
We would like to thank the referee for reviewing our manuscript and providing constructive 

comments. The several issues raised by the referee are addressed one by one below. In addition to 

the changes in direct response to the reviewers, there are some small edits in the other parts of the 

manuscript. For these we refer to the marked-up version of the manuscript contained in this file. 

Comments from referee #1 

General comments 
(1) Referee’s comment: The Authors propose a suitable procedure for selecting calibration events of 

a hydrodynamic model of a predominantly green urban catchment. A two-stage calibration 

procedure is used for calibrated first the parameters related to impervious areas, using a set of 

rainfall events, followed by the pervious area parameters using another set of rainfall events. The 

selection of calibration events was carried out based on some characteristics such as precipitation 

intensity, runoff flow rate, flow volume, flow volume as percentage of rain and precipitation 

duration. The overall ranking of the different calibration scenarios in the validation period is 

estimated using the statistics of both NSE (Nash-Sutcliffe Efficiency) and RMSE (Root Mean Square 

Error). The paper address scientific questions within the scope of HESS even if it does not present 

new concepts or ideas but a rather useful procedure. The scientific methods and assumptions are 

clearly outlined and the overall presentation is well structured and clear. 

Authors’ response: we thank the referee for their generally supportive comments on the manuscript. 

Two points require some clarification: 

First, we would like to clarify that the model performance in the validation period is also assessed on 

the basis of the flow volume error and the peak flow ratio, and these two statistics are actually the 

ones, for which some of the most notable differences between different calibration scenarios are 

visible.  

Second, we believe that the suggestion that our paper “…does not present new concepts or ideas…” 

is open to discussion. In fact, the novelty of the paper consists in developing a calibration / validation 

procedure for a green urban catchment (i.e., with predominantly pervious areas). This is a unique 

class of catchments, because such green areas may receive water from both rainfall and runoff from 

adjacent impervious areas, and the resulting runoff is fed into a hydraulically efficient transport 

network of storm sewers.  Although the ideas of using different types of calibration events and two-

stage calibrations are not new in general (as pointed out by the referee or in our introduction 

section), we believe that the methodology for selection and execution of such procedures has not 

been addressed explicitly in any published article on urban drainage modelling, and the articles that 

may peripherally touch upon these issues are generally focused on urban drainage systems, of which 

runoff is controlled by impervious areas. Although the modelling of urban drainage has 

commonalities with general hydrologic modelling, there are also some key differences and even 

differences from modelling conventional urban catchments (Elliott and Trowsdale, 2007; Fletcher et 

al., 2013). Consequently, specific findings from modelling natural catchments or modelling 

conventional urban catchments dominated by directly connected impervious surfaces cannot be 

assumed to apply to green urban catchments without some caveats. This point can be clarified in the 

introduction. 

Changes in manuscript: add on page 2, end of line 18: This second aspect also applies to 

investigations into other sources of uncertainty in urban drainage modelling, some of which have 

been investigated before, e.g. input and calibration data uncertainties (Dotto et al., 2014; Kleidorfer 

et al., 2009a) and spatial model resolution (Krebs et al., 2014; Petrucci and Bonhomme, 2014; Sun et 



al., 2014). However, these investigations used predominantly impervious catchments and it is, 

therefore, unknown to what extent their findings apply to greener urban catchments as well and how 

sensitive such results are to the calibration data set that was used. 

Add to the objective statement at the end of the introduction: Two secondary objectives are to 

verify: (1) the findings from previous urban drainage modelling studies on a greener (less impervious) 

catchment, and (2) sensitivity of the earlier findings to the calibration data used. 

Specific comments 
(2) Referee’s comment: While the calibration strategies (single- and two stage) was already 

presented by the Authors in a previous paper (1), the different metrics for selecting calibration 

events from a larger group of candidate events is rather innovative and well described. 

Authors’ response: we thank the referee for their supportive comment. 

Changes in manuscript:  none needed 

 

(3) Referee’s comment: The risk of using rainfall multipliers is to attribute to the rainfall all the errors 

due to an incorrect estimate of the model parameters as well as of the model itself. The Authors 

indicate that the rainfall multipliers compensate for discrepancies between the observed and best-

fitting rainfall, rather than for other aspects of catchment runoff modelling by using the baseline 

model but it is not clear how they reach this conclusion. 

Authors’ response: two arguments support that the rainfall multipliers appear to work as intended, 

i.e. to compensate for a mismatch between observed rainfall and the rainfall that fits best with the 

observed outflow: 

1. While there is high variability among the obtained parameter values between different 

calibration scenarios (CSs), there is little variability among the rainfall multipliers for each 

event as obtained by different CSs. If the multipliers had the effect of compensating for e.g. 

reduced runoff volumes caused by higher infiltration (e.g. if the calibration parameter 

saturated hydraulic conductivity was higher), then it would be expected to see inter-CS 

variation in the rainfall multipliers more similar to that found for the other model 

parameters. 

2. When rainfall input was perturbed by -40% and +40% the rainfall multipliers changed by -

37% and +33% respectively. The similarity shows that the rainfall multipliers are sensitive to 

mismatches between the observed and best-fitting rainfall volume. 

Section 3.2.2 of the manuscript can be reorganized to present these arguments more clearly. 

We would also like to point out that many studies include the catchment area or imperviousness 

(defined here as the ‘directly connected’ imperviousness) as a way of adjusting flow volumes. The 

calibrated area or imperviousness obtained from this will also be affected by the observed vs. best 

fitting rainfall mismatch. Since high-quality land cover information and field visits were used for 

catchment delineation in this study, we preferred not to further calibrate the catchment size 

parameter, so as to maintain its clear physical connection to the real system. It was still thought that 

a mismatch between observed and best-fitting rainfall could be present. Since the other hydrological 

model parameters (listed in Table 1 and Table 2 of the manuscript) do not have a large effect on the 

runoff volume, the rainfall multipliers presented a way of accounting for this mismatch. 



Changes in manuscript: Reorganize the text in section 3.2.2 so that arguments 1 and 2 above are 

clearly identifiable as support for the conclusion on the rainfall multipliers. That the role of rainfall 

multipliers to adjust overall volumes is sometimes filled by calibrating catchment area is already 

mentioned in section 2.2 (p. 4 line 34 – p. 5 line 2), but the desired effect of maintaining the 

connection between physical and model catchment size will be added to this sentence. 

 

(4) Referee’s comment: It should however be considered that rainfall multipliers tend to treat the 

spatial variability of rain, which has a dynamic effect on the outflow, through a positive or negative 

variation of rainfall considered uniform on the single watershed and therefore treated in a static way. 

Authors’ response: We are fully aware of this issue, but with only one rain gauge and flow sensor 

being available (and lacking other information on the spatial variability of the rainfall and/or the 

effect of moving storms in the relatively small study area of 10.2 ha) there was no feasible alternative 

to assuming uniform rainfall over the catchment. Consequently, treating the rainfall error as being 

constant over the catchment seems fitting. 

Changes in manuscript: add on page 4, line 30: Rainfall multipliers also do not address the spatial 

variability of the rainfall, but given the lack of multiple gauges or other information about the spatial 

variability of rainfall in the catchment no clear alternative was available. 

 

(5) Referee’s comment: Figure 5 is not clear and should be conceived in a new way. 

Authors’ response: We understand that the figure may be somewhat difficult to interpret, but also 

like that it contains a lot of information in a small amount of space. However, improvements can be 

made in several ways: (i) better explanation of the figure; (ii) better labelling of the different 

numbers in the figure, addition of units for parameter values, and more explanation in the figure 

caption can be added; or (iii) splitting the figure into multiple vertically aligned panels, each showing 

a subset of the calibration scenarios. 

Changes in manuscript: new version of figure 5 

 

 

Technical corrections 
(6) Referee’s comment: Table 8 does not contain bold characters as indicated in the text 

Authors’ response: the bold font was inadvertently left out. 

Changes in manuscript: bold font will be added in the table to indicate the best value in each 

column. This will be done in all tables concerning calibration or validation performance. 

 

  



We sincerely thank the referee for their extensive comments on the manuscript, which we reply to 

point-by-point below. The referee’s comments have been numbered for easy reference. In addition 

to the changes in direct response to the reviewers, there are some small edits in the other parts of 

the manuscript. For these we refer to the marked-up version of the manuscript contained in this file. 

Comments from referee #2 

General comments 
(10) Referee’s comment: This manuscript presents an analysis of the impact of selecting different 

sets of calibration data for the SWMM urban hydrological model. Selection is based on a variety of 

hydro-meteorological characteristics of the available storm events. In addition, the calibration is 

performed either adjusting all calibration parameters simultaneously, or at two stages where 

parameters related to pervious and impervious areas are calibrated separately. Finally, the results 

are analyzed against a backdrop of other sources of uncertainty besides the calibration dataset. 

Authors’ response: this summarizes well the contents of the manuscript. 

Changes in manuscript: - 

 

(11) Referee’s comment: The idea of calibrating impervious area parameters separately using such 

data where the role of previous areas is presumably insignificant is promising, and in my opinion the 

results related to this represent the most valuable contribution of the present manuscript. On the 

other hand, I struggle to find a novel scientific contribution in the analysis of the calibration event 

selection in combination with other causes of uncertainty. As argued in the specific comments below 

the results are inconclusive and it is hard to find any other take-home message than the fact that 

selection of calibration data has an impact on model parameter values and model performance. This 

has been established already in existing hydrological literature, as acknowledged also by the authors 

themselves. 

Authors’ response: In general, the novelty of our paper consists in: (i) drawing attention to the 

calibration/validation issues in green urban catchments, and (ii) proposing a calibration / validation 

procedure for a green urban catchment (i.e., with predominantly pervious areas). This is a unique 

class of catchments, because such green areas may receive water from both rainfall and runoff from 

adjacent impervious areas, and the resulting runoff is fed into a hydraulically efficient transport 

network of storm sewers.  Consequently, specific findings from modelling conventional urban 

catchments dominated by directly connected impervious surfaces cannot be assumed to apply to 

green urban catchments without some caveats.  

Further documentation of innovative aspect of our work is presented in our response to points 17-

21, 24, 28 and a newly added emphasis on innovative aspects of our manuscript. 

Changes in manuscript: see below (points 17-21, 24, 28) 

 

(12) Referee’s comment: The readability and the quality of the English language are at a very good 

level. 

Authors’ response: we thank the referee for their supportive comment. 

Changes in manuscript: none needed 



 

Specific comments 

Study site and data 
(13) Referee’s comment: It would be useful to show somewhere a brief summary of the storm 

events (e.g. duration, cumulative rainfall depth, cumulative runoff, peak runoff, runoff percentage). 

The runoff percentage in particular would be interesting as it is used in selecting events for the two-

stage calibration. Also, it would be interesting to see to which extend the permeable areas are 

activated during more intensive events (i.e. runoff-% > 12%). 

Authors’ response: we agree that a table summarizing rainfall-runoff events could be useful to the 

reader. The table can also contain a rough estimate of how many mm runoff was generated by the 

green areas. The extent to which green areas are activated can be estimated in a limited way from 

the data directly (see last column in table C1 in the supplement).  

Changes in manuscript: such a table will be added in the methods section, see Table C1 in the 

supplement. 

Table C1: characteristics of all rainfall events used in one or more calibration scenarios. 
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mm mm hr mm/hr mm/hr mm % L/s L/s mm mm mm % 

199 2.4 13.8 41.6 0.3 4.0 1.7 12.4 4.2 3.3 0.06 0.02 0.04 0.3 

209 0.2 8.0 9.5 0.8 2.8 0.5 6.9 4.5 2.7     

211 8.3 9.7 22.8 0.4 6.9 1.1 11.1 29.2 11.1     

214 7.3 6.4 12.1 0.5 4.3 0.6 10.1 40.5 8.5     

222 1.1 9.8 12.8 0.8 7.5 0.7 7.2 26.4 13.3     

270 0.0 9.3 38.5 0.2 3.5 1.1 11.3 22.9 8.7     

306 10.1 8.6 9.1 0.9 7.1 0.7 8.5 27.5 9.3     

307 18.3 29.9 37.7 0.8 8.5 4.9 16.2 71.2 42.9 1.27 0.36 0.91 3.0 

310 12.7 8.6 10.0 0.9 7.5 1.2 14.0 37.4 17.4 0.17 0.05 0.12 1.4 

530 13.8 6.7 2.8 2.4 7.2 0.8 11.2 58.9 13.5     

939 0.6 7.0 25.6 0.3 1.0 0.4 5.7 2.1 1.8     

962 0.0 8.5 11.2 0.8 1.4 2.1 24.9 4.9 4.4 1.09 0.31 0.78 9.2 

971 0.2 2.6 18.6 0.1 1.1 0.3 11.3 4.0 2.9     

978 12.7 25.0 65.8 0.4 5.8 4.8 19.1 64.5 16.6 1.77 0.50 1.27 5.1 



982 0.0 5.6 3.4 1.7 7.0 0.9 15.8 49.5 17.2 0.21 0.06 0.15 2.7 

984 13.1 2.4 6.3 0.4 4.6 1.4 59.1 71.7 14.0 1.12 0.32 0.80 33.7 

995 4.8 2.1 8.5 0.2 1.8 0.6 28.6 32.0 9.7 0.35 0.10 0.25 11.9 

997 2.2 24.6 49.0 0.5 2.4 5.1 20.7 15.0 6.9 2.14 0.61 1.53 6.2 

1001 0.0 35.3 56.6 0.6 8.6 8.8 25.0 56.5 32.5 4.58 1.30 3.28 9.3 

1004 22.5 4.2 13.9 0.3 5.9 1.1 25.2 33.3 10.6 0.56 0.16 0.40 9.5 

1019 0.5 22.3 49.7 0.4 2.3 4.7 21.2 12.9 9.3 2.06 0.58 1.47 6.6 

1028 6.2 2.8 7.0 0.4 1.3 1.2 43.5 6.3 4.2 0.89 0.25 0.64 22.5  
             

a Calculated assuming 100% runoff from impervious areas: a = QV – 0.12 P_sum, where 0.12 is the 
percentage of directly connected impervious area. (Some of this runoff originated from impervious areas 
that drained to green areas). 
b Calculated as b = a (25 / (25+63)), where 25 and 63 are the percentages of indirectly connected impervious 
surfaces and green surfaces respectively. 
c Calculated as c = a – b 
d Calculated as d = c / P_sum 

 

Event selection 
(14) Referee’s comment: To me the most promising aspect of this manuscript lies in the idea of 

calibrating parameters related to pervious and impervious areas separately. It is obvious that with a 

greater runoff percentage than 12% other than just directly connected areas need to contribute. For 

events with less than 12% runoff it is not equally evident that ONLY directly connected areas 

contribute. Still, this is a feasible assumption and probably holds to a sufficient extent. There is ample 

evidence that in urban setting for small events (directly connected) impervious areas predominantly 

contribute to stormwater flow and for major events also permeable areas are activated. 

Authors’ response: it can indeed be the case that green areas contribute some runoff even when the 

percentage runoff is less than 12%. Even impervious surfaces will not generate 100% runoff, so if 

runoff is exactly 12% it is reasonable to expect that at least a small part of runoff has come from 

green areas instead. We agree with the referee that the amount of runoff from green areas is small 

enough that assuming it zero is a feasible assumption. In any case, it would be difficult to determine 

by how much the 12% threshold should be lowered to ensure that no green area runoff is included, 

since this would also depend on the antecedent conditions in the catchment. Given a lack of other 

measurements (e.g soil moisture, standing water in swales) in the catchment it is not possible to tell 

the initial wetness of the catchment from measurements. Estimating initial conditions using the 

model itself would lead to the undesirable situation where the value of the threshold (and therefore 

potentially the set of events to use) would be different for each model run. A fixed percentage is 

therefore much more workable and probably of more practical use. 

Changes in manuscript: add the following sentence in section 2.3 on line 11: “(It is conceivable that 

there is some contribution of green areas when the percentage runoff is less than 12%, and in that 

case the threshold should be set at a lower value, but since the amount of green area runoff and the 

appropriate value of the threshold would be highly dependent on antecedent conditions this was not 

included here.)” 

 

(15) Referee’s comment: A couple of issues require further clarification. Did you check whether in 

the model any runoff was generated from permeable areas when the runoff-% was below 12%? If it 



is argued that no runoff is produced outside of the (directly connected) impervious areas for low 

runoff-% events it should be checked that the model result is consistent with this assumption. 

Authors’ response: there are several items to check here: 

First, during the first stage calibration (i.e. with default values for green area parameters) there was 

no runoff from green areas for any of the calibration events in any of the calibration scenarios, and 

so the first stage calibration attributed all runoff to impervious areas. 

Second, using the calibrated parameter values for both impervious and green areas, there were 

some first-stage events where some runoff was predicted from green areas: 

1. When runoff was disabled from both directly and indirectly connected impervious areas /by 

setting their depression storage to 1000 mm) there were three calibrated models runs (2 for 

T32S_D_prec, 1 for T32s_Q_60m) that actually generated some runoff from green areas (i.e. 

the runoff did not originate on impervious areas draining to green areas), but since this was 

≤2% of the total simulated runoff volume this was considered negligible. 

2. When runoff was disabled only for directly connected impervious areas, a total of 12 

calibrated model runs showed non-zero runoff from green areas. This was <5% of total 

simulated runoff volume for 4 runs, <10% for an additional 3 runs, and 11.6%, 11.7%, 21.7%, 

22.9% and 25.7% respectively for the remaining 5 runs. However, almost all of this was 

runoff that was generated on impervious areas draining onto green areas (see point 1 

above). 

Regarding the last mentioned 5 runs, it should be noted that these concerned 3 different 

events with a percentage runoff between 11% and 12%. Such events may be expected to 

include some green area runoff and it could be considered to exclude these from the first 

stage calibration as discussed in comment #14. In addition, all three events were also 

included in other first-stage calibrations that did not result in any significant simulated green 

area runoff (0, 0 and 3.4% of total simulated runoff, respectively). Removing these events 

from the first stage of calibration based on initial calibration results would therefore result in 

the same event being included in different stages for different calibration scenarios, which 

we considered undesirable. 

Overall we believe that, although the assumption that all runoff is from directly connected 

impervious areas when QV_ppP <12% is violated in some cases, the assumption that these 

events are suitable for calibrating impervious area parameters does hold to a sufficient 

degree, as also evidenced by the good first-stage calibration performance (mentioned on p 

10, l. 2-3). In addition, checking for green area runoff as done here is only possible after 

calibration, and taking it into account when selecting events would thus create a more 

complex, iterative calibration procedure which limits the practical applicability of the 

approach. We considered this to be beyond the paper’s original scope of examining different 

strategies for calibration event selection. It could however be considered as a potential 

avenue for further research on multi-stage calibration procedures. 

Changes in manuscript: add a (shorter) version of our response above to section 3.1.1: For the two-

stage calibrations the assumption that no runoff occurred from green areas during the first stage of 

the calibration was checked. During the actual 5 first-stage calibration (i.e. with green area 

parameters set to default values) there was no runoff from green areas for any of the calibration 

events in any of the calibration scenarios, so the first stage calibration attributed all runoff to 

impervious areas as assumed beforehand. However, some runoff occurred from green areas for first-

stage events when the calibrated parameter values from the second stage were applied. This runoff 



was caused by impervious areas draining to green areas. The runoff from green areas was <5% of the 

total simulated runoff volume for 4 model runs, <10% for an additional 3 runs, and 11.6%, 11.7%, 

21.7%, 22.9% and 25.7% respectively for 5 additional runs. These last 5 runs concerned 3 different 

events with a percentage runoff (calculated before applying rainfall multipliers) between 11% and 

12%. Such events may be expected to include some green area runoff and it could be considered to 

exclude these from the first stage calibration (not done here to limit the complexity of the procedure 

as discussed in Sect 2.3). In addition, all three events were also included in other first-stage 

calibrations where they did not result in any significant simulated green area runoff. Removing these 

events from the first stage of calibration based on initial calibration results would therefore result in 

the same event being included in different stages for different calibration scenarios, which was 

considered undesirable. Overall we believe that, although the assumption that all runoff is from 

directly connected impervious areas when QV_ppP <12% is violated in some cases, the assumption 

that these events are suitable for calibrating impervious area parameters does hold to a sufficient 

degree, as also evidenced by the good first-stage calibration performance (see first paragraph of this 

subsection). In addition, checking for green area runoff as done here is only possible after calibration, 

and considering it when selecting events would thus create a more complex, iterative calibration 

procedure, which would limit the practical applicability of this approach. We considered this to be 

beyond the paper’s original scope of examining different strategies for calibration event selection. 

 

(16) Referee’s comment: Second, the large range of rainfall multipliers (0.48 – 2.92) can make 

determining the runoff-% somewhat ambiguous. Presumably, the 12% runoff threshold was based on 

the measured values of precipitation and discharge before applying the rainfall multipliers. Did it 

happen that a smaller than the unity rainfall multiplier changed the initially below 12% runoff event 

to exceed the 12% threshold after rainfall multiplier calibration? If yes, should such an event be 

included in the first stage calibration? 

Authors’ response: the 12% runoff threshold was indeed applied directly to the measured values of 

precipitation and discharge. 

There were two events where the rainfall multiplier was less than 1 and reduced rainfall so that the 

new percentage runoff exceeded 12%. This can also be displayed in an extended version of Table 4 

from the manuscript, see Table C2 in the supplement. It is of course possible to exclude such events 

from their respective stages in the calibration and replace them with another event. Being consistent 

about considering the percentage runoff as calculated using the calibrated rainfall multipliers would 

also require the following three adjustments as well: 

1. It would have to be applied ‘in both directions’, i.e. second-stage calibration events where 

the calibrated multiplier was large enough that runoff % was reduced below 12% would have 

to be excluded from the second stage. (This was the case for two events. For these events 

they would first have to be considered as replacement for a first-stage event, and the first 

stage calibration re-run, before redoing the second stage of the calibration. (Depending on 

the results from this the whole procedure might have to be repeated as well.) 

2. All event characteristics related to rainfall (i.e. P_sum, PI_mean, PI_30m, QV_ppP) would 

have to be re-calculated and the related CSs determined and run again if the event set 

changed. 

3. Out of the 32 events that were available for use in calibration scenarios, only 22 were 

actually selected by one or more CSs, so calibrated multipliers are not available for the other 



10 events. It would be necessary to somehow obtain a calibrated multiplier value for them 

too so that they may be reconsidered for use in the calibration. 

Although this might improve the overall results of the proposed calibration procedure, it would also 

increase the complexity and raise several new issues, such as how to obtain a calibrated rainfall 

multiplier for the 10 events that have not yet been used. We considered this to be beyond the 

paper’s original scope of examining different strategies for calibration event selection. It could 

however be considered as a potential avenue for further research on multi-stage calibration 

procedures. 

Changes in manuscript: clarify that event selections were fixed beforehand and not adjusted based 

on initial calibration results. Add a short version of the explanation above in section 2.3, page 6, end 

of line 18: Applying the calibrated rainfall multipliers in the calibration (Sect. 2.2) means that event 

properties relating to rainfall and percentage runoff will change, and the percentage runoff can 

change from <12% to >12% and vice versa. Doing this consistently for all events in the calibration 

procedure would require (1) re-calculating which events should be available in each stage, (2) 

estimating in some way rainfall multipliers for all events, including those not initially selected by any 

calibration scenario, (3) re-calculating which events are used in each CS, and (4) repeating the 

calibration for any CS that has had any of its events changed. Although this might improve the overall 

results of the proposed calibration procedure, it would also increase the complexity and raise several 

new issues, such as how to obtain a calibrated rainfall multiplier for the 10 events that were not used 

in any CS. We considered this to be beyond the paper’s original scope of examining different 

strategies for calibration event selection and proposing a practically useable two-stage calibration 

procedure. 

Table C2: calibrated rainfall multipliers and new percentages runoff. 
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Other sources of uncertainty 
(17) Referee’s comment: The reasoning in including some of the uncertainty sources while leaving 

others out is not quite clear to me. Also, the take-home what readers should learn from this exercise 

should be clarified. 

Authors’ response: some of the issues described have been investigated before for urban drainage 

models (e.g. data uncertainties by Kleidorfer et al. (2009) and Dotto et al. (2014), model resolution by 

e.g. Krebs et al. (2014), Petrucci and Bonhomme (2014), Sun et al. (2014) and Tscheikner-Gratl et al. 

(2016)). The idea behind including other sources of uncertainty was (primarily) to see if different 

calibration event sets showed different sensitivity to these issues and (secondarily) to see if the 

findings also applied to a different data set and catchment (more dominated by green areas).  

Although we considered it an interesting experiment at the time, the impact of what objective 

function is used in calibration of urban drainage models has not been investigated extensively before 

(Barco et al. (2008) made some short remarks), so we would remove this from the manuscript. (A 

thorough investigation of this would be an interesting topic for a different study.) However the 

different objective functions used for validation phase (e.g. volume error, peak flow) would still be 

included since they provide additional insight into the simulation results. 

Removing the parts on objective function would also allow to describe in more detail the effect of 

the model resolution, since it is an interesting finding that some of the benefits of the two-stage 

calibration (better flow volume and peak flow in validation phase) are stronger for the low-resolution 

model. 

The take-home messages from this are: 

1. The impact of perturbed calibration data appears small (confirming the findings by Dotto et 

al. (2014)), but we do see interaction between the calibration data selection and the model 

discretization. 

2. The two-stage calibration gives better results in terms of flow volume and peak flow in the 

validation phase, and this effect is much stronger for the low-resolution models. 

Changes in manuscript:  



1. Section 2.4 (other sources of uncertainty): 

a. Describe the aim of including other sources: i.e. check if earlier findings are sensitive 

to different calibration data sets and if they also apply for a different data set and a 

greener catchment. 

b. Add references to previous studies on rainfall input uncertainty effect on urban 

drainage modelling in lines 10-12 (Dotto et al., 2014; Kleidorfer et al., 2009). 

c. Lines 20-24: describe a bit more the Dotto and Kleidorfer papers that are referred to, 

including that they used more pipe-based drainage systems and a fixed set of events. 

d. Lines 28 and further: add references to articles dealing with model resolution (Krebs 

et al., 2014; Petrucci and Bonhomme, 2014; Sun et al., 2014; Tscheikner-Gratl et al., 

2016) 

2. Remove the parts that deal with the calibration using RMSE as alternative objective function: 

a. page 7 lines 25-27 

b. page 9 lines 2-5 

c. Section 3.1.2, including table 3. 

d. Table 5 column 3: “RMSE as obj. func.” + update column “total” 

e. Section 3.3.3, including table 7 and figure 8. 

f. Conclusion page 24 lines 10-11 

g. mention in abstract 

 

Rainfall input 
(18) Referee’s comment: The authors report that reducing flow measurements by 40% leads to 37% 

reduction in the mean value of rainfall multipliers, and increasing flow measurements by 40% results 

in a 33% increase in the rainfall multiplier mean value. This seems like rather a trivial result. A more 

justified description about the purpose of scaling the discharge by a constant multiplier, which 

causes a corresponding change in the rainfall depth scaling parameter, is needed. 

Authors’ response: since flow data is obviously an important part in the calibration process, we 

wanted to see if earlier results from Dotto (2014) and Kleidorfer (2009) would be sensitive to 

different sets of calibration events. Our findings mainly confirm their work. For urban catchments 

these issues have only been investigated to a limited extent (i.e. with a single set of events and for 

rather impervious catchments) so additional support of earlier findings is useful. Other disturbances 

of / errors in the calibration are conceivable, but were deemed beyond the scope of this study. 

In addition, the correlation between the adjustment in rainfall and the adjustment in rainfall 

multipliers also supports the idea that the rainfall multipliers are compensating (even in the baseline 

run) for a mismatch between observed and best-fitting rainfall (as discussed in section 3.2.2), and 

therefore that they are a suitable way of accounting for this mismatch. 

A better description of why this aspect is considered is also addressed in our response to comment 

17 above. 

Changes in manuscript: see above. 

 

Calibration data measurement uncertainties 
(19) Referee’s comment: See comment above. 

Authors’ response: See response above. 



Changes in manuscript: See response above. 

 

Conceptualization / model discretization 
(20) Referee’s comment: While I agree that SWMM is a well established model for urban drainage I 

do not think that its applicability to areas clearly dominated by pervious areas is equally evident. 

Presumably in the SWMM runs of the current manuscript the groundwater module has been turned 

off and infiltration is based on the Green-Ampt equation with infiltration continuing with a rate 

appraoching assymptotically the hydraulic conductivity value. It can be questioned whether this is 

realistic for longer storm events when the soil becomes more saturated. Transpiration is also not 

accounted for but evaporation only occurs from the depression storage. I am not suggesting that it 

would feasible to take into account all aspects related to modelling uncertainty. But in my mind the 

authors’ statement “… it is safe to assume that the SWMM conceptualization is appropriate for 

urban drainage modelling and there was no need to consider this issue further” is in the context of 

such a low density urban area questionable and does not constitute a valid argument for making a 

choice about which uncertainty sources are included/excluded in/from the analysis. 

Authors’ response: we appreciate the distinction between the application of SWMM to pervious and 

impervious areas. It is correct that the groundwater module in SWMM was not utilized in this study, 

and that therefore only the Green-Ampt equation + drying is used to account for infiltration. As 

pointed out by the referee, recovery of the infiltration capacity is not based on evapotranspiration, 

but is instead based on the soil’s saturated hydraulic conductivity (Rossman and Huber, 2016). 

Our original formulation was perhaps too optimistic, but we still believe that it is reasonable not to 

treat model structure as an uncertainty source in this article for the following reasons: 

1. Unlike input and calibration data and model resolution, model structure uncertainty has not 

been addressed extensively in the urban drainage modelling literature. 

2. There is a lack of methods for considering model structure uncertainty other than using 

different models, which is outside the scope of this study. The catchment and the high-

resolution model also require certain features (e.g. routing runoff from one subcatchment to 

another subcatchment, support for automated runs) that are present in SWMM and not in 

other models. Model runtime is also a limiting factor. 

3. The Green-Ampt method itself has been in use for many years. Other infiltration models are 

available (e.g. Horton or SCS curve number in SWMM) but going into these would be outside 

the scope of this study. Ideally a study on infiltration models in urban drainage modelling 

would also make use of infiltration and/or soil moisture measurements which are not 

available here. 

Changes in manuscript: Replace p8, lines 5-7 with: Although model structure is also a recognized 

source of uncertainty (Deletic et al., 2012), it was not considered here since (a) there is a lack of 

previous research on this topic for urban drainage modelling that could be referred to and (b) there 

is a lack of methods to address this other than using different models in parallel, which was 

considered outside the scope of this study, and would in any case be difficult since the catchment 

model requires some SWMM features (e.g. routing runoff from one subcatchment to another, good 

support for automated runs) which are not always present in other models. 

 



Calibration algorithm 
(21) Referee’s comment: The authors state that SCE-UA “… has been widely applied in hydrological 

applications with great success, so there was no need to subject it to scrutiny in this paper.” While I 

agree that SCE-UA is a powerful tool with an extensive pool of hydrological modelling applications, it 

is not a sound, objective argument for leaving it out of study. The authors themselves admit that 

calibration against RMSE can yield a higher NSE than calibration against NSE itself, indicating that the 

algorithm does not always converge to the optimum value. 

Authors’ response: in relation to the improved description of why different sources of uncertainty 

are included it’s good to mention that (like for objective functions) there is a lack of studies 

examining the effect of calibration algorithms on urban drainage modelling (Deletic et al., 2012). 

(And even to some extent in general hydrology (Houska et al., 2015)). A thorough examination of the 

effect of the calibration algorithm would require implementing many different algorithms. Since 

there is a lack of earlier studies here to refer to it is acceptable to leave the calibration algorithm out 

altogether. 

Changes in manuscript: the statement on the exclusion of the calibration algorithm as source of 

uncertainty (page 8, lines 4-7) will be rephrased: Likewise, the calibration algorithm (Deletic et al., 

2012; Houska et al., 2015) and numerical issues (Deletic et al., 2012; Kavetski 5 et al., 2006) are 

recognized as sources of uncertainty, but there is a lack of studies addressing these specifically for 

urban drainage modelling that could be referred to here. Since breaking new ground in these areas 

was considered beyond the scope of this paper, these sources of uncertainty are not considered 

here. 

Validation performance 
(22) Referee’s comment: Validation performance should be the main argument for improved 

calibration strategy. If a calibration strategy leads to improved parameter identifiability this should 

be visible in better results against independent validation data. The authors state that “the two 

calibration strategies that performed best in the validation period were two-stage strategies” and 

“… calibrating impermeable and green area parameters in two separate steps may improve the 

model performance in the validation period…”. I think that currently the results about the validation 

performance for one-stage and two-stage calibrations are inconclusive. The authors use the sum of 

ranks from several performance criteria as a proxy for overall performance. Are the results shown in 

any Table? If yes, I missed them. 

Authors’ response: the overall ranking is shown for the calibration phase in Table 3, and shown for 

both calibration and validation phase in Table 9. 

Presentation of validation results could be presented better by having all results relating to the 

baseline calibration (HR model) in one table, i.e. combining tables 6, 9 and 11. A similar table could 

also be made for all results with the low-resolution model (i.e. replacing table 8) to better illustrate 

the benefits that the two-stage calibration offers there in terms of flow volume and peak flow 

performance in the validation phase, since these are more pronounced for the low-resolution model. 

The results from the low-resolution model were not described extensively in the manuscript but we 

believe they can strengthen a take-home message for the readers and should therefore be included 

in more detail. The results are currently best illustrated by Table 4.2 in the corresponding author’s 

licentiate thesis (Broekhuizen, 2019), so the re-organizing of the tables with validation results  should 

also include the data shown there. The table is included below (Table C3 in the supplement) for easy 

reference, but the data will be organized differently (i.e. one table for the HR model and one for the 

LR model) in the paper. 



Changes in manuscript: re-organize tables as described above, and describe in more detail in the text 

the effects of the single- and two-stage calibrations for the low-resolution model. 

 

(23) Referee’s comment: Also, I would prefer a more quantitative statistic than a sum of class 

variables (ranks). As NSE is used as the objective criterion for the baseline calibrations it would be a 

logical choice also for comparing the validation performance.  

Authors’ response: the validation NSE is already presented in Table 9 to allow for comparison of the 

different CSs. The problem with any single validation characteristic is that it would either ignore 

some aspects of model performance or it would have to combine different statistics (i.e. NSE, volume 

error, peak flow error) in some arbitrary way. E.g. using only the NSE for validation performance 

would ignore that two-stage strategies perform better in terms of total flow volume and peak flow. 

We think it is interesting that different statistics give a different view of which calibration strategies 

perform better and this should be reflected in the manuscript.  

Changes in manuscript:  The discussion will be focused more on discussing the individual 

performance statistics to highlight that different criteria give a different picture of the effects of 

calibration data selection. 

 

(24) Referee’s comment: The authors state in Section 3.5. about the validation performance “In 

terms of NSE, the single-stage calibrations performed better…”. On the other hand the ‘NSE joint’ 

criterion, typically used for validation (performance over the entire validation data set), seems to be 

higher for two-stage strategies in Table 6. It is hard for the reader to find guidance here what would 

be the preferred calibration strategy. 

Authors’ response: although the single-stage performs better in terms of mean NSE (i.e. NSE 

calculated for each event, then averaged), it performs worse in terms of joint NSE (i.e. all events 

collated into a single time series for which NSE is then calculated), joint volume error and mean peak 

flow ratio. As discussed in section 3.3.2 the downside of the joint NSE is that it can give good scores 

even when several events are poorly predicted. Therefore joint NSE may be considered too optimistic 

which is why we did not use it extensively in this paper. 

In terms of a take-home message it is important to point out that the two-stage calibration is much 

faster since it reduces the dimensionality of the calibration problem compared to the single-stage 

calibration. In addition to this it has sometimes slightly poorer validation performance in terms of 

NSE but typically better performance according to other characteristics. 

The take-home message can also be strengthened by highlighting more the differences between HR 

and LR models (or rather that the benefits of the two-stage calibration are stronger for the LR 

model). This is currently best illustrated by Table 4.2 in the corresponding author’s licentiate thesis 

(Broekhuizen, 2019), so the re-organizing of the tables with validation results (see comment #22) 

should also include the data shown there. The table is included in the supplement as table C3 for 

easy reference, but the data will be organized differently (i.e. one table for the HR model and one for 

the LR model) in the paper:  

Table C3: Calibration and validation performance of single and two-stage calibration scenarios. HR 
denotes the high-resolution model, LR the low resolution model. The names of the calibration scenarios 
are explained in paper III. 



 
Calibration 
(6 events) 

Validation (19 events) 

Calibration 
scenario 

NSE 
# events NSE 

> 0.5 
Mean NSE a Volume error 

Peak flow 
ratio 

HR LR HR LR HR LR HR LR HR LR 

N_T6 0.80 0.84 12 7 0.45 0.21 -0.24 -0.43 0.91 0.50 

T6_D_prec 0.74 0.81 11 6 0.43 0.34 -0.25 -0.44 0.91 0.51 

T6_P_sum 0.75 0.75 11 8 0.45 0.22 -0.23 -0.38 0.91 0.60 

T6_PI_30m 0.74 0.74 9 9 0.29 0.43 -0.24 -0.34 0.98 0.74 

T6_PI_mean 0.77 0.77 10 6 0.33 0.38 -0.24 -0.43 0.96 0.59 

T6_Q_60m 0.79 0.81 8 6 0.37 0.29 -0.29 -0.46 0.81 0.49 

T6_Q_max 0.85 0.86 12 10 0.44 0.49 -0.24 -0.36 0.92 0.64 

T6_QV_ppP 0.68 0.65 12 10 0.47 0.37 -0.24 -0.40 0.90 0.66 

           

T32S_D_prec 0.76 0.84 12 10 0.34 0.38 -0.02 -0.05 1.00 0.86 

T32S_P_sum 0.83 0.68 10 13 0.34 0.51 -0.15 -0.27 0.99 0.60 

T32S_PI_mean 0.83 0.78 13 13 0.44 0.46 -0.16 -0.22 1.00 0.80 

T32S_Q_60m 0.79 0.73 10 10 0.33 0.28 -0.13 -0.04 0.99 1.02 

T32S_Q_max 0.82 0.80 11 12 0.34 0.33 -0.13 -0.07 0.96 1.03 

T32S_QV_ppP 0.70 0.67 11 12 0.46 0.46 -0.26 -0.18 0.87 0.79 
a mean NSE was calculated after setting NSE of individual events to -1 if NSE was lower 
than -1, to avoid large influence from negative NSE values. 

 

Changes in manuscript:  changes according to the previous two paragraphs. 

 

Recommendation 
(25) Referee’s comment: In its current form the manuscript is not in my mind publishable in HESS. 

The following major changes would be required: 

Authors’ response: we believe that the major changes requested by the referee can be implemented 

in a new version of the manuscript, as detailed for the individual comments. 

Changes in manuscript: see individual points below. 

  

(26) Referee’s comment: A more informative description of the hydrometeorological data to allow 

the readers to understand differences between different calibrations 

Authors’ response: see our response to comment #13 above. 

Changes in manuscript: Include table C1 (supplement) in the manuscript’s methods section. 

 

(27) Referee’s comment: A better justified reasoning for inclusion/exclusion of different error 

sources 

Authors’ response: this is addressed in our response to points 17-21, 24, 28. 



Changes in manuscript:  

 

(28) Referee’s comment: Most importantly, a clear statement about the scientific novelty value of 

the manuscript where it becomes obvious what are the new findings over just showing that different 

calibration data lead to different model parameter values and validation performance 

Authors’ response: aspects to highlight in the conclusion and abstract: 

 Two-stage calibration is faster, and can provide some performance benefits: e.g. better 

match of flow volume and peak flow in validation phase. 

 Benefits of two-stage calibration are stronger for the LR model. 

 Confirmation of earlier findings regarding input and calibration data from Dotto et al. (2014) 

and Kleidorfer et al. (2009) for a different data set and site (more green area). Findings are 

independent of the calibration event selection which provides support for their general 

applicability. 

Changes in manuscript: changes according to the response above. 

 

Technical corrections 
(29) Referee’s comment: Mostly technical comments. The comment for Figure 4 also relates to the 

content of the manuscript. 

(30) Referee’s comment: Figure 1. Remove the text below the figure (1 map catchment.png). 

Increase the font size/figure resolution. The legend is hard to read. 

Authors’ response: The text below the figure is added automatically by the Copernicus Latex 

template used for the submission and would not appear in the final published version of the article. 

This applies to the other figures as well. 

The font size in the legend can be increased. 

Changes in manuscript: increase font size in legend. 

 

(31) Referee’s comment: Remove the text below the figure (2 example hydrographs run130.pdf). 

Authors’ response: see above. 

Changes in manuscript: - 

 

(32) Referee’s comment: Figure 3. Remove the text below the figure (3 VE PFR histograms.pdf). In 

the figure caption it is stated peak flow ratios to be on the left whereas in the figure the left panel 

shows the volume error. Please correct. 

Authors’ response: -. 

Changes in manuscript: upon further consideration the section and figure in question do not 

contribute much to the papers goals and they have therefore been removed. 

 



(33) Referee’s comment: Figure 4. Remove the text below the figure. It is hard to interpret with the 

given information what is causing the negative NSE for the right panel. Is there a timing difference 

invisible to the eye? Why does the modelled flow stay at zero for the beginning of the event? Clearly 

there is rain (left panel), so is the diminished rainfall multiplier and/or increased depression storage 

value causing all rain falling on the directly connected impervious area to be captured in the 

depression storage? 

Authors’ response: The main reason why NSE is low is that the low flow rates in the event mean that 

the variance of observations is low, see also section 2.5, lines 13-14. For the baseline run (left panel), 

the variance of the observation is 1.2 L2 s-2 while for the right panel it is just 0.33 L2 s-2. The variance 

of the errors meanwhile is 0.25 L2 s-2 (left) resp. 0.38 L2 s-2 (right). NSE is calculated as NSE = 1 – (var 

err. / var obs.) so the variance of the observations is used as a scaling factor and it is mainly the 

difference in this factor that causes the degradation in NSE in this example. 

Changes in manuscript: Add the variance of observations in figure and refer to section 2.5 in the 

caption for explanation of NSE and discuss this in the text of section 3.1.4, page 12, line 7. 

 

 

(34) Referee’s comment: Figure 5, 6, 7, 8. Remove the text below the figure. 

Authors’ response: see above. 

Changes in manuscript: - 

 

(35) Referee’s comment: Table 11. Mistake in the NSE single-stage value for D_prec (0.41)? The 

corresponding value in Table 6 is 0.43? 

Authors’ response: the correct value is 0.43. 

Changes in manuscript: correct this to 0.43. 
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Calibration event selection
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Abstract. Calibration of urban drainage models is typically performed based on a limited number of observed rainfall-runoff

events, which may be selected from a longer time-series of measurements
:::::
larger

::::::
dataset

:
in different ways. In this study, 145

single- and two-stage strategies for selecting these
::
the

::::::::::
calibration events were tested for

::
in calibration of a SWMM model

of a predominantly green urban area. The event selection was considered in relation to other
:::::
runoff

:::::::::::
contributions

:::::
from

::::
green

::::::::
pervious

:::::
areas

:::
and

:::::
such sources of uncertainty such as measurement uncertainties, objective functions,

::::::::::::
rainfall/runoff

:::::::::::
measurement

::::::::::
uncertainties

:
and catchment discretization. Even though all 14 strategies resulted in successful model calibration,

the difference between the best and worst strategies reached 0.2 in Nash-Sutcliffe Efficiency (NSE) and the calibrated param-10

eter values notably varied. Most, but not all, calibration strategies were robust to changes in objective function, perturbations

in calibration data and the use of a low spatial resolution
:::::
coarse

:::::::::
catchment

::::::::::::
discretization model in the calibration phase. The

various calibration strategies satisfactorily predicted 7 to 13 out of 19 validation events. The two-stage strategies performed

better than the single-stage strategies whenmeasuring performance using the Root Mean Square Error, flow volume error or

peak flow error (but not using NSE) ; when
:
:
:::
(1)

:::::::::
perturbing flow data in the calibration period had been perturbed

:::::
events15

by +-40%; and when using a lower model resolution
::
(2)

:::::
using

:
a
:::::::

coarser
:::::::::
catchment

::::::::::::
discretization,

::::::::
especially

::
in

:::::
terms

:::
of

::::
total

::::
flow

::::::
volume

::::
and

::::
peak

::::
flow

:::::
rates. The two calibration strategies that performed

:::
the best in the validation period

::::
phase

:
were

two-stage strategies. The findings in this paper show that different
::::::
various strategies for selecting calibration events may lead

in some cases to different results for the validation period
:
in
:::
the

:::::::::
validation

:::::
phase, and that calibrating impermeable

:::::::::
impervious

and green area parameters in two separate steps may improve model performance in the validation period, while also
:::::::
increase20

::
the

:::::::::::
effectiveness

::
of

::::::
model

:::::::::::::::::
calibration/validation

:::
by reducing the computational demand in the calibration phase

:::
and

:::::::::
improving

:::::
model

::::::::::::
performance

::
in

:::
the

::::::::
validation

:::::
phase.
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1 Introduction

Calibration of generic urban drainage model codes is usually required to obtain a model representing an actual site with

sufficient accuracy. In the calibration process, the information contained in records of relevant variables, such as rainfall and

flow rates at the catchment outlet, is used for estimating model parameter values that produce results consistent with the data

(Mancipe-Munoz et al., 2014). It can be expected that the best parameter estimates will be obtained when they are inferred5

from the largest amount of information, i.e. by using all data from a long series of measurements. However, the availability of

calibration data may be limited and the nature of the calibration process, by trial and error, requires model iterations for many

different parameter sets, which means that the runtime of the model has to be kept short and the length of the simulated periods

should be limited. Therefore, calibration may have to be performed on a limited number of rainfall events from a longer record.

As each of the available events will differ from the others, it can be expected that the choice of a specific event (or
::
an event set)10

will influence the results of calibration (Tscheikner-Gratl et al., 2016).

Tscheikner-Gratl et al. (2016) studied such influence by calibrating water level in the outflow pipe of a catchment using ten

different rain events. They found that two of them could not be reproduced in calibration and the others, while successful in

calibration, could only predict up to six of the remaining events. When applying the calibrated models with design storms,

they found that the calibrated models predicted different flooding volumes. In calibration of combined sewer overflow (CSO)15

volumes, Kleidorfer et al. (2009b) compared calibration results obtained for (i
:
1) the five longest duration events and (ii

:
2) the

five highest peak flow events, finding that using the longest duration events reduced the number of measurement sites required

for successful calibration. Schütze et al. (2002) demonstrated that calibration based on discrete events saved time compared

to calibrating for a complete time series, but also that this introduced additional uncertainty. Mourad et al. (2005) showed that

calibration of a stormwater quality model was sensitive to: (i
:
1) which randomly selected events were used, and (ii

:
2) how many20

events were used.

While the above papers helped elucidate some aspects of the sensitivity of urban drainage model calibration to the cal-

ibration events used, such findings possess some limitations: firstly,
:::
only

:
a limited number of generally available options

for selecting calibration events has been considered; secondly, the modelling focused on traditional urban drainage sys-

temswhere
:
,
::
in

::::::
which

:
generation of runoff is dominated by impervious surfaces, but the current trend towards green ur-25

ban drainage infrastructure creates the need to pay more attention to runoff processes on green areas Fletcher et al. (2013)

.
:::::::::::::::::::::::::::::::::::::::::
(Elliott and Trowsdale, 2007; Fletcher et al., 2013).

:::::
This

::::::
second

::::::
aspect

::::
also

::::::
applies

::
to

::::::::::::
investigations

::::
into

:::::
other

::::::
sources

:::
of

:::::::::
uncertainty

::
in

:::::
urban

:::::::
drainage

:::::::::
modelling,

:::::
some

::
of

:::::
which

::::
have

::::
been

::::::::::
investigated

::::::
before,

:::
e.g.

:::::
input

:::
and

:::::::::
calibration

::::
data

::::::::::::::::::::::::::::::::::::::::::::::
uncertainties(Dotto et al., 2014; Kleidorfer et al., 2009a)

:::
and

:::::
spatial

::::::
model

::::::::
resolution

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Krebs et al., 2014; Petrucci and Bonhomme, 2014; Sun et al., 2014).

::::::::
However,

:::::
these

:::::::::::
investigations

::::
used

::::::::::::
predominantly

:::::::::
impervious

::::::::::
catchments

:::
and

::
it
:::
is,

::::::::
therefore,

::::::::
unknown

::
to

::::
what

::::::
extent

::::
their

:::::::
findings

:::::
apply

::
to

:::::::
greener

:::::
urban30

:::::::::
catchments

::
as

::::
well

:::
and

::::
how

::::::::
sensitive

::::
such

::::::
results

:::
are

::
to

:::
the

:::::::::
calibration

::::
data

::
set

::::
that

:::
was

:::::
used.

:

The
:::::::::
Considering

:::
the

:::::
above

::::::::
findings,

::
the

:
primary objective of the paper that follows is to advance the knowledge of calibration

processes for green urban areas by examining different strategies for calibration event selection and their effects
:::::::
selecting

:::::::::
calibration

:::::
events

::::
and

::::::::
assessing

:::
the

::::::
effects

::
of

:::::
such

::::::::
selections

:
on the performance of a calibrated hydrodynamic model of a

2
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Figure 1. Map of the studied catchment showing elements of the high-resolution rainfall-runoff model and the distance of the catchment to

the rain gauge (RG). The diameters of the pipes range from 400 mm for the main trunk where the flow sensor is located to 200 mm for the

smaller branches.

predominantly green urban catchment. Since uncertainties in
::::
Part

::
of

::::
this

::
is

:
a
::::::::
proposal

:::
for

:
a
::::::::

practical
::::::::
two-stage

::::::::::
calibration

:::::::
strategy.

::::
Two

:::::::::
secondary

::::::::
objectives

::::
are

::
to

::::::
verify:

:::
(1)

:::
the

:::::::
findings

:::::
from

:::::::
previous

:
urban drainage modelling arise from other

sources as well (Deletic et al., 2012), the calibration event selection is considered in relation to some of them
:::::
studies

:::
on

::
a

::::::
greener

::::
(less

::::::::::
impervious)

::::::::::
catchment,

:::
and

:::
(2)

::::::::
sensitivity

:::
of

:::
the

:::::
earlier

:::::::
findings

::
to

:::
the

:::::::::
calibration

::::
data

::::
used.

2 Materials and methods5

2.1 Study site and data

The study site is a 10.2 ha catchment in the city of Luleå, Sweden (see Figure 1
:
1). The catchment area comprises 63% of

green areas, 12% of impervious areas draining
::::::::
connected

:
directly to the storm sewer system, and 25% of impervious areas

draining to
::::
onto

:
adjacent green areas. The green areas include a number of vegetated swales that are connected to the storm

sewer system at their lowest point.10

Precipitation was measured at 1-minute intervals with a Geonor T200B weighing-bucket precipitation gauge located outside

of the study catchment, about 500 and 1,000 metres from the nearest and furthest borders of the catchment, respectively (see

circles in Figure 1). The gauge was tested in the field and confirmed to work well twice a year in 2016 and 2017, and before

2016, such tests were also performed occasionally. Laboratory and field tests (by others) found this design of precipitation

sensor to be a reliable instrument (Duchon, 2002; Lanza et al., 2010). Records were available for individual rain events in15

2013-2015 and continuously for 2016 and 2017.

The flow
::::
Flow rates in the storm sewer draining the catchment were performed,

:::::::
measured

:
at 1-minute intervals , by means

of an ISCO 2150 AV sensor (a combination of an acoustic Doppler velocimeter and a pressure transducer) installed in the

3



catchment outlet formed by a 400 mm diameter concrete sewer pipe. This type of sensor was assessed in the laboratory by

Aguilar et al. (2016) and found to have a combined uncertainty (consisting of bias, precision and benchmark uncertainty) of

±19.0 mm for the water depth measurements (the test range was 10-150 mm) and ±0.0985 m/s for the velocity measurement

(test range 0.1-0.6 m/s). These tests were carried out in a 0.46 m wide square channel, so the stage-discharge relationship was

different from the study site described herein. It was also reported that the field performance of this type of sensors can suffer5

from the presence of too few (Teledyne ISCO, 2010) or too many particles suspended in the water (Nord et al., 2014).

While the difficulties in estimating all the uncertainties at the actual field site prevented a precise determination of the

uncertainties’
:
’
:
magnitude, the general lab tests of the sensors used confirmed the acceptability of their records for the study

purpose. Finally, it was also confirmed by Dotto et al. (2014) that errors in the calibration data can be compensated for in the

calibration process.10

The available precipitation record was divided into rainfall events with at least six hourswithout precipitation between them
:
a

::::::::
minimum

:::::::::
inter-event

::::
time

::
of

:::
no

:::::::::::
precipitation

::
of

:::
six

:::::
hours. Events deemed suitable for use in calibration were selected using

the following criteria:

1. A minimum total precipitation of 2 mm (Hernebring, 2006).
:

2. No or small gaps in rain and flow data , i.e. both have to be available for >90% of the event duration.
:

15

3. Sufficient in-pipe water depths for the flow sensor to work reliably: >10 mm during at least 50% of the event and >25

mm at least once in the event, based on recommendations from the manufacturer (Teledyne ISCO, 2010).

4. Peak flow >2 L s−1, since relative measurement uncertainties are high below this point.

5. No snowfall or -melt, since these would introduce additional processes in the hydrological behaviour and model of the

catchment.20

Calibration and validation periods were separated by using the 19 observed events from 2016 for the validation period, and

the 32 events from 2013-2015 and 2017 for the calibration period. In this way, all the calibration scenarios
::::
(see

::::::
section

::::
2.3)

were tested (validated) against the same dataset and no calibration scenarios could benefit from including calibration events

that also appeared in the validation set. The year 2016 was selected as the validation period for two reasons: it was the year with

total precipitation closest to the annual mean, and the measured data records were continuous.
:::::
Table

:
1
:::::::
contains

:::
an

::::::::
overview

::
of25

::
all

::::::
events

:::
that

::::
were

:::::
used

::
in

::
at

::::
least

:::
one

:::::::::
calibration

:::::::
scenario

:::
as

:::
well

:::
as

::
an

:::::
initial

:::::::
estimate

:::
of

::
the

::::::
runoff

::::
from

:::::
green

:::::
areas.

:

2.2 Runoff model and calibration approach

The US EPA Storm Water Management Model (SWMM) was selected since it is a commonly used semi-distributed urban

drainage model and it
:::
that

:
allows to route runoff from one sub-catchment to another. This routing feature was needed since it

allows for a high-resolution model setup in which each subcatchment (146 were used in total) features a single land cover. The30

high resolution input data needed for this approach was available in the form of GIS data, aerial photographs, and observations
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Table 1.
::::::::::
Characteristics

::
of
:::

all
:::::
rainfall

::::::
events

:::
used

::
in
:::
one

::
or
:::::

more
::::::::
calibration

::::::::
scenarios.

::::
Note

::
to

::::::::
reviewers:

:::
this

::::
table

:
is
::::

new
::
in

:::
this

::::::
revised

:::::
version

::
of

:::
the

:::::::::
manuscript.
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:::
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::
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:::
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::::
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:::
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::::
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::
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:
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:::
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: :
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:::
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:::
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:::
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::
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:::
199

::
2.4

: :::
13.8

: :::
41.6

: ::
0.3

: ::
4.0

: ::
1.7

: :::
12.4

: ::
4.2

: ::
3.3

: :::
0.06

: :::
0.02

: :::
0.04

: ::
0.3

:

:::
209

::
0.2

: ::
8.0

: ::
9.5

: ::
0.8

: ::
2.8

: ::
0.5

: ::
6.9

: ::
4.5

: ::
2.7

:

:::
211

::
8.3

: ::
9.7

: :::
22.8

: ::
0.4

: ::
6.9

: ::
1.1

: :::
11.1

: :::
29.2

: :::
11.1

:

:::
214

::
7.3

: ::
6.4

: :::
12.1

: ::
0.5

: ::
4.3

: ::
0.6

: :::
10.1

: :::
40.5

: ::
8.5

:

:::
222

::
1.1

: ::
9.8

: :::
12.8

: ::
0.8

: ::
7.5

: ::
0.7

: ::
7.2

: :::
26.4

: :::
13.3

:

:::
270

::
0.0

: ::
9.3

: :::
38.5

: ::
0.2

: ::
3.5

: ::
1.1

: :::
11.3

: :::
22.9

: ::
8.7

:

:::
306

:::
10.1

: ::
8.6

: ::
9.1

: ::
0.9

: ::
7.1

: ::
0.7

: ::
8.5

: :::
27.5

: ::
9.3

:

:::
307

:::
18.3

: :::
29.9

: :::
37.7

: ::
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8.5

: ::
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: :::
16.2

: :::
71.2

: :::
42.9

: :::
1.27

: :::
0.36

: :::
0.91
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3.0

:

:::
310

:::
12.7

: ::
8.6

: :::
10.0

: ::
0.9

: ::
7.5

: ::
1.2

: :::
14.0

: :::
37.4

: :::
17.4

: :::
0.17

: :::
0.05

: :::
0.12

: ::
1.4

:

:::
530

:::
13.8

: ::
6.7

: ::
2.8

: ::
2.4

: ::
7.2

: ::
0.8

: :::
11.2

: :::
58.9

: :::
13.5

:

:::
939

::
0.6

: ::
7.0

: :::
25.6

: ::
0.3

: ::
1.0

: ::
0.4

: ::
5.7

: ::
2.1

: ::
1.8

:

:::
962

::
0.0

: ::
8.5

: :::
11.2

: ::
0.8

: ::
1.4

: ::
2.1

: :::
24.9

: ::
4.9

: ::
4.4

: :::
1.09

: :::
0.31

: :::
0.78

: ::
9.2

:

:::
971

::
0.2

: ::
2.6

: :::
18.6

: ::
0.1

: ::
1.1

: ::
0.3

: :::
11.3

: ::
4.0

: ::
2.9

:

:::
978

:::
12.7

: :::
25.0

: :::
65.8

: ::
0.4

: ::
5.8

: ::
4.8

: :::
19.1

: :::
64.5

: :::
16.6

: :::
1.77

: :::
0.50

: :::
1.27

: ::
5.1

:

:::
982

::
0.0

: ::
5.6

: ::
3.4

: ::
1.7

: ::
7.0

: ::
0.9

: :::
15.8

: :::
49.5

: :::
17.2

: :::
0.21

: :::
0.06

: :::
0.15

: ::
2.7

:

:::
984

:::
13.1

: ::
2.4

: ::
6.3

: ::
0.4

: ::
4.6

: ::
1.4

: :::
59.1

: :::
71.7

: :::
14.0

: :::
1.12

: :::
0.32

: :::
0.80

: :::
33.7

:

:::
995

::
4.8

: ::
2.1

: ::
8.5

: ::
0.2

: ::
1.8

: ::
0.6

: :::
28.6

: :::
32.0

: ::
9.7

: :::
0.35

: :::
0.10

: :::
0.25

: :::
11.9

:

:::
997

::
2.2

: :::
24.6

: :::
49.0

: ::
0.5

: ::
2.4

: ::
5.1

: :::
20.7

: :::
15.0

: ::
6.9

: :::
2.14

: :::
0.61

: :::
1.53

: ::
6.2

:

::::
1001

::
0.0

: :::
35.3

: :::
56.6

: ::
0.6

: ::
8.6

: ::
8.8

: :::
25.0

: :::
56.5

: :::
32.5

: :::
4.58

: :::
1.30

: :::
3.28

: ::
9.3

:

::::
1004

:::
22.5

: ::
4.2

: :::
13.9

: ::
0.3

: ::
5.9

: ::
1.1

: :::
25.2

: :::
33.3

: :::
10.6

: :::
0.56

: :::
0.16

: :::
0.40

: ::
9.5

:

::::
1019

::
0.5

: :::
22.3

: :::
49.7

: ::
0.4

: ::
2.3

: ::
4.7

: :::
21.2

: :::
12.9

: ::
9.3

: :::
2.06

: :::
0.58

: :::
1.47

: ::
6.6

:

::::
1028

::
6.2

: ::
2.8

: ::
7.0

: ::
0.4

: ::
1.3

: ::
1.2

: :::
43.5

: ::
6.3

: ::
4.2

: :::
0.89

: :::
0.25

: :::
0.64

: :::
22.5

:

a Calculated assuming 100% runoff from impervious areas: a = QV - 0.12 P_sum, where 0.12 is the percentage of directly connected impervious area. (Some of this runoff

originated from impervious areas that drained to green areas).
b Calculated as b = a (25 / (25+63)), where 25 and 63 are the percentages of indirectly connected impervious surfaces and green surfaces respectively.
c Calculated as c = a - b
d Calculated as d = c / P_sum
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from site visits. The advantage of these single land-use
::::::::
land-cover

:
subcatchments is that their parameter values maintain their

physical meaning and can be calibrated (or appropriate values found in the literature) for each land use or cover. The traditional

approach of using larger subcatchments with multiple land uses/covers usually necessitates calibration to estimate the values

of parameters that then represent a weighted average value over multiple land uses/covers. Some spatial characteristics, such as

the slope and the width of subcatchments, can also be estimated more easily for smaller, uniform subcatchments. This approach5

has been used successfully by e.g. Krebs et al. (2014, 2016), Petrucci and Bonhomme (2014) and Sun et al. (2014). Within

SWMM the Green-Ampt infiltration method was selected since it can be calibrated with just two parameters (Rossman, 2016).

Whenever feasible, parameters for the different subcatchments were set directly from the available GIS data and site visits,

i.e. the sizes and slopes of all subcatchments and sewer pipes, as well as the catchment widths of small and disconnected roofs.

For other subcatchments the catchment width was calibrated together with the other model parameters. To reduce the scope of10

the calibration problem, parameters were grouped based on land cover, yielding a total of thirteen calibration parameters for the

hydrodynamic model. Parameter values were limited based on values reported in
:::
the literature (see Table 2). The precipitation

gauge was situated a few hundred metres outside of the actual catchment, and may have provided a biased estimate of the

catchment rainfall. Therefore, a rainfall multiplier for each individual rainfall event was included in the calibration. This

approach has been used with satisfactory results e.g. by Datta and Bolisetti (2016), Fuentes-Andino et al. (2017, and Vrugt15

et al. (2008), although it is limited by assuming a simple multiplicative difference between the gauge and catchment-average

rainfall, which is not necessarily the case (Del Giudice et al., 2016).
:::::::::::
Furthermore,

::::::
rainfall

:::::::::
multipliers

:::
do

:::
not

::::::
address

:::
the

::::::
spatial

::::::::
variability

::
of

:::
the

:::::::
rainfall,

:::
but

::
in

:::
the

:::::::
absence

::
of

:::::::
multiple

::::
rain

::::::
gauges

::
or

::::
other

::::::::::
information

:::::
about

:::
the

::::::
spatial

::::::::
variability

::
of
:::::::
rainfall

::
in

:::
the

:::::
study

:::::::::
catchment,

:::::
there

:::::
were

:::
no

:::::::
feasible

:::::::::
alternatives

:::
in

:::
this

:::::
case.

:
The rainfall multipliers create a way of adjusting

the rainfall volume in the calibration so that the simulated runoff volume can better match the observed runoff volume. It20

is, however, not possible to distinguish between
::::::::
However,

:::
the

:::::::::
multipliers

:::
do

:::
not

:::::
allow

::::::::::::
distinguishing

:::::::
between

:::
(1)

:
deviations

between rainfall at the gauge and the catchment-averaged rainfall,
::
(2) errors in the rainfall measurement, and

::
(3)

:
errors in the

runoff measurement. A more traditional approach would be to calibrate the percentage of impervious areas, but in view of the

availability of high-resolution land-cover information, it was preferred to apply rainfall multipliers instead.

Green surfaces like those in the study area have a long hydrological memory for antecedent rainfall, and this had to be25

accounted for in the simulations. Neglecting this memory would increase the risk of green areas allowing unrealistically high

infiltration in some rainfall events. Since SWMM does not allow for setting the initial values of state variables directly, such

adjustments can be done by choosing an appropriate warm-up period for modelling runs. When sufficiently long warm-up

periods are used, this approach offers an advantage consisting of treating the first rainfall/runoff peak of an event the same

as way as any following peaks, i.e., with initial conditions corresponding to a continuous simulation. The required length of30

this warm-up period was estimated by finding the last time before each rainfall event when the study area was dry. This was

calculated for all rainfall events using the actual precipitation data and for various values for the maximum depression storage

and infiltration rate. The last antecedent time when the study area was dry was then used as the starting point of the warm-up

period. This lookup procedure was applied to every event for each iteration in the calibration process, so that all events were

treated the same way as in a continuous simulation.35
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Table 2. Calibration parameters and their ranges.

Parameter Abbr. Groups Range Reference

Subcatchment width [m] width

Asphalt parking lots (AP) 20-200

Physical dimensions of subcatchments
Grass areas (GR) 1-200

Swales (SW) 0-5

Subcatchment length [m] length Asphalt roadsa 0.5-5

Manning’s number [-] n

Impervious surfaces (IMP) 0.005 - 0.015

(Krebs et al., 2016; Rossman, 2016)

Grass areas (GR) 0.1 - 0.5

Swales (SW) 0.1 - 0.5

Pipes 0.010 - 0.015

Depression storage [mm] s

Impervious surfaces (IMP) 0 - 2.5

Grass areas (GR)b 0 - 20

Swales (SW)c 0 - 150 (Rujner et al., 2018)d

Saturated hydraulic

conductivity
::::::::::
conduc-tivity

[mm hr-1
:::
hr−1]

ksat Grass areas (GR)e 1 - 200
(Rawls et al., 1983)

Initial moisture deficit [-] imd Grass areas (GR)e 0.10 - 0.35

a In SWMM, the subcatchment width is an input, but in this group of subcatchments, the length (in the flow direction) showed more similarity among the subcatchments, so

it was calibrated instead of the width.
b Includes vegetation and trees as well.
c The maximum value was intentionally set high since the swales’ outlets are not always located exactly at the lowest points and the swales can be observed with larger

ponds after heavy rain events.
d Field experiments on similar swales in the same city.
e Used for both grass areas and swales.

In the calibration process, the Shuffled Complex Evolution - University of Arizona algorithm (SCE-UA; Duan et al. (1994))

was used to estimate the optimal values of the parameters. The algorithm was selected because it is commonly used in hy-

drological studies and allows for parallel computing. The Python library SPOTPY (Houska et al., 2015), which includes this

algorithm, was used to carry out the entire calibration process.

2.3 Event selection5

This paper investigates single- and two-stage calibration scenarios (CS), with each CS using six rainfall events. The single-stage

CSs used the six events with the highest values of a certain event characteristic, and calibrated all parameters simultaneously.

Two-stage calibration scenarios calibrated first the parameters related to impervious areas, using a set of three rainfall events,

followed by the pervious area parameters using another set of three rainfall events. Since only 12% of the total catchment

surface is impervious and connected directly to storm sewers, it was assumed that the events, for which runoff volume was less10

than 12% of rainfall volume, produced runoff only from impervious areas.
::
(It

::
is

::::::::::
conceivable

:::
that

:::::
there

::
is

::::
some

:::::::::::
contribution

::
of

7



::::
green

:::::
areas

:::::
when

:::
the

:::::::::
percentage

:::::
runoff

::
is

::::
less

::::
than

::::
12%,

::::
and

::
in

:::
that

::::
case

:::
the

::::::::
threshold

::::::
should

::
be

:::
set

::
at

:
a
:::::
lower

:::::
value,

:::
but

:::::
since

::
the

:::::::
amount

::
of

:::::
green

::::
area

:::::
runoff

:::
and

:::
the

::::::::::
appropriate

:::::
value

::
of

:::
the

:::::::
threshold

::::::
would

::
be

::::::
highly

::::::::
dependent

:::
on

:::::::::
antecedent

:::::::::
conditions

:::
this

::::
was

:::
not

:::::::
included

::::::
here.) Therefore, these events were suitable for calibration of impervious area parameters in the first

stage of the calibration process. Following this step, events with more than 12% runoff were assumed to also include runoff

from green areas and were used to estimate pervious area parameters in the second stage of the calibration. When calibrating5

the green area parameters, the parameters related to impervious areas were kept fixed at their values from the first stage. This

procedure splits the optimization problem into two smaller problems that have fewer parameters and shorter run times. The

smaller number of parameters (reduced dimensionality) can ease the search for optimal parameter sets, while the shorter run

time per iteration allows shortening the total time needed, increasing the number of iterations used, or including more events

in the calibration.10

Characteristics related to the rainfall, flow depths and flow rates were calculated for each event. For the single-stage cali-

bration scenarios, the six highest ranking events for each characteristic were selected. For the two-stage calibration scenarios,

the three highest ranking events with less than 12% runoff were selected for the first stage and the three highest ranking events

with more than 12% runoff were selected for the second stage.
:::::::
Applying

:::
the

:::::::::
calibrated

::::::
rainfall

:::::::::
multipliers

:::
in

:::
the

:::::::::
calibration

:::::
(Sect.

:::
2.2)

::::::
means

::::
that

:::::
event

::::::::
properties

:::::::
relating

::
to

:::::::
rainfall

:::
and

::::::::::
percentage

:::::
runoff

::::
will

:::::::
change,

:::
and

:::
the

::::::::::
percentage

:::::
runoff

::::
can15

::::::
change

::::
from

::::::
<12%

::
to

:::::
>12%

::::
and

:::
vice

::::::
versa.

:::::
Doing

::::
this

::::::::::
consistently

:::
for

::
all

::::::
events

::
in

:::
the

:::::::::
calibration

:::::::::
procedure

:::::
would

:::::::
require

::
(1)

::::::::::::
re-calculating

:::::
which

::::::
events

::::::
should

::
be

::::::::
available

::
in

::::
each

:::::
stage,

:::
(2)

::::::::
estimating

::
in
:::::
some

::::
way

::::::
rainfall

:::::::::
multipliers

:::
for

:::
all

::::::
events,

::::::::
including

::::
those

:::
not

:::::::
initially

:::::::
selected

:::
by

:::
any

:::::::::
calibration

::::::::
scenario,

:::
(3)

:::::::::::
re-calculating

::::::
which

:::::
events

:::
are

:::::
used

::
in

::::
each

:::
CS,

::::
and

:::
(4)

:::::::
repeating

:::
the

:::::::::
calibration

:::
for

::::
any

:::
CS

:::
that

:::
has

::::
had

:::
any

::
of

:::
its

:::::
events

::::::::
changed.

::::::::
Although

:::
this

::::::
might

:::::::
improve

:::
the

::::::
overall

::::::
results

::
of

::
the

::::::::
proposed

:::::::::
calibration

:::::::::
procedure,

::
it
::::::
would

:::
also

::::::::
increase

:::
the

:::::::::
complexity

::::
and

::::
raise

::::::
several

::::
new

::::::
issues,

::::
such

::
as

::::
how

::
to

::::::
obtain20

:
a
::::::::
calibrated

:::::::
rainfall

::::::::
multiplier

:::
for

:::
the

:::
10

::::::
events

:::
that

:::::
were

:::
not

:::::
used

::
in

:::
any

::::
CS.

:::
We

:::::::::
considered

::::
this

::
to

:::
be

::::::
beyond

:::
the

:::::::
paper’s

::::::
original

:::::
scope

:::
of

:::::::::
examining

:::::::
different

::::::::
strategies

:::
for

:::::::::
calibration

:::::
event

::::::::
selection

::::
and

::::::::
proposing

::
a

:::::::::
practically

::::::
useable

:::::::::
two-stage

:::::::::
calibration

:::::::::
procedure.

To avoid making the comparison too large in scope, a limited number of calibration scenarios (eight single-stage and six

two-stage) was selected for use in this study. This selection was made so that it included a range of different characteristics and25

avoided multiple CSs with the exact same set-up of events. The names of the CSs consist of two or three elements:

– T6 (Top 6) for single-stage or T32S (Top 3 - 2 stages) for two-stage scenarios.

– The relevant event characteristic: precipitation (P), precipitation intensity (PI), runoff flow rate (Q), flow volume (QV),

or flow volume as percentage of rain QV_ppP, precipitation duration D_prec.

– The duration over which the characteristics were calculated: sum, mean and max refer to the whole event. 30 and 60 min30

refer to the time interval used to calculate an average rainfall intensity or flow rate (i.e. the highest value found within the

event for a 30 or 60 minute moving average). Calculating rainfall intensities and average flow rates over these windows

rather than the entire event suppresses the effects of e.g. dry periods within events on such calculations.
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The calibration scenario N_T6 consists of the six events that were selected most often in other calibration scenarios with the

goal of obtaining a set of events that score highly on a variety of characteristics.

2.4 Other sources of uncertainty

Calibration data selection is not the only source of uncertainty in urban drainage modelling. Deletic et al. (2012) identify

::::::::
identified nine sources: (1) input data, (2) model parameters, (3) calibration data measurements, (4) calibration data selec-5

tion, (5) calibration algorithm, (6) objective functions, (7) conceptualisation (e.g. discretization), (8) process equations and

(9) numerical methods and boundaries. As described above, calibration data selection is the focus of this paper, however, it

:
.
::::::::
However,

:::::
earlier

:::::::
findings

:::::::::
regarding

:::
the

::::
other

:::::::
sources

::
of

:::::::::::
uncertainties

:::::
were

:::::
based

::
on

:::::::::::::
predominantly

:::::::::
impervious

::::::::::
catchments

:::
and

::::
they should not be viewed in isolation from the other

:::::::
assumed

::
to

:::::
apply

::::::
equally

:::
to

::::::
greener

::::::::::
catchments.

::::
The

:::::
nature

:::
of

:::
the

::::::::
catchment

::
in
::::

this
:::::
paper

::::::::
provides

::
an

::::::::::
opportunity

:::
to

:::
(1)

:::::
check

::
if

:::::
these

:::::::
findings

:::::
apply

::
to

:::::::
greener

::::::::::
catchments

::
as

::::
well

::::
and

:::
(2)10

:::::
check

:
if
:::::
these

:::::::
findings

:::
are

:::::::
sensitive

:::
to

:::
the

:::::::::
calibration

::::
data

::
set

::::
that

::
is

::::
used.

::
It
::::
was

::::::
beyond

:::
the

:::::
scope

::
of

::::
this

:::::
paper

::
to

:::::
break

::::
new

::::::
ground

::
in

::
all

:::
of

:::
the

::::
nine sources listed above. Therefore, different strategies for selecting calibration events were considered

in relation to the ;
:::::::::

therefore,
:::
we

::::::
focused

:::
on

::::::::::
uncertainty

::::::
sources

::::
that

::::
have

::::
been

:::::::
covered

::
in

::::::
earlier

::::::::
literature.

::::
The

:::::::::::
uncertainties

:::::
arising

:::::
from

::::::::
objective

::::::::
functions,

::::::::::
calibration

:::::::::
algorithms

:::
and

::::::::
numerics

:::
are

::::
not

:::::::::
considered

::::::::
explicitly

::
in

::::
this

:::::
paper.

::::
The

::::::
choice

::
of

:::::::
objective

::::::::
function

:::
can

::
be

::::::::
expected

::
to

:::::
affect

:::
the

:::::::::
calibration

::::::
results,

::::
but

:::
this

:::::
issue

:::
has

:::::::
received

::::::
hardly

:::
any

::::::::
attention

::
in

:::::
urban15

:::::::
drainage

:::::::::
modelling,

::::::
except

:::
for

:::::
some

:::::
short

:::::::
remarks

:::
by

:::::
Barco

::
et

:::
al.

::::::::::::::::
(Barco et al., 2008).

:::::::::
Likewise,

:::
the

:::::::::
calibration

:::::::::
algorithm

::::::::::::::::::::::::::::::::::
(Deletic et al., 2012; Houska et al., 2015)

::
and

:::::::::
numerical

::::::
issues

:::::::::::::::::::::::::::::::::::
(Deletic et al., 2012; Kavetski et al., 2006)

:::
are

:::::::::
recognized

:::
as

::::::
sources

::
of

:::::::::::
uncertainty,

:::
but

:::::
there

::
is

:
a
::::
lack

:::
of

::::::
studies

:::::::::
addressing

:::::
these

::::::::::
specifically

:::
for

:::::
urban

::::::::
drainage

:::::::::
modelling

::::
that

:::::
could

::
be

:::::::
referred

::
to

:::::
here.

:::::
Since

:::::::
breaking

::::
new

:::::::
ground

::
in

::::
these

:::::
areas

::::
was

:::::::::
considered

:::::::
beyond

:::
the

:::::
scope

::
of

::::
this

:::::
paper,

:::::
these

:::::::
sources

::
of

:::::::::
uncertainty

:::
are

::::
not

:::::::::
considered

:::::
here.

::::
The

::::::::
inclusion

::
of

:
other sources of uncertainty as discussed below

:
is

::::::::
described

:::
in

:::
the20

::::::::
remainder

::
of

::::
this

::::::
section.

Rainfall input uncertainty. Since the rain
::::::
Earlier

::::::
studies

::
of

:::
the

:::::::
Geonor

::::::
T200B

:::
rain

::::::
gauge

::::
used

::::
have

:::::::
reported

::::::::::::
wind-induced

:::::::::
undercatch

::
of

:::::
4-5%

:::::::::::::::::::::::::::::::::::::::::
(Duchon and Essenberg, 2001; Lanza et al., 2010).

:::::::::::
Additionally,

:::::
there

::::
may

:::
be

:::::
some

::::::::
deviations

::::::::
between

::
the

:::::::
rainfall

::
at

:::
the

:
gauge is located outside of the catchment and the maintenance of the gauge was carried out by different

people, it is possible that there are structural errors
::
and

:::
in

:::
the

:::::::::
catchment.

::
It

::
is

:::::::
therefore

:::::::
possible

::::
that

::::::::
structural

:::::
errors

:::::
exist in25

the rainfall measurements. This
:::::
aspect was investigated by examining the rainfall multipliers that were included for each event

in the calibration (see Sect. 2.2).
:
It
::::::
should

::
be

:::::
noted

::::
that

:::
the

::::::
rainfall

::::::::::
multipliers

:::
are

::::
used

::
to

:::::
adjust

::::
flow

::::::::
volumes

:::
and

::::
that

::::
they

:::
may

::::::::
therefore

::::
also

:::::
reflect

:::::::::::
uncertainties

::
in

::::
e.g.

:::::::::::
subcatchment

:::::::::
delineation

::::
and

:::::
runoff

:::::::
routing.

:

Parameter uncertainty. The uncertainty of urban drainage model parameter estimates has been investigated extensively

earlier, e.g., by Del Giudice et al. (2016), Dotto et al. (2009, 2011, 2012), Kleidorfer et al. (2009a) and Muleta et al. (2013).30

Therefore, this issue is addressed herein just by comparing the parameter values obtained in different calibration scenarios.

Calibration data measurement uncertainties. Measurement uncertainties of flow rates in storm sewer pipes have been de-

scribed by a number of researchers, e.g., Aguilar et al. (2016), Blake and Packman (2008), Bonakdari and Zinatizadeh (2011),

Heiner and Vermeyen (2012), Lepot et al. (2014), Maheepala et al. (2001). In this paper, structural flow measurement errors are
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considered by testing calibration after reducing or increasing all flow observations by 40%. This value was chosen on the basis

of uncertainties reported by Aguilar et al. (2016)
:::
and

:
applied to the current

:::::
study outflow measurement locationand is slightly

higher than the value of 30% used by .
:
.
::::
This

::
is

:
a
::::::
rather

::::::
simple

:::::::
approach

::::
and

::::
other

:::::
ways

::
of

:::::::::
simulating

:::::
errors

:::
in

:::
the

::::::::
measured

:::
data

::::
may

:::
be

::::::::::
considered:

:::
e.g.

:
Dotto et al. (2014) and Kleidorfer et al. (2009a). The flow data from the validation period was

not adjusted. Other researchers (e.g. ibid) also tested the effect of random errors; such effects and their thorough investigation5

were
::::::::
However,

:::::
since

::::
many

::::::::
different

::::
ways

:::
of

::::::::
perturbing

::::
flow

::::
data

:::
can

:::
be

::::
used

::
it

:::
was

:
deemed outside of the scope of this paper

::
to

:::::::
examine

:::::
them

:::
all,

:::
and

:::::
only

:::
the

:::::::
constant

:::::
offset

::::
was

::::
used

::
as

::
a
::::::
simple

::::
way

::
of

::::::::::
introducing

:::::
errors

:::
in

:::
the

::::
flow

:::::::::::
measurement.

However, it should be noted that the use of measured flow rates, implemented in this study, involves the presence of random

errors in the calibration data sets used.
:::
The

::::
flow

::::
data

:::::
from

::
the

:::::::::
validation

::::::
period

:::
was

:::
not

::::::::
adjusted.

Objective functions. The calibration process strives to find the optimal value of the specified objective function, so the choice10

of such a function can be expected to affect the calibration results. This was addressed here by assessing all calibration scenarios

using both Nash-Sutcliffe model efficiency (NSE) and Root Mean Square Error (RMSE) as objective functions (see Sect. 2.5).

Conceptualisation / model discretization. The model code (SWMM) employed in this study has been widely used for many

years, with some improvements made to those parts of its conceptualisation that were deemed unsatisfactory. Therefore,15

it is safe to assume that the SWMM conceptualization (Rossman, 2016) is appropriate
::::::::
Although

:::::
model

::::::::
structure

::
is

::::
also

::
a

:::::::::
recognized

:::::
source

:::
of

:::::::::
uncertainty

:::::::::::::::::
(Deletic et al., 2012)

:
,
:
it
::::
was

:::
not

:::::::::
considered

::::
here

:::::
since:

:::
(a)

::::
there

::
is

:
a
::::
lack

::
of

::::::::
previous

:::::::
research

::
on

::::
this

::::
topic

:
for urban drainage modelling and there was no need to consider this issuefurther. However, the

:::
that

:::::
could

:::
be

::::::
referred

:::
to,

::::
and

::
(b)

:::::
there

::
is

::
a

:::
lack

:::
of

:::::::
methods

::
to
:::::::
address

:::
this

::::::
issue,

::::
other

::::
than

:::::
using

::::::::
different

::::::
models

::
in
::::::::

parallel,
:::::
which

::::
was

:::::::::
considered

::::::
outside

:::
the

:::::
scope

::
of
::::

this
:::::
study,

::::
and

:::::
would

:::
be

:::::::
difficult

::::
since

:::
the

:::::::::
catchment

::::::
model

:::::::
requires

:::::
some

:::::::
SWMM

:::::::
features20

::::
(e.g.

::::::
routing

::::::
runoff

::::
from

::::
one

:::::::::::
subcatchment

::
to
:::::::

another,
:::::

good
:::::::
support

:::
for

:::::::::
automated

:::::
runs),

:::::
which

:::
are

::::
not

::::::
always

::::::::
available

::
in

::::
other

:::::::
models.

:::
The

:
choice of catchment discretization into the subcatchments in the model is done, somewhat subjectively, by the modellers

for individual studies: therefore
::
has

:::::
been

::::::::::
investigated

:::
by

::::::
several

:::::::
authors.

::::::::::::::
Tscheikner-Gratl

::
et

:::
al.

:::::
(2016

:
)
:::::
found

::::
that

:
a
:::::::
lumped

:::::
model

::::
was

:::
not

::::
able

:::
to

::::::::
reproduce

::::
the

::::::
shapes

::
of

:::::
storm

::::::
runoff

:::::::::::
hydrographs

::
as

:::::
well

::
as

::
a

:::::
more

:::::::
detailed

::::::
model,

::::
even

:::::::
though25

::::
total

:::::
runoff

:::::::
volumes

:::::
were

:::::::
similar.

:::
Sun

::
et
:::

al.
:::::
(2014

:
)
:::
and

::::::
Krebs

:::::
(2014

:
)
:::::
found

::::
that

:
a
:::::
finer

:::::::::::
discretization

:::::::
resulted

::
in

:::::::::
parameter

:::::
values

::::
that

::::
were

:::::
more

:::::::::
applicable

::
to

::::
other

:::::
study

::::
sites

::::
and

::::::
events.

:::::::
Petrucci

::::
and

::::::::::
Bonhomme

:::::
(2014)

::::::
found

:::
that

:::::
using

:::::::::
additional

:::::::::
geographic

::::::::::
information

::
to

::::::::
increase

:::
the

::::::
spatial

::::::::
resolution

:::::
could

::::::::
improve

:::::
model

::::::::::::
performance,

:::::
since

:::::
some

:::::
model

::::::::::
parameters

:::
can

::::
then

::
be

:::::::::
estimated

::::::
directly

:::::
from

::::::::::
geographic

::::
data

:::
(see

::::
also

:::::::::
Dongquan

::
et
:::

al.,
::::::

(2009
:
);

::::::
Warsta

::
et

:::
al.,

::::::
(2017

:
).

:::
To

:::::::::
investigate

::
the

::::::
impact

:::
of

:::::::::
calibration

::::
data

:::::::
selection

:::
on

:::::
these

:::::::
findings

:::
and

::
to

::::::
check

::::
them

:::
for

:
a
:::::::::::::

predominantly
:::::
green

:::::
urban

:::::::::
catchment, two30

levels of discretization were compared: (i
:
1) the basic model set-up (the high-resolution model described in Sect. 2.2), and (ii

:
2)

a simpler, more traditional set-up using five subcatchments. In the latter case, each subcatchment was created by aggregating

multiple smaller subcatchments from the high-resolution model. The area and percentage imperviousness of each aggregated

subcatchment were calculated from its constituent smaller catchments. The calibration parameters were modified accordingly,

as shown in Table 3, with the total number of calibration parameters (including rainfall multipliers) being the same.35
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Table 3. Calibration parameters and their ranges for the low-resolution model.

Parameter Abbr. Groups Range Reference

Subcatchment width [m] width 5 individual subcatchments 20 - 200 Physical dimensions of subcatchments

Manning’s coefficient [-]

n Impervious surfaces (IMP) 0.005 - 0.015

(Krebs et al., 2016; Rossman, 2016)

Pervious surfaces (GR) 0.1 - 0.5

Pipes 0.010 - 0.015

Depression storage
s Impervious surfaces (IMP) 0 - 2.5

Pervious surfaces (GR) 0 - 20

Percentage runoff routed from impervi-

ous to pervious (%)

See footnote a 1-99

Saturated hydraulic conductivity [mm hr−1]

Initial moisture deficit [-]

ksat Grass areas (GR) 1 - 200
(Rawls et al., 1983)

imd Grass areas (GR) 0.10 - 0.35

a For two subcatchments the percentage routed was estimated at 0% and 100% respectively. A single percentage was calibrated and shared by the three remaining subcatchments.

Sources of uncertainty not considered. The calibration algorithm used in this study (SCE-UA) has been widely applied in

hydrological applications with great success, so there was no need to subject it to scrutiny in this paper. Similarly, since SWMM

is a well-established mature model, there was no need to examine the equations, numerical methods and boundaries used in

the model.

2.5 Objective functions5

Each calibration scenario was run with two different objective functions, of which values were first calculated for individual

events and the average of those values for the whole scenario served as the target for optimization. The objective function used

for all except one
:::
the calibrations was the Nash-Sutcliffe model efficiency:

NSE = 1−
1
n

∑n
i=1(Si −Oi)

2

1
n

∑n
i=1(Oi − Ō)2

(1)

Where O denotes observed values and S simulated values. The NSE measures the variance of the model errors (the numer-10

ator) as a fraction of the variance of the observations (the denominator). This fraction is then scaled so that it extends from

-infinity (i.e., the worst possible fit) via 0 (the score that would be achieved by using the average of observations) to 1, for a

perfect fit. The NSE is dimensionless, so it allows comparing runoff events of different magnitudes. However, when the vari-

ance of the observations is small (e.g. for small runoff events), it can become quite sensitive to small changes in the simulated

hydrograph. To examine the impact of different objective functions, one calibration used Root Mean Square Error (RMSE):15
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RMSE =

√√√√ 1

n

n∑
i=1

(Si −Oi)2

RMSE has the same units as the observations (in this case L s−1 for the flow rate)
:::
The

::::
NSE

::::
was

::::::::
calculated

:::
for

::::
each

:::::::::
individual

::::
event

::::
and

::
the

:::::::
average

::::
used

::
as

:::
the

:::::::::
calibration

::::::::
objective. For further assessment of the modelled hydrographs, two metrics related

to the peak flow and the hydrograph volume were used. The peak flow ratio (PFR) was defined as the ratio of the highest

simulated to the highest observed flow rates, regardless of the times when they occurred:5

PFR =
maxSi

maxOi
(2)

Where values >1 indicate overestimated simulated peak flows and values <1 indicate underestimated simulated peak flows.

Finally, the relative volume error (VE) considers total flow volumes throughout the event:

VE =

∑n
i=1(Si −Oi)
1
n

∑n
i=1Si

(3)

It is positive when the simulated total flow volume exceeds the observed one and vice versa. Note that the above formula is10

only valid if the observation interval is constant.
:::
The

::::
peak

::::
flow

:::::
ratio

:::
and

:::::::
volume

::::
error

:::::
were

::::
used

::::
here

:::::
since

::::
peak

::::
flow

:::::
rates

:::
and

::::::
storage

:::::::
volumes

:::
are

:::::
often

:::
the

::::::
targets

:::
that

::::::::
drainage

::::::
systems

:::
are

::::::::
designed

:::
for.

:

The quick response of the studied catchment means that low flow rates may cover a significant part of the event. Mea-

surements in this range have relatively high uncertainties and may be considered less relevant than periods with higher flows.

Therefore, it should be avoided that low flows dominate the analysis, which was achieved by including only time steps with15

observed flow rates >1 L s−1 in calculating these metrics.

3 Results and discussion

3.1 Calibration performance

3.1.1 Baseline calibration

The baseline calibration (i.e. with NSE as objective function, using the high resolution model without flow data perturbations)20

was successful for all calibration scenarios, with average NSE for all events ranging from 0.68 to 0.85 (see Table 4). The

lowest NSE corresponded to the two CSs based on the percentage runoff (T6_QV_ppP and T32S_QV_ppP). This result can

be attributed to one event (see Figure 2
:
2), for which both CSs resulted in simulated hydrographs with low NSE, in spite of

a visually good fit of the observed data. In this case, low NSE resulted from a small timing error and from low flow rates in

the event, which lead to a low variance of the observations and, therefore, an NSE that is more sensitive to small simulation25
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Table 4. Calibration results. Bold font indicates the best value in each column.
::::
Note

:
to
::::::::

reviewers:
:::
this

::::
table

:::
has

::::
been

::::::
updated

::
in

:::
this

::::::
revised

:::::
version

::
of

:::
the

:::::::::
manuscript.

High resolution model
Low resolution model

Mean NSE
Baseline Flow-40% Flow +40%

NSE VE PFR NSE NSE NSE VE PFR

N_T6 0.80 -0.07 0.93 0.77 0.76 0.84 0.03 0.85 0.78

T6_P_sum 0.75 -0.11 0.96 0.65 0.65 0.75 -0.07 0.90 0.68

T6_PI_mean 0.77 -0.04 0.90 0.63 0.78 0.77 0.02 0.86 0.73

T6_PI_30m 0.74 -0.09 0.95 0.72 0.72 0.74 -0.05 0.95 0.72

T6_Q_max 0.85 -0.03 0.89 0.82 0.84 0.86 0.04 0.86 0.84

T6_Q_60m 0.79 -0.09 0.91 0.77 0.77 0.81 0.01 0.90 0.78

T6_QV_ppP 0.68 -0.11 0.89 -0.10 0.65 0.65 -0.09 0.94 0.41

T6_D_prec 0.74 -0.10 0.92 0.72 0.69 0.81 -0.02 0.86 0.72

T32S_P_sum 0.83 0.03 0.90 0.77 0.83 0.68 0.08 0.74 0.81

T32S_PI_mean 0.83 0.03 0.96 0.75 0.80 0.78 0.05 0.84 0.79

T32S_Q_max 0.82 0.06 0.86 0.79 0.84 0.80 0.07 0.78 0.81

T32S_Q_60m 0.79 0.04 0.98 0.73 0.76 0.73 0.02 0.93 0.76

T32S_QV_ppP 0.70 0.06 0.85 0.62 0.73 0.67 0.11 0.75 0.68

T32S_D_prec 0.76 0.02 0.97 0.83 0.73 0.84 0.03 0.85 0.77

errors. For the two-stage calibration scenarios, the individual stages also produced successful calibrations (stage 1 NSE 0.70 -

:
- 0.87, stage 2 NSE 0.78-0.87), except for the second stage in T32S_QV_ppP for the reasons explained above. The NSE for

the individual calibration events in the different calibration scenarios is similar to that reported by Krebs et al. (2013).
:::::::
Overall,

::
the

::::
two

::::::::
scenarios

:::::
based

::
on

:::::
peak

::::
flow

::::::::
performed

::::
best

::::::
(being

::
the

:::::
only

:::
CSs

::::
with

:::::
mean

::::
NSE

::
>

::::
0.8)

::::
while

:::
the

::::
two

::::::::
scenarios

:::::
based

::
on

:::::::::
percentage

::::::
runoff

::::::::
performed

:::::
worst

:::::
(only

::::
CSs

::::
with

:::::
mean

::::
NSE

::
<

::::
0.7).5

Across the different calibration scenarios and events, the most common source of error was flow underestimation, with

respect to both the total flow volume (see Figure 3, left panel) and the peak flow (see Figure 3, right panel). Volume errors for

individual events were large in some cases (ranging from 35% underestimation to 30% overestimation), but the average VE for

each calibration scenario was limited to underestimation by 1-11%. The magnitudes of the peak flow and volume errors are

comparable to those found in previous studies on calibration of SWMM (Barco et al., 2008; Krebs et al., 2016).10

Histograms of peak flow ratios (left) and volume errors (right) for all individual events in all calibration scenarios.

3.1.2 Sensitivity to objective functions
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Figure 2. Examples of hydrographs for events with high (left) and low (right) objective function (NSE) values.

The differences between calibrations using NSE and RMSE as objective functions were small (see Table 4), with the largest

differences being 0.05 (NSE) and 0.4 (RMSE)for T32S_QV_ppP. For three calibration scenarios the NSE calibration found a

better RMSE than the RMSE calibration and for four CSs the RMSE calibration found a better NSE than the NSE calibration.

This indicates that
::
For

:::
the

:::::::::
two-stage

:::::::::
calibrations

:::
the

::::::::::
assumption

:::
that

:::
no

:::::
runoff

::::::::
occurred

::::
from

:::::
green

:::::
areas

::::::
during

:::
the

:::
first

:::::
stage

::
of

:::
the

:::::::::
calibration

:::
was

::::::::
checked.

::::::
During

:::
the

::::::
actual

::::::::
first-stage

:::::::::
calibration

::::
(i.e.

::::
with

:::::
green

::::
area

:::::::::
parameters

:::
set

::
to

::::::
default

:::::::
values)5

::::
there

::::
was

::
no

::::::
runoff

:::::
from

:::::
green

:::::
areas

:::
for

:::
any

::
of

::::
the

:::::::::
calibration

:::::
events

:::
in

:::
any

:::
of

:::
the

:::::::::
calibration

:::::::::
scenarios,

::
so

:::
the

::::
first

:::::
stage

:::::::::
calibration

::::::::
attributed

::
all

::::::
runoff

::
to

:::::::::
impervious

:::::
areas

::
as

::::::::
assumed

::::::::::
beforehand.

::::::::
However,

:::::
some

:::::
runoff

::::::::
occurred

::::
from

:::::
green

:::::
areas

::
for

:::::::::
first-stage

::::::
events

:::::
when

:::
the

::::::::
calibrated

:::::::::
parameter

::::::
values

::::
from

:
the algorithm does

:::::
second

:::::
stage

:::::
were

:::::::
applied.

::::
This

::::::
runoff

:::
was

::::::
caused

:::
by

:::::::::
impervious

:::::
areas

:::::::
draining

::
to
::::::

green
:::::
areas.

:::
The

::::::
runoff

::::
from

::::::
green

::::
areas

::::
was

::::
<5%

:::
of

:::
the

::::
total

::::::::
simulated

::::::
runoff

::::::
volume

:::
for

::
4

:::::
model

:::::
runs,

::::::
<10%

:::
for

::
an

:::::::::
additional

::
3

::::
runs,

::::
and

::::::
11.6%,

:::::::
11.7%,

::::::
21.7%,

::::::
22.9%

::::
and

::::::
25.7%

::::::::::
respectively

:::
for

::
510

::::::::
additional

:::::
runs.

:::::
These

:::
last

::
5
::::
runs

:::::::::
concerned

::
3

:::::::
different

::::::
events

::::
with

::
a

:::::::::
percentage

:::::
runoff

::::::::::
(calculated

::::::
before

:::::::
applying

:::::::
rainfall

:::::::::
multipliers)

:::::::
between

:::::
11%

:::
and

:::::
12%.

::::
Such

::::::
events

:::
may

:::
be

:::::::
expected

::
to

:::::::
include

::::
some

:::::
green

::::
area

:::::
runoff

::::
and

:
it
:::::
could

:::
be

:::::::::
considered

::
to

::::::
exclude

:::::
these

:::::
from

:::
the

:::
first

:::::
stage

:::::::::
calibration

::::
(not

:::::
done

::::
here

::
to

::::
limit

:::
the

::::::::::
complexity

::
of

:::
the

:::::::::
procedure

::
as

::::::::
discussed

:::
in

::::
Sect

::::
2.3).

::
In

:::::::
addition,

:::
all

::::
three

::::::
events

::::
were

::::
also

:::::::
included

::
in
:::::
other

::::::::
first-stage

::::::::::
calibrations

::::::
where

:::
they

::::
did

:::
not

:::::
result

::
in

:::
any

:::::::::
significant

::::::::
simulated

:::::
green

:::
area

::::::
runoff.

:::::::::
Removing

:::::
these

:::::
events

:::::
from

:::
the

:::
first

:::::
stage

::
of

:::::::::
calibration

:::::
based

::
on

::::::
initial

:::::::::
calibration

:::::
results

::::::
would15

:::::::
therefore

:::::
result

::
in
:::
the

:::::
same

:::::
event

:::::
being

:::::::
included

:::
in

:::::::
different

:::::
stages

:::
for

::::::::
different

:::::::::
calibration

::::::::
scenarios,

::::::
which

:::
was

::::::::::
considered

::::::::::
undesirable.

::::::
Overall

:::
we

::::::
believe

::::
that,

::::::::
although

:::
the

:::::::::
assumption

::::
that

::
all

:::::
runoff

::
is
:::::
from

::::::
directly

:::::::::
connected

:::::::::
impervious

:::::
areas

:::::
when

:::::::
QV_ppP

:::::
<12%

::
is

:::::::
violated

:
in some casesfind a local rather than a global optimum. However, the differences between them are

small.
:
,
:::
the

:::::::::
assumption

::::
that

::::
these

::::::
events

::
are

:::::::
suitable

:::
for

:::::::::
calibrating

:::::::::
impervious

::::
area

:::::::::
parameters

::::
does

::::
hold

::
to

::
a

:::::::
sufficient

:::::::
degree,

::
as

:::
also

:::::::::
evidenced

::
by

:::
the

:::::
good

::::::::
first-stage

:::::::::
calibration

:::::::::::
performance

::::
(see

:::
first

:::::::::
paragraph

::
of

:::
this

::::::::::
subsection).

::
In

::::::::
addition,

::::::::
checking20

::
for

:::::
green

::::
area

:::::
runoff

:::
as

::::
done

::::
here

::
is

::::
only

:::::::
possible

::::
after

::::::::::
calibration,

:::
and

::::::::::
considering

:
it
:::::
when

::::::::
selecting

:::::
events

::::::
would

:::
thus

::::::
create

14



:
a
:::::
more

:::::::
complex,

:::::::
iterative

:::::::::
calibration

:::::::::
procedure,

::::::
which

:::::
would

:::::
limit

:::
the

:::::::
practical

::::::::::
applicability

:::
of

:::
this

::::::::
approach.

::::
We

:::::::::
considered

:::
this

::
to

::
be

:::::::
beyond

:::
the

::::::
paper’s

:::::::
original

:::::
scope

::
of

:::::::::
examining

:::::::
different

::::::::
strategies

:::
for

:::::::::
calibration

:::::
event

::::::::
selection.

3.1.2 Sensitivity to
::::::::::::
Low-resolution

:
modeldiscretization

Calibration runs with a model setup consisting of five instead of 140 subcatchments showed NSE similar to that of the baseline

run
:::::
(Table

::
4): the change in performance ranged from +0.08 (T32S_D_prec) to -0.06 (T32S_Q_60m), with only T32S_P_sum5

showing a larger loss of 0.15. The peak flows predicted by the low-resolution models were most often lower than in the high-

resolution model and as a result, peak flow ratios were worse.
::::
This

:::::
effect

::::
was

:::::::
stronger

:::
for

:::
the

:::::::::
two-stage

::::::::::
calibrations

::::
than

::
for

:::
the

:::::::::::
single-stage

::::::::::
calibrations.

:
Overall runoff volume was higher in the low-resolution models, which resulted in a smaller

volume error.
:::::
These

:::::::
findings

:::
on

::::
peak

:::::
flows

:::
and

::::
total

::::
flow

::::::::
volumes

::::::
confirm

::::::
earlier

:::::::
findings

:::
by

::::::::::::::
Tscheikner-Gratl

::
et

::
al.

::::::
(2016

:
).

The changes in peak flow performance were smaller than reported by Krebs et al. (2016), but the changes in NSE and volume10

errors were comparable.

3.1.3 Sensitivity to structural flow measurement errors

Calibration results (NSE) are shown in Table 4 3 for the cases of structural flow data errors of -40% and +40%. For most

calibration scenarios there was a small loss in NSE, except for T6_QV_ppP, which failed to calibrate with an NSE of -0.1

when the flow data was reduced by 40%. Three of the events in that scenario calibrated well (NSE 0.76 -
:
- 0.95), but the other15

three produced negative NSE values. These latter three events all missed the first runoff peak; for two of these events
::::
them

the quality of fit, judged visually, was the same as in the baseline run, but since the flow rates were low, the
::::::
variance

:::
of

:::
the

::::::::::
observations

::::
was

:::
low

::::
and

::::
thus

:::
the

:
NSE values were unsatisfactory (see Figure 4

:
3
:
for an example). T6_PI_mean included

one event, for which the reduction of flow observations by 40% resulted in a hydrograph where large parts fell below the 1

L s−1 threshold. Except for the events described above, the flow errors could be compensated for in calibration. This issue is20

influenced by the use of
:
,
:::::::::
confirming

:::
the

::::::
earlier

:::::::
findings

::
in

:::
the

::::::::
literature

:::::
(Dotto

::
et
:::
al.,

::::::
2014).

::
In

:::
the

:::::
paper

:::
by

:::::
Dotto

::
et

:::
al.

:::
the

:::::::::::
perturbations

::
in

::::
flow

::::
data

::::::
resulted

:::
in

:::::::
different

::::::::
calibrated

::::::
values

:::
for

:::
the

:::::::::
percentage

:::::::::::::
imperviousness

::
of

:::
the

::::::::::
catchment,

:::::
while

::
in

::
the

:::::::
current

:::::
paper

::
the

::::::::::::
perturbations

::::::
resulted

::
in
::::::::
different

:::::
values

:::
for

:::
the

:
rainfall multipliers as discussed in Sect. 3.2.2.

3.2 Calibrated parameter values

3.2.1 Hydrologic model parameters25

Figure 5
:
4
:
shows the calibrated parameter values (for the baseline run), normalized with respect to their calibration ranges (see

Table 2). There is considerable variation among the calibrated values obtained in different calibration scenarios, demonstrating

that even for parameters with a clear physical interpretation, identification of the best (ideal) value is not straightforward.

Gupta et al. (1998) also found considerable variation in the parameter values obtained when using different years as calibration

periods for a natural catchment model. Nonetheless, the span of parameter values is considerably reduced compared to the30

15
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Figure 3. Calibrated hydrographs for T6_QV_ppP in the baseline run (left) and after reducing all flow measurements by 40% (right).
:::
The

:::
low

::::
NSE

:
in
:::
the

::::
right

::::
panel

::
is

:::::
caused

::
by

:::
the

:::
low

:::::::
variance

::
of

::
the

::::::::::
observations.

range imposed during calibration, showing that the boundaries were not set too tightly and that the calibration procedure does

offer benefits over estimating parameter values directly.

Calibrated parameter values are always uncertain estimates. This uncertainty has been investigated for urban drainage models

and shown to be dependent on parameter type, study catchments, model structures, catchment discretization and measurement

errors (Dotto et al., 2009, 2011, 2014; Kleidorfer et al., 2009a; Sun et al., 2014). The variation found here among the optimum5

parameter values obtained in different calibration scenarios suggests that the selection of calibration events could also affect

the uncertainty of parameter estimates and this influence should be investigated further.

3.2.2 Rainfall multipliers

The values of rainfall multipliers found in the calibration process ranged from 0.48 to 2.92, showing that there could be

significant measurement errors (in precipitation and/or flow) and/or differences between the gauge rainfall and the catchment10

average rainfall fitting best with
::::::::
matching

::::
best the observed flow rates. For rainfall events that were included in multiple

calibration scenarios, the calibrated multipliers from different scenarios were close to each other (see Table 5). This variation

is
:::
was much smaller than that for the hydrological model parameters (see Sect. 3.2.1). This indicates

:::
The

:::::::
average

:::::
value

::
of

:::
the

::::::
rainfall

:::::::::
multipliers

:::::
across

:::
all

:::::
events

::::
was

::::
1.2.

:::::
When

::
all

:::::
flow

:::
data

::::
was

:::::::::
decreased

::
by

:::::
40%,

:::::
prior

::
to

::::::::::
calibration,

:::
the

:::::::
different

::::
CSs

::::::::
remained

::
in

:::::::::
agreement

::::
with

:::::
each

:::::
other,15

:::::
except

:::
for

:::::::::::
T6_QV_ppP,

:::::
which

:::::
failed

::
in

::::
this

:::
run.

::::
The

::::::
average

:::::::
rainfall

::::::::
multiplier

:::::
across

:::
all

:::::
events

::::
was

::::
0.76

::::
(i.e.,

::::
37%

:::::
lower

::::
than

::
in

:::
the

:::
run

::::::
without

::::
any

::::::::::
perturbation

::
of

::::
flow

:::::
data).

::::::
When

::
all

::::
flow

::::
data

::::
was

:::::
scaled

:::
up

::
by

:::::
40%,

::::::::::::
T32S_P_sum

:::
and

::::::::::::
T32S_Q_max

:::::::
produced

::::::::
deviating

:::::::::
multipliers

:::::::::
(compared

:::
to

::
the

:::::
other

:::::::::
calibration

:::::::::
scenarios)

::
for

:::::
three

:::::
events

:::::
each,

:::
but

:::
the

::::::
quality

::
of

::
fit

::::
was

:::
the

16
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Figure 4. Normalized calibrated parameter values for different calibration scenarios and the baseline run. The highest and lowest values

found for each parameter are indicated.
:::
Note

::
to

::::::::
reviewers:

:::
this

:::::
figure

::
has

::::
been

:::::::
changed

::
to

:::::
display

:::::
single

:::
and

:::::::
two-stage

:::
CS

::
in

::::::
separate

:::::
panes

:::
and

:
to
::::::
clarify

::
the

:::::
figure.

::::
same

::::::
across

::
all

::::
CSs

:::::::::
(according

::
to

::::
both

:::
the

::::
NSE

::::
and

:::::
visual

:::::::::::
comparison).

:::
The

:::::::
average

:::::
value

::
of

:::
the

:::::::::
multipliers

::::::
across

::
all

::::::
events

:::
was

::::
1.59

::::
(i.e.,

::::
33%

::::::
higher

::::
than

::
in

:::
the

:::::::
baseline

::::
run).

:

:::
The

:::::
close

:::::::
inter-CS

:::::::::
agreement

:::
and

:::
the

:::::::::
similarity

::
in

:::::::
between

:::
the

:::::::::
magnitude

::
of

:::::::::::
perturbations

::
in

::::
flow

::::
data

::::
and

:::
the

:::::::::
magnitude

::
of

:::
the

::::::::::::
corresponding

:::::::
change

::
in

::::::
rainfall

::::::::::
multipliers

:::::::
indicate

:
that the rainfall multipliers compensate

::::
work

::
as

:::::::::
intended,

:::
i.e.

:::::::::::
compensating

:
for discrepancies between the observed and best-fitting rainfall, rather than for other aspects of catchment runoff5

modelling. The average value of the rainfall multipliers across all events is
:
In

::::
this

::::::
respect,

:::
the

:::::::
average

::::::::
multiplier

:::
of 1.2

::
in

:::
the

:::::::
baseline

:::
run

:::::::
suggests

:::
that

:::::
there

::::
was

::::
some

::::::::
structural

::::::::::::
disagreement

:::::::
between

:::
the

:::::::
observed

:::::::
rainfall

:::
and

:::::
flows.

When all flow data was decreased by 40%, prior to calibration, the different CSs remained in agreement with each other,

except for T6_QV_ppP, which failed in this run. The average rainfall multiplier across all events was 0.76 (i.e., 37% lower than

in the run without any perturbation of flow data). When all flow data was scaled up by 40%, T32S_P_sum and T32S_Q_max10

produced deviating multipliers (compared to the other calibration scenarios) for three events each, but the quality of fit was

the same across all CSs (according to both the NSE and visual comparison). The average value of the multipliers across all

events was 1.59 (i.e., 33% higher than in the baseline run). This finding suggests that the rainfall multipliers were responsible
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Table 5. Baseline run calibrated rainfall multipliers for events that were used in at least three CSs.
::::
Note

::
to

::::::::
reviewers:

:::
this

::::
table

:::
has

::::
been

::::::
updated

::
in

:::
this

:::::
revised

::::::
version

::
of

:::
the

::::::::
manuscript.
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ew
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N
ew

Q
V

_p
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199 0.58 0.58 0.58 8.0 21.4

209 0.48 0.48 0.48 3.8 14.3a

211 0.70 0.70 0.70 0.70 0.70 6.8 15.8a

214 1.16 1.16 7.4 8.7

222 0.68 0.68 0.68 0.68 6.7 10.6

270 1.24 1.22 1.28 1.26 1.25 11.7 9.1

306 0.74 0.70 0.74 0.73 6.3 11.7

307 1.48 1.46 1.48 1.48 1.48 1.48 1.44 1.44 1.52 1.48 1.47 44.0 11.0b

310 1.06 1.06 1.06 1.06 1.14 1.08 9.2 13.0

530 1.14 1.10 1.10 1.12 1.04 1.08 1.08 1.14 1.10 7.4 10.2

939 0.60 0.60 4.2 9.5

962 0.98 0.98 8.3 25.4

971 1.08 1.08 2.8 10.4

978 1.38 1.38 1.34 1.34 1.40 1.42 1.36 1.38 1.38 34.4 13.9

982 1.22 1.20 1.26 1.22 1.26 1.23 6.9 12.8

984 2.02 1.94 2.12 2.00 1.90 2.00 4.8 29.6

995 2.92 2.88 2.90 6.1 9.9 b

997 1.24 1.26 1.25 30.8 16.6

1001 1.70 1.66 1.60 1.64 1.66 1.66 1.60 1.64 1.70 1.64 1.65 58.2 15.1

1004 0.78 0.78 3.3 32.3

1019 1.46 1.48 1.46 1.44 1.46 32.6 14.5

1028 1.30 1.30 1.30 3.7 33.4

a Event percentage runoff switches from <12% to >12% when applying rainfall multiplier.
b Vice versa.

for much (if not all) of the model adjustment to the perturbed flow data. In this respect, the average multiplier of 1.2 in the

baseline run suggests that there was some structural disagreement between the observed rainfall and flows.

With the
::
In

::::
runs

::::
with

:::
the

:
low-resolution model, in contrast to

::::::::
contrarily

::
to

:::::
those

::::
with the high-resolution model, there was

considerable variation in the values of the rainfall multipliers for each event found by the different calibration scenarios, see

Figure 6. The values obtained were
::
as

:::::
shown

:::
in

::::::
Figure

::
5.

::::
The

::::::::
multiplier

::::::
values

::::::::
obtained

::::::
ranged

::::
from

:
25% lower to 50%5

higher(,
:
for the same event in the same calibration scenario) than in

:
,
::::::::
compared

::
to

:
the baseline calibration. Three of the low-
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6 rainfall multis.png

Figure 5. Rainfall multipliers in baseline calibration (horizontal axis) compared to the LR-model calibration (vertical axis). Each dot is a

rainfall multiplier calibrated by one calibration scenario for one event. Identical events appearing in multiple calibration scenarios share the

same colour.

resolution two-stage calibrations (T32S_D_prec, T32S_Q_60m, T32S_Q_max) found lower multipliers than in the baseline

:::::::::
calibration, T32S_QV_ppP had three higher and three lower multipliers and other CSs had all higher multipliers. This be-

haviour indicates that(despite similar resulting performance) ,
::
in
:::::
spite

::
of

:::::::
yielding

::::::
similar

::::::
results,

:
the rainfall multipliers in the

LR-model were used to compensate (within a single event) for the effects of the specific parameter set found in calibration,

rather than to compensate for a structural discrepancy between the observed rainfall and flow data as in the baseline cali-5

bration .
:::
(as

::::
was

:::
the

::::
case

:::
for

:::
the

:::
HR

::::::::
models).

::::
That

:::
the

:::::::
rainfall

:::::::::
multipliers

::::::
appear

::
to

:::::::
behave

::
in

:
a
:::::
more

:::::::
physical

::::
way

:::
in

:::
the

::::::::::::
high-resolution

::::::
model

::
is

::
in

:::
line

::::
with

::::::
earlier

:::::::
findings

:::::
about

:::::
more

::::::::::
transferable

::::::::
parameter

::::::
values

::::::::
resulting

::::
from

:::::::::::::
high-resolution

::::::
models

:::::::::::::::::::::::::::::
(Krebs et al., 2014; Sun et al., 2014)

:
.

3.3 Validation performance

3.3.1 Individual events10

The successful calibrations predicted 7-13
::::
8-13

:
out of the 19 validation events satisfactorily (NSE >

:
>0.5), see Table 6.

::::::::::
T6_PI_30m

::
(9

::::::
events)

::::
and

::::::::::
T6_Q_60m

::
(8

:::::::
events)

:::::::::
performed

:::::
worst

:::::
while

:::::::::::::
T32S_PI_mean

:::::::::
performed

:::::
best.

:::::::::::
Perturbations

:::
of

::
the

:::::
flow

::::
data

::
in

:::
the

:::::::::
calibration

::::::
period

:::
led

::
to

::
a
:::::
lower

:::::::
number

::
of

:::::::::::
satisfactorily

::::::::
predicted

::::::
events

:::
for

::::
most

:::::
CSs. The two-stage

calibration scenarios were less sensitive to perturbations of the flow data in the calibration periodand to
:
,
:::
i.e.

::::
they

::::::::
predicted

::::
more

:::::::::
validation

:::::
events

:::::::::::
satisfactorily

::::
than

::::
their

::::::::::
single-stage

:::::::::::
counterparts.

:::::
When

:
switching from the high resolution to the low-15

resolution model .
::
the

::::::::::
single-stage

::::
CSs

:::::
were

:::
no

:::::
longer

:::::
able

::
to

::::::
predict

:::
up

::
to

::
5
::::::
events,

:::::
while

:::::
from

:::
the

::::::::
two-stage

::::
CSs

:::::
only

T32S_
::::::
D_prec

::::
lost

:::
two

:::::::
events,

:::
and

::::::
T32S_P_sum, T32S_Q_max, and T32S_QV_ppP actually predicted a higher number of
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Table 6. Number of validation events with NSE >0.5 out of 19 total events. Bold font indicates the best value in each column.
::::
Note

::
to

:::::::
reviewers:

:::
this

::::
table

:::
has

::::
been

::::::
updated

::
in

:::
this

::::::
revised

:::::
version

::
of
:::
the

:::::::::
manuscript

Baseline Cal. flow -40% Cal. flow +40% Low-res. model Total

N_T6 12 10 8 7 37

T6_D_prec 11 9 9 6 35

T6_P_sum 11 9 9 8 37

T6_PI_30m 9 9 9 9 36

T6_PI_mean 10 6 12 6 34

T6_Q_60m 8 9 9 6 32

T6_Q_max 12 9 11 10 42

T6_QV_ppP 12 7a 9 10 31

T32S_D_prec 12 12 12 10 46

T32S_P_sum 10 9 10 13 42

T32S_PI_mean 13 12 12 13 50

T32S_Q_60m 10 9 9 10 38

T32S_Q_max 11 8 10 12 41

T32S_QV_ppP 11 12 10 12 45

a Run was unsuccessful in calibration

events satisfactorilywith the low-resolution model than with the calibrated high resolution model.
:::::
Over

::
all

::::
four

::::::::::
calibration

::::
runs,

:::
the

::::::::
two-stage

::::::::::
calibrations

::::
were

::::
able

::
to

::::::
predict

:::::
more

:::::
events

:::::::::::
satisfactorily

::::
than

::::
their

::::::::::
single-stage

:::::::::::
counterparts.

The events that most often caused failure in validation were four events with peak flow rates of 10 L s−1 or less, and

therefore, such failures may be attributed to: (i
:
1) relatively high measurement uncertainties, and (ii

:
2) high sensitivity of the

NSE to even small changes in the hydrographs. However, it should be noted that the two smallest events (both with a peak5

flow rate of 4.6 L s−1) were predicted with NSE>0.5 by some calibration scenarios. For the other CSs, examination of the

hydrographs showed that they predict well the magnitude of events, but produce wrong timing.

Another event that failed in validation for all CSs was that with the highest peak flow rate (53 L s−1,
:::
see

:::::
Table

:::
A1), which

was overestimated by a factor of up to three. This event was dominated by an intense, single-peak burst of rainfall
:::
(the

:::::::
highest

::::::::
30-minute

:::::::
average

::::::
rainfall

::::::::
intensity

:::
was

::::
11.1

::::
mm

:::::
hr−1), so it could have suffered from high spatial variation of the rainfall.10

The volume errors were similar for all high-resolution calibrated models and showed a general tendency to underestimate

flow volumes by 25%. When using the low-resolution model, the single-stage CSs underestimated runoff volume by around

40%, while two-stage scenarios underestimated it by a maximum of 27%. Across all CSs, two-stage versions had similar or

better performance in terms of total runoff volume. Peak flow ratios were <1 for most events, but for the events that generally

did poorly in validation (see above) peak flows (as well as flow volumes) were over predicted instead. The results for both total15
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Figure 6. Error statistics for individual validation events for all calibration scenarios in the baseline runs.

volumes and peak flows indicate that for most events flows were underestimated, which may be (at least partially) attributed to

the discrepancies between observed rainfall and flow found in the calibration phase (see Sect. 3.2.2).

The peak flow
:::
peak

:::::
flow ratios obtained for the 19 validation events using the calibrated models from the baseline are

shown in the upper panel of Figure 7.
::
6.

::::::
Under-

:::
or

::::::::::::
overestimation

:::
of

::::
peak

:::::
flows

::::
and

:::::
runoff

::::::::
volumes

:::
by

:::
the

::::::
model

:::::
could

:::
lead

::
to
:::
an

::::::
under-

::
or

:::::::::::::::
over-dimensioned

::::::
system

::::::
design,

:::
and

::
it
::
is

::::::::
therefore

::::::
relevant

:::
to

:::::::
consider

::::
these

:::::::
aspects

::::::::
alongside

:::
the

:::::
NSE.5

Underestimation of peak flows was most frequent, but the largest errors occured
:::::::
occurred when the flow was overestimated.

The variation among CSs was generally larger when the prediction error was larger. The corresponding figure for volume

errors is shown in the middle panel of Figure 7.
::
6. Again, underestimation was more common, but overestimation did occur for

a limited number of events. For both peak flows and total volumes, the variation among events was generally larger than the

variation among different calibration scenarios, showing that selecting a limited number of validation events may also influence10

the results of the model evaluation.
::::::
Across

::
all

::::
CSs,

::::::::
two-stage

:::::::
versions

::::
had

::::::
similar

::
or

:::::
better

::::::::::
performance

::
in
:::::
terms

::
of

::::
total

::::::
runoff

::::::
volume.

:::::
Peak

::::
flow

:::::
ratios

:::::
were

::
<1

:::
for

:::::
most

::::::
events,

:::
but

:::
for

:::
the

:::::
events

::::
that

::::::::
generally

:::
did

::::::
poorly

::
in

:::::::::
validation

:::
(see

::::::
above)

:::::
peak

::::
flows

:::
(as

::::
well

:::
as

::::
flow

::::::::
volumes)

::::
were

::::
over

::::::::
predicted

:::::::
instead.

::::
The

::::::
results

:::
for

::::
both

::::
total

:::::::
volumes

::::
and

::::
peak

:::::
flows

:::::::
indicate

::::
that

::
for

:::::
most

:::::
events

:::::
flows

:::::
were

:::::::::::::
underestimated,

:::::
which

::::
may

:::
be

::
(at

::::
least

::::::::
partially)

::::::::
attributed

:::
to

:::
the

:::::::::::
discrepancies

:::::::
between

::::::::
observed

::::::
rainfall

:::
and

::::
flow

:::::
found

::
in
:::
the

:::::::::
calibration

:::::
phase

::::
(see

:::::
Sect.

:::::
3.2.2).

:
15

When examining the NSE of the validation events (see the bottom panel of Figure 7), more variation among the different

CSs became visible, although the amount of variation was still event-dependent: inter-CS variation for the same events varies
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from 0.15 to 1.25. This shows that some events can have a much larger impact on the overall validation results than others. Out

of the 19 events, 6 were predicted satisfactorily (NSE>0.5) by some CSs but not by others; 5 events failed for all CSs, and 8

were predicted satisfactorily by all CSs.

3.3.2 Overall performance
::
of

:::
the

::::::::::::::
high-resolution

:::::
model

To assess the overall performance of different calibration scenarios for the validation period, several ways of combining the5

individual events were considered (see Table 7). The simplest metric is obtained by using the NSE means, which ranged from

0.13 (T6_PI_30m) to 0.42 (T32S_QV_ppP). There are two
:::::::::
conceptual problems with this metric: First, since NSE ranges from

negative infinity to plus one, one poorly fitting event can offset multiple well-fitting events. Second, two simulated hydrographs

of equally poor fit can have rather different (negative) NSE values, producing different impacts on the overall results, which

is not justified by a visual comparison. Therefore, this mean metric is not considered a reliable metric for comparisons, when10

poorly fitting events are present.

The exclusion of low flow (<10 L s−1 peak) events avoids this issue, but does not reward calibration scenarios that do

manage to predict these events satisfactorily. Another option is to set all NSE values <-1 to -1 before calculating the mean,

which results in NSE ranging from 0.29 to 0.47. Adoption of the median NSEs (insensitive to outliers) lead to a higher range

of 0.43 to 0.61, showing that the average or overall validation performance depends more on the outlier events than on typical15

events.

A more commonly used approach is to combine all the events into a single time series prior to calculating the NSE on the

joint time series. This procedure indicated satisfactory performance for all CSs (NSE 0.57 - 0.70). The discussion of various

metrics shows that caution is needed when averaging performance over multiple events, as metrics may not reflect the fact that

a significant number of events is poorly predicted in all CSs (see Table 6).20

The considerations in the previous paragraph concern the NSE and are not necessarily applicable to other statistics in the

same way. The RMSE is calculated in flow units (L s−1) and tends towards larger values for larger events, even if the fit is

visually better. Because of this taking the mean across events is somewhat conceptually unsatisfactory, but the resulting values

differ from the RMSE calculated on a joint time series only by an offset that is almost the same for all CSs. Therefore, all

CSs show the same relative performance. The volume error (VE) was included in this study to yield some indication of the25

overall difference between the modelled and observed runoff volumes over longer time periods. Therefore, this statistic was

summarized over all events using the joint time-series approach.

To obtain an overall ranking of the different CSs in the baseline run, they were ranked by five characteristics (see Table 7)

and then the sum of the individual ranks was taken. This shows that the two-stage CSs performed better in the validation period

than the
:::
The

::::::
volume

::::::
errors

::::
were

::::::
similar

:::
for

::
all

:::::::::::::
high-resolution

:
single-stage CSs.30

3.3.3 Sensitivity to the objective function

For most calibration scenarios, the models that were calibrated with different objective functions (NSE in the baseline run,

RMSE in the alternative) retained a similar performance in the validation phase. However, there are differences for some of the
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Table 7. Summarized performance for all 19 validation events for the high-resolution model. Bold font indicates the best value in each

column.
::::
Note

::
to

::::::::
reviewers:

:::
this

::::
table

::
has

::::
been

::::::
updated

::
in
:::
this

::::::
revised

::::::
version

::
of

::
the

:::::::::
manuscript

Mean

NSE

Clip

mean

NSE

Median

NSE

Joint

NSE

# neg

NSE

# good

NSE
Joint VE Mean PFR

N_T6 0.33 0.45 0.58 0.65 2 12 -0.24 0.91

T6_P_sum 0.39 0.45 0.60 0.66 2 12 -0.23 0.91

T6_PI_mean 0.18 0.33 0.51 0.59 4 10 -0.24 0.96

T6_PI_30m 0.13 0.29 0.49 0.57 5 9 -0.24 0.98

T6_Q_max 0.34 0.44 0.58 0.65 2 12 -0.24 0.92

T6_Q_60m 0.37 0.37 0.43 0.60 3 8 -0.29 0.81

T6_QV_ppP 0.36 0.47 0.58 0.67 2 12 -0.24 0.90

T6_D_prec 0.34 0.43 0.56 0.64 2 11 -0.25 0.91

T32S_P_sum 0.19 0.34 0.56 0.68 5 10 -0.15 0.99

T32S_PI_mean 0.26 0.44 0.59 0.70 2 13 -0.16 1.00

T32S_Q_max 0.31 0.34 0.53 0.67 4 11 -0.13 0.96

T32S_Q_60m 0.26 0.33 0.53 0.68 4 10 -0.13 0.99

T32S_QV_ppP 0.42 0.46 0.58 0.65 2 11 -0.26 0.87

T32S_D_prec 0.22 0.34 0.61 0.70 4 12 -0.02 1.01

::::::::
calibrated

::::::
models

::::
and

::::::
showed

:
a
:::::::
general

::::::::
tendency

::
to

:::::::::::
underestimate

::::
flow

::::::::
volumes

::
by

:::::
25%.

:::
For

:::
the two-stage CSs, see Table ??

for a description and Figure 8 for an example.

::::::::
calibrated

::::::
models

:::::::
volume

:::::
errors

::::
were

:::::::
smaller

::::
with

:::::::::::::
underestimation

::
of

::::::
around

::::
15%

:::::::
(except

:::
for T32S_QV_ppP).

Examples of hydrographs showing typical (left panel, N_T6) and differing (right panel, T32S_D_prec) behaviour when

calibrated for different objective functions.5

3.3.3 Low-resolution
:::::::
Overall

:::::::::::
performance

::
of
::::
the

::::::::::::
low-resolution

:
model

The effect of the low-resolution model depended on the calibration scenario considered, see Table 8. Some scenarios scored

better in terms of NSE (gains of up to 0.17 and 3 events predicted with NSE >0.5), while others lost performance by the same

metrics (up to 0.24 and 5 events). This is a more mixed result
:::
less

:::::::::
consistent than that found by Krebs et al. (2016), who tested

high- and low-resolution models of three catchments and found the high-resolution models to perform better in validation for10

all three. All but one of the two-stage scenarios predicted more events satisfactorily with the low-resolution model than with

the high-resolution model.
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Table 8. Summarized validation performance (over 19 events) for the low-resolution models. Bold font indicates the best value in each

column.
::::
Note

::
to

::::::::
reviewers:

:::
this

::::
table

:
is
:::::::::
completely

:::
new

:::
and

:::
not

::
the

:::::
same

::
as

::::
Table

:
8
::
in

:::
the

::::::
previous

::::::
version

::
of

:::
the

::::::::
manuscript

Mean

NSE

Clip

mean

NSE

Median

NSE

Joint

NSE

# neg

NSE

# good

NSE
Joint VE Mean PFR

LR visually

better than

HR (# events)

N_T6 0.12 0.21 0.36 0.52 5 7 -0.43 0.50 2

T6_P_sum 0.05 0.22 0.42 0.57 6 8 -0.38 0.60 3

T6_PI_mean 0.38 0.38 0.37 0.50 0 6 -0.43 0.59 4

T6_PI_30m 0.43 0.43 0.50 0.58 2 9 -0.34 0.74 5

T6_Q_max 0.49 0.49 0.56 0.59 0 10 -0.36 0.64 5

T6_Q_60m 0.29 0.29 0.36 0.49 4 6 -0.46 0.49 3

T6_QV_ppP 0.37 0.37 0.51 0.54 3 10 -0.40 0.66 4

T6_D_prec 0.34 0.34 0.38 0.50 4 6 -0.44 0.51 4

T32S_P_sum 0.51 0.51 0.55 0.66 2 13 -0.27 0.60 4

T32S_PI_mean 0.44 0.46 0.60 0.69 2 13 -0.22 0.80 5

T32S_Q_max 0.05 0.33 0.64 0.70 5 12 -0.07 1.03 12

T32S_Q_60m 0.13 0.28 0.52 0.66 4 10 -0.04 1.02 11

T32S_QV_ppP 0.44 0.46 0.65 0.72 2 12 -0.18 0.79 7

T32S_D_prec 0.29 0.38 0.56 0.76 4 10 -0.05 0.86 4

a calculated after setting individual event values <-1 to -1.

The volume errors
:::
For

:::
the

::::::::::
single-stage

::::::::::
calibration

::::::::
scenarios,

:::
the

:::::::
volume

::::::
errors

::
in

:::
the

:::
LR

:
were twelve to nineteen per-

cent points higherfor the single-stage calibration scenarios. The two-stage scenarios showed both worsened performance

(T32S_P_sum, T32S_PI_mean) and improved performance (T32S_Q_60m and T32S_Q_max, T32S_QV_ppP). When com-

paring the hydrographs from the two different model discretizations per event, the high-resolution model usually performed bet-

ter. However, for the last three CSs mentioned, the low-resolution performed better compared to the other CSs. For T32S_Q_60m5

and T32S_Q_max, the low-resolution model predicted the observed hydrographs better for most validation events. These three

calibration scenarios were also the only ones where the low-resolution model resulted in lower values for the calibrated rainfall

multipliers.

3.3.4 Sensitivity to structural flow errors

The introduction of structural flow measurement errors in
:::
into the calibration data had little effect on performance in the10

validation phase. Although there were some changes
::::::::
(compared

::
to

:::
the

:::::::
baseline

::::::::::
calibration) in the overall NSE values, volume

errors and peak flow ratios were almost the same for the baseline and disturbed flow data runs. For T6_D_prec, T6_P_sum,

T6_Q_60m, and T6_QV_ppP, runoff started later in the validation event when calibration flow data was increased by 40%, but
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this had a limited influence on the overall performance metrics (NSE, VE and PFR). Only T6_PI_mean was more sensitive to

reducing calibration flow data by 40%. This resulted in lower flows (and therefore better fits) in validation events for the five

events that caused problems for most other CSs (i.e. the four lowest and the single highest peak flow rate(s), see Sect. 3.3.1).

3.3.5 Overall ranking for validation

For an overall ranking of the different calibration scenarios in the validation period the baseline runs were ranked by each of5

the following statistics: mean NSE (limited to -1), number of events with NSE >0.5, RMSE (calculated over the joint time

series of all events), volume error (see RMSE), and mean peak flow ratio. The ranks for each characteristic were then summed

to obtain an overall ranking, see Table ??. T32S_PI_mean and T32S_D_prec performed best, with T6_PI_30m and T6_Q_60m

bringing up the rear.

3.4 Degradation of performance from calibration to validation10

In calibration, the NSE for the different calibration scenarios ranged from 0.68 to 0.85, while in validation it ranged from

0.29 to 0.47Table ??. The CSs that did better in calibration lost more performance
::::::::
(measured

::
by

:::::
NSE)

:
when switching to the

validation period, see figure 9. Considering the change in overall rank from calibration to validation, the
:::::
phase

::::
(see

::::::
Figure

::
7).

::::
The

:::::
range

::
of

:::::::::::
performance

::::
loss

::
for

:::
the

::::::::
different

:::::::::
calibration

::::::::
scenarios

::::
was

:::::
larger

:::
for

:::
the

::::::::::::
low-resolution

::::::
model

::::
than

:::
for

:::
the

::::::::::::
high-resolution

::::::
model.

::::
For

:::
the

::::
high

::::::::
resolution

::::::
model

::
all

::::
but

:::
one

::
of

:::
the

:
two-stage scenarios showed smaller changes then the15

:::::::::
calibrations

::::
lost

::::
more

:::::::::::
performance

:::::
when

::::::::
switching

::
to

:::
the

:::::::::
validation

:::::
phase

::::
than

::::
their single-stage scenarios. Several scenarios

showed large gains (+10 for T6_QV_ppP, +7 for T6_P_sum, +5 for T32S_PI_mean) while the largest losses were smaller (-7 for

T6_Q_60m, -6 for T6_Q_max)
::::::::::
counterparts,

:::::::
whereas

:::
for

:::
the

::::::::::::
low-resolution

::::::
model

::
all

:::
but

:::
one

:::
of

:::
the

:::
two

:::::
stage

:::::::::
calibrations

::::
had

:
a
::::::
smaller

:::::::::::
performance

:::
loss. The findings in this Sect.

::::::
section demonstrate that good calibration performance is not necessarily

indicative of good validation performance and vice versa, and therefore
:
,
::::::::
whenever

:::::::
feasible,

:
validation should be performed,20

if at all possible. .
::::::::
Previous

::::::
studies

:::::
found

::::
that

:::::::::::::
high-resolution

::::::
models

::::
lead

::
to

:::::
more

::::::::::
transferable

::::::::
parameter

::::::::
estimates

::::
(e.g.

::::
less

:::
loss

::
of

:::::::::::
performance

:::::
when

::::::::
switching

:::
to

:::::::::
validation,

:::
Sun

::
et
:::
al.

::::::
(2014),

::::::
Krebs

::
et

::
al.

:::::::
(2014)),

:::
but

:::
in

:::
the

::::::
current

:::::
study

:::
this

::::::
seems

::::::::
dependent

:::
on

:::
the

:::::::::
calibration

::::
data

:::
set

:::::
used.

:::
For

::::
the

::::::::
two-stage

::::::::::
calibrations

:::
the

:::::::::::::
low-resolution

:::::
model

:::::::
usually

:::
has

::::
less

:::
loss

:::
in

::::::::::
performance

::::
than

:::
the

::::
high

:::::::::
resolution

::::::
model.

3.5 Single-stage vs. two-stage calibrations25

For those selection criteria, for which both single and two-stage calibrations were performed, the results of the two options

were
::
can

:::
be compared directly (see Table ??). In terms of NSE and volume error,

::::::
Figure

::
8).

::::
For

:::
the

:::::::::::::
high-resolution

::::::
model,

:::::::::
calibration

::::::::::
performance

::
of

:
the two-stage calibrations performed better than

:::
CSs

:::
was

:::::::::
somewhat

:::::
better

::::
than

:::
for the single-stage

calibrations, except for Q_max. In terms of peak flow ratio the results were mixed. For D_prec and PI_mean the two-stage

variant outperformed the single-stage across all metrics, for Q_max
::::
CSs.

:::
By

:::::::
contrast,

::
in
::::

the
::::::::
validation

:::::
phase

::::
the

::::
NSE

::::
was30

:::::
better

::
for

:
the single-stage variant performed better and for other CSsthe results depended on the metric used. In validation the

25
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Figure 7.
::::
Loss

::
of

:::::::::
performance

:::::
(NSE)

:::::
when

:::::::
switching

::::
from

::::::::
calibration

::
to

::::::::
validation.

:

Figure 8.
:::::::::
Comparison

::
of

:::::::::
single-stage

:::
and

::::::::
two-stage

::::::::
calibration

:::::::
strategies.

:

differences between single and
:::
CSs.

::::::::
However,

:::
the

:::::::
volume

::::
error

::::
and

::::
peak

::::
flow

:::::
ratio

::::
were

:::::
better

:::
for

:::
the

:
two-stage calibration

were less pronounced, see Table ??. In terms of NSE, the single-stage calibrationsperformed better, but they had the same

number of satisfactorily predicted events as
::::::::::
calibrations.

:::
For

:::
the

::::::::::::
low-resolution

::::::
model

::::::::::
performance

::::
was

::::::
similar

::
or
::::::

worse
:::
for

::
the

:::::::::
two-stage

::::::::::
calibrations,

:::
but

::
in

:::
the

:::::::::
validation

:::::
phase the two-stage calibrations . In terms of RMSE, VE and PFR

::::
most

:::::
often

:::
had

::::::
higher

::::
NSE.

:::
In

:::::::
addition,

:
the two-stage calibrations performed better , except for QV_ppP. This is also the only criterion5

where all metrics indicated the same, i.e. that the
:::::::
resulted

::
in

:::::
much

:::::
better

::::::::::
performance

::
in
:::::
terms

::
of
:::::::
volume

::::
error

::::
and

::::
peak

:::::
flows

:::
than

:::::
their single-stage calibration had better results in the validation period

::::::::::
counterparts.
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4 Conclusions

The
:::::::
primary objective of this study was to compare different strategies for the selection of calibration events for a hydrodynamic

model of a predominantly green urban area.
:::
Two

:::::::::
secondary

:::::::::
objectives

::::
were

:::
to

:::::
verify

:::
(1)

:::::::
whether

::::::
earlier

:::::::
findings

:::
on

:::::
other

::::::
sources

::
of

::::::::::
uncertainty

::
in

:::::
urban

:::::::
drainage

:::::::::
modelling

:::
also

:::::
apply

::
to

::
a
::::::
greener

:::::
urban

:::::::::
catchment,

::::
and

:::
(2)

:::::::
whether

:::
they

:::
are

::::::::
sensitive

::
to

:::
the

:::::::::
calibration

:::
data

:::
set

:::::
used. Calibration strategies consisted of single- and two stage calibrations and considered a number5

of different metrics by which calibration events can be selected from a larger group of candidate events. Calibration strategies

were tested with two different objective functions,
:::
high

::::
and

:::
low

::::::
spatial

::::::::
resolution

::::::
models

::::
and on data sets with structural flow

data errors, and with high and low spatial resolution models.
::::
The

::::::::::
conclusions

::::::
drawn

:::::
below

:::
are

::::::
strictly

:::::
valid

:::
for

:::
the

:::::::
specific

:::
data

::::
and

::::::::
catchment

::::::::::::
characteristics

:::::
used

::
in

:::
this

:::::
study.

In the baseline run (high resolution model, Nash-Sutcliffe as objective function, no structural flow data errors), all calibration10

scenarios produced successful calibrations ,
:::
(i.e.,

:::::
NSE

:
>
::::
0.5),

:
albeit with varying performance: NSE values ranged from 0.68

to 0.85. For the two-stage calibrations, both stages gave satisfactory results (NSE 0.70-0.87). The two-stage calibrations per-

formed better than their single-stage counterparts in terms of NSE and runoff volume error. The choice of NSE or RMSE as the

objective function
::::::::
two-stage

::::::::::
calibrations

::::
also

::::
were

::::::
faster

::::
since

::::
they

:::::::
reduced

::::
the

::::::::::::
dimensionality

::::::::
(number

::
of

:::::::::::::
simultaneously

::::::::
calibrated

::::::::::
parameters)

:::
of

:::
the

:::::::::
calibration

::::::::
problem.

:::::::::
Although

:::
the

::::::::
obtained

:::::
values

:::
of

:::
the

::::::::
SWMM

:::::
model

::::::::::
parameters

::::::
varied15

:::::::
between

:::
the

:::::::
different

::::
CSs,

::::
they

::::::
found

:::::
highly

:::::::
similar

:::::
values

:::
for

:::
the

::::::
rainfall

::::::::::
multipliers

:::::::
included

::
in

:::
the

::::::::::
calibration.

:::::::::
Switching

::::
from

:
a
:::::::::::::
high-resolution

::
to

:
a
::::::::::::
low-resolution

::::::
model

:::::::::::
discretization

:
had only a small impact on the results.

::::::::
calibration

:::::::::::
performance

::::::
metrics.

::::::::
However,

:::
the

::::::
values

::
of

:::
the

::::::
rainfall

:::::::::
multipliers

:::
for

::::
each

::::
event

:::::::
showed

:::::
much

::::
more

:::::::
variation

::::
than

::::
with

:::
the

:::::::::::::
high-resolution

::::::
models.

:::::
Most

:::::::::::::
high-resolution

:::::::::
calibration

:::::::
models

::::::::
produced

:::::
higher

::::::
values

::
of
::::

the
:::::::::
multipliers,

::::::
except

:::
for

:::::
three

::::::::
two-stage

:::::
CSs,

:::::
which

::::::::
produced

:::::
lower

::::::
values

::::::
instead.

::::::
These

::::::::::
observations

:::
on

:::
the

::::::
rainfall

:::::::::
multipliers

:::
in

:::
low

:::
and

:::::::::::::
high-resolution

:::::::
models

:::
are

::
in20

:::
line

::::
with

:::::::
previous

::::::
studies

::::::::::::::::::::::::::::::
(Krebs et al., 2014; Sun et al., 2014)

:
.

The robustness of the calibration scenarios to structural flow errors was tested by calibrating them after uniformly reducing

or increasing all flow observations by 40%. Most calibration scenarios were able to adjust to this with only small effects on the

calibration performance, except for T6_QV_ppP (six events with highest percentage runoff), which failed in calibration (NSE

-0.1) when flow data was reduced by 40%. This can be attributed to two low-flow events, which produced negative NSE values,25

even though they visually indicated a good fit.

Switching from a high-resolution to a low-resolution model discretization has only a small impact on calibration performance

metrics. However, the values of the rainfall multipliers for each event show much more variation than with the high-resolution

models. Most high-resolution calibration models find higher values for the multipliers, but three two-stage CSs find lower

values instead
::::
This

::::::::::::
compensation

::
for

::::::
errors

::
in

:::
the

:::::::::
calibration

::::
data

:::::::
confirms

::::::
earlier

:::::::
findings

::::
from

::
a
::::::::::::
predominantly

::::::::::
impervious30

::::::::::::::::::::::::
catchment(Dotto et al., 2014)

::
for

::
a

::::::::::::
predominantly

::::
green

::::::::::
catchment,

:::
and

:::::::
confirms

::::
that.

:::::
these

::::::
findings

:::::
were

:::::::::
insensitive

:
to
:::::::::
calibration

:::
data

::::::::
selection

::::::
except

::
in

:::
the

::::
case

::
of

::::::::::
T6_QV_ppP.

The calibrated scenarios were validated against an independent set of 19 validation events. All calibrated scenarios predicted

7 to 13 of these events satisfactorily (NSE >
:
>0.5). A group of four events with peak flow rates of less than 10 L s−1 caused
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problems in most calibration scenarios, as did the event with the highest observed peak flow rate. Although most calibration

scenarios yielded similar results for the validation events with respect to the overall volume error and the ratio between the

modelled and observed peak flow rates, there were considerable differences between the CSs when performance for the val-

idation events was measured by NSE. In terms of NSE the single-stage CSs proved more successful in the validation phase,

but for RMSE, volume error and peak flow error the two-stage CSs performed better.
:::::
Better

:::::::::::
performance

::
in

::::::
regards

:::
to

::::
flow5

:::::::
volumes

:::
and

::::
peak

:::::
flows

:::::
bears

:::::
more

::::::::::
significance

::
for

::::::::::
engineering

:::::::
design.

In the validation phase, there were again (as in the calibration) only small differences between the two considered objective

functions. Concerning model discretization, the low-resolution single-stage calibration scenarios show
::::::
showed

:
significantly

larger volume errors than their high-resolution counterparts, while most two-stage calibration scenarios show
:::::::
showed either

the same or even improved volume errors. Two
::
of

:::
the

:
two-stage CSs (that also deviated from the others in terms of the10

calibrated rainfall multipliers) were also the only ones to obtain visually better fitting hydrographs with the low-resolution

model setup than with the high-resolution
::::
high

::::::::
resolution

:
model setup. Two-stage calibrations also predicted more validation

events satisfactorily when the calibration flow data was perturbed.

An overall ranking of the different scenarios across the different influential factors (objective function, flow data errors,

model discretization) showed that T6_Q_max, T32S_D_prec and N_T6 performed the best in calibration. However, in the15

validation phase this order was changed considerably with T32S_PI_mean, T32S_D_prec and T6_P_sum forming the top three.

The ranking of
::::::
Earlier

::::::
studies

:::::
found

::::
that

::::::::::::
high-resolution

:::::::
models

:::
lost

:::
less

:::::::::::
performance

:::::
when

::::::::
switching

::
to

:::
the

:::::::::
validation

:::::
phase

:::::::::::::::::::::::::::::
(Krebs et al., 2014; Sun et al., 2014)

:
,
:::
but,

::
in
:

the two-stage scenarios was more consistent between calibration and validation

than that of the single-stage scenarios
::::::
current

:::::
paper,

:::
this

:::::::::
depended

::
on

:::
the

:::
set

::
of

:::::::::
calibration

::::
data

:::
that

::::
was

:::::::
selected.
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a Calculated assuming 100% runoff from impervious areas: a = QV - 0.12 P_sum, where 0.12 is the percentage of directly connected impervious area. (Some of this runoff

originated from impervious areas that drained to green areas).
b Calculated as b = a (25 / (25+63)), where 25 and 63 are the percentages of indirectly connected impervious surfaces and green surfaces respectively.
c Calculated as c = a - b
d Calculated as d = c / P_sum
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