Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.153 IF 5.153
  • IF 5-year value: 5.460 IF 5-year
    5.460
  • CiteScore value: 7.8 CiteScore
    7.8
  • SNIP value: 1.623 SNIP 1.623
  • IPP value: 4.91 IPP 4.91
  • SJR value: 2.092 SJR 2.092
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 123 Scimago H
    index 123
  • h5-index value: 65 h5-index 65
Preprints
https://doi.org/10.5194/hess-2019-687
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-2019-687
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  28 Jan 2020

28 Jan 2020

Review status
A revised version of this preprint was accepted for the journal HESS and is expected to appear here in due course.

Combination of soil water extraction methods quantifies isotopic mixing of waters held at separate tensions in soil

William H. Bowers1, Jason J. Mercer1, Mark S. Pleasants2, and David G. Williams1,2 William H. Bowers et al.
  • 1Department of Botany, University of Wyoming, Laramie, 82070, USA
  • 2Department of Ecosystem Science and Management, University of Wyoming, Laramie, 82070, USA

Abstract. Measurements of the isotopic composition of water recovered from soil at different tensions provide a powerful means to identify potential plant water sources and quantify heterogeneity in residence time and connectivity among soil water regions. Yet incomplete understanding of mechanisms affecting isotopic composition of different soil water pools and the interactions between antecedent and new event water hinders interpretation of the isotope composition of extracted soil and plant waters. Here we present an approach for quantifying the time-dependent isotopic mixing of water held at separate tensions in soil. We wetted oven-dried, homogenized sandy loam soil first with isotopically “light” water (𝛿2H = −130 ‰; 𝛿18O = −17.6 ‰) using a sufficient volume to fill only the smallest soil pores, and then with “heavy” water (𝛿2H = −44 ‰; 𝛿18O = −7.8 ‰) to fully saturate the remaining soil regions. Soil water effluents were then sequentially extracted at three tensions (low centrifugation = 0.016 MPa; medium centrifugation = 1.14 MPa; and high cryogenic vacuum distillation at an estimated tension greater than 100 MPa) starting after variable equilibration periods of 0 h, 8 h, 1 d, 3 d and 7 d. We assessed differences in the isotopic composition of extracted effluents over the 7 d equilibration period with a MANOVA and a mixing model describing the time-dependent effects of isotope self-diffusion and exchange. The saturated moisture conditions used in our experiment likely facilitated rapid isotope exchange and equilibration among different pools. Despite this, the isotope composition of waters extracted at medium compared to high tension remained significantly different (MANOVA) for up to 1 day, and that for waters extracted at low compared to high tension remained significantly different for greater than 3 days after soil wetting. Equilibration (assuming no fractionation) predicted from the time-dependent mixing model for water held at high tension occurred after approximately 4.33 days. Our approach will be useful for assessing how soil texture and other physical and chemical properties influence isotope exchange and mixing times for studies aiming to properly characterize and interpret the isotopic composition of extracted soil and plant waters, especially under variably unsaturated conditions.

William H. Bowers et al.

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

William H. Bowers et al.

William H. Bowers et al.

Viewed

Total article views: 526 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
405 106 15 526 24 22
  • HTML: 405
  • PDF: 106
  • XML: 15
  • Total: 526
  • BibTeX: 24
  • EndNote: 22
Views and downloads (calculated since 28 Jan 2020)
Cumulative views and downloads (calculated since 28 Jan 2020)

Viewed (geographical distribution)

Total article views: 404 (including HTML, PDF, and XML) Thereof 403 with geography defined and 1 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 11 Aug 2020
Publications Copernicus
Download
Citation