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Abstract. To protect the quality of the aquatic environment, it is imperative to be able to assess the leaching of nitrate through

various hydrogeological settings. Numerical model concepts have been developed in order to describe this leaching and possi-

ble routes of nitrogen at field scale, often without being evaluated in regard to their ability to account for dominant preferential

transport and coherent denitrification, which is the rule rather than the exception in soils. This study evaluates whether it is

possible to describe 10-years of nitrate concentrations, measured in drainage from a tile-drained agricultural clay till field in5

Denmark, by applying the soil-plant-atmosphere model DAISY, capable of accounting for preferential transport and denitrifi-

cation. A DAISY model concept, including macropores capable of capturing the water and bromide balance of the field within

this specific timeframe, was able to predict the water transport to drainage, dry matter and N-yield of the harvested crops, while

it was unable, with the standard default denitrification model, to predict dynamics and quantity of N-loss to drainage. This was

caused by a fast saturation of the plow layer, where nitrate seemed to be denitrified almost instantly, and no surplus nitrate10

remained to be transported to the drainage. To circumvent this and describe the measured N-loss, modification to the water

reduction function affecting denitrification was conducted. The denitrification had to be reduced by approximately 50% from

a seasonal average of 75 kg Nha−1 to 35 kg Nha−1 while 48% to 80% of the total N-loss to drainage had to be preferentially

transported from the plow layer. This study therefore reveals that, by not accounting for preferential transport and coherent

denitrification, there is a high risk of underestimating leaching of nitrate to the aquatic environment.15
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1 Introduction

Nitrogen is an essential element of crop growth and development. The input of agricultural nitrogen fertilisers, however, is one

of the most substantial causes of non-point source nitrogen pollution of surface water (including drainage) and groundwater,

despite the Nitrate Directive (EEC, 1991). One of the most widespread impacts on inland surface water and coastal seawater is20

eutrophication, which is induced by unnatural enrichment of nitrogen and phosphorus. In order to increase agricultural produc-

tion from the arable land, artificial subsurface tile drains are widely deployed around Denmark to remove excess water from

fields with poor natural drainage. Nevertheless, this agricultural water management measure puts the aquatic environment at
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risk since it facilitates rapid nitrogen transport pathways to the aquatic environment, with limited possibilities for the reduction

of nitrate (Ernstsen et al., 2015) followed by eutrophication (Blann et al., 2009). Bergstrom (1995) argued that nitrate would be25

transported evenly through the matrix media and probably not via preferential flow pathways. In contrast, Larsson and Jarvis

(1999) showed the importance of macropore flow in regard to nitrate transport in structured soils. Mohanty et al. (1998) found

water flow better described by using bimodal unsaturated hydraulic functions accounting for preferential flow of water, rather

than with the commonly used unimodal hydraulic functions. Recently, Cheng et al. (2014) have shown that the leaching of

nitrate from an undisturbed soil column of loam was, on average, 2.31 times faster than from a packed soil column. Besides30

the contamination threat to the aquatic environment, agricultural fertilisation practices pose a risk as one of the accelerators

of global warming, since they are a source of nitrous oxide (N2O) emission. Hofstra and Bouwman (2005) concluded, by

statistical modelling including studies with 336 denitrification measurements in contrasting crop management systems and

landscapes, that the possible magnitude of gaseous N loss was around 10 kg Nha−1 yr−1 from a well-drained field with an

uncertainty of 2-46 kg Nha−1 yr−1. The authors classified the results based on drainage conditions, such as well-drained and35

poorly drained, with a contribution of 13 and 22 kg Nha−1, respectively. According to Knudsen et al. (2000), in Denmark, the

general “rule of thumb” for sandy clay loam and clay loam is a loss of 20-40 kg Nha−1 yr−1 due to denitrification. Besides

nitrogen being a pollution factor, nitrogen is one of the most limiting nutrients for vegetation, which regulates crop productivity

in the agricultural ecosystem. The proportion of various nitrogen compounds in the system depends both on the form and the

amount of the input of nitrogen (organic or inorganic), but also on transformations in the soil. Although inorganic nitrogen40

is responsible for both plant production and facilitation of eutrophication, the labile N compounds account for less than 5%

of the total nitrogen in soil (Brady et al., 2008; Jarvis et al., 1996). Nitrogen is present in organic form as plant residues, but

since it is not soluble in water, plants have limited access to this storage. Microorganisms (bacteria and fungi) convert the

organic nitrogen into ammonium and nitrate (mineralisation), and this inorganic nitrogen can be mobilised by the root system

of plants. The excess available inorganic nitrogen is either transported to surface waters by subsurface tile drain systems or the45

groundwater, if it is not immobilised or denitrified (Reddy and Ronald, 2008). Today, models applied to assess the water and

solute transport include discrete representation of soil layers which, with their hydraulic, chemical and biological properties,

drive the organic and inorganic compounds through the simulated soil profile (Manzoni and Porporato, 2009). Such models

are often one-dimensional and apply Richard’s equation (Richards, 1931) paired with the advection-dispersion equation, and

depict the subsurface drain transport with the widely used Hooghoudt equation (Hooghoudt, 1940). Besides the equilibrium50

water and solute transport, several of these models have included preferential pathways in order to simulate the rapid transport

throughout the soil media (Simunek et al., 2003). The ability of these models to describe preferential transport and coherent

denitrification in relation to leaching of nitrate has however seldom been evaluated in detail, which is imperative in order to

protect the aquatic environment against nitrate pollution. The objective of this study was to evaluate, by using one-dimensional

physically-based root zone model DAISY (Hansen, 2002), the effect of preferential transport and denitrification on leaching55

of nitrate to drainage during a 10-years period as measured for an agricultural clay till field included in the Danish Pesticide

Leaching Assessment Programme (PLAP; Lindhardt et al. (2001); web address: http://pesticidvarsling.dk). This was conducted

by (a) testing the performance of the preferential flow and transport model concept developed by Nagy et al. (2019) for this
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specific field, in describing the measured loss of nitrate to drainage, and (b) improving this model performance by optimising

the concept regarding sensitive, hydraulic, crop nitrification and denitrification parameters (Hansen et al., 2012a).60

2 Material and Methods

2.1 Long-term field experiment

The experimental field (1.69 ha) has been included in PLAP and is located in Silstrup (56 ◦55’56 "N 8 ◦38’44"E) in the North

West of Denmark (Lindhardt et al., 2001) (Fig. 1). The field was set up in 1999, with the knowledge that since 1942 the field

had been used for agricultural purposes and was artificially drained in 1966 with a systematic and uniform layout of the drain65

pipe system. The field was farmed from 1983 without the use of plot experiments and, since the monitoring started in 1999,

the field has been cultivated with crops in a rotation following Danish standard agronomic procedures concerning soil tillage,

fertilisation and spraying with pesticides. The field and the surrounding area are dominated by Weichselian glacial clay till

deposits in mixture with thin meltwater sand lenses. The field is heavily fractured and contains a high density of macropores.

In the top 1 m, traces of agricultural processes are highly visible, dominated by bioturbation and desiccation cracks, and70

the macropore density was approximated to 400 pores m−2 (Lindhardt et al., 2001) with diameters of 2-5 mm, utilising the

methodology from Klint and Gravesen (1999). The most common horizon subdivision is between the topsoil, or plow layer

(Ap horizon), and subsoil (B horizon) with average depths of 31 cm and 140 cm, respectively. The textural evaluation showed

a plow layer with 18-25% clay and an even more varying clay content within the underlying soil of up to 43%. The loss of

pesticides has from the start of the monitoring program been followed by flow proportional sampling of water from the drainage75

system and grab samples of water from deep groundwater wells, installed at the border of the field. In addition to pesticide

leaching assessed from the water samples, nitrate concentration in the same water samples have also been measured. Further

details on the monitoring program are given by Lindhardt et al. (2001). In the present study, Silstrup data is included from the

period 2000-2010. Silstrup has an average yearly precipitation of 838 mm. The groundwater table is located relatively deep for

the duration of the dry seasons with a depth of 2-4 m, whereas during the wet season it varies between 0.5 – 1.5 m. On average,80

the drainage was occurring 168 days per year with a mean magnitude of 0.5 mm d−1 corresponding to 8.45 m3 d−1 from

the whole field. Most of the drainage occurred during the wet season (late autumn and winter), although occasional sudden

preferentially induced flow was observed during the spring and summer period. Further hydrological details can be found in

Nagy et al. (2019) and Lindhardt et al. (2001).

[Figure 1 is about here]85

Management and measurements: From 2000 through 2010, crops of spring barley (SB) and winter wheat (WW) were grown in

rotation with winter rape (WR), fodder beets (FB), pea (P), and maize (M) (Fig. 2). No catch crop has been cultivated. Every

single year, the total amount of N fertilisers applied was adjusted to accommodate the selected crop, considering the nutritional

effects of the previous crops in rotation. On average for 2000–2010, the annual N-application was 197 kg Nha−1 yr−1. The

climate data was recorded from 29 April 2000 until 31 December 2010 on an hourly basis. The data include wind speed [ms−1],90
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global radiation [W m−2], air temperature [◦ C] and vapour pressure [Pa] to be able to determine the evaporative demand

utilising the Penman-Monteith Reference Evaporation equation (Allen et al., 1998). The wind speed measurements at 10

meters height were scaled to 2 meters, assuming a logarithmic wind profile and neutral atmosphere (Allen et al., 1998). Hourly

precipitation [mm] was sampled with a tipping bucket gauge (Lambrecht meteo GmbH) at the upper North East end of the field

(Lindhardt et al., 2001; Nagy et al., 2019). At the tile drain outlet, hourly drainage discharge was measured using the Thompson95

weir method (Lindhardt et al., 2001). ISCO samplers (Teledyne ISCO, Lincoln, NE, USA) had been utilised to get samples of

drainage water. Drainage water was sampled time proportionally (hourly) until 2004 and thereafter sampled proportional with

sub-samples collected for every 3000 L of drainage flow during the winter months (September–May) and 1500 L during the

summer season (June–August). Each week, all the collected sub-samples were pooled, and a sample was analyzed for nitrate,

in the laboratory (Ernstsen et al., 2015). The soil water was sampled with PRENART SUPER QUARTZ suction cups (Prenart,100

DK)) consisting of porous Polytetrafluoroethylene (PTFE) mixed with quartz. Four suction cups were installed at a depth of 1

m and four at a depths of 2 m at the edge of the field (Lindhardt et al., 2001). The sampling bottles are 1- or 2-liter glass bottles,

and samples were taken every 7 days. N-concentration and transport: In the period 2000–2010, the nitrate-N concentrations in

drainage at Silstrup varied between 0.5–34 mg NL−1 and, for 20 percent of the time, exceeded the European limit for drinking

water (Fig. 2). Slightly elevated nitrate-N concentrations were measured during M2002 (15.47 mg NL−1), P2003 (13.96105

mg NL−1), WW2006/2007 (12.68 mg NL−1) and in extreme WW2004/2005 (22.10 mg NL−1), FB2008 (34.29 mg NL−1)

was two and three times more than the allowed EU limit for drinking water supply (11.3 mg NL−1). Most of the N leaching

occurred throughout the fall- and wintertime, and generally, the daily fluxes were below 1 kg Nha−1 d−1. For a short period

of time, the concentration hit the range of 1–2 kg Nha−1 d−1 and has hardly ever been above 2 kg N ha−1 d−1 (Fig. 2). The

yearly drainage transport of nitrate-N coming from the field was between 3– 23 kg Nha−1 yr−1, corresponding to 1–16% of110

the annually applied N fertilisers (Fig. 2). Even though N was applied every year at nearly the same plant development stages,

no immediate effects on nitrate-N concentrations in the drainage were observed. This applied to both mineral and organic N

fertilisers (Ernstsen et al., 2015). Figure 2 presents the water and NO3-N leaching accumulated seasonally. One season ran from

April 1st of the given year until March 31st of the next year to represent the significant crop growing and N fertilisation season.

This seasonal approach is an alteration from the standard use of the hydrological year, as United States Geological Survey115

(USGS) defines it, the period between October 1st of one year and September 30th of the following year (U.S.G.S, 2016).

[Figure 2 is about here]

2.2 The DAISY-model

DAISY is a one dimensional physically-based root zone model, being able to model water balance, carbon and nitrogen

turnover, solute balance, heat balance and crop production based on input of climate data, soil texture, and various management120

strategies (Hansen, 2002). The water balance includes surface and subsurface matrix and preferential flow processes, as well

as plant uptake and flow to tile drains. It puts great emphases on nitrogen balance and modelling of processes in the nitrogen
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cycle, mineralisation-immobilisation, nitrification, and denitrification. Further, it simulates uptake and leaching of ammonium

and nitrate to drains and groundwater (Hansen et al., 2012a).

Soil hydraulics: DAISY uses the Richards equation to solve the one-dimensional water transport in the matrix.125

δθ

δt
=

δ

δz

[
K
δψ

δz

]
+
δK

δz
−S (1)

,where θ [VV−1] is the volumetric water content in the soil, ψ [L] is the soil water pressure potential,K [LT−1] is the hydraulic

conductivity of the soil and S is a sink term, which represents the loss to the drain, macropore or plant water uptake. In order

to solve the Richards equation, in this study, the van Genuchten (vG) soil water retention model was used (Van Genuchten,

1980).130

θ =





θr + θs−θs

[1+|αψ|n]m ;h < 0

θs ;h > 0

(2)

, where α, n and m are empirical shape parameters, and θs and θr are the saturated and the residual water content respectively

of the given soil. In this study, the van Genuchten model is coupled with the Mualem hydraulic conductivity theory (Mualem,

1976) (vGM), where m is achieved as m= 1−n−1. The Mualem hydraulic conductivity is expressed as

K =KsatS
l
e [1− (1−Sm−1

e )m]
2

(3)135

, where Ksat is the hydraulic conductivity at saturation , Se is the effective saturation, which is calculated as, Se = θ−θr

θs−θr
and

l is the shape form, which represents the pore connectivity.

The fast flow domain in DAISY is described by a macropore module designed by Mollerup (2010) and tested in technical

reports, prepared for and published by the Danish Environmental Protection Agency (Hansen et al., 2010a, b, 2012b). The

macropore is a vertically oriented feature in the DAISY model, characterised by physical properties such as length, diameter140

(d) and density (ρ). The macropore flow is initiated when the matrix pressure exceeds a specific pressure potential called ψinit.

If this pressure potential is exceeded, the macropore domain activates and water starts to fill up the macropore. When the

pressure potential drops below a level called ψterm, the macropore flow is terminated. In a specific case, when a macropore

is filled with water, it can be transferred back to the soil matrix at a certain point. It is initiated when the pressure difference

between the macropore and the matrix exceeds a minimum pressure barrier ψbarrier. All pressure parameters are common for145

all macropore classes. Macropores can be drain ended and matrix ended macropore, where the drain ended macropore has no

water build up, because when the water enters into the macropore, it is instantaneously transported to the drain. In contrast,

in the matrix macropores, the water has the availability to build up and be transported back to the matrix later, as discussed

above. More details of the mathematical and physical description of the macropore domain can be found in Mollerup (2010).

Soil N pools: Nitrogen (N) is present in two different fractions in the soil as organic or inorganic forms. These two fractions are150

in a constant exchange with each other, through mineralisation and immobilisation. According to Jarvis et al. (1996), inorganic

N represents approximately 5% of the total soil N, although it may change after fertilisation for a short period. Hence, organic
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N, which occurs in many forms, including proteins, urea, amino and nucleic acids and nucleotides is by far the largest N

fraction of the soil.

[Figure 3 is about here]155

Although the microbial state of N may cover only 3-5%, most of the transformation processes (mineralisation, immobilisation,

and denitrification) are mediated by the microbial community. In DAISY, soil N is divided into six different pools (Fig. 3), and

some N is in an inert pool (not shown in Fig. 3). The pools are separated into two distinct groups, pools with slow turnover

rate (denoted 1), and pools with higher turnover rate (denoted 2). Thereby the soil organic matter pool 1 (SOM1) mainly

contains chemically stabilised compounds which are relatively resistant to biological degradation. The other organic matter160

pool (SOM2) is physically stabilised and more labile, although temporarily resistant to biodegradation due to sorption to soil

colloids. Added organic matter refers to manure, crop residue or green manure and is typically divided into AOM1 – cell wall

material and AOM2 cell extractable substances. The main driver of the C/N turnover is the soil microbial biomass (SMB),

which controls the turnover processes of the dissolved organic matter, even though it only represents a small quantity of the

total organic matter (Hansen, 2002). Mineralisation-immobilisation turnover: Net N mineralisation or net N immobilisation is165

determined by the microbial activity and the overall N balance. If the content of N in the assimilated organic substance is higher

than that required by the biomass for growth, ammonium is excreted to the soil solution. On the other hand, if the content of N

in the assimilated organic substance is lower than that required by the biomass for growth, ammonium or nitrate is assimilated

from the soil solution and transformed into nitrogenous organic compounds (Hansen, 2002). The measure used in DAISY for

the available organic substrate is the content of carbon in the organic matter. Hence, the simulation of net mineralisation of170

N is based on the simulation of the turnover rate of soil organic carbon. The potential decomposition rate of organic carbon

in various pools in the soil is described by first-order kinetics, but is affected by the abiotic factors (soil water content, soil

temperature, pH (5 to 8), oxygen pressure) and availability of inorganic N. The potential N mineralisation rate is strongly

related to the carbon turnover, as every sub-pool has a C:N ratio and the decomposition of carbon leads to mineralisation of

N carbon according to this ratio. Hence, the potential background N mineralisation from dead native organic matter in the175

soil is highly dependent on the distribution of the dead native soil organic matter between SOM1 and SOM2, which in turn is

strongly related. By default, the C:N ratio for SMB1 and SMB2 is assumed to be 6 and 10, respectively, however, it can be

specified differently if required. Denitrification: In the present model, denitrification is simulated using a rather simple index

type model considering the decomposition of organic matter, volume of anaerobic microsites expressed simply in terms of soil

water content, soil temperature, and the concentration of nitrate in soil solution. This is a typical way of using a simplified180

model for denitrification (Eq. 4), according to Heinen (2006):

Da = αdfNfSfT fpH (4)

,where Da is the actual denitrification rate, αd represents the potential but may in different models have different formulation,

fN is a dimensionless reduction function for nitrate content in soil or represents the nitrate content in the soil (depending

on the exact formulation determined by αd), fS is a dimensionless reduction function for water content in the soil, fT is a185
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dimensionless reduction function for temperature in the soil, and fpH is a dimensionless reduction function for soil pH. The αd

parameter can be considered in two ways, depending on the model concept; either αd represents the potential denitrification

rate Dp (same units as Da) or it represents a first-order denitrification coefficient (constant) kd. In both cases, α can be a

constant parameter or can be related to carbon dynamics. In the DAISY model, the potential denitrification rate (in case of

anoxic conditions and sufficient nitrate concentration in the soil solution) is expressed as a linear function of the CO2 evolution190

rate:

ξ∗d = α∗d ξCO2 (5)

,where xi∗d is the potential denitrification rate of the soil, xiCO2 is the CO2 evolution rate simulated by the mineralisation

- immobilisation - turnover model (MIT-model), and α∗d is an empirical constant, which was taken from Lind (1980), who

measured the relationship between easily decomposable organic matter and denitrification capacity. The actual denitrification195

rate is determined either by the actual microbial activity at the anaerobic microsites, or the transport of nitrate to the anaerobic

microsites represented by the left and right solution, respectively, in Eq. (6). In the case of ample supply of nitrate, the actual

denitrification rate is determined by multiplying the potential denitrification rate by a modifier function. Hence, the actual

denitrification can be simulated as:

ξd =min{fT fSξ∗d ;KdNni} (6)200

,where xid is the actual denitrification, Kd is an empirical proportionality factor when denitrification is governed by the

microbial activity at the anaerobic microsites and Nni the nitrate concentration in the soil. The maximum transport of nitrate

to microsites can be assumed to be relative to the nitrate concentration in the soil (Nni = θCni, where Cni is the concentration

in the soil solution, and θ is the soil water content). In Eq. (6), the modifier function fS is assumed to be a function of the soil

water content. Many models use a power reduction function of the form (Grundmann and Rolston, 1987):205

0 ;S < St

(
S−St

Sm−St

)w
;St ≤ S ≤ Sm

1 ;Sm < S

(7)

,where fS is the dimensionless power water reduction function in the range [0, 1], S is the dimensionless degree of water

saturation or water-filled pore space; S is always in the range [0, 1], Sm is close to full water saturation above which fS=1,

St is a threshold value for S below which fS=0, w is a curve shape parameter determining the steepness of the curve (Heinen,

2006). The temperature modifier function fT is an Arrhenius like function (Rodrigo et al., 1997) by correlating the exponential210

rate of biological processes to the increasing temperature. According to Heinen (2006), based on a sensitivity test on Eq.(4), fS

is the most sensitive within all modifiers. Therefore, this study is only focusing on the water saturation effect on denitrification

in the aspect of calibration Eq.(4).
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2.3 Initial model concept

Nagy et al. (2019) conceptualised the water and solute transport for the clay till field Silstrup with three different macropore215

settings and three different horizons (A, B and C). The macropore settings included vertical macropore transport supplying

water directly to 1) the drainage pipes, 2) to drainage pipes and the matrix 3) to drainage pipes and the matrix added with

fractures, supplying water to the matrix in the saturated zone. The best-calibrated concept with drainage ending macropores

(DM1, DM2) and matrix (MM1, MM2, MM3) ended macropores (Fig 4a), yielded indices for the evaluation of measured and

simulated drainage, 0.12/0.48 nMAE (normalized Mean Absolute Error) and 0.87/0.82 KGE (Kling –Gupta Efficiency) and220

for the bromide drainage transport 0.14/0.85 nMAE with 0.85/0.52 KGE. Further details in Nagy et al. (2019) (Fig. 4b, 4c).

[Figure 4 is about here]

2.4 Objectives included in the automated calibration procedure

The soil and hydrological parameters are adjusted in order to improve the bromide (Br-) transport as in the hydrological model

by Nagy et al. (2019), which was not calibrated on Br- transport. A better performance of the model could particularly be225

expected just after the application of 30 kg KBr ha−1, corresponding to 20.14 kg Br ha−1 (cf. Fig. 9 in Nagy et al. (2019)).

Therefore new objectives have been included in the calibration procedure, such as the harvested dry matter yield - DM yield,

harvested N yield - N yield, N drainage flux dynamics - ND [kg Nha−1 h−1] and cumulative N transport - NC [kg Nha−1 h−1],

Br- transport dynamics – BRD1 [kg Br ha−1 h−1] and cumulative transport – BRC1 for the whole tracer experiment period

[kg Br ha−1 h−1], Br- transport dynamics – BRD2 kg Br ha−1 h−1] and cumulative transport – BRC2 [kg Br ha−1 h−1] for230

the period of initial Br- breakthrough (1 April 2000 - 1 June 2000) and to not compromise the earlier findings from Nagy et al.

(2019), the drainage dynamics - DD [mmh−1] and cumulative transport – DC [mm] including soil water content measurement

[cm3 cm−3] at depth 25cm - S25 and 60cm - S60 were included. According to Muleta (2011) and Nagy et al. (2019), the

mean absolute error was used for calibration. Since the model was constrained to different objectives with different units, the

objectives in Eq.(8) were normalized by means of the corresponding observations in order to aggregate them into one objective235

function, which is eligible for automated calibration (Criss and Winston, 2008; Nagy et al., 2019).

nMAEobjseason =
1
N

∑N
i=1 |sim

obj
season,i− obsobjseason,i|
obsobjseason

;obj = {ND,NC,DD,DC,S25,S60} (8)

,where N is the number of observations of a given objective within a year and

obsobjseason =
1
N

N∑

i=1

obsobjseason,i (9)

240

nMAEobj =
1
K

K∑

k=1

nMAE

obj

season,i

(10)
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,where k is the number of calibration years. Due to DM yield and N yield having only one value per season, a seasonal

aggregation is not possible. Thus, nMAE was calculated for all seasons and normalized by means of the observations. The

same applied to the Br- (BRD1, BRC1, BRD2, BRC2) objectives due to the tracer experiment being held for one season in

2000-2001. The multi-objective function calculated for the automated calibration is expressed as:245

nMAEfinal =
∑

nMAEobj ; obj =





N yield,DM yield,ND,NC,

BRD1,BRC1,BRD2,BRC2,

DD,DC,S25,S60





(11)

For further evaluation purposes nRMSE[%] (normalized Root Mean Squared Error), normalized on the difference on the

minimum-maximum deviation of the observation and KGE (Kling-Gupta efficiency measure were calculated. KGE is presented

by Gupta et al. (2009)). Singh et al. (2005) and Hansson and Hokfelt (1975) suggested that if MAE or RMSE of the model is

lower than half of the standard deviation (SD) of the measured data, the model may be considered as an adequate representation250

of the measured data. On the other hand, KGE with a range of –∞ to 1, if KGE is above 0.5, the model can be considered as

satisfactory.

2.5 Parameters

The hydrological parameters were taken from Nagy et al. (2019) as it is considered to be a reasonable baseline for the calibration

(Table 1 and 2). All initial hydraulic parameters represented presented in Table 1, and 2 were given a ±5 % uncertainty255

boundary range in order to see which parameter would be influential on the “new” objectives.

[Table 1 is about here]

For the fast flow domain, the macropore model of DAISY using the conceptualisation of Nagy et al. (2019) was applied (Table

2).

[Table 2 is about here]260

To be able to evaluate the model behaviour considering the “new” objectives conditions, one has to determine essential input

parameters important for calibrating N loss by crop harvest, nitrate leaching and gaseous N2 loss due to denitrification (Table

3). Only crop parameters influencing dry matter formation were selected, as the data available did not allow a calibration of the

N uptake parameters.

[Table 3 is about here]265

The simple photosynthesis description in DAISY requires a value for maximum assimilation rate (Fm) [g CO2 m−2 h−1],

quantum efficiency(Qeff ) [(g CO2 m−2 h−1)(W m−2)−1] at low light, and a temperature factor for assimilating production,

referred to as a piece-wise linear function (PLF) (Hansen et al., 2012a; Vries, 1989). Also, to get more control over the crop

production the conversion efficiency (growth respiration) (E) [(g CH2O)(g DM)−1] (Manevski et al., 2016; Vries, 1989) was

taken into the calibration besides the Photosynthetic Active Radiation extinction coefficient (Parext) and the temperature270
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sum at emergence (Tsum, Table 3). Additionally, the crop uptake reflection factor of Br- (CURFBR, (Hansen, 2002)), the

SOM fraction ratio of the plow layer (SOMratio) which describes the ratio SOM1:SOM2 has been added as a parameter,

as well as parameters from the denitrification module for both fast and slow pools: the anaerobic denitrification constant (α∗d)

[(g NO3−N h−1)(g CO2−C h−1)−1] and the empirical proportionality factor (Kd) from Eq.(5) and Eq.(6), respectively, and

St and w from Eq.(7) (Table 4).275

[Table 4 is about here]

The initial values of the selected crop and denitrification parameters were based partly on the values recommended for DAISY

in the model library (https://DAISY.ku.dk/, Hansen et al. (2012a)) and on literature screening. Due to the lack of data on the

crop growth, N uptake, and partitioning during the growth season, no extensive calibration of the crop models was possible.

2.6 Sensitivity analysis280

The range of crop parameter values is biologically constrained by the diversity of crops and their cultivars. Given the lack

of knowledge associated with the range of the variability that is genetic for most of the crop model parameters, uniform

distribution for each parameter was assumed with ±20% uncertainty bound except Parext where the bounds were set ±50%.

All denitrification related parameters were given ±10% uncertainty bounds except for the water reduction function, the ranges

for which were taken from Heinen (2006). The SOM fraction ratio varied within from 0.43 to 2.33, which indicate fractions285

of SOM1:SOM2 as 0.3:0.7 to 0.7:0.3 and CURFBR could vary from 0 to 1, where 1 means no crop uptake. Key parameters

directly related to crop development, leaf photosynthesis, and net mineralisation of plow layer as one of the input source of

denitrification, were tested for sensitivity by the Morris sensitivity screening (Campolongo et al., 2007; Morris, 1991; Nagy

et al., 2019) in order to help in finding sensitive parameters that have the most influence on objectives presented in section

2.4. The results of the sensitivity screening were turned into the Morris distance(ε) (Ciric et al., 2012; Jabloun, 2015), which290

represents the Euclidean distance of the parameter from (0,0) on the µ∗-σ coordinate system (Campolongo et al., 2007). The

decision on sensitivity threshold was made by K-Means Clustering (Jain and Dubes, 1988). For each objective, the parameters

were clustered into 3 groups (Low, Medium, High) by its ε.

2.7 Calibration methodology

The overall objective function was based similar to the mathematical formulation, which was used in Nagy et al. (2019), by295

calculating the normalized Mean Absolute Error of each objective described in section 2.6 annually for the period of 2000-

2007. In order to stabilise the N dynamics, 4 years were run prior to 2000 as a warm-up period. The calibration of the model

was done by differential evolution (DEoptim, Ardia D. (2016)) in conjunction of RDAISY R package [under development] and

RDAISY toolbox (Jabloun et al., 2014).
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3 Results and discussion300

3.1 Sensitivity screening results

Overall six soil matrix parameters per horizon (A, B, C), the SOM ratio for the A horizon plus two horizon depth parameters,

two macropore parameters per macropore type (DM1, DM2, MM1, MM2, MM3), two soil water pressure parameters for

macropores, four denitrification parameter per pool (slow/fast) and one Br- parameter called soil-hydraulic parameters (SH)

and eight parameters per crop as crop parameters (CP) were tested for sensitivity. All parameters were selected as a sensitive305

parameter, which belongs to group High, in at least one of the objectives (Fig. 5). However, to put more emphasis on the ND

and NC objectives, parameters which belonged to sensitivity group Medium of ND and NC were also selected as sensitive and

added to the calibration parameters (Fig. 5). All selected parameters which were involved in sensitivity analysis against 12

objective functions were listed with their associated sensitivity group (Fig. 5). Parameters with black letters are the selected

sensitive parameters and with gray letters the non-sensitive. Even though a large number of parameters have been evaluated,310

only 16 CP and 21 SH parameters showed to be sensitive to the objective functions. All the sensitive CP parameters were, as

expected, sensitive to N yield, since all crop parameters are related to crop growth and therefore directly affecting the crop N

uptake.

[Figure 5 is about here]

SH parameters showed more diversity regarding sensitivity towards the objectives. This is in contrast to CP parameters, which315

mainly were sensitive towards N yield and DM yield. There was no single parameter which showed to be sensitive for all

objectives. Only one SH parameter, St, affecting the denitrification reduction factor, had an effect on DM yield (Fig. 5). As

also seen in Figure 5, no matrix and macropore SH parameter was sensitive in the objective function for DM yield. Therefore,

it can be inferred that the crops were not affected by water stress. Furthermore, no macropore SH parameters were sensitive

in the objective functions for DM yield and N yield. Even though the uncertainty bound was only ±5 % for the SH macropore320

parameters, the N dynamics, and quantity objectives (ND, NC) showed no sensitivity on the preferential transport. This could

mean that the N transport is not affected dramatically by the preferential transport change, although earlier studies showed

macropore influences on water and solute movement (Larsson and Jarvis, 1999; Nagy et al., 2019). However, the denitrification

parameter, St, showed one of the highest impacts on NC objective, which represents the N quantity in the drainage water. This

high sensitivity might be related to the fact that the denitrification is limiting the amount of NO3-N, which would be transported325

by hydrological means.

3.2 Model calibration

Through the calibration procedure, it was found that the ND and NC objectives were not responsive to the initially selected

crop and hydraulic parameters. Since the Br- transport in the drainage simulated by the baseline model showed agreement to

the accumulated measured transport, with underprediction of initial breakthrough after spraying of KBr (Fig. 4). The simulated330

Br- uptake by FB was verified by Nagy et al. (2019); thus, the solute leaching to the groundwater seems to approximate well
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to reality. If all these conditions are probable, NO3-N can be only limited by gaseous loss; therefore, the denitrification model

parameters had to be involved in the sensitivity and calibration process.

[Table 5 is about here]

As mentioned above, the sensitivity and the calibration process were done by minimising the mean nMAE performance mea-335

sures. For a broader evaluation, KGE and nRMSE[%] are also presented in Table 5. The calibrated objective results show

that significant improvements were achieved in all solute transport accounts (BRD1, BRC1, BRD2, BRC2, ND, NC), without

compromising any of the water balance objectives (DD, DC, S25, S60). By observing the N yield and NC objectives, one can

see that N transport ND was improved without creating nitrogen stress in the crop. Br- transport improved during the tracer ex-

periment period, as the model was able to provide a reasonable fit for the initial breakthrough (BRD2, and BRC2, Table 5, Fig.340

6). Table 6 shows the calibrated parameters and their initial value. There was no substantial change within the SH parameters.

The SOMratio increased, the SOM1 became 0.63, and SOM2 became 0.37 from the initial 0.5.

[Table 6 is about here]

The most significant changes appeared for parameters directly related to the denitrification reduction function (St,fast, wfast,

St,slow, wslow; Table 6), which may indicate that the default reduction function in DAISY overestimated this type of N loss.345

3.3 Water and bromide transport

[Figure 6 is about here]

The improvement of Br- transport yielded a larger initial breakthrough (Fig. 6) without compromising the water balance. The

Br- transport mainly responded to the change of the matrix pore distribution (van Genuchten “n”) in the horizon of A and B

(nA and nB , Fig. 5), although it could be the result of the interaction of multiple parameters.350

[Figure 7 is about here]

The crop uptake reflection factor increased only slightly from 0 to 0.34 %. The FB dry matter yield decreased from 14.5

Mg DMha−1 to 13.7 Mg DMha−1. However, the Br- uptake in fodder beet increased from 11.6 kg Br ha−1 to 12.1 kg Br ha−1,

which resulted in a 2% (0.5 kg Br ha−1) higher Br- uptake of the initially sprayed 20.1 kg Br ha−1. The 0.5 kg Br ha−1 pro-

portionately removed from all Br- leaching routes and macropore leaching remained at the same magnitude. Therefore, it can355

be inferred that the matrix and macropore interchange did not change significantly (Fig. 7).

3.4 Nitrogen transport and harvest

Considering the calibrated Br- transport, the overall leached quantity of Br- did not change substantially. This contrasted with

N transport, which responded differently to the calibration. The original model captured the N dynamics, and in one instance

the magnitude, of the cumulated transport during the WW2003-2004 season. The application of N fertilisers was not reflected360

in simultaneous or subsequent increases of N flux from the field, as well as there being no significant additive effect from crop

type identified.
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[Figure 8 is about here]

Figure 8 shows that the denitrification in the original model significantly outweighed the N loss by drains (measured NO3-N)

with one order of magnitude with an average seasonal loss of 75 kg Nha−1 (18 - 151 kg Nha−1), due to denitrification from365

slow and fast pools combined. Hence, it seems that denitrification limited the amount of N transported to the drainage. Nagy

et al. (2019) discovered that most of the water build up was above the plow pan in the A horizon. This could lead to this rapid

denitrification, according to Eq.(4) to Eq.(7) where one of the modifying components is the fS water factor. In DAISY, fS had

been set as default in order to increase linearly from 0 to 1 as a function of S from 0.7 to 1.0 (Hansen, 2002) (Fig. 9). This

linearity does not fit the real condition for denitrification, since the stagnation of the water above the plow pan, as it presented370

in Nagy et al. (2019), should allow the N almost instantaneously to denitrify. In the calibrated model, fS dynamics based on

Eq.(7) have been changed, which resulted in a steeper reduction of the denitrification (Fig. 9). By allowing the separation of

the reduction factor for both the fast and the slow pool, the calibration of the model showed that the denitrification from the fast

pool was shrunk to the range approx. from 0.9 to 1.0 relative saturation, while the slow pool remained like the default version

of DAISY.375

[Figure 9 is about here]

The modified fS showed a high impact on the N leaching, as the reduced denitrification enabled the model to depict the amount

of N transported to the drain. The main increase appeared in the directly connected macropore flow (DM1 flow, cf. Fig. 4.),

which mainly drained water from the A horizon. Since the mineralisation process is faster from the fast pool, the available

mineral N was not readily reduced to gaseous N, but instead transported through preferential pores to the drain. The average380

seasonal denitrification was reduced to 34 kg Nha−1 (9 – 62 kg N ha−1), a reduction of more than 55% percent , which instead

was made available for crop uptake, flow to the drainage system or the groundwater. The harvested DM and N did not show

significant differences before and after calibration (Fig. 10). Some crop N and DM yield were closer to the measured values

after calibration, but although the surplus of N was increased by the lowered denitrification, this additional N was not taken

up by the crops. Overall, the objectives of DM yield and N yield were improved with the modified crop parameters (cf. Table385

6 and Fig. 10). However, none of the models showed a satisfactory match for N yield. For both the original and the calibrated

model, the comparison between measured and simulated N yield showed differences of more than 10 kg Nha−1 and even 20

kg Nha−1 for maize in 2002 and winter wheat in 2007. As earlier stated, a calibration of the N uptake parameters in the crop

models governing the N uptake during the season was not possible, as the data available did not contain samples of biomass

and hence N uptake during the season.390

[Figure 10 is about here]

3.5 Evaluation of the model performance related to nitrogen loss routes

The period 2007-2008 involving crop rotations of WW2006-2007 and FB2008 was selected to test the performance of the

calibrated model in simulating N transport to drains and loss to groundwater. Season 2009-2010 was excluded from the evalu-

ation since a few water balance discrepancies were discovered. Some of the precipitation input and drainage transport was not395

13

https://doi.org/10.5194/hess-2019-666
Preprint. Discussion started: 16 January 2020
c© Author(s) 2020. CC BY 4.0 License.



aligned or missing , so the measured values could not be reliable. Besides data from this calibration independent evaluation

period, data series of N concentration sampled with suction cups at depths of 1 m and 2 m for the period from 2000 to 2010

were used to validate the N transport to both drainage and groundwater.

3.6 Nitrogen transport in drainage water and deep leaching to groundwater

The N flux was remarkably improved according to all performance measures for the period 2007-2008 (Fig. 11). For the400

original modelling of the two cropping seasons, the average KGE was below zero, indicating that the observed mean N flux

was better predicted than the simulated one. In contrast, the calibrated model gave satisfactory results with KGE of 0.56 and

0.5 for the objective ND and NC, respectively, which in the case of solute transport modelling is an excellent result (Hansson

and Hokfelt, 1975; Singh et al., 2005). Although the comparison for the drainage season 2008-2009 was improved even after

calibration, less N loss to the drain system was simulated. The difference in simulated and measured N uptake in FB could not405

explain this difference.

[Figure 11 is about here]

The loss due to denitrification has changed similarly for the calibration period 2000-2007 from seasonal 75 to 35 kg Nha−1,

which is approximately a 50 % percent reduction in total. In season 2007-2008, after the WW2006-2007 crop, a satisfactory

match between measured and simulated accumulated N losses to the drainage could exclusively be explained from the reduced410

denitrification loss (Fig. 11). As mentioned above, soil N concentration in soil water sampled with suction cups was used for

validation purposes. The soil water N concentration had similar behaviour before and after the calibration, except the dynamics

were better matched after calibration (Fig. 12). During the WW2003-2004 crop drainage period, the calibrated model was able

to depict the 25 mg NL−1 measured peak as well as the fluctuations from 2002 to 2004. However, both models underestimated

the N concentration substantially in the period after WW followed by FB 2007-2008. Again, these differences could not be415

explained by an overestimated high N uptake (cf. Fig. 10). Although the drainage input of N massively increased due to the

change in denitrification, the simulated N concentration only improved nRMSE[%] 5%-point for the whole period, which is

equal to 1 mg NL−1. Visual and mathematical inspection of the N concentration show, of course, a decent improvement on

the soil N dynamics, but with this pronounced change in denitrification, the expected rise could be expected to be higher, if the

more available N was not transported further down to the lower soil matrix (Fig. 1a) as DM1 and DM2 macropores start either420

from the surface or from the bottom of the plow layer (A horizon). However, both are conceptually described to transport water

and nutrients to the drainage system, and water build up is not allowed in the model. Besides, three other MM type macropores

are present in this conceptual system with the possibility to transport water and solute: from surface to the bottom of the plow

pan (MM1), from the surface to below the drain level at 150 cm depth (MM2) and from the bottom of the plow layer to below

the drain level at 150 cm depth (MM3).425

[Figure 12 is about here]

The latter two have the capability to transport N from the surface/plow layer below the drain level, bypassing the entire B hori-

zon. This limits the transport through the mentioned horizon by matrix flow. The conceptual description of deep macropores
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points out another possible rapid transport route for N from the plow layer towards the groundwater. By comparing the mea-

sured suction cups samples with the simulated concentrations at 2 m depth, a remarkable 30 %-point decrease can be observed430

in the nRMSE[%] and 0.3 nMAE performance measure (Fig. 13). Rosenbom et al. (2009) concluded that deep fractures might

result in deep leaching of agrochemicals and nutrient. However, these flow phenomena were outside the scope of the present

study.

[Figure 13 is about here]

4 Conclusions435

This study aimed to evaluate, by using one-dimensional physically based root zone model DAISY (Hansen, 2002), the effect

of preferential transport and denitrification on leaching of nitrate to drainage during a 10-years period, as measured for an

agricultural clay till field included in the Danish Pesticide Leaching Assessment Programme (PLAP; Lindhardt et al. (2001);

web address: http://pesticidvarsling.dk). The results reveal a dominant effect on the leaching of nitrate through this clay till

field. A large amount of N (48% to 80% of the total N-loss to drainage) was preferentially transported via macropores to440

drainage, regardless of the application method and concurrent occurrence of precipitation. The current standard denitrification

water reduction factor, fs, needed modification with a reduction of approximately 50% in the denitrification of the field from a

seasonal average of 75 kg Nha−1 to 35 kg N ha−1. The crop model provided acceptable results, and further studies are needed

to improve the simulation of N uptake in crops. Overall, this study delineates the importance of accounting for preferential

transport and coherent denitrification in the assessment of the leaching risk of nitrate to the aquatic environment.445
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Figure 1. Topography and field instrumentation of the Silstrup field.
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Figure 2. Crop rotations, a) Precipitation and cumulative drainage per season, b) Nitrate-N concentration in water abstracted from suction

cups at 1 m depth and applications of mineral N fertilizer and injection of slurry (organic) c) Nitrate-N concentration in drainage water and

cumulative flux of nitrate-N in drainage per season.
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Figure 3. a) Schematic overview of the soil organic matter model included in the Daisy model. AOM = added organic matter, SMB = soil

microbial biomass, and SOM = native soil organic matter; fx = partitioning coefficient. The inert SOM3 pool does not interact with the rest

of the system. b) Schematic overview of the nitrogen model in Daisy (Hansen et al., 2012a).
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a

Figure 4. a) Hydrological concept: DM – Drainage ended macropore, MM – Matrix ended macropore; b) Simulated accumulated drainage

flow originating from the matrix and macropore domain with the corresponding nMAE, nRMSE[%] and KGE for 2008-2009; c) Simulated

accumulated Br- transport to drainage from matrix and macropore domain and measured Br- transport in the drain flow with the corresponding

nMAE, nRMSE[%] and KGE for 2000-2001. Subscripts: DC – Cumulative Drainage [mm], DD – Drainage Dynamics [mmh−1], BRDD –

Br Drainage transport dynamics [kg Br− ha−1 h−1], BRDC – Cumulative Br- transport [kg Br− ha−1] (Nagy et al., 2019).
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Figure 5. Sensitivity groups of selected CP and SH input parameters in regards to the 12 objective functions (Black – Sensitive parameters,

Gray – non-sensitive parameters).
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Figure 6. Simulated accumulated Br- transport to drainage from matrix and macropore domain and measured Br- transport in the drain

flow. Objectives BRD1 and BRC1 with the corresponding nMAE, nRMSE[%], and KGE for 2000-2001 before and after the calibration. In

parenthesis, the performance for the objectives BRD2 and BRC2.
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Figure 7. Simulated accumulated water transport from the matrix and macropore domain and measured drain flow. Objective DD and DC

with the corresponding nMAE, nRMSE[%] and KGE for 2000-2001, before and after the calibration.
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Figure 8. Simulated seasonally accumulated NO3-N transport from matrix and macropore domain and accumulated measured NO3-N in

the drainage. Included in the objectives ND, NC with the corresponding nMAE, nRMSE[%] and KGE for calibration period of 2000-2007,

before and after the calibration and additionally shown the seasonally accumulated denitrification from fast and slow pools.
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Figure 11. Simulated seasonally accumulated NO3-N transport from matrix and macropore domain and measured NO3-N in the drainage

with the corresponding nMAE, nRMSE[%], and KGE for the objectives ND and NC for the period of 2008-2009 before and after the

calibration. Additionally, the seasonally accumulated denitrification from fast and slow pools is plotted.
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Figure 12. Simulated and measured soil NO3-N concentration 1 m depth from 2000 to 2010 a) before and b) after the calibration. Perfor-

mance measures calculated for the entire period for the simulated and measured N concentrations at the two replicate depths (SC1.1 and

SC1.2).
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Figure 13. Simulated and measured soil NO3-N concentration at 2 m depth from 2000 to 2010 before and after the calibration. Performance

measures calculated for the entire period for the simulated and measured N concentrations at the two replicate depths (SC2.1 and SC2.2).
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Table 1. Initial van Genuchten - Mualem parameters for the matrix domain of A, B, and C (from Nagy et al. (2019)). θr is the residual water

content, θs is the saturated water content, α and n are the retention curve shape parameter, Ksat saturated hydraulic conductivity, l is the

pore connectivity parameter in the Mualem equation.

θr,A θr,B θr,C θs,A θs,B θs,C lA lB lC

cm3 cm−3 cm3 cm−3 cm3 cm−3 cm3 cm−3 cm3 cm−3 cm3 cm−3 - - -

0.01 0.013 0.01 0.4063 0.3783 0.2938 0.5 0.5 0.5

Ksat,A Ksat,B Ksat,C αA αB αC nA nB nC

cm h−1 cm h−1 cm h−1 - - - - - -

10.71 0.03 0.28 0.051 0.0045 0.001 1.186 1.2005 1.2154
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Table 2. Initial parameters for the macropore domain of DM1, DM2 and MM1, MM2, MM3 (from (Nagy et al., 2019). Depth is the depth

of the denoted horizon, ψinit/term is the initiating – terminating pressure of the macropore flow, ψbarrier is the required pressure difference

between the macropore and matrix, ρ is the density of the denoted macropore type, and d is the diameter of the denoted macropore type.

DepthA DepthB ψinit/term ψbarrier ρDM1 ρDM2 dDM1 dDM2

cm cm cm cm m−2 m−2 mm mm

-39.29 -140 -2.93 -5 5.489 12.643 3 3

ρmm1 ρmm2 ρmm3 dmm1 dmm2 dmm3

m−2 m−2 m−2 mm mm mm

100 11.5 11.5 2 3 3
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Table 3. Initial parameters, taken from DAISY library (Hansen et al., 2012a) for crop models for the different crops in rotation (FB –

Fodder Beet, M – Maize, P – Pea, SB – Spring Barley, WR – Winter Rape, WW – Winter Wheat). E parameters are conversion efficiency

(growth respiration).Fm is the maximum assimilation rate.PARext is Photosynthetic Active Radiation extinction coefficient.Qeff quantum

efficiency at low light. Tsum is the temperature sum at emergence of the crop.

Parameter FB M P SB WR WW

ERoot 0.69 0.78 0.69 0.69 0.69 0.69

EStem 0.66 0.69 0.66 0.66 0.66 0.66

ELeaf 0.66 0.75 0.7 0.68 0.68 0.68

ESOrg 0.7 0.8 0.55 0.7 0.5 0.7

Tsum 250 180 100 100 180 100

Fm 4 6.5 4 5 5.25 5.59

PARext 0.67 0.8 0.3 0.6 0.7 0.6

Qeff 0.06 0.04 0.04 0.04 0.05 0.05
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Table 4. Initial parameters for denitrification, Br- uptake, and SOM.

CURFBR α∗d Kd SOMratio St w

- (g NO3−N h−1)(g CO2−C h−1)−1 - - - -

0.2 0.1 0.020833 1 0.7 1
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Table 5. Calibrated objectives and the normalized standard deviation of the measurements for the calibration period of 2000-2007. Initial

objective values shown in brackets. nMAE – normalized mean absolute error, nSDmean – SD normalized by mean observation, nRMSE[%] –

normalized root mean squared error, nSD[%] – SD normalized by the maximum deviation of the observation, KGE – Kling-Gupta Efficiency.

Objectives nMAE nSDmean nRMSE[%] nSD[%] KGE

N yield 0.23 (0.26) 0.37 27.6 (35.5) 41.4 0.5 (0.44)

DM yield 0.11 (0.18) 0.54 11.7 (16.3) 34.9 0.88 (0.85)

ND 0.7 (0.81) 3.49 4.3 (4.66) 5.22 0.56 (-0.03)

NC 0.31 (0.67) 1.18 13.96 (31.64) 34.5 0.68 (0.08)

BRD1 0.7 (0.87) 4.28 2.6 (3.3) 3.8 0.65 (0.61)

BRC1 0.09 (0.2) 0.55 7.2 (12.4) 30.6 0.86 (0.73)

BRD2 0.66 (0.74) 2.5 10.9 (13.9) 19.5 0.81 (0.16)

BRC2 0.16 (0.65) 1.97 7.6 (27.9) 38.5 0.78 (0.09)

DD 0.53 (0.52) 3.5 2.6 (2.66) 4.44 0.74 (0.72)

DC 0.13 (0.12) 1.17 5.4 (5.22) 34.82 0.89 (0.89)

S25 0.12 (0.1) 0.18 19.36 (17.04) 25.24 0.64 (0.71)

S60 0.04 (0.05) 0.04 29.4 (35.26) 20.78 0.09 (0.03)

MEAN 0.315 (0.43) 1.65 11.89 (17.15) 24.48 0.67 (0.44)
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Table 6. Calibrated SH/CP parameters. Initial parameter values shown in brackets.

θr,A θr,B θs,A θs,B αA nA nB

0.01 0.013 0.39 0.39 0.053 1.231 1.176

(0.01) (0.013) (0.41) (0.38) (0.051) (1.186) (1.201)

Ksat,B Ksat,C ψbarrier ρMM3 SOMratio DepthA DepthB

0.029 0.285 -5.15 11.72 1.67 -35.4 -141.4

(0.03) (0.28) (-5) (11.5) (1) (-39.3) (-140)

α∗d,fast α∗d,slow St,fast wfast St,slow wslow

0.071 0.154 0.71 9.6 0.58 2.3

(0.1) (0.1) (0.7) (1) (0.7) (1)

ELeaf,F B ESOrg,F B Fm,F B PARext,F B Qeff,F B ELeaf,SB PARext,SB

0.76 0.62 4.61 0.58 0.07 0.79 0.52

(0.66) (0.7) (4.00) (0.67) (0.06) (0.68) (0.60)

Qeff,SB ELeaf,M ERoot,M Tsum,M Fm,M PARext,M Qeff,M

0.05 0.86 0.69 156.75 7.57 0.76 0.05

(0.04) (0.75) (0.78) (180) (6.50) (0.80) (0.04)

PARext,W R Qeff,W R CURFBR

0.57 0.06 0.0034

(0.70) (0.05) (0.0)
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