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Abstract. Calibration of urban drainage models is typically performed based on a limited number of observed rainfall-runoff

events, which may be selected from a larger dataset in different ways. In this study, 14 single- and two-stage strategies for

selecting the calibration events were tested in calibration of a SWMM model of a predominantly green urban area. The event

selection was considered in relation to runoff contributions from green pervious areas and such sources of uncertainty such

as rainfall/runoff measurement uncertainties and catchment discretization. Even though all 14 strategies resulted in successful5

model calibration, the difference between the best and worst strategies reached 0.2 in Nash-Sutcliffe Efficiency (NSE) and the

calibrated parameter values notably varied. Most, but not all, calibration strategies were robust to perturbations in calibration

data and the use of a coarse catchment discretization model in the calibration phase. The various calibration strategies satisfac-

torily predicted 7 to 13 out of 19 validation events. The two-stage strategies performed better than the single-stage strategies

when: (1) perturbing flow data in the calibration events by +-40%; and (2) using a coarser catchment discretization, especially10

in terms of total flow volume and peak flow rates. The two calibration strategies that performed the best in the validation phase

were two-stage strategies. The findings in this paper show that various strategies for selecting calibration events lead in some

cases to different results in the validation phase, and that calibrating impervious and green area parameters in two separate

steps may increase the effectiveness of model calibration/validation by reducing the computational demand in the calibration

phase and improving model performance in the validation phase.15

Copyright statement. TEXT

1 Introduction

Calibration of generic urban drainage model codes is usually required to obtain a model representing an actual site with

sufficient accuracy. In the calibration process, the information contained in records of relevant variables, such as rainfall and

flow rates at the catchment outlet, is used for estimating model parameter values that produce results consistent with the data20

(Mancipe-Munoz et al., 2014). It can be expected that the best parameter estimates will be obtained when they are inferred

from the largest amount of information, i.e. by using all data from a long series of measurements. However, the availability of

calibration data may be limited and the nature of the calibration process, by trial and error, requires model iterations for many

different parameter sets, which means that the runtime of the model has to be kept short and the length of the simulated periods
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should be limited. Therefore, calibration may have to be performed on a limited number of rainfall events from a longer record.

As each of the available events will differ from the others, it can be expected that the choice of a specific event (or an event set)

will influence the results of calibration (Tscheikner-Gratl et al., 2016).

Tscheikner-Gratl et al. (2016) studied such influence by calibrating water level in the outflow pipe of a catchment using ten

different rain events. They found that two of them could not be reproduced in calibration and the others, while successful in5

calibration, could only predict up to six of the remaining events. When applying the calibrated models with design storms,

they found that the calibrated models predicted different flooding volumes. In calibration of combined sewer overflow (CSO)

volumes, Kleidorfer et al. (2009b) compared calibration results obtained for (1) the five longest duration events and (2) the

five highest peak flow events, finding that using the longest duration events reduced the number of measurement sites required

for successful calibration. Schütze et al. (2002) demonstrated that calibration based on discrete events saved time compared10

to calibrating for a complete time series, but also that this introduced additional uncertainty. Mourad et al. (2005) showed that

calibration of a stormwater quality model was sensitive to: (1) which randomly selected events were used, and (2) how many

events were used.

While the above papers helped elucidate some aspects of the sensitivity of urban drainage model calibration to the calibration

events used, such findings possess some limitations: firstly, only a limited number of generally available options for selecting15

calibration events has been considered; secondly, the modelling focused on traditional urban drainage systems, in which gener-

ation of runoff is dominated by impervious surfaces, but the current trend towards green urban drainage infrastructure creates

the need to pay more attention to runoff processes on green areas (Fletcher et al., 2013). This second aspect also applies to

investigations into other sources of uncertainty in urban drainage modelling, some of which have been investigated before, e.g.

input and calibration data uncertainties(Dotto et al., 2014; Kleidorfer et al., 2009a) and spatial model resolution (Krebs et al.,20

2014; Petrucci and Bonhomme, 2014; Sun et al., 2014). However, these investigations used predominantly impervious catch-

ments and it is, therefore, unknown to what extent their findings apply to greener urban catchments as well and how sensitive

such results are to the calibration data set that was used.

Considering the above findings, the primary objective of the paper that follows is to advance the knowledge of calibration

processes for green urban areas by examining different strategies for selecting calibration events and assessing the effects of25

such selections on the performance of a calibrated hydrodynamic model of a predominantly green urban catchment. Part of

this is a proposal for a practical two-stage calibration strategy. Two secondary objectives are to verify: (1) the findings from

previous urban drainage modelling studies on a greener (less impervious) catchment, and (2) sensitivity of the earlier findings

to the calibration data used.

2 Materials and methods30

2.1 Study site and data

The study site is a 10.2 ha catchment in the city of Luleå, Sweden (see Figure 1). The catchment area comprises 63% of green

areas, 12% of impervious areas connected directly to the storm sewer system, and 25% of impervious areas draining onto
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Figure 1. Map of the studied catchment showing elements of the high-resolution rainfall-runoff model and the distance of the catchment to

the rain gauge (RG). The diameters of the pipes range from 400 mm for the main trunk where the flow sensor is located to 200 mm for the

smaller branches.

adjacent green areas. The green areas include a number of vegetated swales that are connected to the storm sewer system at

their lowest point.

Precipitation was measured at 1-minute intervals with a Geonor T200B weighing-bucket precipitation gauge located outside

of the study catchment, about 500 and 1,000 metres from the nearest and furthest borders of the catchment, respectively (see

circles in Figure 1). The gauge was tested in the field and confirmed to work well twice a year in 2016 and 2017, and before5

2016, such tests were also performed occasionally. Laboratory and field tests (by others) found this design of precipitation

sensor to be a reliable instrument (Duchon, 2002; Lanza et al., 2010). Records were available for individual rain events in

2013-2015 and continuously for 2016 and 2017.

Flow rates in the storm sewer draining the catchment were measured at 1-minute intervals by means of an ISCO 2150 AV

sensor (a combination of an acoustic Doppler velocimeter and a pressure transducer) installed in the catchment outlet formed10

by a 400 mm diameter concrete sewer pipe. This type of sensor was assessed in the laboratory by Aguilar et al. (2016) and

found to have a combined uncertainty (consisting of bias, precision and benchmark uncertainty) of ±19.0 mm for the water

depth measurements (the test range was 10-150 mm) and ±0.0985 m/s for the velocity measurement (test range 0.1-0.6 m/s).

These tests were carried out in a 0.46 m wide square channel, so the stage-discharge relationship was different from the study

site described herein. It was also reported that the field performance of this type of sensors can suffer from the presence of too15

few (Teledyne ISCO, 2010) or too many particles suspended in the water (Nord et al., 2014).

While the difficulties in estimating all the uncertainties at the actual field site prevented a precise determination of the

uncertainties’ magnitude, the general lab tests of the sensors used confirmed the acceptability of their records for the study

purpose. Finally, it was also confirmed by Dotto et al. (2014) that errors in the calibration data can be compensated for in the

calibration process.20
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The available precipitation record was divided into rainfall events with a minimum inter-event time of no precipitation of six

hours. Events deemed suitable for use in calibration were selected using the following criteria:

1. A minimum total precipitation of 2 mm (Hernebring, 2006).

2. No or small gaps in rain and flow data , i.e. both have to be available for >90% of the event duration.

3. Sufficient in-pipe water depths for the flow sensor to work reliably: >10 mm during at least 50% of the event and >255

mm at least once in the event, based on recommendations from the manufacturer (Teledyne ISCO, 2010).

4. Peak flow >2 L s−1, since relative measurement uncertainties are high below this point.

5. No snowfall or -melt, since these would introduce additional processes in the hydrological behaviour and model of the

catchment.

Calibration and validation periods were separated by using the 19 observed events from 2016 for the validation period, and10

the 32 events from 2013-2015 and 2017 for the calibration period. In this way, all the calibration scenarios (see section 2.3)

were tested (validated) against the same dataset and no calibration scenarios could benefit from including calibration events

that also appeared in the validation set. The year 2016 was selected as the validation period for two reasons: it was the year with

total precipitation closest to the annual mean, and the measured data records were continuous. Table 1 contains an overview of

all events that were used in at least one calibration scenario as well as an initial estimate of the runoff from green areas.15

2.2 Runoff model and calibration approach

The US EPA Storm Water Management Model (SWMM) was selected since it is a commonly used semi-distributed urban

drainage model that allows to route runoff from one sub-catchment to another. This routing feature was needed since it allows

for a high-resolution model setup in which each subcatchment (146 were used in total) features a single land cover. The high

resolution input data needed for this approach was available in the form of GIS data, aerial photographs, and observations from20

site visits. The advantage of these single land-cover subcatchments is that their parameter values maintain their physical mean-

ing and can be calibrated (or appropriate values found in the literature) for each land use or cover. The traditional approach of

using larger subcatchments with multiple land uses/covers usually necessitates calibration to estimate the values of parameters

that then represent a weighted average value over multiple land uses/covers. Some spatial characteristics, such as the slope and

the width of subcatchments, can also be estimated more easily for smaller, uniform subcatchments. This approach has been25

used successfully by e.g. Krebs et al. (2014, 2016), Petrucci and Bonhomme (2014) and Sun et al. (2014). Within SWMM the

Green-Ampt infiltration method was selected since it can be calibrated with just two parameters (Rossman, 2016).

Whenever feasible, parameters for different subcatchments were set directly from the available GIS data and site visits, i.e.

the sizes and slopes of all subcatchments and sewer pipes, as well as the catchment widths of small and disconnected roofs. For

other subcatchments the catchment width was calibrated together with the other model parameters. To reduce the scope of the30

calibration problem, parameters were grouped based on land cover, yielding a total of thirteen calibration parameters for the

4



Table 1. Characteristics of all rainfall events used in one or more calibration scenarios.
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mm mm hr mm hr−1 mm hr−1 mm % L s−1 L s−1 mm mm mm %

199 2.4 13.8 41.6 0.3 4.0 1.7 12.4 4.2 3.3 0.06 0.02 0.04 0.3

209 0.2 8.0 9.5 0.8 2.8 0.5 6.9 4.5 2.7

211 8.3 9.7 22.8 0.4 6.9 1.1 11.1 29.2 11.1

214 7.3 6.4 12.1 0.5 4.3 0.6 10.1 40.5 8.5

222 1.1 9.8 12.8 0.8 7.5 0.7 7.2 26.4 13.3

270 0.0 9.3 38.5 0.2 3.5 1.1 11.3 22.9 8.7

306 10.1 8.6 9.1 0.9 7.1 0.7 8.5 27.5 9.3

307 18.3 29.9 37.7 0.8 8.5 4.9 16.2 71.2 42.9 1.27 0.36 0.91 3.0

310 12.7 8.6 10.0 0.9 7.5 1.2 14.0 37.4 17.4 0.17 0.05 0.12 1.4

530 13.8 6.7 2.8 2.4 7.2 0.8 11.2 58.9 13.5

939 0.6 7.0 25.6 0.3 1.0 0.4 5.7 2.1 1.8

962 0.0 8.5 11.2 0.8 1.4 2.1 24.9 4.9 4.4 1.09 0.31 0.78 9.2

971 0.2 2.6 18.6 0.1 1.1 0.3 11.3 4.0 2.9

978 12.7 25.0 65.8 0.4 5.8 4.8 19.1 64.5 16.6 1.77 0.50 1.27 5.1

982 0.0 5.6 3.4 1.7 7.0 0.9 15.8 49.5 17.2 0.21 0.06 0.15 2.7

984 13.1 2.4 6.3 0.4 4.6 1.4 59.1 71.7 14.0 1.12 0.32 0.80 33.7

995 4.8 2.1 8.5 0.2 1.8 0.6 28.6 32.0 9.7 0.35 0.10 0.25 11.9

997 2.2 24.6 49.0 0.5 2.4 5.1 20.7 15.0 6.9 2.14 0.61 1.53 6.2

1001 0.0 35.3 56.6 0.6 8.6 8.8 25.0 56.5 32.5 4.58 1.30 3.28 9.3

1004 22.5 4.2 13.9 0.3 5.9 1.1 25.2 33.3 10.6 0.56 0.16 0.40 9.5

1019 0.5 22.3 49.7 0.4 2.3 4.7 21.2 12.9 9.3 2.06 0.58 1.47 6.6

1028 6.2 2.8 7.0 0.4 1.3 1.2 43.5 6.3 4.2 0.89 0.25 0.64 22.5

a Calculated assuming 100% runoff from impervious areas: a = QV – 0.12 P_sum, where 0.12 is the percentage of directly connected impervious area. (Some of this

runoff originated from impervious areas that drained to green areas).
b Calculated as b = a (25 / (25+63)), where 25 and 63 are the percentages of indirectly connected impervious surfaces and green surfaces respectively.
c Calculated as c = a – b
d Calculated as d = c / P_sum
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Table 2. Calibration parameters and their ranges.

Parameter Abbr. Groups Range Reference

Subcatchment width [m] width

Asphalt parking lots (AP) 20-200

Physical dimensions of subcatchments
Grass areas (GR) 1-200

Swales (SW) 0-5

Subcatchment length [m] length Asphalt roadsa 0.5-5

Manning’s number [-] n

Impervious surfaces (IMP) 0.005 – 0.015

(Krebs et al., 2016; Rossman, 2016)

Grass areas (GR) 0.1 – 0.5

Swales (SW) 0.1 – 0.5

Pipes 0.010 – 0.015

Depression storage [mm] s

Impervious surfaces (IMP) 0 – 2.5

Grass areas (GR)b 0 – 20

Swales (SW)c 0 – 150 (Rujner et al., 2018)d

Saturated hydraulic conduc-

tivity [mm hr−1]

ksat Grass areas (GR)e 1 - 200
(Rawls et al., 1983)

Initial moisture deficit [-] imd Grass areas (GR)e 0.10 – 0.35

a In SWMM, the subcatchment width is an input, but in this group of subcatchments, the length (in the flow direction) showed more similarity among the subcatchments, so

it was calibrated instead of the width.
b Includes vegetation and trees as well.
c The maximum value was intentionally set high since the swales’ outlets are not always located exactly at the lowest points and the swales can be observed with larger

ponds after heavy rain events.
d Field experiments on similar swales in the same city.
e Used for both grass areas and swales.

hydrodynamic model. Parameter values were limited based on values reported in the literature (see Table 2). The precipitation

gauge was situated a few hundred metres outside of the actual catchment, and may have provided a biased estimate of the

catchment rainfall. Therefore, a rainfall multiplier for each individual rainfall event was included in the calibration. This

approach has been used with satisfactory results e.g. by Datta and Bolisetti (2016), Fuentes-Andino et al. (2017, and Vrugt

et al. (2008), although it is limited by assuming a simple multiplicative difference between the gauge and catchment-average5

rainfall, which is not necessarily the case (Del Giudice et al., 2016). Furthermore, rainfall multipliers do not address the spatial

variability of the rainfall, but in the absence of multiple rain gauges or other information about the spatial variability of rainfall

in the study catchment, there were no feasible alternatives in this case. The rainfall multipliers create a way of adjusting the

rainfall volume in the calibration so that the simulated runoff volume can better match the observed runoff volume. However,

the multipliers do not allow distinguishing between (1) deviations between rainfall at the gauge and the catchment-averaged10

rainfall, (2) errors in the rainfall measurement, and (3) errors in the runoff measurement. A more traditional approach would

be to calibrate the percentage of impervious areas, but in view of the availability of high-resolution land-cover information, it

was preferred to apply rainfall multipliers instead.
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Green surfaces like those in the study area have a long hydrological memory for antecedent rainfall, and this had to be

accounted for in the simulations. Neglecting this memory would increase the risk of green areas allowing unrealistically high

infiltration in some rainfall events. Since SWMM does not allow for setting the initial values of state variables directly, such

adjustments can be done by choosing an appropriate warm-up period for modelling runs. When sufficiently long warm-up

periods are used, this approach offers an advantage consisting of treating the first rainfall/runoff peak of an event the same5

as way as any following peaks, i.e., with initial conditions corresponding to a continuous simulation. The required length of

this warm-up period was estimated by finding the last time before each rainfall event when the study area was dry. This was

calculated for all rainfall events using the actual precipitation data and for various values for the maximum depression storage

and infiltration rate. The last antecedent time when the study area was dry was then used as the starting point of the warm-up

period. This lookup procedure was applied to every event for each iteration in the calibration process, so that all events were10

treated the same way as in a continuous simulation.

In the calibration process, the Shuffled Complex Evolution - University of Arizona algorithm (SCE-UA; Duan et al. (1994))

was used to estimate the optimal values of the parameters. The algorithm was selected because it is commonly used in hy-

drological studies and allows for parallel computing. The Python library SPOTPY (Houska et al., 2015), which includes this

algorithm, was used to carry out the entire calibration process.15

2.3 Event selection

This paper investigates single- and two-stage calibration scenarios (CS), with each CS using six rainfall events. The single-stage

CSs used the six events with the highest values of a certain event characteristic, and calibrated all parameters simultaneously.

Two-stage calibration scenarios calibrated first the parameters related to impervious areas, using a set of three rainfall events,

followed by the pervious area parameters using another set of three rainfall events. Since only 12% of the total catchment20

surface is impervious and connected directly to storm sewers, it was assumed that the events, for which runoff volume was less

than 12% of rainfall volume, produced runoff only from impervious areas. (It is conceivable that there is some contribution of

green areas when the percentage runoff is less than 12%, and in that case the threshold should be set at a lower value, but since

the amount of green area runoff and the appropriate value of the threshold would be highly dependent on antecedent conditions

this was not included here.) Therefore, these events were suitable for calibration of impervious area parameters in the first25

stage of the calibration process. Following this step, events with more than 12% runoff were assumed to also include runoff

from green areas and were used to estimate pervious area parameters in the second stage of the calibration. When calibrating

the green area parameters, the parameters related to impervious areas were kept fixed at their values from the first stage. This

procedure splits the optimization problem into two smaller problems that have fewer parameters and shorter run times. The

smaller number of parameters (reduced dimensionality) can ease the search for optimal parameter sets, while the shorter run30

time per iteration allows shortening the total time needed, increasing the number of iterations used, or including more events

in the calibration.

Characteristics related to the rainfall, flow depths and flow rates were calculated for each event. For the single-stage cali-

bration scenarios, the six highest ranking events for each characteristic were selected. For the two-stage calibration scenarios,
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the three highest ranking events with less than 12% runoff were selected for the first stage and the three highest ranking events

with more than 12% runoff were selected for the second stage. Applying the calibrated rainfall multipliers in the calibration

(Sect. 2.2) means that event properties relating to rainfall and percentage runoff will change, and the percentage runoff can

change from <12% to >12% and vice versa. Doing this consistently for all events in the calibration procedure would require

(1) re-calculating which events should be available in each stage, (2) estimating in some way rainfall multipliers for all events,5

including those not initially selected by any calibration scenario, (3) re-calculating which events are used in each CS, and (4)

repeating the calibration for any CS that has had any of its events changed. Although this might improve the overall results of

the proposed calibration procedure, it would also increase the complexity and raise several new issues, such as how to obtain

a calibrated rainfall multiplier for the 10 events that were not used in any CS. We considered this to be beyond the paper’s

original scope of examining different strategies for calibration event selection and proposing a practically useable two-stage10

calibration procedure.

To avoid making the comparison too large in scope, a limited number of calibration scenarios (eight single-stage and six

two-stage) was selected for use in this study. This selection was made so that it included a range of different characteristics and

avoided multiple CSs with the exact same set-up of events. The names of the CSs consist of two or three elements:

– T6 (Top 6) for single-stage or T32S (Top 3 - 2 stages) for two-stage scenarios.15

– The relevant event characteristic: precipitation (P), precipitation intensity (PI), runoff flow rate (Q), flow volume (QV),

or flow volume as percentage of rain QV_ppP, precipitation duration D_prec.

– The duration over which the characteristics were calculated: sum, mean and max refer to the whole event. 30 and 60 min

refer to the time interval used to calculate an average rainfall intensity or flow rate (i.e. the highest value found within the

event for a 30 or 60 minute moving average). Calculating rainfall intensities and average flow rates over these windows20

rather than the entire event suppresses the effects of e.g. dry periods within events on such calculations.

The calibration scenario N_T6 consists of the six events that were selected most often in other calibration scenarios with the

goal of obtaining a set of events that score highly on a variety of characteristics.

2.4 Other sources of uncertainty

Calibration data selection is not the only source of uncertainty in urban drainage modelling. Deletic et al. (2012) identified nine25

sources: (1) input data, (2) model parameters, (3) calibration data measurements, (4) calibration data selection, (5) calibration

algorithm, (6) objective functions, (7) conceptualisation (e.g. discretization), (8) process equations and (9) numerical methods

and boundaries. As described above, calibration data selection is the focus of this paper. However, earlier findings regarding

the other sources of uncertainties were based on predominantly impervious catchments and they should not be assumed to

apply equally to greener catchments. The nature of the catchment in this paper provides an opportunity to (1) check if these30

findings apply to greener catchments as well and (2) check if these findings are sensitive to the calibration data set that is used.

It was beyond the scope of this paper to break new ground in all of the nine sources listed above; therefore, we focused on
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uncertainty sources that have been covered in earlier literature. The uncertainties arising from objective functions, calibration

algorithms and numerics are not considered explicitly in this paper. The choice of objective function can be expected to affect

the calibration results, but this issue has received hardly any attention in urban drainage modelling, except for some short

remarks by Barco et al. (Barco et al., 2008). Likewise, the calibration algorithm (Deletic et al., 2012; Houska et al., 2015) and

numerical issues (Deletic et al., 2012; Kavetski et al., 2006) are recognized as sources of uncertainty, but there is a lack of5

studies addressing these specifically for urban drainage modelling that could be referred to here. Since breaking new ground in

these areas was considered beyond the scope of this paper, these sources of uncertainty are not considered here. The inclusion

of other sources of uncertainty is described in the remainder of this section.

Rainfall input uncertainty. Earlier studies of the Geonor T200B rain gauge used have reported wind-induced undercatch of

4-5% (Duchon and Essenberg, 2001; Lanza et al., 2010). Additionally, there may be some deviations between the rainfall at10

the gauge and in the catchment. It is therefore possible that structural errors exist in the rainfall measurements. This aspect was

investigated by examining the rainfall multipliers that were included for each event in the calibration (see Sect. 2.2). It should

be noted that the rainfall multipliers are used to adjust flow volumes and that they may therefore also reflect uncertainties in

e.g. subcatchment delineation and runoff routing.

Parameter uncertainty. The uncertainty of urban drainage model parameter estimates has been investigated extensively15

earlier, e.g., by Del Giudice et al. (2016), Dotto et al. (2009, 2011, 2012), Kleidorfer et al. (2009a) and Muleta et al. (2013).

Therefore, this issue is addressed herein just by comparing the parameter values obtained in different calibration scenarios.

Calibration data measurement uncertainties. Measurement uncertainties of flow rates in storm sewer pipes have been de-

scribed by a number of researchers, e.g., Aguilar et al. (2016), Blake and Packman (2008), Bonakdari and Zinatizadeh (2011),

Heiner and Vermeyen (2012), Lepot et al. (2014), Maheepala et al. (2001). In this paper, structural flow measurement errors20

are considered by testing calibration after reducing or increasing all flow observations by 40%. This value was chosen on the

basis of uncertainties reported by Aguilar et al. (2016) and applied to the study outflow measurement location. . This is a rather

simple approach and other ways of simulating errors in the measured data may be considered: e.g. Dotto et al. (2014) also tested

the effect of random errors; However, since many different ways of perturbing flow data can be used it was deemed outside of

the scope of this paper to examine them all, and only the constant offset was used as a simple way of introducing errors in the25

flow measurement. However, it should be noted that the use of measured flow rates, implemented in this study, involves the

presence of random errors in the calibration data sets used. The flow data from the validation period was not adjusted.

Conceptualisation / model discretization. Although model structure is also a recognized source of uncertainty (Deletic et al.,

2012), it was not considered here since: (a) there is a lack of previous research on this topic for urban drainage modelling that

could be referred to, and (b) there is a lack of methods to address this issue, other than using different models in parallel, which30

was considered outside the scope of this study, and would be difficult since the catchment model requires some SWMM features

(e.g. routing runoff from one subcatchment to another, good support for automated runs), which are not always available in

other models.

The choice of catchment discretization into the subcatchments in the model has been investigated by several authors.

Tscheikner-Gratl et al. (2016) found that a lumped model was not able to reproduce the shapes of storm runoff hydrographs35
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Table 3. Calibration parameters and their ranges for the low-resolution model.

Parameter Abbr. Groups Range Reference

Subcatchment width [m] width 5 individual subcatchments 20 – 200 Physical dimensions of subcatchments

Manning’s coefficient [-]

n Impervious surfaces (IMP) 0.005 – 0.015

(Krebs et al., 2016; Rossman, 2016)

Pervious surfaces (GR) 0.1 – 0.5

Pipes 0.010 – 0.015

Depression storage
s Impervious surfaces (IMP) 0 – 2.5

Pervious surfaces (GR) 0 – 20

Percentage runoff routed from impervi-

ous to pervious (%)

See footnote a 1-99

Saturated hydraulic conductivity [mm hr−1]

Initial moisture deficit [-]

ksat Grass areas (GR) 1 - 200
(Rawls et al., 1983)

imd Grass areas (GR) 0.10 – 0.35

a For two subcatchments the percentage routed was estimated at 0% and 100% respectively. A single percentage was calibrated and shared by the three remaining subcatchments.

as well as a more detailed model, even though total runoff volumes were similar. Sun et al. (2014) and Krebs (2014) found

that a finer discretization resulted in parameter values that were more applicable to other study sites and events. Petrucci and

Bonhomme (2014) found that using additional geographic information to increase the spatial resolution could improve model

performance, since some model parameters can then be estimated directly from geographic data (see also Dongquan et al.,

(2009); Warsta et al., (2017). To investigate the impact of calibration data selection on these findings and to check them for5

a predominantly green urban catchment, two levels of discretization were compared: (1) the basic model set-up (the high-

resolution model described in Sect. 2.2), and (2) a simpler, more traditional set-up using five subcatchments. In the latter case,

each subcatchment was created by aggregating multiple smaller subcatchments from the high-resolution model. The area and

percentage imperviousness of each aggregated subcatchment were calculated from its constituent smaller catchments. The cal-

ibration parameters were modified accordingly, as shown in Table 3, with the total number of calibration parameters (including10

rainfall multipliers) being the same.

2.5 Objective functions

The objective function used for the calibrations was the Nash-Sutcliffe model efficiency:

NSE = 1−
1
n

∑n
i=1(Si −Oi)

2

1
n

∑n
i=1(Oi − Ō)2

(1)

Where O denotes observed values and S simulated values. The NSE measures the variance of the model errors (the numer-15

ator) as a fraction of the variance of the observations (the denominator). This fraction is then scaled so that it extends from

–infinity (i.e., the worst possible fit) via 0 (the score that would be achieved by using the average of observations) to 1, for a

10



perfect fit. The NSE is dimensionless, so it allows comparing runoff events of different magnitudes. However, when the vari-

ance of the observations is small (e.g. for small runoff events), it can become quite sensitive to small changes in the simulated

hydrograph. The NSE was calculated for each individual event and the average used as the calibration objective. For further

assessment of the modelled hydrographs, two metrics related to the peak flow and the hydrograph volume were used. The peak

flow ratio (PFR) was defined as the ratio of the highest simulated to the highest observed flow rates, regardless of the times5

when they occurred:

PFR =
maxSi

maxOi
(2)

Where values >1 indicate overestimated simulated peak flows and values <1 indicate underestimated simulated peak flows.

Finally, the relative volume error (VE) considers total flow volumes throughout the event:

VE =

∑n
i=1(Si −Oi)
1
n

∑n
i=1Si

(3)10

It is positive when the simulated total flow volume exceeds the observed one and vice versa. Note that the above formula is

only valid if the observation interval is constant. The peak flow ratio and volume error were used here since peak flow rates

and storage volumes are often the targets that drainage systems are designed for.

The quick response of the studied catchment means that low flow rates may cover a significant part of the event. Mea-

surements in this range have relatively high uncertainties and may be considered less relevant than periods with higher flows.15

Therefore, it should be avoided that low flows dominate the analysis, which was achieved by including only time steps with

observed flow rates >1 L s−1 in calculating these metrics.

3 Results and discussion

3.1 Calibration performance

3.1.1 Baseline calibration20

The baseline calibration (i.e. using the high resolution model without flow data perturbations) was successful for all calibration

scenarios, with average NSE for all events ranging from 0.68 to 0.85 (see Table 4). The lowest NSE corresponded to the two

CSs based on the percentage runoff (T6_QV_ppP and T32S_QV_ppP). This result can be attributed to one event (see 2), for

which both CSs resulted in simulated hydrographs with low NSE, in spite of a visually good fit of the observed data. In this

case, low NSE resulted from a small timing error and from low flow rates in the event, which lead to a low variance of the25

observations and, therefore, an NSE that is more sensitive to small simulation errors. For the two-stage calibration scenarios,

the individual stages also produced successful calibrations (stage 1 NSE 0.70 - 0.87, stage 2 NSE 0.78-0.87), except for the

second stage in T32S_QV_ppP for the reasons explained above. The NSE for the individual calibration events in the different

11



Table 4. Calibration results. Bold font indicates the best value in each column.

High resolution model
Low resolution model

Mean NSE
Baseline Flow-40% Flow +40%

NSE VE PFR NSE NSE NSE VE PFR

N_T6 0.80 -0.07 0.93 0.77 0.76 0.84 0.03 0.85 0.78

T6_P_sum 0.75 -0.11 0.96 0.65 0.65 0.75 -0.07 0.90 0.68

T6_PI_mean 0.77 -0.04 0.90 0.63 0.78 0.77 0.02 0.86 0.73

T6_PI_30m 0.74 -0.09 0.95 0.72 0.72 0.74 -0.05 0.95 0.72

T6_Q_max 0.85 -0.03 0.89 0.82 0.84 0.86 0.04 0.86 0.84

T6_Q_60m 0.79 -0.09 0.91 0.77 0.77 0.81 0.01 0.90 0.78

T6_QV_ppP 0.68 -0.11 0.89 -0.10 0.65 0.65 -0.09 0.94 0.41

T6_D_prec 0.74 -0.10 0.92 0.72 0.69 0.81 -0.02 0.86 0.72

T32S_P_sum 0.83 0.03 0.90 0.77 0.83 0.68 0.08 0.74 0.81

T32S_PI_mean 0.83 0.03 0.96 0.75 0.80 0.78 0.05 0.84 0.79

T32S_Q_max 0.82 0.06 0.86 0.79 0.84 0.80 0.07 0.78 0.81

T32S_Q_60m 0.79 0.04 0.98 0.73 0.76 0.73 0.02 0.93 0.76

T32S_QV_ppP 0.70 0.06 0.85 0.62 0.73 0.67 0.11 0.75 0.68

T32S_D_prec 0.76 0.02 0.97 0.83 0.73 0.84 0.03 0.85 0.77

calibration scenarios is similar to that reported by Krebs et al. (2013). Overall, the two scenarios based on peak flow performed

best (being the only CSs with mean NSE > 0.8) while the two scenarios based on percentage runoff performed worst (only CSs

with mean NSE < 0.7).

For the two-stage calibrations the assumption that no runoff occurred from green areas during the first stage of the calibration

was checked. During the actual first-stage calibration (i.e. with green area parameters set to default values) there was no runoff5

from green areas for any of the calibration events in any of the calibration scenarios, so the first stage calibration attributed

all runoff to impervious areas as assumed beforehand. However, some runoff occurred from green areas for first-stage events

when the calibrated parameter values from the second stage were applied. This runoff was caused by impervious areas draining

to green areas. The runoff from green areas was <5% of the total simulated runoff volume for 4 model runs, <10% for an

additional 3 runs, and 11.6%, 11.7%, 21.7%, 22.9% and 25.7% respectively for 5 additional runs. These last 5 runs concerned10

3 different events with a percentage runoff (calculated before applying rainfall multipliers) between 11% and 12%. Such events

may be expected to include some green area runoff and it could be considered to exclude these from the first stage calibration

(not done here to limit the complexity of the procedure as discussed in Sect 2.3). In addition, all three events were also included

in other first-stage calibrations where they did not result in any significant simulated green area runoff. Removing these events

from the first stage of calibration based on initial calibration results would therefore result in the same event being included15
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Figure 2. Examples of hydrographs for events with high (left) and low (right) objective function (NSE) values.

in different stages for different calibration scenarios, which was considered undesirable. Overall we believe that, although the

assumption that all runoff is from directly connected impervious areas when QV_ppP <12% is violated in some cases, the

assumption that these events are suitable for calibrating impervious area parameters does hold to a sufficient degree, as also

evidenced by the good first-stage calibration performance (see first paragraph of this subsection). In addition, checking for

green area runoff as done here is only possible after calibration, and considering it when selecting events would thus create a5

more complex, iterative calibration procedure, which would limit the practical applicability of this approach. We considered

this to be beyond the paper’s original scope of examining different strategies for calibration event selection.

3.1.2 Low-resolution model

Calibration runs with a model setup consisting of five instead of 140 subcatchments showed NSE similar to that of the baseline

run (Table 4): the change in performance ranged from +0.08 (T32S_D_prec) to -0.06 (T32S_Q_60m), with only T32S_P_sum10

showing a larger loss of 0.15. The peak flows predicted by the low-resolution models were most often lower than in the high-

resolution model and as a result, peak flow ratios were worse. This effect was stronger for the two-stage calibrations than

for the single-stage calibrations. Overall runoff volume was higher in the low-resolution models, which resulted in a smaller

volume error. These findings on peak flows and total flow volumes confirm earlier findings by Tscheikner-Gratl et al. (2016).

The changes in peak flow performance were smaller than reported by Krebs et al. (2016), but the changes in NSE and volume15

errors were comparable.

3.1.3 Sensitivity to structural flow measurement errors

Calibration results (NSE) are shown in Table 4 for the cases of structural flow data errors of -40% and +40%. For most

calibration scenarios there was a small loss in NSE, except for T6_QV_ppP, which failed to calibrate with an NSE of -0.1

when the flow data was reduced by 40%. Three of the events in that scenario calibrated well (NSE 0.76 - 0.95), but the other20
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Figure 3. Calibrated hydrographs for T6_QV_ppP in the baseline run (left) and after reducing all flow measurements by 40% (right). The

low NSE in the right panel is caused by the low variance of the observations.

three produced negative NSE values. These latter three events all missed the first runoff peak; for two of them the quality of

fit, judged visually, was the same as in the baseline run, but since the flow rates were low, the variance of the observations was

low and thus the NSE values were unsatisfactory (see Figure 3 for an example). T6_PI_mean included one event, for which

the reduction of flow observations by 40% resulted in a hydrograph where large parts fell below the 1 L s−1 threshold. Except

for the events described above, the flow errors could be compensated for in calibration, confirming the earlier findings in the5

literature (Dotto et al., 2014). In the paper by Dotto et al. the perturbations in flow data resulted in different calibrated values

for the percentage imperviousness of the catchment, while in the current paper the perturbations resulted in different values for

the rainfall multipliers as discussed in Sect. 3.2.2.

3.2 Calibrated parameter values

3.2.1 Hydrologic model parameters10

Figure 4 shows the calibrated parameter values (for the baseline run), normalized with respect to their calibration ranges (see

Table 2). There is considerable variation among the calibrated values obtained in different calibration scenarios, demonstrating

that even for parameters with a clear physical interpretation, identification of the best (ideal) value is not straightforward.

Gupta et al. (1998) also found considerable variation in the parameter values obtained when using different years as calibration

periods for a natural catchment model. Nonetheless, the span of parameter values is considerably reduced compared to the15

range imposed during calibration, showing that the boundaries were not set too tightly and that the calibration procedure does

offer benefits over estimating parameter values directly.

Calibrated parameter values are always uncertain estimates. This uncertainty has been investigated for urban drainage models

and shown to be dependent on parameter type, study catchments, model structures, catchment discretization and measurement
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Figure 4. Normalized calibrated parameter values for different calibration scenarios and the baseline run. The highest and lowest values

found for each parameter are indicated.

errors (Dotto et al., 2009, 2011, 2014; Kleidorfer et al., 2009a; Sun et al., 2014). The variation found here among the optimum

parameter values obtained in different calibration scenarios suggests that the selection of calibration events could also affect

the uncertainty of parameter estimates and this influence should be investigated further.

3.2.2 Rainfall multipliers

The values of rainfall multipliers found in the calibration process ranged from 0.48 to 2.92, showing that there could be5

significant measurement errors (in precipitation and/or flow) and/or differences between the gauge rainfall and the catchment

average rainfall matching best the observed flow rates. For rainfall events that were included in multiple calibration scenarios,

the calibrated multipliers from different scenarios were close to each other (see 5). This variation was much smaller than that

for the hydrological model parameters (see Sect. 3.2.1). The average value of the rainfall multipliers across all events was 1.2.

When all flow data was decreased by 40%, prior to calibration, the different CSs remained in agreement with each other,10

except for T6_QV_ppP, which failed in this run. The average rainfall multiplier across all events was 0.76 (i.e., 37% lower than

in the run without any perturbation of flow data). When all flow data was scaled up by 40%, T32S_P_sum and T32S_Q_max

produced deviating multipliers (compared to the other calibration scenarios) for three events each, but the quality of fit was the
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Table 5. Baseline run calibrated rainfall multipliers for events that were used in at least three CSs.
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199 0.58 0.58 0.58 8.0 21.4

209 0.48 0.48 0.48 3.8 14.3a

211 0.70 0.70 0.70 0.70 0.70 6.8 15.8a

214 1.16 1.16 7.4 8.7

222 0.68 0.68 0.68 0.68 6.7 10.6

270 1.24 1.22 1.28 1.26 1.25 11.7 9.1

306 0.74 0.70 0.74 0.73 6.3 11.7

307 1.48 1.46 1.48 1.48 1.48 1.48 1.44 1.44 1.52 1.48 1.47 44.0 11.0b

310 1.06 1.06 1.06 1.06 1.14 1.08 9.2 13.0

530 1.14 1.10 1.10 1.12 1.04 1.08 1.08 1.14 1.10 7.4 10.2

939 0.60 0.60 4.2 9.5

962 0.98 0.98 8.3 25.4

971 1.08 1.08 2.8 10.4

978 1.38 1.38 1.34 1.34 1.40 1.42 1.36 1.38 1.38 34.4 13.9

982 1.22 1.20 1.26 1.22 1.26 1.23 6.9 12.8

984 2.02 1.94 2.12 2.00 1.90 2.00 4.8 29.6

995 2.92 2.88 2.90 6.1 9.9 b

997 1.24 1.26 1.25 30.8 16.6

1001 1.70 1.66 1.60 1.64 1.66 1.66 1.60 1.64 1.70 1.64 1.65 58.2 15.1

1004 0.78 0.78 3.3 32.3

1019 1.46 1.48 1.46 1.44 1.46 32.6 14.5

1028 1.30 1.30 1.30 3.7 33.4

a Event percentage runoff switches from <12% to >12% when applying rainfall multiplier.
b Vice versa.

same across all CSs (according to both the NSE and visual comparison). The average value of the multipliers across all events

was 1.59 (i.e., 33% higher than in the baseline run).

The close inter-CS agreement and the similarity in between the magnitude of perturbations in flow data and the magnitude

of the corresponding change in rainfall multipliers indicate that the rainfall multipliers work as intended, i.e. compensating for

discrepancies between the observed and best-fitting rainfall, rather than for other aspects of catchment runoff modelling. In5

this respect, the average multiplier of 1.2 in the baseline run suggests that there was some structural disagreement between the

observed rainfall and flows.
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6 rainfall multis.png

Figure 5. Rainfall multipliers in baseline calibration (horizontal axis) compared to the LR-model calibration (vertical axis). Each dot is a

rainfall multiplier calibrated by one calibration scenario for one event. Identical events appearing in multiple calibration scenarios share the

same colour.

In runs with the low-resolution model, contrarily to those with the high-resolution model, there was considerable variation

in the values of the rainfall multipliers for each event found by the different calibration scenarios, as shown in Figure 5. The

multiplier values obtained ranged from 25% lower to 50% higher, for the same event in the same calibration scenario, compared

to the baseline calibration. Three of the low-resolution two-stage calibrations (T32S_D_prec, T32S_Q_60m, T32S_Q_max)

found lower multipliers than in the baseline calibration, T32S_QV_ppP had three higher and three lower multipliers and other5

CSs had all higher multipliers. This behaviour indicates that, in spite of yielding similar results, the rainfall multipliers in the

LR-model were used to compensate (within a single event) for the effects of the specific parameter set found in calibration,

rather than to compensate for a structural discrepancy between the observed rainfall and flow data as in the baseline calibration

(as was the case for the HR models). That the rainfall multipliers appear to behave in a more physical way in the high-resolution

model is in line with earlier findings about more transferable parameter values resulting from high-resolution models (Krebs10

et al., 2014; Sun et al., 2014).

3.3 Validation performance

3.3.1 Individual events

The successful calibrations predicted 8-13 out of the 19 validation events satisfactorily (NSE >0.5), see Table 6. T6_PI_30m

(9 events) and T6_Q_60m (8 events) performed worst while T32S_PI_mean performed best. Perturbations of the flow data15

in the calibration period led to a lower number of satisfactorily predicted events for most CSs. The two-stage calibration

scenarios were less sensitive to perturbations of the flow data in the calibration period, i.e. they predicted more validation

events satisfactorily than their single-stage counterparts. When switching from the high resolution to the low-resolution model
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Table 6. Number of validation events with NSE >0.5 out of 19 total events. Bold font indicates the best value in each column.

Baseline Cal. flow -40% Cal. flow +40% Low-res. model Total

N_T6 12 10 8 7 37

T6_D_prec 11 9 9 6 35

T6_P_sum 11 9 9 8 37

T6_PI_30m 9 9 9 9 36

T6_PI_mean 10 6 12 6 34

T6_Q_60m 8 9 9 6 32

T6_Q_max 12 9 11 10 42

T6_QV_ppP 12 7a 9 10 31

T32S_D_prec 12 12 12 10 46

T32S_P_sum 10 9 10 13 42

T32S_PI_mean 13 12 12 13 50

T32S_Q_60m 10 9 9 10 38

T32S_Q_max 11 8 10 12 41

T32S_QV_ppP 11 12 10 12 45

a Run was unsuccessful in calibration

the single-stage CSs were no longer able to predict up to 5 events, while from the two-stage CSs only T32S_D_prec lost

two events, and T32S_P_sum, T32S_Q_max, and T32S_QV_ppP actually predicted a higher number of events satisfactorily.

Over all four calibration runs, the two-stage calibrations were able to predict more events satisfactorily than their single-stage

counterparts.

The events that most often caused failure in validation were four events with peak flow rates of 10 L s−1 or less, and5

therefore, such failures may be attributed to: (1) relatively high measurement uncertainties, and (2) high sensitivity of the NSE

to even small changes in the hydrographs. However, it should be noted that the two smallest events (both with a peak flow rate

of 4.6 L s−1) were predicted with NSE>0.5 by some calibration scenarios. For the other CSs, examination of the hydrographs

showed that they predict well the magnitude of events, but produce wrong timing. Another event that failed in validation for all

CSs was that with the highest peak flow rate (53 L s−1, see Table A1), which was overestimated by a factor of up to three. This10

event was dominated by an intense, single-peak burst of rainfall (the highest 30-minute average rainfall intensity was 11.1 mm

hr−1), so it could have suffered from high spatial variation of the rainfall.

The peak flow ratios obtained for the 19 validation events using the calibrated models from the baseline are shown in the

upper panel of Figure 6. Under- or overestimation of peak flows and runoff volumes by the model could lead to an under-

or over-dimensioned system design, and it is therefore relevant to consider these aspects alongside the NSE. Underestimation15

of peak flows was most frequent, but the largest errors occurred when the flow was overestimated. The variation among CSs

was generally larger when the prediction error was larger. The corresponding figure for volume errors is shown in the middle
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Figure 6. Error statistics for individual validation events for all calibration scenarios in the baseline runs.

panel of Figure 6. Again, underestimation was more common, but overestimation did occur for a limited number of events.

For both peak flows and total volumes, the variation among events was generally larger than the variation among different

calibration scenarios, showing that selecting a limited number of validation events may also influence the results of the model

evaluation. Across all CSs, two-stage versions had similar or better performance in terms of total runoff volume. Peak flow

ratios were <1 for most events, but for the events that generally did poorly in validation (see above) peak flows (as well as flow5

volumes) were over predicted instead. The results for both total volumes and peak flows indicate that for most events flows

were underestimated, which may be (at least partially) attributed to the discrepancies between observed rainfall and flow found

in the calibration phase (see Sect. 3.2.2).

When examining the NSE of the validation events (see the bottom panel of Figure 7), more variation among the different

CSs became visible, although the amount of variation was still event-dependent: inter-CS variation for the same events varies10

from 0.15 to 1.25. This shows that some events can have a much larger impact on the overall validation results than others. Out

of the 19 events, 6 were predicted satisfactorily (NSE>0.5) by some CSs but not by others; 5 events failed for all CSs, and 8

were predicted satisfactorily by all CSs.

3.3.2 Overall performance of the high-resolution model

To assess the overall performance of different calibration scenarios for the validation period, several ways of combining the15

individual events were considered (see Table 7). The simplest metric is obtained by using the NSE means, which ranged from
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Table 7. Summarized performance for all 19 validation events for the high-resolution model. Bold font indicates the best value in each

column.

Mean

NSE

Clip

mean

NSE

Median

NSE

Joint

NSE

# neg

NSE

# good

NSE
Joint VE Mean PFR

N_T6 0.33 0.45 0.58 0.65 2 12 -0.24 0.91

T6_P_sum 0.39 0.45 0.60 0.66 2 12 -0.23 0.91

T6_PI_mean 0.18 0.33 0.51 0.59 4 10 -0.24 0.96

T6_PI_30m 0.13 0.29 0.49 0.57 5 9 -0.24 0.98

T6_Q_max 0.34 0.44 0.58 0.65 2 12 -0.24 0.92

T6_Q_60m 0.37 0.37 0.43 0.60 3 8 -0.29 0.81

T6_QV_ppP 0.36 0.47 0.58 0.67 2 12 -0.24 0.90

T6_D_prec 0.34 0.43 0.56 0.64 2 11 -0.25 0.91

T32S_P_sum 0.19 0.34 0.56 0.68 5 10 -0.15 0.99

T32S_PI_mean 0.26 0.44 0.59 0.70 2 13 -0.16 1.00

T32S_Q_max 0.31 0.34 0.53 0.67 4 11 -0.13 0.96

T32S_Q_60m 0.26 0.33 0.53 0.68 4 10 -0.13 0.99

T32S_QV_ppP 0.42 0.46 0.58 0.65 2 11 -0.26 0.87

T32S_D_prec 0.22 0.34 0.61 0.70 4 12 -0.02 1.01

0.13 (T6_PI_30m) to 0.42 (T32S_QV_ppP). There are two conceptual problems with this metric: First, since NSE ranges from

negative infinity to plus one, one poorly fitting event can offset multiple well-fitting events. Second, two simulated hydrographs

of equally poor fit can have rather different (negative) NSE values, producing different impacts on the overall results, which

is not justified by a visual comparison. Therefore, this mean metric is not considered a reliable metric for comparisons, when

poorly fitting events are present. The exclusion of low flow (<10 L s−1 peak) events avoids this issue, but does not reward5

calibration scenarios that do manage to predict these events satisfactorily. Another option is to set all NSE values <-1 to -1

before calculating the mean, which results in NSE ranging from 0.29 to 0.47. Adoption of the median NSEs (insensitive to

outliers) lead to a higher range of 0.43 to 0.61, showing that the average or overall validation performance depends more on

the outlier events than on typical events. A more commonly used approach is to combine all the events into a single time series

prior to calculating the NSE on the joint time series. This procedure indicated satisfactory performance for all CSs (NSE 0.5710

– 0.70). The discussion of various metrics shows that caution is needed when averaging performance over multiple events, as

metrics may not reflect the fact that a significant number of events is poorly predicted in all CSs (see Table 6).

The considerations in the previous paragraph concern the NSE and are not necessarily applicable to other statistics in the

same way. The volume error (VE) was included in this study to yield some indication of the overall difference between the

modelled and observed runoff volumes over longer time periods. Therefore, this statistic was summarized over all events15
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using the joint time-series approach. The volume errors were similar for all high-resolution single-stage calibrated models and

showed a general tendency to underestimate flow volumes by 25%. For the two-stage calibrated models volume errors were

smaller with underestimation of around 15% (except for T32S_QV_ppP).

3.3.3 Overall performance of the low-resolution model

The effect of the low-resolution model depended on the calibration scenario considered, see Table 8. Some scenarios scored5

better in terms of NSE (gains of up to 0.17 and 3 events predicted with NSE >0.5), while others lost performance by the

same metrics (up to 0.24 and 5 events). This is a more less consistent than that found by Krebs et al. (2016), who tested high-

and low-resolution models of three catchments and found the high-resolution models to perform better in validation for all

three. All but one of the two-stage scenarios predicted more events satisfactorily with the low-resolution model than with the

high-resolution model.10

For the single-stage calibration scenarios, the volume errors in the LR were twelve to nineteen percent points higher.

The two-stage scenarios showed both worsened performance (T32S_P_sum, T32S_PI_mean) and improved performance

(T32S_Q_60m and T32S_Q_max, T32S_QV_ppP). When comparing the hydrographs from the two different model dis-

cretizations per event, the high-resolution model usually performed better. However, for the last three CSs mentioned, the

low-resolution performed better compared to the other CSs. For T32S_Q_60m and T32S_Q_max, the low-resolution model15

predicted the observed hydrographs better for most validation events. These three calibration scenarios were also the only ones

where the low-resolution model resulted in lower values for the calibrated rainfall multipliers.

3.3.4 Sensitivity to structural flow errors

The introduction of structural flow measurement errors into the calibration data had little effect on performance in the validation

phase. Although there were some changes (compared to the baseline calibration) in the overall NSE values, volume errors and20

peak flow ratios were almost the same for the baseline and disturbed flow data runs. For T6_D_prec, T6_P_sum, T6_Q_60m,

and T6_QV_ppP, runoff started later in the validation event when calibration flow data was increased by 40%, but this had a

limited influence on the overall performance metrics (NSE, VE and PFR). Only T6_PI_mean was more sensitive to reducing

calibration flow data by 40%. This resulted in lower flows (and therefore better fits) in validation events for the five events that

caused problems for most other CSs (i.e. the four lowest and the single highest peak flow rate(s), see Sect. 3.3.1).25

3.4 Degradation of performance from calibration to validation

In calibration, the NSE for the different calibration scenarios ranged from 0.68 to 0.85, while in validation it ranged from 0.29

to 0.47. The CSs that did better in calibration lost more performance (measured by NSE) when switching to the validation

phase (see Figure 7). The range of performance loss for the different calibration scenarios was larger for the low-resolution

model than for the high-resolution model. For the high resolution model all but one of the two-stage calibrations lost more30

performance when switching to the validation phase than their single-stage counterparts, whereas for the low-resolution model
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Table 8. Summarized validation performance (over 19 events) for the low-resolution models. Bold font indicates the best value in each

column.

Mean

NSE

Clip

mean

NSE

Median

NSE

Joint

NSE

# neg

NSE

# good

NSE
Joint VE Mean PFR

LR visually

better than

HR (# events)

N_T6 0.12 0.21 0.36 0.52 5 7 -0.43 0.50 2

T6_P_sum 0.05 0.22 0.42 0.57 6 8 -0.38 0.60 3

T6_PI_mean 0.38 0.38 0.37 0.50 0 6 -0.43 0.59 4

T6_PI_30m 0.43 0.43 0.50 0.58 2 9 -0.34 0.74 5

T6_Q_max 0.49 0.49 0.56 0.59 0 10 -0.36 0.64 5

T6_Q_60m 0.29 0.29 0.36 0.49 4 6 -0.46 0.49 3

T6_QV_ppP 0.37 0.37 0.51 0.54 3 10 -0.40 0.66 4

T6_D_prec 0.34 0.34 0.38 0.50 4 6 -0.44 0.51 4

T32S_P_sum 0.51 0.51 0.55 0.66 2 13 -0.27 0.60 4

T32S_PI_mean 0.44 0.46 0.60 0.69 2 13 -0.22 0.80 5

T32S_Q_max 0.05 0.33 0.64 0.70 5 12 -0.07 1.03 12

T32S_Q_60m 0.13 0.28 0.52 0.66 4 10 -0.04 1.02 11

T32S_QV_ppP 0.44 0.46 0.65 0.72 2 12 -0.18 0.79 7

T32S_D_prec 0.29 0.38 0.56 0.76 4 10 -0.05 0.86 4

a calculated after setting individual event values <-1 to -1.

all but one of the two stage calibrations had a smaller performance loss. The findings in this section demonstrate that good

calibration performance is not necessarily indicative of good validation performance and vice versa, and therefore, whenever

feasible, validation should be performed. Previous studies found that high-resolution models lead to more transferable param-

eter estimates (e.g. less loss of performance when switching to validation, Sun et al. (2014), Krebs et al. (2014)), but in the

current study this seems dependent on the calibration data set used. For the two-stage calibrations the low-resolution model5

usually has less loss in performance than the high resolution model.

3.5 Single-stage vs. two-stage calibrations

For those selection criteria, for which both single and two-stage calibrations were performed, the results of the two options

can be compared directly (see Figure 8). For the high-resolution model, calibration performance of the two-stage CSs was

somewhat better than for the single-stage CSs. By contrast, in the validation phase the NSE was better for the single-stage10

CSs. However, the volume error and peak flow ratio were better for the two-stage calibrations. For the low-resolution model

performance was similar or worse for the two-stage calibrations, but in the validation phase the two-stage calibrations most
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Figure 7. Loss of performance (NSE) when switching from calibration to validation.

Figure 8. Comparison of single-stage and two-stage calibration strategies.

often had higher NSE. In addition, the two-stage calibrations resulted in much better performance in terms of volume error and

peak flows than their single-stage counterparts.

4 Conclusions

The primary objective of this study was to compare different strategies for the selection of calibration events for a hydrodynamic

model of a predominantly green urban area. Two secondary objectives were to verify (1) whether earlier findings on other5

sources of uncertainty in urban drainage modelling also apply to a greener urban catchment, and (2) whether they are sensitive

to the calibration data set used. Calibration strategies consisted of single- and two stage calibrations and considered a number

of different metrics by which calibration events can be selected from a larger group of candidate events. Calibration strategies
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were tested with high and low spatial resolution models and on data sets with structural flow data errors. The conclusions

drawn below are strictly valid for the specific data and catchment characteristics used in this study.

In the baseline run (high resolution model, no structural flow data errors), all calibration scenarios produced successful

calibrations (i.e., NSE > 0.5), albeit with varying performance: NSE values ranged from 0.68 to 0.85. For the two-stage

calibrations, both stages gave satisfactory results (NSE 0.70-0.87). The two-stage calibrations performed better than their5

single-stage counterparts in terms of NSE and runoff volume error. The two-stage calibrations also were faster since they

reduced the dimensionality (number of simultaneously calibrated parameters) of the calibration problem. Although the obtained

values of the SWMM model parameters varied between the different CSs, they found highly similar values for the rainfall

multipliers included in the calibration. Switching from a high-resolution to a low-resolution model discretization had only a

small impact on calibration performance metrics. However, the values of the rainfall multipliers for each event showed much10

more variation than with the high-resolution models. Most high-resolution calibration models produced higher values of the

multipliers, except for three two-stage CSs, which produced lower values instead. These observations on the rainfall multipliers

in low and high-resolution models are in line with previous studies (Krebs et al., 2014; Sun et al., 2014).

The robustness of the calibration scenarios to structural flow errors was tested by calibrating them after uniformly reducing

or increasing all flow observations by 40%. Most calibration scenarios were able to adjust to this with only small effects on the15

calibration performance, except for T6_QV_ppP (six events with highest percentage runoff), which failed in calibration (NSE

-0.1) when flow data was reduced by 40%. This can be attributed to two low-flow events, which produced negative NSE values,

even though they visually indicated a good fit. This compensation for errors in the calibration data confirms earlier findings

from a predominantly impervious catchment(Dotto et al., 2014) for a predominantly green catchment, and confirms that. these

findings were insensitive to calibration data selection except in the case of T6_QV_ppP.20

The calibrated scenarios were validated against an independent set of 19 validation events. All calibrated scenarios predicted

7 to 13 of these events satisfactorily (NSE >0.5). A group of four events with peak flow rates of less than 10 L s−1 caused

problems in most calibration scenarios, as did the event with the highest observed peak flow rate. Although most calibration

scenarios yielded similar results for the validation events with respect to the overall volume error and the ratio between the

modelled and observed peak flow rates, there were considerable differences between the CSs when performance for the vali-25

dation events was measured by NSE. In terms of NSE the single-stage CSs proved more successful in the validation phase, but

for volume error and peak flow error the two-stage CSs performed better. Better performance in regards to flow volumes and

peak flows bears more significance for engineering design.

Concerning model discretization, the low-resolution single-stage calibration scenarios showed significantly larger volume

errors than their high-resolution counterparts, while most two-stage calibration scenarios showed either the same or even30

improved volume errors. Two of the two-stage CSs (that also deviated from the others in terms of the calibrated rainfall

multipliers) were also the only ones to obtain visually better fitting hydrographs with the low-resolution model setup than

with the high resolution model setup. Two-stage calibrations also predicted more validation events satisfactorily when the

calibration flow data was perturbed. Earlier studies found that high-resolution models lost less performance when switching to
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the validation phase (Krebs et al., 2014; Sun et al., 2014), but, in the current paper, this depended on the set of calibration data

that was selected.
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Table A1. Characteristics of all rainfall events used in the validation phase.
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mm mm hr mm hr−1 mm hr−1 mm % L s−1 L s−1 mm mm mm %

745 0.01 10.8 26.3 0.41 3.1 1.39 12.9 10.1 5.81 0.09 0.03 0.07 0.6

748 0.58 3.24 11.3 0.29 2.29 0.36 11.2 28.6 6.88

757 0.33 2.02 2.57 0.79 3.38 0.13 6.34 7.28 2.52

761 1.06 28.2 61.00 0.46 5.78 4.07 14.4 29.9 21.9 0.69 0.19 0.49 1.7

767 0.08 2.51 5.77 0.44 1.5 0.3 11.8 4.6 3.24

769 0.22 2.42 2.75 0.88 2.81 0.31 12.8 16.1 6.00 0.02 0.01 0.01 0.6

770 2.64 6.34 7.52 0.84 8.15 0.92 14.5 45.2 16.8 0.16 0.05 0.11 1.8

771 8.98 3.95 4.97 0.79 4.37 0.83 21.0 30.3 15.8 0.36 0.10 0.26 6.5

772 12.7 17.8 20.3 0.88 5.84 3.57 20.1 35.7 26.7 1.44 0.41 1.03 5.8

773 21.7 8.78 8.77 1.00 3.35 1.89 21.6 17.5 11.3 0.84 0.24 0.60 6.8

775 26.8 5.10 14.2 0.36 3.25 1.35 26.4 32.4 10.7 0.74 0.21 0.53 10.3

781 0.30 6.34 11.1 0.57 2.43 0.88 13.9 23.4 6.06 0.12 0.03 0.09 1.4

791 0.91 9.48 13.7 0.69 11.1 0.72 7.59 53.3 13.5

793 0.01 4.97 7.08 0.70 1.86 0.32 6.37 5.60 2.70

795 3.43 9.72 21.4 0.45 3.27 0.88 9.05 15.2 7.53

798 9.83 2.05 5.72 0.36 1.64 0.15 7.41 4.58 2.44

799 2.13 11.4 15.9 0.72 2.55 1.20 10.6 11.1 6.24

820 0.26 10.9 14.6 0.74 2.44 1.19 11.0 12.3 8.76

822 11.2 20.3 17.4 1.17 6.24 3.41 16.8 51.3 28.6 0.97 0.28 0.70 3.4

a Calculated assuming 100% runoff from impervious areas: a = QV – 0.12 P_sum, where 0.12 is the percentage of directly connected impervious area. (Some of this

runoff originated from impervious areas that drained to green areas).
b Calculated as b = a (25 / (25+63)), where 25 and 63 are the percentages of indirectly connected impervious surfaces and green surfaces respectively.
c Calculated as c = a – b
d Calculated as d = c / P_sum
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