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Abstract. Recent improvements in initialization procedures and representation of large scale hydro-

meteorological processes contributed in advancing the accuracy of hydroclimatic forecasts, which

are progressively more skillful over seasonal and longer timescales. These forecasts are potentially

valuable for informing strategic multisector decisions, including irrigated agriculture, where they can

improve crop choices and irrigation scheduling. In this operational context, the accuracy associated5

with the forecast system setup does not necessarily yield proportional marginal benefit, as this is

also affected by how forecasts are employed by end-users. This paper aims at quantifying the value

of hydroclimatic forecasts in terms of potential economic benefit to the end-users, which allows the

inference of a relation between gains in forecast skill and gains in end-user profit. We also explore

the sensitivity of this benefit to both forecast system setup and end-user behavioral factors. These10

analyses are supported by an evaluation framework demonstrated on the Lake Como system (Italy),

a regulated lake operated for flood protection and irrigation supply. Our framework relies on an

integrated modeling chain composed of three building blocks: bias-adjusted seasonal meteorological

forecasts are used as input to the continentally-calibrated E-HYPE hydrological model; predicted

lake inflows are used for conditioning the daily lake operations; the resulting lake releases feed15

an agricultural model to estimate the net profit of the farmers in a downstream irrigation district.

Results suggest that despite the gain on average conditions is negligible, during intense drought

episodes informing the operations of Lake Como based on seasonal hydrological forecasts allows

gaining about 15% of the farmers’ profit with respect to a baseline solution not informed by any

forecast. Moreover, our analysis suggests that behavioral factors capturing different perceptions of20

risk and uncertainty significantly impact on the quantification of the benefit to the end-users, where

the estimated forecast value is potentially undermined by different levels of end-user risk aversion.
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Lastly, our results show an intricate skill-to-value relation modulated by the underlying hydrologic

conditions, which is well aligned over an exponential function in dry years while the gains in profit

result almost insensitive to the improvements in forecast skill in wet years.25

1 Introduction

Recent advances in initialization procedures (e.g., Ceglar et al., 2018) and representation of large-

scale hydro-meteorological processes (e.g., Krysanova et al., 2017) have contributed in greatly ad-

vancing the accuracy of hydroclimatic services. State-of-the-art meteorological and hydrological

forecast products are increasingly skillful over seasonal and longer time scales and thus become30

valuable assets for informing strategic decisions contributing to flood protection (e.g., Coughlan de

Perez et al., 2017; Neumann et al., 2018), drought management (e.g., Crochemore et al., 2017; Turco

et al., 2017), or hydropower production (e.g., Block, 2011; Boucher and Ramos, 2018). Irrigated

agriculture is one of the sectors expected to benefit the most from hydroclimatic services to better

inform crop choices and irrigation scheduling decisions (e.g., Li et al., 2017; Guimarães Nobre et al.,35

2019), which strongly depend on the expected hydro-meteorological conditions.

In such operational contexts, forecast accuracy is key to communicate along with hydroclimatic

services (Contreras et al., 2020). Accuracy depends on the forecast system setup, which introduces

uncertainties that depend on initial hydro-climatic conditions on the forecast date, scenarios of pre-

dicted meteorological conditions (e.g., climate model outputs), and sometimes the adopted impact40

model (Pechlivanidis et al., 2020). At seasonal time scales, probabilistic forecasts are often used

to convey these uncertainties, potentially adding value for decision making (see Georgakakos and

Graham, 2008; Cloke and Pappenberger, 2009, and references therein).

The idea of moving from forecast accuracy to value has been explored in a few recent studies that

quantify the value generated by informing water system operations with perfect or synthetic forecasts45

(e.g., Turner et al., 2017; Denaro et al., 2017), or a pre-specified real forecast product (e.g., Anghileri

et al., 2016; Nayak et al., 2018), in terms of increased system reliability. Only a few studies (e.g., Li

et al., 2017; Delorit and Block, 2019) assess the economic value of existing hydroclimatic services in

informing the solution of planning problems, which require making single decisions (e.g., selection

of crop to cultivate) without considering how they influence analogous decisions in the future.50

Building on these studies, in this paper we quantify the value of hydroclimatic services by ex-

tending traditional forecast quality assessment methods with estimates of the potential economic

benefit of the forecasts in informing operational decisions. The approach is demonstrated on the

Lake Como system (Italy), a regulated lake primarily operated for flood control and irrigation sup-

ply. Here, we use an evaluation framework to support the inference of a relation between gains in55

forecast skill and in end-user (farmers) profit over a range of diverse hydroclimatic conditions, in-

cluding extreme drought episodes. The proposed framework relies on an integrated modeling chain
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composed of three building blocks: (1) bias-adjusted seasonal meteorological forecasts are used as

input to a European-wide hydrological model; (2) predicted lake inflows are then used for condi-

tioning the daily lake operations; (3) the resulting lake releases finally feed a crop growth model to60

estimate the forecast value in terms of gain in net profit for the farmers in the downstream irrigation

district. This combination of a state-of-the-art hydroclimatic service with a detailed model of the

Lake Como basin makes our findings particularly valuable for the selected case study area, which is

located in the region with the highest share of irrigated areas in Europe (Eurostat, 2019).

In this context, we used our framework to isolate the component of the hydrological modelling65

chain mostly contributing to the estimated forecast value, as well as to assess the sensitivity of the

results on different end-user interpretations of the probabilistic forecast information. Forecast value

is filtered by the way end-users make use of the provided information, and there is growing evidence

that higher forecast accuracy does not necessarily imply better decisions because of the challenges

associated to the human interpretation of forecasts as well as to the communication of probabilistic70

information (Ramos et al., 2010, 2013; Crochemore et al., 2016). The personal interpretation of

uncertainty is indeed a subjective process affected by multiple factors, including the way outcomes

are framed, the severity of the event being forecasted, and the personal behavioral attitude of the

end-users (Gigerenzer et al., 2005; Joslyn et al., 2009). Individual behaviours and risk perceptions

therefore play a key role in influencing the end-user assessment of probabilistic seasonal forecast75

value (Kirchhoff et al., 2013). However, this point has been so far investigated mostly via serious

games, interviews, or direct interactions with decision makers, while our work aims at providing a

quantitative analysis of this challenge by simulating how different behavioral attitudes (modeled

by specific forecast quantiles capturing increasing levels of drought risk aversion) influence the

interpretation of the forecast ensemble and ultimately impact on operational decisions and resulting80

performance.

The paper is organized as follows: in the next section we introduce the Lake Como study site,

while Section 3 describes the adopted evaluation framework. Results and discussion are reported in

Section 4, while conclusions and final remarks are presented in the last section.

2 Study site85

Located in the Italian Alps, the Lake Como basin (Figure 1) is a highly controlled water system,

including a large regulated lake (active capacity 247 Mm3) serving a wide irrigation-fed cultivated

area (1,320 km2), where maize is the most widely grown and productive crop (52% of the area and

1.5 Mton/year). The hydro-meteorological regime is typical of sub-alpine regions, characterized by

dry periods in winter and summer, and peaks in late spring and autumn fed by snowmelt and rainfall,90

respectively. Snowmelt during May-July is the most important contribution to the accumulation of

the seasonal storage, which is then used for irrigation supply in the summer during the peak demand
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Figure 1. Map of the Lake Como basin. The map was generated via Q-GIS using layers from the Geoportal of

Regione Lombardia (www.geoportale.regione.lombardia.it).

period. The latter often exceeds the natural water availability and makes the role of the lake operation

paramount for the system.

The regulation of the lake has been actively studied since the 1980s (e.g., Guariso et al., 1984,95

1986) and is driven by two primary competing objectives: water supply, mainly for irrigation, and

flood control in the city of Como, which sits at the lowest elevation on the lake shoreline and hence

is exposed to flood risk. The agricultural districts downstream prefer to store snowmelt in the lake

to satisfy the peak summer water demands, when the natural inflow is insufficient to meet irrigation

requirements. Yet, storing such water increases the lake level and, consequently, the flood risk. Ad-100

ditional interests are related to navigation, fishing, tourism, and ecosystems, that further challenge

the existing water management strategies and motivate the search for more efficient solutions rely-

ing on hydroclimatic services. On the basis of previous works (e.g., Castelletti et al., 2010; Giuliani

and Castelletti, 2016; Giuliani et al., 2016a; Denaro et al., 2017), these two objectives (both to be

minimized) can be formulated as follows:105

– Flood control (JF ): the average annual number of flooding days in the simulation horizon,

defined as days when the lake level is higher than the flooding threshold of 1.24 m;

– Water supply deficit (JD): the daily average quadratic water deficit between the lake release

and the daily water demand of the downstream system, subject to the minimum environmental

flow constraint to ensure adequate environmental conditions in the Adda River. The water110
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demand is given by the sum of the water rights of different users and does not vary across

years. This quadratic formulation (Hashimoto et al., 1982) generates hedging strategies that

minimize large deficits that would generate crop failures, while accepting small, distributed

deficits that can be tolerated by most cultivated crops. Notably, the computation of the water

supply deficit includes a time-varying parameter that penalizes more the deficit experienced115

after germination to the beginning of phenological maturity, with these crop stages determined

by the agricultural district model.

3 Evaluation framework

The overall workflow of our evaluation framework relies on an integrated modeling chain composed

of the three building blocks illustrated in Figure 2: (i) the E-HYPE hydrological model produces120

seasonal forecasts of the Lake Como inflows driven by ECMWF System 4; (ii) the Lake Como

operational model designs the optimal lake regulation including the inflow forecasts as additional

input in the operating policy that determines the water released by the dam; (iii) the agricultural

district model estimates the profit of the farmers in the Muzza district, which is the largest among

the irrigation districts served solely by the Adda River (about 700 km2) as well as the one with the125

largest water concession (2370 Mm3/yr). A detailed description of each component of the evaluation

framework is provided in the next subsections.

3.1 E-HYPE hydrological model

The European setup of the HYPE hydrological model (E-HYPE; Hundecha et al. (2016)) was used to

generate dynamical seasonal streamflow forecasts (Pechlivanidis et al., 2020). E-HYPE is a process-130

based model that reproduces streamflow and water balance over the entire European continent. Its

parameters were calibrated based on a set of 115 catchments representing the diversity of land-use

and soil characteristics, as well as human impacts, and over the 1980–1999 period. The model was

validated in about 550 catchments for which streamflow observations are available (see details in

Hundecha et al., 2016). Here, precipitation and temperature data from the WFDEI reanalysis (Wee-135

don et al., 2014) were used as reference and streamflow simulations were generated by forcing the

E-HYPE model with WFDEI meteorological inputs. In the Lake Como basin, E-HYPE exhibits good

overall performance in simulating yearly streamflow, though a distinct bias can be seen (Figure 3a).

E-HYPE achieves an average yearly root-mean squared error (RMSE) of 748 Mm3/year in the Lake

Como basin. This yearly performance hides an underestimation of winter flows, and an overestima-140

tion of summer flows at the monthly time step (Figure 3b), which is potentially due to an inaccurate

representation of snowmelt dynamics in E-HYPE along with the alterations of the natural hydrologic

processes introduced by the operations of the Alpine hydropower reservoirs in the upstream part of

the basin. Despite these biases, Crochemore et al. (2020) showed that E-HYPE seasonal forecasts
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Figure 2. Overview of the integrated modeling chain used in the evaluation framework.

(a) Annual mean cumulated �ow (b) Monthly mean cumulated �ow

Figure 3. Annual mean accumulated flow (panel a) and monthly mean accumulated flow from observations and

E-HYPE simulations from 1996 to 2008 (panel b).

can yield as skilful information as a local model when looking at anomalies relative to model long-145

term means as done in this work, where the Lake Como operations are optimized using E-HYPE

seasonal forecast anomalies.

3.2 Operational model of the lake

As mentioned in the previous section, Lake Como is primarily operated looking at two competing

objectives, namely water supply and flood control in the city of Como. The operational model of the150
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lake is focused on reproducing the controlled dynamics of the lake, which is described by a mass

balance equation assuming a modeling and decision-making time-step of 24 hours, i.e.

st+1 = st+ qt+1− rt+1 (1)

where st is the lake storage [m3], while qt+1 and rt+1 are the net inflow (i.e., inflow minus

evaporation losses) and the outflow volumes in the time interval [t, t+1), respectively. The release155

volume rt+1 is determined by a nonlinear, stochastic function that depends on the release decision

ut (Soncini-Sessa et al., 2007). This function allows representing the effect of the uncertain inflows

between the time t (at which the decision is taken) and the time t+1 (at which the release is com-

pleted). The actual release might not be equal to the decision due to existing legal and physical

constraints on the reservoir level and release, including spills when the reservoir level exceeds the160

maximum capacity.

The lake operations is determined by a closed-loop operating policy p that computes the release

decision ut at each time step t as a function of the day of the year dt, the lake level ht and the inflow

forecast q̂t+τ over the lead time τ . The Pareto optimal operating policies are computed by solving a

multi-objective optimal control problem (Castelletti et al., 2008) formulated as follows:165

p∗ = argmin
p

J(p) = |JF ,JD| (2)

Note that the resolution of this problem does not yield a unique optimal solution but a set of op-

timal solutions exploring different tradeoffs between flood control and irrigation supply. A solution

is defined as Pareto optimal (or nondominated) if no other solution gives a better value for one ob-

jective without degrading the performance in at least one other objective. The image in the objective170

space of the Pareto-optimal solutions is the Pareto front. To evaluate the quality of the Pareto front

we used the hypervolume indicator HV , which allows set-to-set evaluations by measuring both the

convergence of the Pareto front under examination F to the optimal one F∗ as well as the repre-

sentation of the full extent of tradeoffs in the objective space (Zitzler et al., 2003). Specifically, this

metric measures the volume of objective space dominated by the considered set of solutions as the175

hypervolume ratio between F and F∗.

3.3 Agricultural district model

The agricultural district model simulates the dynamic processes in the Muzza irrigation district. The

model is composed of three distinct modules devoted to specific tasks: (i) a distributed-parameter

water balance module that simulates water sources, conveyance, distribution, and soil-crop water180

balance (Facchi et al., 2004); (ii) a heat unit module that computes the sequence of growth stages

as a function of the temperature (Neitsch et al., 2011); (iii) a crop yield module that estimates the
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optimal and actual yields, accounting for the effects of stresses due to insufficient water supply that

may have occurred during the agricultural season (Steduto et al., 2009). The water balance module

partitions the irrigation district with a regular mesh of cells with a side length of 250 m, which allows185

the representation of the space variability of crops, soil types, meteorological inputs, and irrigation

distribution. Further details about the different model components are provided in Giuliani et al.

(2016c) and Li et al. (2017). In this work we are however not exploring any farmers’ decision and

the agricultural district model is therefore not informed by the seasonal forecasts, while the value

of weather and climate services in informing cropping pattern decisions is investigated in Li et al.190

(2017).

3.4 Data and Experimental Settings

The assessment of the forecast operational value is performed over the time period from January

1, 1996 to December 31, 2008. This period was selected because it shows good variability in the

local hydrological conditions including some intense droughts events that negatively impacted the195

agricultural production of the system.

For the purpose of this study, we consider two ensemble streamflow forecasts produced by E-

HYPE. The first one is named ESP (Ensemble Streamflow Prediction; Day (1985)) and is generated

by forcing E-HYPE with WFDEI historical scenarios of precipitation and temperature that corre-

spond to the time period of the forecast. The second one is named SYS4 and uses dynamical precip-200

itation and temperature forecasts from the European Centre for Medium-range Weather Forecasts

(Molteni et al., 2011) as input to the E-HYPE model. These forecast inputs are bias adjusted against

the WFDEI reference with the Distribution-Based Scaling method (Yang et al., 2010) prior to run-

ning the hydrological model. Both ESP and SYS4 forecasts are delivered once a month in the form

of a 15-member ensemble with a 7-month lead time. The ensemble means of both ESP and SYS4 are205

then accumulated over a lead-time of 51 days. This time frame was demonstrated by Denaro et al.

(2017) to be the most valuable among different lead times from 1 week to 2 months for improving

Lake Como operations. In addition to considering the ensemble means, we investigate the sensitivity

of the overall assessment framework with respect to end-user behavioral factors. Specifically, we

replace the ensemble mean with the 25th and 10th percentiles as well as with the ensemble mini-210

mum, which capture increasing levels of drought risk aversion. Lastly, the operational value of these

forecast systems is benchmarked against a set of baseline solutions that rely on the local observed

climatology and two sets of upper bound solutions using perfect forecasts corresponding to either

E-HYPE simulations forced with meteorological observations or the observed lake inflows.

The comparative analysis of results obtained using different forecast products allows isolating the215

sources of forecast value as illustrated in Table 1. The sources of forecast value include the initial

hydrologic conditions, the hydrologic model, the predictions of precipitation and temperature, and

the behavioral factors (i.e., the different percentiles of the forecast ensemble considered). In this
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Table 1. Benchmarking matrix to isolate the sources of forecast value; baseline is observed climatology, ESP

E-HYPE Ensemble Streamflow Prediction, SYS4 E-HYPE driven by dynamical precipitation and temperature

forecasts, SYS4∗ replaces the ensemble mean used in SYS4 with different statistics capturing increasing levels

of drought risk aversion.

ESP SYS4 SYS4∗

baseline hydrological model hydrological model + initial hydrological model + initial

+ initial conditions conditions + P,T forecast conditions + P,T forecast

ESP P,T forecast P,T forecast + behavioral factors

SYS4 behavioral factors

matrix, each cell identifies the specific forecasting component that is responsible for the differences

in farmers’ profit using the forecast system indicated on the columns with respect to the benchmark220

indicated on the rows.

To optimize the operating policy (see eq. 2), we used the evolutionary multi-objective direct pol-

icy search (EMODPS) method (Giuliani et al., 2016b), a Reinforcement Learning approach that

combines direct policy search, nonlinear approximating networks, and multi-objective evolutionary

algorithms. The policies are defined as Gaussian radial basis functions (Busoniu et al., 2011) and225

the policy parameters are optimized using the self-adaptive Borg MOEA (Hadka and Reed, 2013),

a combination that has been demonstrated to be effective in solving these types of multi-objective

policy design problems featuring the possibility of enlarging the information used for conditioning

operational decisions (Giuliani et al., 2015; Zatarain-Salazar et al., 2016; Giuliani et al., 2018). Each

optimization was run for 2 million function evaluations over the simulation horizon 1996-2008. To230

improve solution diversity and avoid dependence on randomness, the solution set from each formu-

lation is the result of 20 random optimization trials. The final set of Pareto optimal policies for each

experiment is defined as the set of non-dominated solutions from the results of all the optimization

trials. In total, the analysis comprises 320 million simulations that required approximately 42,670

computing hours on an Intel Xeon E5-2660 2.20 GHz with 32 processing cores and 96 GB Ram.235

These high computational requirements explain the use of the water supply deficit as objective in

the policy design rather than the farmers profit, as the latter would require including the simula-

tion of the agricultural model within the EMODPS optimization substantially increasing the overall

computation cost.
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Table 2. Value of ESP, SYS4, and perfect forecasts in terms of Hypervolume Indicator (HV ).

Policies HV ∆HV relative ∆HV

Baseline 0.32 - -

ESP 0.34 0.02 6%

SYS4 0.37 0.05 16%

Perfect forecast (EHYPE sim) 0.67 0.35 109%

Perfect forecast (observations) 1.00 0.68 212%

4 Results and Discussion240

4.1 Forecast value for irrigated agriculture

Following the proposed evaluation framework (Figure 2), the operational value of alternative forecast

systems can firstly be assessed in terms of improvement in the overall set of Pareto optimal solutions

produced by the use of forecast information using the hypervolume indicator. Then, the simulation

of the agricultural district model will provide a more tangible measure of the forecast operational245

value by converting the water supply deficit JD into monetary values of farmers’ profit.

The performance of different sets of solutions obtained by solving the Problem in eq. (2) is shown

in Figure 4a, where each circle represents a different operating policy of Lake Como. The two axes

of the figure represent the two operating objectives (to be minimized) and the arrows indicate the

direction of increasing preference, with the best solution located in the bottom-left corner of the250

figure. The comparison of the different Pareto-optimal sets shows large differences in performance

that determine a clear ranking of the generated solutions. Not surprisingly, the use of perfect fore-

casts, either in the form of local observations (black circles) or of E-HYPE simulation (blue circles),

allow designing (ideal) policies that largely outperform the other solutions. The policies using ESP

and SYS4 forecasts are also superior to the baseline solutions, particularly in terms of water supply255

deficit values. The considered 51-days lead time is indeed too long to provide valuable information

to control the fast flood dynamics, which is on the order of few days and would therefore require

much shorter lead times. However, the downward shift of the Pareto fronts indirectly influences the

performance in flood control as the new sets of operating policies using forecast information al-

low identifying better compromise alternatives. The numerical quantification of the improvements260

in terms of both objectives is provided by the values of hypervolume indicator reported in Table

2, which estimate the ESP and SYS4 forecast values being equal to 6% and 16% of the system

performance, respectively.

To better understand the contribution of the different forecast information to the Lake Como op-

erations, we analyze the dynamic behavior of the system under operating policies that use distinct265

information. This analysis focuses on the solutions located along the green dashed line in Figure 4a,
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(a) Operating policy performance

(b) Average Lake Como levels

(c) Lake Como level in 2005

flood threshold

flood threshold

Figure 4. Performance obtained by different Lake Como operating policies (panel a) informed with ESP and

SYS4 forecasts, along with the upper bound of the system performance (perfect inflow forecasts from obser-

vations or E-HYPE simulation) and the baseline operating policies based on observed climatology. The green

dashed line marks the performance of the historical lake regulation in terms of flood control. Analysis of aver-

age Lake Como levels (measured with respect to the Malgrate reference level at 197.37 m.a.s.l.) under different

operating policies (panel b) and during the extreme drought recorded in 2005 (panel c).
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which marks the performance of the historical lake regulation in terms of flood control. The rationale

of this choice is to look at solutions that reduce the water supply deficit JD without degrading the

performance in JF . The historical regulation cannot be used as a reference since it also includes

additional objectives not accounted for in our model (e.g., navigation, fishing, tourism, ecosystem).270

All the simulated trajectories of the Lake Como level under each considered policy show a clear an-

nual pattern, with the highest levels observed in late spring due to the snowmelt contribution (Figure

4b). In this period, maximizing the storage while avoiding floods is crucial to support the summer

drawdown cycle driven by high irrigation demands. The policies conditioned on perfect forecast

(black and blue lines) are able to maintain the highest level and to delay the drawdown. Conversely,275

the baseline solution (gray line), which has no information about future inflows, reaches the highest

level at the beginning of May and, subsequently, the level is maintained about 10 cm below the per-

fect forecast trajectory to have space for buffering potential floods. A similar trajectory is followed

by the policy informed by ESP and SYS4 forecasts (orange and red lines, respectively), which are

on average almost overlapped until the third week of June, while they look more separated during280

the drawdown period with the SYS4 that is able to keep a high level also in July. In addition to

the average levels, it is interesting to investigate how the different solutions operate the lake during

the extreme drought recorded in 2005 (Figure 4c). The low inflows experienced during this drought

event produced an early drawdown of the lake level starting at the beginning of June, when the

downstream water demand is at its maximum, with the levels reaching the lower limit of -0.50 m285

around middle August. This extreme event confirms and emphasizes the differences observed on

the average lake levels; the policies conditioned on perfect forecast maintain the highest level from

April to mid-August thus delaying the drawdown. ESP and SYS4 forecasts, although less efficient

than the perfect forecast solutions, are able to keep higher lake levels than the baseline solution from

mid-May to the beginning of July, thus reducing the water supply deficit. ESP and SYS4 solutions290

then reach lower levels than the baseline in the second half of the 2005 summer. This strategy can be

considered as an extreme drought mitigation measure triggered by the extreme drought conditions

predicted for August in order to support a more reliable irrigation supply than under the baseline

operations by sacrificing few extra centimeters of lake level.

This analysis can be translated into economic terms via simulation of the Agricultural district295

model, which estimates the crop production and the associated net profit (i.e., gross revenue minus

production costs, also accounting for the EU Common Agricultural Policy subsides (Gandolfi et al.,

2014)) for the farmers in the Muzza irrigation district served by the Lake Como releases under

different operating policies. Figure 5 shows the same ranking of solutions obtained in the space of the

operating objective (Figure 4a), with the use of forecast information that allows gaining, on average,300

from 1% (ESP forecast) to 3.8% (perfect forecasts from observations) of annual farmers’ profit (i.e.,

from 300,000 e/year to 900,000 e/year) in comparison to the 24.07 million e/year attained by the

baseline solution. Interestingly, these values are much larger when evaluated over the 2005 drought,
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Figure 5. Comparison of gains in farmers’ profit with respect to the baseline solution under different Lake

Como operating policies informed with ESP and SYS4 forecasts, along with the upper bound of the system

performance (perfect inflow forecasts from observations or E-HYPE simulation).

when the baseline annual profit is only 20% of the 1996-2008 average value. In this case, the perfect

forecasts generate a profit that is 134% (observations) and 92% (E-HYPE simulation) higher than the305

baseline; the value of ESP and SYS4 also grows, producing a 5% and 16% increase in farmers’ profit,

respectively. These results suggest a large potential for using E-HYPE forecast in the management

of extreme droughts.

4.2 Impact of forecast system setup and behavioral factors on forecast value

Following the benchmarking analysis in Table 1, we investigate the isolated sources of forecast310

value by assessing the sensitivity of the farmers’ profit on both forecast system set up and end-user

behavioral factors. For the former aspect, we compare our baseline solution against the operating

policies informed by ESP and SYS4 forecasts (using the ensemble means). For the latter, we explore

increasing levels of risk aversion in the use of SYS4 forecasts by informing the operating policy with

the 25th and 10th percentiles as well as the minimum of the forecast ensemble.315

The results are reported in the comparative matrix in Table 3, which shows again the superiority

of ESP and SYS4 over the baseline. Interestingly, the role of predicted precipitation and temperature

in drought conditions differs from the average conditions. The use of SYS4 instead of ESP in 2005

generates a 11% gain in farmers’ profit, while this difference drops to 0.2% in average conditions.

Over the full period, the most important components of the forecast system are the hydrological320

model and the initial conditions, which together produce more than 1% increase in farmers’ profit.
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Table 3. Results of benchmarking analysis to isolate the sources of forecast value. The matrix reports the

percentage change in farmers’ profit for the forecast systems on the columns with respect to the benchmarks on

the rows, estimated as average over the 1996-2008 period and for the 2005 drought (in parenthesis).

ESP SYS4 - mean SYS4 - min SYS4 - p10 SYS4 - p25

baseline 1.04 (4.65) 1.21 (16.13) 1.35 (36.26) 1.16 (40.80) 0.90 (22.32)

ESP 0.17 (10.97) 0.31 (30.20) 0.12 (34.54) -0.14 (16.88)

SYS4 - mean 0.14 (17.34) -0.05 (21.25) -0.31 (5.33)

SYS4 - min -0.19 (3.33) -0.45 (-10.23)

SYS4 - p10 -0.26 (-13.13)

Hydrological initial conditions provide the most similar gains between the entire period and the 2005

dry conditions, suggesting that this component is the least sensitive to hydrological conditions. The

analysis of the behavioral factors shows that the potential operational value of SYS4 depends on the

level of risk aversion used in interpreting the information provided by the forecast ensemble. The325

average 1.2% increase in farmers’ profit with respect to the baseline using the ensemble average

grows to 1.35% when the policy is informed by the ensemble minimum, probably because E-HYPE

generally overestimates observed inflows (Figure 3a) and predictions of winter low flows are more

interesting for managing drought risk. However, results do not demonstrate a linear relationship

between forecast value and risk aversion, with the average gain over the baseline being 1.16% when330

using the 10th percentile of the ensemble (which is equal to the gain produced by the ensemble

mean) and 0.9% when using the 25th percentile of the ensemble.

In addition, our results show that the average contribution to the forecast value of predicted pre-

cipitation and temperature (+0.12%) is comparable to the one of the isolated behavioral factors. A

solution that uses the ensemble minimum produces a profit 0.14% higher than using the ensemble335

mean (+0.31% with respect to ESP), whereas the 25th percentile of the ensemble generates a 0.31%

reduction (-0.14% with respect to ESP). This means that the added value of SYS4 meteorological

forecasts can be potentially undermined if end-users are not able to properly extract the most valu-

able information from the forecast ensemble. However, it should be noted that our results also show

that there is not a single best statistic that consistently provides the most valuable information for im-340

proving the Lake Como operations. In average conditions, using the ensemble minimum marginally

improves the farmers’ profit with respect to all the other solutions informed by SYS4 forecasts; con-

versely, during the 2005 drought, the 10th percentile results to be more valuable than the minimum.

The use of risk averse statistics in interpreting the forecast ensemble is therefore recommended for

water supply operations exposed to drought risk, but more extensive investigations over multiple345

extreme events and, possibly, across different case studies is necessary to provide general recom-

mendations.
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4.3 From forecast skills to end-user value

Lastly, we aim to identify a relation between the increase in forecast skill and the resulting gain

in farmer profit from the isolated forecast system components. Here, skill is computed as 1−350

RMSES/RMSEB, where S is the considered forecast system selected from the columns of Table

3, while B is the benchmark used to isolate the sources of forecast skill/value selected from the rows

of the table. The general assumption is that a gain in forecast skill should result in a gain in profits;

however, the scatterplots in Figure 6 show that this relation is more complex and is strongly depen-

dent on the hydrologic conditions (i.e., annual inflow) of the considered year. The overall skill-profit355

relation in Figure 6a suggests the existence of an exponential function in dry years (brown circles),

while in wet years (green circles) the gain in profit does not seem to be sensitive to the gain in skill.

This dependence is confirmed by Figure 6b, where the dry years follow quite well an exponential

relationship (i.e., the fitted function attains a R2 = 0.87) according to which a 10% improvement in

forecast skill obtained by initializing the hydrological model is associated to a 1% gain in farmers’360

profit. Conversely, the blue circles are almost horizontally distributed with the gain in profit resulting

almost insensitive to the improvements in forecast skill.

Interestingly, results significantly change when we compare SYS4-mean against ESP to isolate the

gain from dynamical precipitation and temperature forecasts (Figure 6c). The forecasts are character-

ized by small losses and gains in both skill and profit that are not systematic and hardly interpretable.365

Moreover, in dry years the gains in skill using SYS4 forecasts do not necessarily translate into a gain

in profit. Similar results appear in panels (d-e-f) of the figure, which explore the gain in skill and

profit generated by risk averse behaviors against the SYS4-mean benchmark. However, in these three

scatterplots we can still notice an exponential skill-profit relation for the driest years (dark brown

circles). If we focus on the 2005 drought, which is the darkest circle in the top-right corner of Figure370

6d-e-f, we observe an average 45% increase in skill that is associated to an average 14% gain in

farmer profit. In these cases, the skill to profit relation becomes 3 to 1, confirming that improving

the skill of seasonal forecasts is expected to be particularly valuable to inform the management of

extreme drought events.

4.4 Limitations and future research375

A limitation in the presented results is the relatively small number of points used to fit the forecast

skill-value relationship. While it would certainly be interesting to repeat the analysis across mul-

tiple drought events as well as across different case studies characterized by diverse hydroclimatic

regimes, in the context of this work we preferred to perform the analysis using highly detailed mod-

els whose associated computational requirements limit the possibility of easily increasing the sample380

size.
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Figure 6. Scatterplot between forecast skill and value. The color of the circles represents the hydrologic condi-

tions (i.e., annual inflow to the lake) of the different years. Markers represent either an isolated component of

the forecast system or a behavioral factor for each year over the 1996-2008 time period: all components (panel

a), ESP vs baseline (panel b), SYS4-mean vs ESP (panel c), SYS4-min vs SYS4-mean (panel d), SYS4-p10 vs

SYS4-mean (panel e), SYS4-p25 vs SYS4-mean (panel f).

Moreover, it could be interesting to verify if the conclusions drew by Crochemore et al. (2020)

hold for the Lake Como basin by comparing the skill and value of E-HYPE forecasts against the

ones generated by a fine-tuned local hydrologic model. Extending the economic analysis to other

irrigated agricultural systems as well as other sectors (e.g., hydropower, flood protection) is also385

warranted. Finally, it would be interesting to assess the value of hydroclimatic services under a

projected future climate characterized by more frequent and intense extreme events, which can make

forecast information more valuable than under the historical climate.

5 Conclusions

In this paper, we quantify the value of hydroclimatic services in terms of added economic benefit of390

the forecasts in informing end-user decisions. Moreover, we analyze the isolated sources of forecast

value in terms of both forecast system set up and end-user behavioral factors, and we also infer a

relation between gains in forecast skill and gains in end-user value. The evaluation framework is

applied to the operations of Lake Como in the Italian lake district.
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Numerical results demonstrate the potential of the E-HYPE hydrological forecast to inform the395

operations of Lake Como, generating an average 290,000 e/year gain in the net profit of the farmers

served by the lake releases (about 1% of the average profit obtained by a baseline solution without

forecast information). This gain rises up to 16% (i.e., 800,000 e against a baseline profit equal to

4.9 Me) during the extreme drought experienced in 2005.

The analysis of the isolated sources of the estimated forecast value attributes the largest share400

of value to the initialization of the hydrological forecasts with conditions relevant to the forecast

issue date. For the extreme drought of 2005, the forecast value is instead mostly attributable to

the use of precipitation and temperature predictions and to risk averse decisions focused on the

lowest part of the forecast ensemble. In addition, our results shows the need of transitioning from

forecast skill assessment to integrated frameworks that include decision models and account for end-405

user behavioral factors capturing different perception of risk and uncertainty. Investing in advanced

training for decision makers and reservoir operators is expected to be crucial for maximizing the

uptake of forecast information and their operational value (Crochemore et al., 2016). Conversely, the

added value of hydroclimatic services might be undermined if end-users are not able to adequately

interpret the uncertainty associated to the forecast ensemble. Lastly, our results suggest a complex410

skill-to-value relation modulated by the underlying hydrologic conditions. While the gains in profit

result almost insensitive to the improvements in forecast skill in wet years, our results show an

exponential skill-to-value relation in dry conditions, where large gains in forecast skills are necessary

to generate moderate gains in end-user profit. This ratio becomes less demanding during extreme

drought events.415

Data and code availability: The seasonal meteorological forecasts SEAS5 from the European Centre

for Medium-Range Weather Forecasts are freely accessible from the Copernicus Climate Data Store

(https://cds.climate.copernicus.eu/). The HYPE model code is available from the HYPEweb portal

(http://hypeweb.smhi.se/model-water/). Real-time seasonal forecasts obtained through E-HYPE are420

openly available on the HYPEweb portal (http://hypeweb.smhi.se/explore-water/forecasts/seasonal-

forecasts-europe/). Local observations of lake inflows along with the other meteorological variables

used by the agricultural district model were provided by Consorzio dell’Adda (http://www.addaconsorzio.it)

and by Agenzia Regionale per la Protezione dell’Ambiente (http://ita.arpalombardia.it). The source

code for the Lake Como simulation and EMODPS implementation is available on Github (https://github.com/mxgiuliani00/LakeComo).425
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