_{t-1} \right) \right). \quad (\text{A1})$$

618 where $\tilde{\mathbf{x}}_t^f$ is the ensemble mean of the perturbed forecast states $\tilde{\mathbf{x}}_{n,t}^f$ predicted from
619 the perturbed analysis state at previous time step $\tilde{\mathbf{x}}_{n,t-1}^a$, the forecast error covariance
620 matrix is in the form

621
$$\tilde{\mathbf{P}}_{s,t} = \left[\sqrt{\tilde{\lambda}_t} \right] [\mathbf{p}_s] \tilde{\mathbf{P}}_t [\mathbf{p}_s] \left[\sqrt{\tilde{\lambda}_t} \right], \quad (\text{A2})$$

622 where the localization threshold s is adopted from the bias-blind scheme documented
623 in section 3.2,

624
$$\tilde{\mathbf{P}}_t = \frac{1}{N-1} \sum_{n=1}^N \left(\tilde{\mathbf{x}}_{n,t}^f - \tilde{\mathbf{x}}_t^f \right) \left(\tilde{\mathbf{x}}_{n,t}^f - \tilde{\mathbf{x}}_t^f \right)^T, \quad (\text{A3})$$

625 and the inflation factor $\tilde{\lambda}_t$ is estimated by minimizing

626
$$-2\tilde{L}_{s,t}(\tilde{\lambda}_t) = \ln \left(\mathbf{h} \tilde{\mathbf{P}}_{s,t} \mathbf{h}^T + R_t \right) + \left(o_t - \mathbf{h} \tilde{\mathbf{x}}_t^f \right)^T \left(\mathbf{h} \tilde{\mathbf{P}}_{s,t} \mathbf{h}^T + R_t \right)^{-1} \left(o_t - \mathbf{h} \tilde{\mathbf{x}}_t^f \right). \quad (\text{A4})$$

627 The scalar parameter γ in Eq. (A1) that controls the magnitude of the forecast
628 bias estimates, is derived by

629
$$\gamma = \frac{\mu}{1-\mu} \left(R_t + \mathbf{h} \mathbf{P}_t \mathbf{h}^T \right) \left(\mathbf{h} \mathbf{P}_t \mathbf{h}^T \right)^{-1}, \quad (\text{A5})$$

630 where μ is estimated by minimizing the following objective function (Dee and
631 Todling 2000)

632
$$f(\mu) = \sum_n n^2 \left\{ \left[1 - \mu / \left(1 - (1-\mu) e^{-2\pi i \Delta t / n} \right) \right] \left[\sum_t (o_t - \mathbf{h} \mathbf{x}_t^f) e^{-2\pi i \Delta t / n} \right]^2 \left(R_t + \mathbf{h} \mathbf{P}_t \mathbf{h}^T \right)^{-1} \Big| -1 \right\}^2 \quad (\text{A6})$$

633 Then the perturbed analysis states is calculated as

634
$$\tilde{\mathbf{x}}_{n,t}^a = \tilde{\mathbf{x}}_{n,t}^f - \mathbf{b}_{t-1} + \tilde{\mathbf{P}}_t^a \mathbf{h}^T R_t^{-1} \left(o_t + \varepsilon_{n,t} - \mathbf{h} \left(\tilde{\mathbf{x}}_{n,t}^f - \mathbf{b}_{t-1} \right) \right) + \tilde{\mathbf{P}}_t^a \mathbf{c} \tilde{\varphi}_t^{-1} \left(\tilde{\beta}_{n,t} - \mathbf{c}^T \left(\tilde{\mathbf{x}}_{n,t}^f - \mathbf{b}_{t-1} \right) \right). \quad (\text{A7})$$

635 where

636
$$\tilde{\beta}_{n,t} = \mathbf{c}^T \tilde{\mathbf{x}}_{n,t-1}^a + Pr_t - Ev_{n,t}^f - Rn_{n,t}^f, \quad (\text{A8})$$

637
$$\tilde{\varphi}_t = \frac{1}{N-1} \sum_{n=1}^N \left(\tilde{\beta}_{n,t} - \frac{1}{N} \sum_{j=1}^N \tilde{\beta}_{j,t} \right) \times \left(\tilde{\beta}_{n,t} - \frac{1}{N} \sum_{j=1}^N \tilde{\beta}_{j,t} \right)^T \quad (\text{A9})$$

638 and

639
$$\tilde{\mathbf{P}}_t^a = \left(\mathbf{h}^T R_t^{-1} \mathbf{h} + \tilde{\mathbf{P}}_{s,t}^{-1} + \mathbf{c} \tilde{\varphi}_t^{-1} \mathbf{c}^T \right)^{-1}, \quad (\text{A10})$$

640

641 **Appendix B. Proof of Eq. (20)**

642 For a location and vertical soil layer, the analysis error variance in the synthetic
643 experiment is defined as

644
$$\begin{aligned} v_a &= \frac{1}{23a_{ts}} \sum_{t=1}^{a_{ts}} \sum_{h=7}^{29} \left(x_{t,h}^f - x_{t,h} \right)^2 \\ &= \frac{1}{23a_{ts}} \sum_{t=1}^{a_{ts}} \sum_{h=7}^{29} \left(x_{t,h}^f - x_{t,h} - b_a + b_a \right)^2 \\ &= \frac{1}{23a_{ts}} \sum_{t=1}^{a_{ts}} \sum_{h=7}^{29} \left(x_{t,h}^f - x_{t,h} - b_a \right)^2 + b_a^2 + \frac{2b_a}{23a_{ts}} \sum_{t=1}^{a_{ts}} \sum_{h=7}^{29} \left(x_{t,h}^f - x_{t,h} - b_a \right) \end{aligned} \quad (\text{B1})$$

645 From the definition of analysis bias (Eq. (19)), the last term on the right hand side of
646 is zero, so Eq. (20) is proved.

647

648 **References**

649 Anderson, J.L. and Anderson, S.L., 1999. A Monte Carlo implementation of the
650 nonlinear filtering problem to produce ensemble assimilations and forecasts.
651 *Monthly Weather Review*, 127: 2741-2758.

652 Bartalis, Z., Wagner, W., Naeimi, V., Hasenauer, S., Scipal, K., Bonekamp, H., Figa, J.
653 and Anderson, C., 2007. Initial soil moisture retrievals from the METOP-A
654 Advanced Scatterometer (ASCAT). *Geophysical Research Letters*, 34(20).

655 Bauser, H.H., Berg, D., Klein, O. and Roth, K., 2018. Inflation method for ensemble
656 Kalman filter in soil hydrology. *Hydrology and Earth System Sciences*, 22(9):
657 4921-4934.

658 Bonan, G.B., 1996. Land surface model (LSM version 1.0) for ecological,
659 hydrological, and atmospheric studies: Technical description and users guide.
660 Technical note, National Center for Atmospheric Research, Boulder, CO
661 (United States). Climate and Global Dynamics Div.

662 Bosilovich, M.G. and Lawford, R., 2002. Coordinated enhanced observing period
663 (CEOP) international workshop. *Bulletin of the American Meteorological
664 Society*, 83(10): 1495-1499.

665 Chen, F., Crow, W.T. and Ryu, D., 2014. Dual Forcing and State Correction via Soil
666 Moisture Assimilation for Improved Rainfall-Runoff Modeling. *Journal of
667 Hydrometeorology*, 15(5): 1832-1848.

668 Constantinescu, E.M., Sandu, A., Chai, T. and Carmichael, G.R., 2007.
669 Ensemble-based chemical data assimilation I: general approach. *Quarterly
670 Journal of the Royal Meteorological Society*, 133: 1229-1243.

671 Crow, W.T., Chen, F., Reichle, R.H. and Liu, Q., 2017. L band microwave remote
672 sensing and land data assimilation improve the representation of prestorm soil

673 moisture conditions for hydrologic forecasting. *Geophysical Research Letters*,
674 44(11): 5495-5503.

675 Crow, W.T. and Loon, E.V., 2006. Impact of incorrect model error assumptions on the
676 sequential assimilation of remotely sensed surface soil moisture. *Journal of*
677 *Hydrometeorology*, 7: 421-432.

678 Crow, W.T. and Wood, E.F., 2003. The assimilation of remotely sensed soil brightness
679 temperature imagery into a land surface model using Ensemble Kalman
680 filtering: a case study based on ESTAR measurements during SGP97.
681 *Advances in Water Resources*, 26: 137-149.

682 Dai, Y., Zeng, X., Dickinson, R.E., Baker, I., Bonan, G.B., Bosilovich, M.G., Denning,
683 A.S., Dirmeyer, P.A., Houser, P.R., Niu, G., Oleson, K.W., Schlosser, C.A. and
684 Yang, Z.-L., 2003. The Common Land Model. *Bulletin of the American*
685 *Meteorological Society*, 84(8): 1013-1023.

686 De Lannoy, G.J.M., Reichle, R.H., Houser, P.R., Pauwels, V.R.N. and Verhoest,
687 N.E.C., 2007. Correcting for forecast bias in soil moisture assimilation with
688 the ensemble Kalman filter. *Water Resources Research*, 43(9): n/a-n/a.

689 Dee, D.P., 2005. Bias and data assimilation. *Quarterly Journal of the Royal*
690 *Meteorological Society*, 131: 3323-3343.

691 Dee, D.P. and Da Silva, A.M., 1998. Data assimilation in the presence of forecast bias.
692 *Quarterly Journal of the Royal Meteorological Society*, 124(545): 269-295.

693 Dee, D.P. and Da Silva, A.M., 1999. Maximum-likelihood estimation of forecast and
694 observation error covariance parameters. Part I: Methodology. *Monthly*
695 *Weather Review*, 127(8): 1822-1834.

696 Dee, D.P., Gaspari, G., Redder, C., Rukhovets, L. and Da Silva, A.M., 1999.
697 Maximum-likelihood estimation of forecast and observation error covariance

698 parameters. Part II: Applications. *Monthly weather review*, 127(8): 1835-1849.

699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722

Dee, D.P. and Todling, R., 2000. Data assimilation in the presence of forecast bias: The GEOS moisture analysis. *Monthly Weather Review*, 128(9): 3268-3282.

Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., HØlm, E.V., Isaksen, L., Källberg, P., Köhler, M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette, J.J., Park, B.K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.N. and Vitart, F., 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. *Quarterly Journal of the Royal Meteorological Society*, 137(656): 553-597.

Delworth, T.L. and Manabe, S., 1988. The influence of potential evaporation on the variabilities of simulated soil wetness and climate. *Journal of Climate*, 1(5): 523-547.

Dickinson, R.E., Henderson-Sellers, A. and Kennedy, P.J., 1993. Biosphere Atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model.

Dorigo, W.A., Wagner, W., Hohensinn, R., Hahn, S., Paulik, C., Xaver, A., Gruber, A., Drusch, M., Mecklenburg, S., van Oevelen, P., Robock, A. and Jackson, T., 2011. The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements. *Hydrology and Earth System Sciences*, 15(5): 1675-1698.

Dumedah, G. and Walker, J.P., 2014. Evaluation of Model Parameter Convergence when Using Data Assimilation for Soil Moisture Estimation. *Journal of*

723 *Hydrometeorology*, 15(1): 359-375.

724 El Gharamti, M., Raeder, K., Anderson, J. and Wang, X.G., 2019. Comparing
725 Adaptive Prior and Posterior Inflation for Ensemble Filters Using an
726 Atmospheric General Circulation Model. *Monthly Weather Review*, 147(7):
727 2535-2553.

728 Entekhabi, D., Njoku, E.G., O'Neill, P.E., Kellogg, K.H., Crow, W.T., Edelstein, W.N.,
729 Entin, J.K., Goodman, S.D., Jackson, T.J. and Johnson, J., 2010. The soil
730 moisture active passive (SMAP) mission. *Proceedings of the IEEE*, 98(5):
731 704-716.

732 Evensen, G., 1994. Sequential data assimilation with a nonlinear quasi-geostrophic
733 model using Monte Carlo methods to forecast error statistics. *Journal of
734 Geophysical Research*, 99: 10143-10162.

735 Gruber, A., Crow, W.T. and Dorigo, W.A., 2018. Assimilation of Spatially Sparse In
736 Situ Soil Moisture Networks into a Continuous Model Domain. *Water
737 Resources Research*, 54(2): 1353-1367.

738 GUSEV, Y. and Novak, V., 2007. Soil water—main water resources for terrestrial
739 ecosystems of the biosphere. *J. Hydrol. Hydromech*, 55(1): 3-15.

740 Han, E., Crow, W.T., Holmes, T. and Bolten, J., 2014. Benchmarking a Soil Moisture
741 Data Assimilation System for Agricultural Drought Monitoring. *Journal of
742 Hydrometeorology*, 15(3): 1117-1134.

743 Janjić, T., Nerger, L., Albertella, A., Schröter, J. and Skachko, S., 2011. On Domain
744 Localization in Ensemble-Based Kalman Filter Algorithms. *Monthly Weather
745 Review*, 139(7): 2046-2060.

746 Kerr, Y.H., Waldteufel, P., Wigneron, J.-P., Delwart, S., Cabot, F., Boutin, J.,
747 Escorihuela, M.-J., Font, J., Reul, N. and Gruhier, C., 2010. The SMOS

748 mission: New tool for monitoring key elements of the global water cycle.

749 *Proceedings of the IEEE*, 98(5): 666-687.

750 Koster, R.D., Guo, Z.C., Yang, R.Q., Dirmeyer, P.A., Mitchell, K. and Puma, M.J.,

751 2009. On the Nature of Soil Moisture in Land Surface Models. *Journal of*

752 *Climate*, 22(16): 4322-4335.

753 Kumar, S.V., Peters-Lidard, C.D., Mocko, D., Reichle, R., Liu, Y.Q., Arsenault, K.R.,

754 Xia, Y.L., Ek, M., Riggs, G., Livneh, B. and Cosh, M., 2014. Assimilation of

755 Remotely Sensed Soil Moisture and Snow Depth Retrievals for Drought

756 Estimation. *Journal of Hydrometeorology*, 15(6): 2446-2469.

757 Lawford, R., Stewart, R., Roads, J., Isemer, H., Manton, M., Marengo, J., Yasunari, T.,

758 Benedict, S., Koike, T. and Williams, S., 2004. Advancing global-and

759 continental-scale hydrometeorology: Contributions of GEWEX

760 hydrometeorology panel. *Bulletin of the American Meteorological Society*,

761 85(12): 1917-1930.

762 Lawrence, D.M., Oleson, K.W., Flanner, M.G., Thornton, P.E., Swenson, S.C.,

763 Lawrence, P.J., Zeng, X., Yang, Z.-L., Levis, S., Sakaguchi, K., Bonan, G.B.

764 and Slater, A.G., 2011. Parameterization improvements and functional and

765 structural advances in Version 4 of the Community Land Model. *Journal of*

766 *Advances in Modeling Earth Systems*, 3(3).

767 Li, B., Toll, D., Zhan, X. and Cosgrove, B., 2012. Improving estimated soil moisture

768 fields through assimilation of AMSR-E soil moisture retrievals with an

769 ensemble Kalman filter and a mass conservation constraint. *Hydrology and*

770 *Earth System Sciences*, 16(1): 105-119.

771 Liang, X., Zheng, X., Zhang, S., Wu, G., Dai, Y. and Li, Y., 2012. Maximum

772 likelihood estimation of inflation factors on error covariance matrices for

773 ensemble Kalman filter assimilation. *Quarterly Journal of the Royal*
774 *Meteorological Society*, 138: 263-273.

775 Loizu, J., Massari, C., Alvarez-Mozos, J., Tarpanelli, A., Brocca, L. and Casali, J.,
776 2018. On the assimilation set-up of ASCAT soil moisture data for improving
777 streamflow catchment simulation. *Advances in Water Resources*, 111: 86-104.

778 Lu, H., Koike, T., Yang, K., Hu, Z.Y., Xu, X.D., Rasmy, M., Kuria, D. and Tamagawa,
779 K., 2012. Improving land surface soil moisture and energy flux simulations
780 over the Tibetan plateau by the assimilation of the microwave remote sensing
781 data and the GCM output into a land surface model. *International Journal of*
782 *Applied Earth Observation and Geoinformation*, 17: 43-54.

783 Lu, H., Yang, K., Koike, T., Zhao, L. and Qin, J., 2015. An Improvement of the
784 Radiative Transfer Model Component of a Land Data Assimilation System and
785 Its Validation on Different Land Characteristics. *Remote Sensing*, 7(5):
786 6358-6379.

787 McColl, K.A., He, Q., Lu, H. and Entekhabi, D., 2019. Short-Term and Long-Term
788 Surface Soil Moisture Memory Time Scales Are Spatially Anticorrelated at
789 Global Scales. *Journal of Hydrometeorology*, 20(6): 1165-1182.

790 Miyoshi, T., 2011. The Gaussian approach to adaptive covariance inflation and its
791 implementation with the local ensemble transform Kalman filter. *Monthly*
792 *Weather Review*, 139: 1519-1534.

793 Miyoshi, T., Kalnay, E. and Li, H., 2012. Estimating and including observation-error
794 correlations in data assimilation. *Inverse Problems in Science & Engineering*,
795 32: 1-12.

796 Niu, G.-Y., Yang, Z.-L., Dickinson, R.E., Gulden, L.E. and Su, H., 2007.
797 Development of a simple groundwater model for use in climate models and

798 evaluation with Gravity Recovery and Climate Experiment data. *Journal of*
799 *Geophysical Research*, 112(D7).

800 Niu, G.Y., Yang, Z.L., Dickinson, R.E. and Gulden, L.E., 2005. A simple
801 TOPMODEL - based runoff parameterization (SIMTOP) for use in global
802 climate models. *Journal of Geophysical Research: Atmospheres (1984–2012)*,
803 110(D21).

804 Njoku, E.G., Jackson, T.J., Lakshmi, V., Chan, T.K. and Nghiem, S.V., 2003. Soil
805 moisture retrieval from AMSR-E. *Geoscience and Remote Sensing, IEEE*
806 *Transactions on*, 41(2): 215-229.

807 Oleson, K.W., Lawrence, D.M., Gordon, B., Flanner, M.G., Kluzeck, E., Peter, J.,
808 Levis, S., Swenson, S.C., Thornton, E. and Feddema, J., 2010. Technical
809 description of version 4.0 of the Community Land Model (CLM).

810 Pan, M. and Wood, E.F., 2006. Data assimilation for estimating the terrestrial water
811 budget using a constrained ensemble Kalman filter. *Journal of*
812 *Hydrometeorology*, 7(3): 534-547.

813 Pielke, R.A., 2001. Influence of the spatial distribution of vegetation and soils on the
814 prediction of cumulus Convective rainfall. *Reviews of Geophysics*, 39(2):
815 151-177.

816 Pinnington, E., Quaife, T. and Black, E., 2018. Impact of remotely sensed soil
817 moisture and precipitation on soil moisture prediction in a data assimilation
818 system with the JULES land surface model. *Hydrology and Earth System*
819 *Sciences*, 22(4): 2575-2588.

820 Raanes, P.N., Bocquet, M. and Carrassi, A., 2019. Adaptive covariance inflation in the
821 ensemble Kalman filter by Gaussian scale mixtures. *Quarterly Journal of the*
822 *Royal Meteorological Society*, 145(718): 53-75.

823 Reichle, R.H., 2008. Data assimilation methods in the Earth sciences. *Advances in*
824 *Water Resources*, 31: 1411-1418.

825 Reichle, R.H. and Koster, R.D., 2004. Bias reduction in short records of satellite soil
826 moisture. *Geophysical Research Letters*, 31(L19501).

827 Reichle, R.H. and Koster, R.D., 2005. Global assimilation of satellite surface soil
828 moisture retrievals into the NASA Catchment land surface model. *Geophysical*
829 *Reasearch Letters*, 32.

830 Robock, A., Vinnikov, K.Y., Srinivasan, G., Entin, J.K., Hollinger, S.E., Speranskaya,
831 N.A., Liu, S. and Namkhai, A., 2000. The global soil moisture data bank.
832 *Bulletin of the American Meteorological Society*, 81(6): 1281-1299.

833 Santanello, J.A., Kumar, S.V., Peters-Lidard, C.D. and Lawston, P.M., 2016. Impact of
834 Soil Moisture Assimilation on Land Surface Model Spinup and Coupled
835 Land-Atmosphere Prediction. *Journal of Hydrometeorology*, 17(2): 517-540.

836 Wang, X. and Bishop, C.H., 2003. A comparison of breeding and ensemble transform
837 kalman filter ensemble forecast schemes. *Journal of the Atmospheric Sciences*,
838 60: 1140-1158.

839 Wei, J., Dirmeyer, P.A., Guo, Z., Zhang, L. and Misra, V., 2010. How Much Do
840 Different Land Models Matter for Climate Simulation? Part I: Climatology
841 and Variability. *Journal of Climate*, 23(11): 3120-3134.

842 Wu, G., Zheng, X., Wang, L., Zhang, S., Liang, X. and Li, Y., 2013. A New Structure
843 for Error Covariance Matrices and Their Adaptive Estimation in EnKF
844 Assimilation. *Quarterly Journal of the Royal Meteorological Society*, 139:
845 795-804.

846 Yang, K., Koike, T., Kaihatsu, I. and Qin, J., 2009. Validation of a dual-pass
847 microwave land data assimilation system for estimating surface soil moisture

848 in semiarid regions. *Journal of Hydrometeorology*, 10: 780-793.

849 Yang, K., Zhu, L., Chen, Y., Zhao, L., Qin, J., Lu, H., Tang, W., Han, M., Ding, B. and
850 Fang, N., 2016. Land surface model calibration through microwave data
851 assimilation for improving soil moisture simulations. *Journal of Hydrology*,
852 533: 266-276.

853 Yang, S.-C., Kalnay, E. and Enomoto, T., 2015. Ensemble singular vectors and their
854 use as additive inflation in EnKF. *Tellus A*, 67.

855 Yilmaz, M.T., DelSole, T. and Houser, P.R., 2011. Improving Land Data Assimilation
856 Performance with a Water Budget Constraint. *Journal of Hydrometeorology*,
857 12(5): 1040-1055.

858 Yilmaz, M.T., DelSole, T. and Houser, P.R., 2012. Reducing Water Imbalance in Land
859 Data Assimilation: Ensemble Filtering without Perturbed Observations.
860 *Journal of Hydrometeorology*, 13(1): 413-420.

861 Zhang, S., Yi, X., Zheng, X., Chen, Z., Dan, B. and Zhang, X., 2014. Global carbon
862 assimilation system using a local ensemble Kalman filter with multiple
863 ecosystem models. *Journal of Geophysical Research-Biogeosciences*, 119(11):
864 2171-2187.

865 Zhang, S., Zheng, X., Chen, J., Chen, Z., Dan, B., Yi, X., Wang, L. and Wu, G., 2015.
866 A global carbon assimilation system using a modified ensemble Kalman filter.
867 *Geoscientific Model Development*, 8: 805-816.

868 Zhao, L. and Yang, Z.L., 2018. Multi-sensor land data assimilation: Toward a robust
869 global soil moisture and snow estimation. *Remote Sensing of Environment*,
870 216: 13-27.

871 Zheng, X., 2009. An adaptive estimation of forecast error covariance parameters for
872 Kalman filtering data assimilation. *Advances in Atmospheric Sciences*, 26(1):

873 154-160.

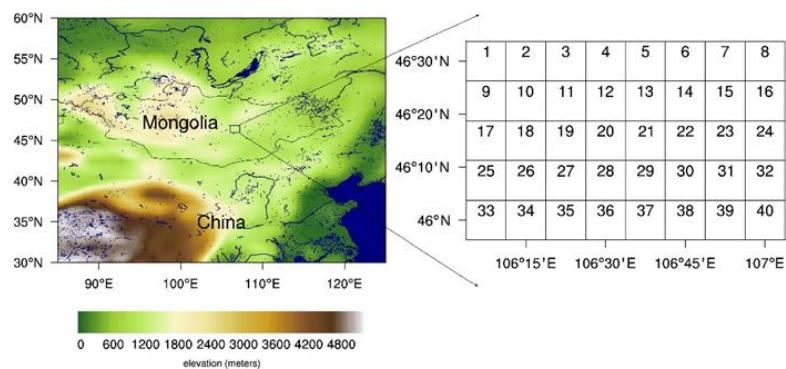
874

875

876 **Figure captions**

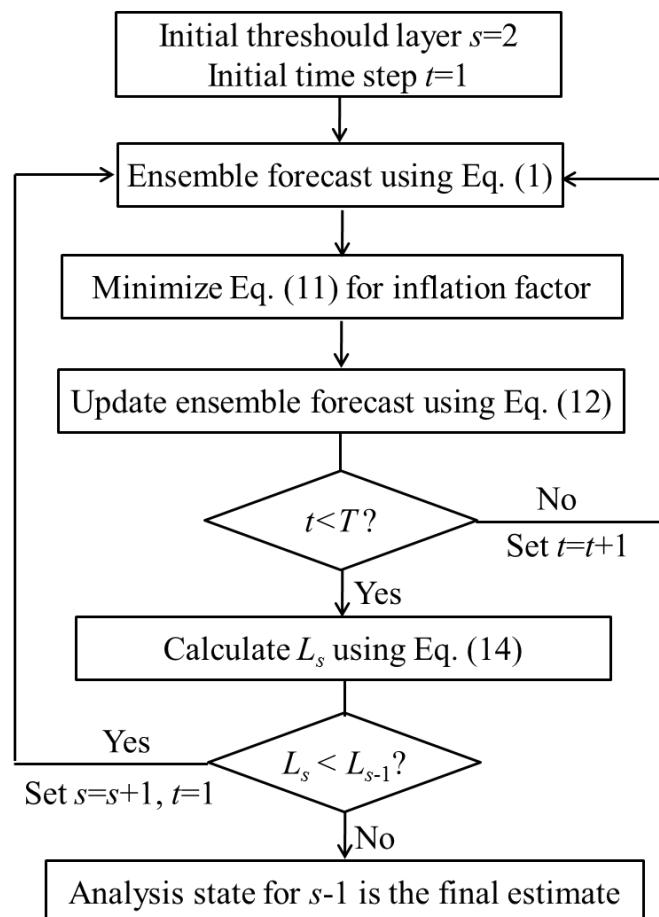
877

878



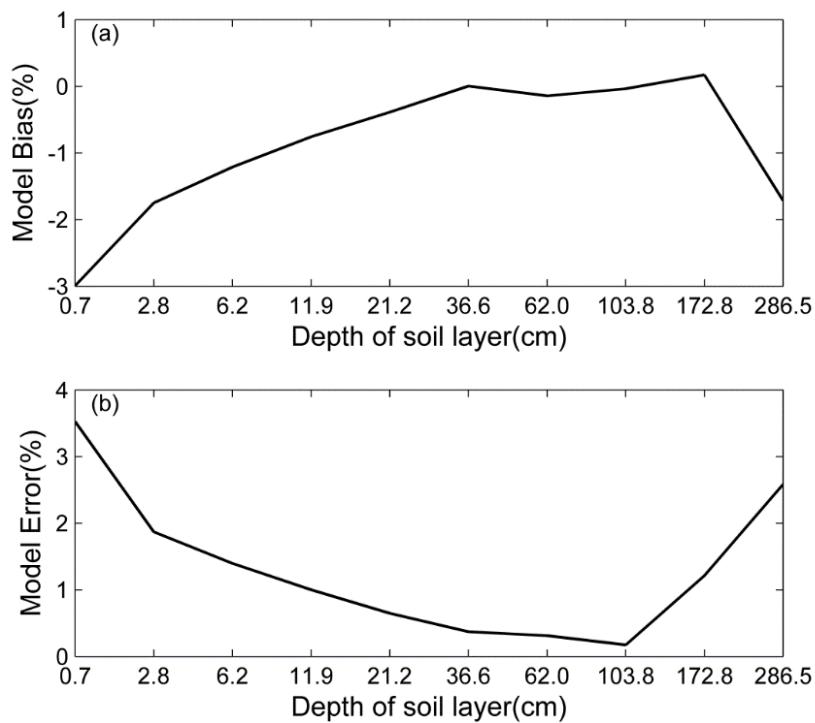
879 Figure 1. The topography and river distribution (left plot) and the geographical
880 location of the synthetic study area (right plot).

881



884 Figure 2. The assimilation procedure and localization scale factor estimation in the
 885 experiments. All of the equations are in accordance with that described in the text.

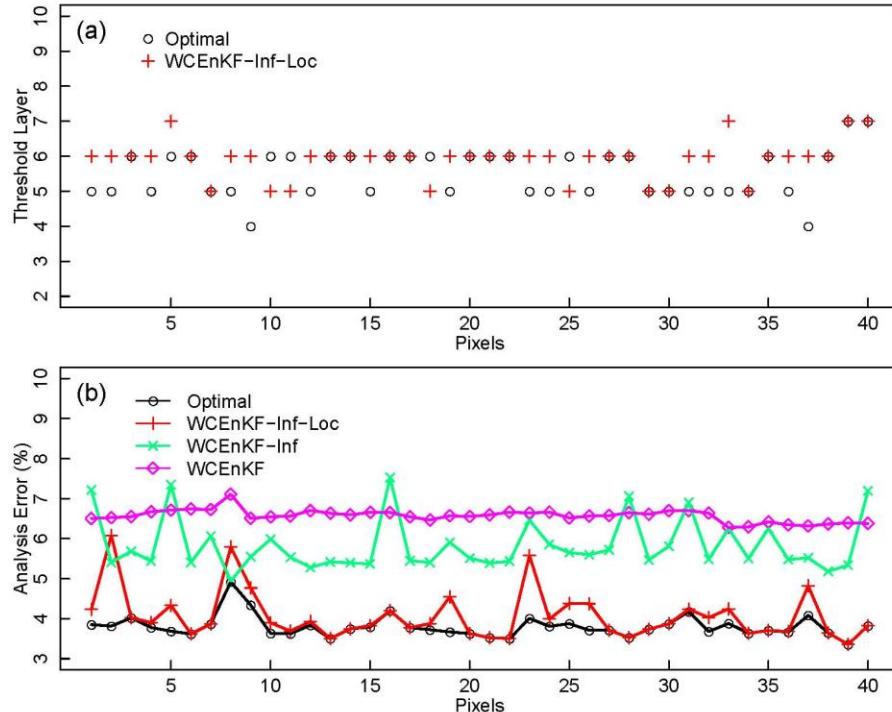
887



888 Figure 3. The areal average of the model's bias (a) and error (b) for one step in the soil
889 moisture content between the CoLM and the CLM 4.0. The horizontal axis represents
890 the layer depth.

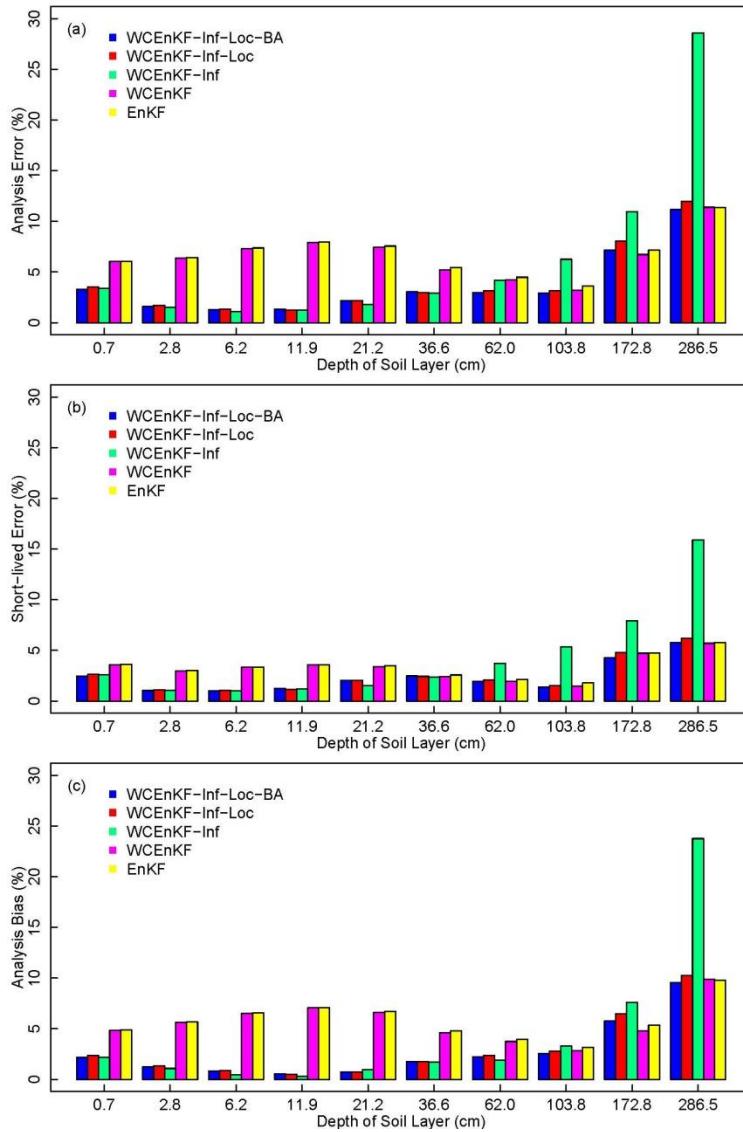
891

892



893 Figure 4. The threshold layers and analysis error for each pixel in the synthetic
 894 experiment. Graph (a) illustrates the optimal and WCEnKF-Inf-Loc threshold layers
 895 of each pixel. Graph (b) shows the column RSME of each pixel in different schemes
 896 with water balance constraint (Optimal, WCEnKF-Inf-Loc, WCEnKF-Inf and
 897 WCEnKF). The horizontal axes of (a) and (b) represent the 40 pixels in the study
 898 domain.

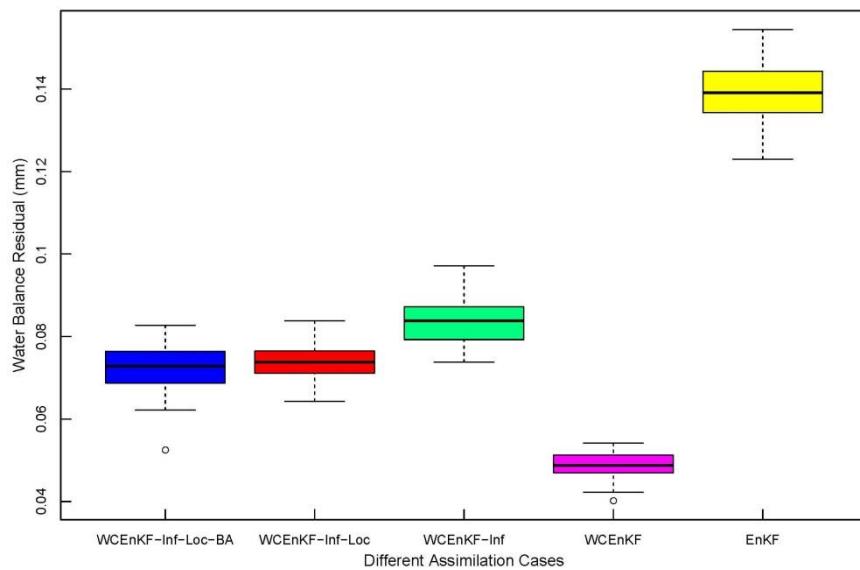
899
 900



903 Figure 5. The assimilation results in each layer for the five schemes: a weakly
 904 constrained bias-aware ensemble Kalman filter with forecast error inflation and
 905 vertical localization (WCEnKF-Inf-Loc-BA), a weakly constrained ensemble Kalman
 906 filter with forecast error inflation and vertical localization (WCEnKF-Inf-Loc), a
 907 weakly constrained ensemble Kalman filter with forecast error inflation
 908 (WCEnKF-Inf), a weakly constrained ensemble Kalman filter (WCEnKF), and the
 909 traditional assimilation (EnKF). Graphic (a) is for spatial averaged analysis error of
 910 the soil moisture content, (b) is for the short-lived error and (c) is for the analysis bias.

912

913



914 Figure 6. The box plot of the water balance residual in all 40 pixels for the
915 WCEnKF-Inf-Loc-BA, WCEnKF-Inf-Loc, WCEnKF-Inf, WCEnKF and EnKF
916 assimilation schemes.

917

918 Table 1. The node depths (cm) of the 10 soil layers in the CoLM model.

919

Layer	1	2	3	4	5	6	7	8	9	10
Depth (cm)	0.7	2.8	6.2	11.9	21.2	36.6	62.0	103.8	172.8	286.5

920

921

922

923 Table 2. Estimated localization scale factor for different cases.

Layer	2	3	4	5	6	7	8	9	10
μ_s	0.2824	0.1256	0.0587	0.0300	0.0163	0.0093	0.0053	0.0025	0.0001

924