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Abstract. Precipitation is a crucial variable for hydro-meteorological applications. Unfortunately, rain gauge measurements are
sparse and unevenly distributed, which substantially hampers the use of in-situ precipitation data in many regions of the world.
The increasing availability of high-resolution gridded precipitation products presents a valuable alternative, especially over gauge-
sparse regions. Nevertheless, uncertainties and corresponding differences across products can limit the applicability of these data.
This study examines the usefulness of current state-of-the-art precipitation datasets in hydrological modelling. For this purpose,
we force a conceptual hydrological model with multiple precipitation datasets in >200 European catchments. We consider a wide
range of precipitation products, which are generated via (1) interpolation of gauge measurements (E-OBS and GPCC V.2018), (2)
combination of multiple sources (MSWEP V2) and (3) data assimilation into reanalysis models (ERA-Interim, ERAS5, and CFSR).
For each catchment, runoff and evapotranspiration simulations are obtained by forcing the model with the various precipitation
products. Evaluation is done at the monthly time scale during the period of 1984-2007. We find that simulated runoff values are
highly dependent on the accuracy of precipitation inputs, and thus show significant differences between the simulations. By
contrast, simulated evapo -an< oiration is generally much less influenced. The results are further analysed with respect to different
hydro-climatic regimes. We find that the impact of precipitation uncertainty on simulated runoff increases towards wetter regions,
while the opposite is observed in the case of evapotranspiration. Finally, we perform an indirect performance evaluation of the
precipitation datasets by comparing the runoff simulations with streamflow observations. Thereby, E-OBS yields the best
agreement, while furthermore ERA5, GPCC V.2018 and MSWEP V2 show good performance. In summary, our findings highlight
a climate-dependent propagation of precipitation uncertainty through the water cycle; while runoff is strongly impacted in
comparatively wet regions such as Central Europe, there are increasing implications on evapotranspiration towards drier regions.

1. Introduction

Precipitation is a key quantity in the water cycle since it controls water availability including both blue and green water resources
(Falkenmark and Rockstrém, 2006; Orth and Destouni, 2018). This way, changes in precipitation translate into changes in water
resources which could have severe impacts on ecosystems, and consequently economy and society (Oki and Kanae, 2006; Kirtman
et al., 2013; Abbott et al., 2019). Changes in precipitation can be induced or intensified by climate change and consequently lead
to amplified impacts (Bloschl et al., 2017; Bldschl et al., 2019b). Thus, accurate precipitation information is essential for
monitoring water resources and managing related impacts.
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Despite the necessity of accurate precipitation datasets, reliable gauge measurements are not widely available. Further, these
measurements need to be corrected for potential errors such as wind-induced inaccuracies or precipitation undercatch, especially
in higher altitudes (Mekonnen et al., 2015). Next to gauge measurements, precipitation information can be inferred from satellite
observations and/or model simulations. Based on these sources, a variety of global gridded precipitation datasets have emerged.
While some of these datasets make direct use of gauge measurements to interpolate them in time and space, others make indirect
use of the gauge information to calibrate satellite retrieval algorithms or models, enabling them to estimate gridded large-scale
precipitation.

Across these datasets, there are ample discrepancies in space and time, highlighting the need for comparative assessments (e.g.
Koutsouris et al., 2016; Alijanian et al., 2017, 2019; Balsamo et al., 2018; Sun et al., 2018; Massari et al., 2019; Levizzani and
Cattani, 2019; Fallah et al., 2019; Satgé et al., 2020). In particular, indirect evaluation of the datasets through application in
hydrological modelling is a valuable alternative in this context, as precipitation is translated into variables with more (reliable)
large-scale observations such as runoff (Thiemig et al., 2013; Nerini et al., 2015; Beck et al., 2017a,b,2019a,b; Arheimer et al.,
2019; Fereidoon et al., 2019; Bhuiyan et al., 2019; Mazzoleni et al., 2019). However, while this approach relies on the propagation
of precipitation uncertainty into runoff it is largely underexplored when and where this propagation pathway is active. Vice versa,
it is unclear in which regions or conditions, gridded datasets of runoff (Gudmundsson and Seneviratne, 2016) or evapotranspiration

(e.g. Martens et al., 2017; Jung et al., 2019) are impacted by the existing precipitation uncertainties.

In this study, we investigate the uncertainty across six widely used gridded precipitation datasets, including its propagation into
the hydrological cycle, i.e. runoff and evapotranspiration (ET). Thereby, we consider gauge-interpolated (E-OBS, GPCC V.2018),
multi-source (MSWEP V2), and reanalyses (ERA-Interim, ERA5, CFSR) datasets. With each of them, we force a conceptual land
surface model and compare the respectively simulated runoff and ET. This is done separately for different hydro-climatological
regimes. In addition, validating the runoff simulations against respective observations we can indirectly infer the performance of
the precipitation datasets. This further allows us to obtain guidelines with respect to the usefulness of the different types of

precipitation products in the considered regimes.

Section 2 introduces the reference, forcing datasets and model calibration used in the study, and Section 3 illustrates results and

discussion. Finally, in Section 4 the conclusions of this study are presented.
2. Data and methodology
2.1. Forcing data

Runoff and ET are modelled with a conceptual hydrological model, the Simple Water Balance Model (SWBM). The underlying
framework was initially presented by Koster and Mahanama 2012 where runoff (normalised by precipitation) and ET (normalised
by net radiation) are assumed to be polynomial functions of soil moisture (Whan et al., 2015). We use here the model version
introduced by Orth and Seneviratne 2013. As inputs, the model uses temperature, net radiation, and precipitation. For each
catchment, temperature and net radiation are used from the respective grid cells from the E-OBS (Haylock et al., 2008) and ERA-
Interim (Dee et al., 2011) datasets, respectively. Corresponding grid cell-based precipitation data is used from various datasets
derived from different sources: gauge-based (E-OBS, GPCC V.2018), multi-source (MSWEP V2) and reanalysis datasets (ERA-

Interim, ERA5, CFSR). A summary of all precipitation datasets and their respective characteristics is shown in Table 1.

Before using the precipitation datasets to force the SWBM, they are re-gridded to a common 0.5° spatial resolution, if necessary.

This was done through conservative remapping which preserves the water mass (Jones, 1999) using climate data operators
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(Schulzweida, 2019). While the SWBM simulations are performed with a daily time step, we focus on monthly averaged data
throughout the analyses in this study to mitigate the influence of synoptic weather variability.

2.2. Reference data

Modelled runoff is evaluated against monthly mean streamflow observations obtained from 426 catchments distributed across
Europe (Stahl et al., 2010). These data are available for the period 1984-2007. There is no or little human influence on the
streamflow in these catchments, which are mostly between 10-100 km? in size.

2.3. Model calibration

In a first step, the best possible model performance was determined in each catchment to test the respective applicability of the
model. For this purpose, the model is calibrated against streamflow observations in each catchment. The >400 catchments are
distributed across Europe, and across different hydro-climatological regions (Fig. 1). The agreement between modelled and
observed runoff is determined by computing the Nash-Sutcliffe efficiency (NSE, Nash and Sutcliffe, 1970) using monthly data
during 1984-2007. Only catchments where NSE>0.36 (Motovilov et al., 1999; Moriasi, 2007) are retained for the further analyses,

which leaves 243 catchments that are well distributed across the continent.

As shown in Fig. 1, the hydro-climatological regime is characterised through long-term average temperature and aridity (Budyko,
1974). Thereby, for each catchment, the temperature derived from the E-OBS dataset, and aridity is computed as the ratio of mean

annual net radiation to mean annual precipitation calculated from ERA-Interim and E-OBS respectively.

In each of the 243 catchments, the SWBM is forced with temperature, net radiation and the different precipitation datasets,
respectively (Fig. 2). This way, six simulations with the six different precipitation datasets are performed for each catchment,
leaving the temperature and net radiation data unchanged. The model parameters are thereby obtained from the above-mentioned

iration using E-OBS precipitation.

All analyses are performed during the warm season (May-September) to exclude the impact of snow and ice, and because ET is of
minor relevance during cold months.

3. Results and discussion
3.1. Impact of precipitation uncertainty on runoff and ET

Figure 3 illustrates the propagation of precipitation uncertainty into simulated runoff and ET. Each point denotes the standard
deviation across the six simulations obtained with the different precipitation datasets and represents a particular month in a specific
catchment. Runoff simulations are strongly influenced by precipitation uncertainty while the ET simulations are much less
influenced by precipitation uncertainty, as indicated by the regression slope. The strong relationship between runoff and
precipitation is in line with previous studies (e.g. Beck et al., 2017a,b; Sun et al., 2018, Bldschl et al., 2019b). It is related to the
fact that most of the considered catchments are located in relatively wet climate (aridity<l) such that soils are often saturated,
triggering a rather direct runoff response to precipitation. Also, in these climate regimes ET is typically energy-controlled rather

than water-controlled (Pan et al., 2019), leading to the observed low sensitivity of ET to precipitation (uncertainty).

3.2. Climate-dependent propagation of precipitation uncertainty
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In addition to examining the role of precipitation uncertainty for runoff and ET across all considered catchments, we analyse this
uncertainty propagation within individual hydro-climatological regimes (Fig. 4). For this purpose, we compute the median of the
standard deviations from catchments within each regime, considering all respective warm season months. As shown in Fig. 4a, the
precipitation uncertainty is higher in comparatively cold and wet regions. This could be related to especially sparse gauge networks
and more intense rainfall in these regions which are known to increase precipitation uncertainty (Dinku et al., 2008; Hu et al.,
2016; Beck et al., 2017b; O and Kristetter, 2018).

Similarly, Figs. 4b and 4c illustrate the fraction of precipitation uncertainty propagating into runoff and ET, respectively.
Interestingly, we find systematic variations in this uncertainty propagation with respect to climate. In wet and cold regions,
precipitation uncertainty almost exclusively affects runoff whereas ET remains unchanged; Towards drier and warmer climate the

uncertainty propagation shifts, affecting runoff less and increasingly influencing ET.

Figure S1 shows the number of catchments located within each hydro-climatological regime. Only boxes with >5 catchments are
considered in the analysis. The uneven distribution of catchments across the regimes induces higher uncertainties in the results

obtained for the wettest and driest regimes.

As the calibration of the SWBM using E-OBS precipitation data (see Section 2.3) can induce biases in our analyses, we re-compute
Figure 4 using model parameters obtained from calibration with GPCC V.2018 precipitation forcing, the results are shown in
Figure S2. The clear similarity between Figures 4 and S2 suggests minor relevance of the precipitation dataset used in the SWBM
calibration. Further, we repeat the uncertainty propagation analysis using all months instead of focusing on the warm season, also
showing similar results (Figure S3).

3.3. Indirect validation of precipitation dataset qualities

Given the preferential propagation of precipitation uncertainty to runoff in the considered European catchments, we focus in the
following on runoff only. In this context, we use streamflow measurements from the catchments to validate the modelled runoff,
which allows us to draw conclusions also on the usefulness of the employed precipitation forcing datasets. For the runoff validation,
we consider the correlation of monthly anomalies in each catchment and the absolute bias. To obtain anomalies, we remove the
mean seasonal cycle from the observed and modelled runoff time series of each catchment. The six runoff simulations in each
catchment are then ranked with respect to (i) correlation and (ii) bias, and the sum of these 2 ranks is used to obtain an overall
ranking of runoff simulations and corresponding precipitation forcing datasets in each catchment.

Figure 5 shows the number of catchments in which each precipitation product yields the best-ranked runoff simulation. Our findings
show that overall the performance of modelled runoff is clearly dependent on the employed precipitation product. This is expected
given the considerable disagreement between precipitation products, and the preferential propagation of this uncertainty to runoff
(Fig. 4). Generally, runoff computed with E-OBS precipitation agrees best with observations. Also, ERA5, MSWEP V2, and GPCC
V.2018 yield comparatively good runoff estimates. In contrast, runoff simulations obtained with ERA-Interim and CFSR agree
less well with observations. Repeating this evaluation with all months (Fig. S4) and GPCC-derived SWBM parameters (Fig. S5)
largely confirms the described results.

Furthermore, we compute runoff performance assessments separately for anomaly correlation and absolute bias (Fig. S6). This
reveals that the performance of the precipitation datasets is rather similar in terms of resulting runoff biases. Only ERA5 seems to
lead to reduced biases compared with the other products, probably as it does not suffer from gauge-based precipitation undercatch.
In contrast, there are considerable differences in terms of the runoff anomaly correlation performance across the products. This
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reveals that the differences across products shown in Fig. 5 are mostly resulting from contrasting performance with respect to

runoff anomaly correlation.

Figure 6 shows the runoff performance resulting from the various precipitation products for the previously considered hydro-
climatological regimes. We find remarkable performance differences across the regimes, suggesting differential usefulness of
precipitation products for hydrological modelling across different climate zones. Also, we can identify regimes where the
precipitation products perform particularly well or not. For example, MSWEP V2 leads to strong agreement between modelled
and observed runoff mostly in comparatively cold and wet climate and less so in warmer and drier regimes. This might be related
to problems of the products incorporated in MSWEP in capturing convective rainfall in warm and dry regions while this is less
problematic in colder regions (Ebert et al., 2007; Beck et al., 2017a,b; Massari et al., 2017; Fallah et al., 2019). The opposite
performance pattern is observed for GPCC V.2018. The lower performance in cold climate, which is also present in the case of E-
OBS, might be related to smaller gauge network density, and more complex topography in colder areas (Ziese et al., 2018). For
the other products such as CFSR and ERA-Interim, the performance is less dependent on the hydro-climatological regime.

4. Conclusions

In this study, we investigate how the remarkable discrepancy across state-of-the-art gridded precipitation datasets propagates
through the water cycle. This is essential for hydrological modelling and the applicability of resulting simulations of water balance
components such as runoff or ET. Our findings reveal that the uncertainty across precipitation datasets propagates mainly into
runoff rather than ET simulations in Europe. In addition, the partitioning of precipitation uncertainty between runoff and ET is
climate-dependent. In comparatively cold and wet regions such as Europe runoff is more impacted, whereas in drier and warmer
regions the uncertainty partitioning shifts towards ET.

The results in this study are obtained with a single model and are potentially dependent on the choice of that model. Even though
this model has been validated thoroughly and applied in previous studies (Orth and Seneviratne, 2014; Orth et al., 2015; Orth and
Seneviratne, 2015, O et al., 2019), future research needs to explore precipitation error propagation with other models (as in Bhuiyan
et al., 2019). This should particularly include distributed models adding to our use of a lumped scheme. However, we do obtain
similar results with different calibrations of this model, while previous research indicated that differences across model calibrations

can be similar to that across models (Tebaldi and Knutti, 2007).

The strong link between precipitation and runoff in Europe allowed us to perform an indirect validation of precipitation products
through the performance of the respectively modelled runoff. Overall, the E-OBS precipitation dataset yields the most reliable
streamflow simulations in Europe. Weaker but still comparatively good agreement between modelled and observed streamflow is
obtained with ERA5, GPCC V.2018 and MSWEP V2. Thereby the products differ mostly with respect to the temporal dynamics
rather than the overall amount of precipitation. The interpolated products overall outperform the satellite-derived products in
Europe. This is probably due to the high density of gauge observations, as previous research found contrasting conclusions in
regions with low gauge density (e.g. Thiemig et al., 2013 for Africa). Further, we study the precipitation product performance with
respect to climate. We find systematic variations for datasets like MSWEP and GPCC whereas ERA5, ERA-Interim, and CFSR
perform more similarly across climate regimes. Revealing climate-dependent accuracies in some precipitation datasets supports
focused development of these products. This way, innovative hydrological validation of precipitation data, in addition to direct
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validation against ground truth, can contribute to address the still considerable uncertainty across state-of-the-art gridded products

in future efforts.

Further, these findings allow a more targeted combination of products to compensate for individual weaknesses and preserve
respective strengths. The climate-dependent (propagation of) precipitation uncertainties illustrates that there is no best overall
product but instead a careful regional, climate-based selection can support hydrological applications. Overall, these findings
highlight the usefulness of streamflow measurements capturing truly large-scale hydrological dynamics which can even be used
to make inference on the accuracy of precipitation datasets (Behrangi et al., 2011; Thiemig et al., 2013; Beck et al., 2017a, 2019a;
Arheimer et al., 2019; Bhuiyan et al., 2019; Mazzoleni et al., 2019).

Another important outcome of our analyses is that ET simulations are mostly insensitive to precipitation uncertainty in European
climate, confirming previous studies (Bhuiyan et al., 2019). However, in warmer and drier regions such as the Middle East, Central
North America or Australia, the link between ET and precipitation should be stronger. Wherever available in these regions, ET
measurements can and should be used for indirect evaluation of large-scale precipitation products to complement the results in this

study where we focused more on comparatively wet regions.

Moreover, our findings suggest that, across Europe and regions with similar climate, gridded runoff datasets (e.g. Gudmundsson
and Seneviratne, 2016) inevitably suffer from the existing uncertainty in state-of-the-art precipitation datasets, although this
depends on the extent to which they rely on precipitation data. In contrast, gridded ET products (e.g. Martens et al., 2017, Jung et
al., 2019) are not impacted by precipitation uncertainty in these regions. In warmer and drier regions, however, the gridded ET
products are more challenged than the runoff products.

Overall, our findings highlight the important role of precipitation accuracy and the understanding of the propagation of existing
inaccuracies through the water cycle. Revealing the climate-dependency of this propagation, this study contributes to improved
modelling and monitoring of water resources which is of particular relevance in the case of extreme events such as floods and

droughts, which might increase in a changing climate.
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Table 1: Summary of the precipitation datasets evaluated in this study
Group Dataset Temporal Spatial Spat'?' Data sources Reference
coverage coverage resolution
Interpolated E-OBS 1950-2018 Europe 0.25° Gauge Haylock et al., 2008
GPCC V.2018 1901-2016 Global 1° Gauge Ziese et al., 2018
Satellite +
Multi-source MSWEP V2 1979-NRT? Global 0.1° Gauge + Beck et al., 2019
Reanalysis
ERA-Interim 1979-2019 Global 0.5° Reanalysis Deeetal., 2011
. Copernicus Climate
- 2 ~0 9g°
Modelled ERA5 1950-NRT Global 0.28 Reanalysis change Service, 2017
CFSR 1979-NRT! Global 0.5° Reanalysis Sahaet al., 2010, 2012

1 Near Real-Time product available until the present with a delay of several hours.

2 Available until the present with a delay of several months.

13



https://doi.org/10.5194/hess-2019-660 Hydrology and ¢
Preprint. Discussion started: 6 January 2020 Earth System 3 EG U
(© Author(s) 2020. CC BY 4.0 License. Sciences §

Discussions
oY

<0.4 066 08 1 125 15 >2.5
410 Aridity index (ARad,e/Precip)

Figure 1: Map of the study area. Signs mark the position of the 426 study catchments, with color indicating their annual average
temperature. Map colors show the aridity index of regions as determined by a ratio of long-term average net radiation and
precipitation (1984-2007).
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Figure 2: Overview of the modelling approach. The SWBM model is forced with consistent net radiation and temperature data, but
six different precipitation datasets. The obtained runoff and evapotranspiration are assessed in terms of the variability between the
simulations. The performance of the runoff simulations is determined against streamflow observations.
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Figure 3: Propagation of precipitation uncertainty into the runoff and ET simulations. Standard deviations are computed across
the precipitation estimates and resulting runoff and evapotranspiration values. This is done at every grid cell and every month
between May and September. Red lines indicate linear regression lines. Note that a log-log scale is used.
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Figure 4: Climate-dependent propagation of precipitation uncertainty into runoff and ET. a) standard deviation across precipitation
products, b) and c) relative standard deviation of resulting runoff and ET simulations with respect to that of precipitation,
respectively.
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Figure 5: Number of catchments where each precipitation product yields the best agreement with runoff observations (May-
September). Multiple data products can be best-performing at a catchment since they are ranked based on a merged score by
combining anomaly correlation and absolute error.

435

18



https://doi.org/10.5194/hess-2019-660 Hydrology and
Preprint. Discussion started: 6 January 2020 Earth System
(© Author(s) 2020. CC BY 4.0 License. Sciences

Discussions
oY

o E-OBS GPCC V.2018 MSWEP V2
<
>
wn
8 <
S . 7
= o
: 1
©
2 ERA-Interim ERAS5 CFSR
£ T
(0]
L
0 |
0
<
5]
< T T 1 I T T 1 | T T 1
0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2
Aridity [-]
i T T : W
0 0.1 0.2 04 0.5 0.6 0.8 09 1
Catchment fraction with the best score [-]

Figure 6: Runoff-based performance of precipitation products across climate regimes. Colors refer to the percentage of catchments
within each box recognized as the best performance based on anomaly correlation and absolute bias during May-September.
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