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Introduction 

This is an interesting work aiming to provide a method (as well as implement it in an R package; 

function called PRSim.wave within PRsim R package) for the simulation of multivariate hydrological 

processes (for now, focusing on streamflow) - which according to the results presented by the 

Authors has a good potential, requiring yet some improvements.  

In general, I find the manuscript well-organized and straightforward to understand, yet in my view, 

there are several points that require the Authors attention.  

All comments and suggestions are meant to be constructive and aim to improve the quality of the 

manuscript, as well as the findings obtained. 

Comments 

L6-7. I suggest to write: “To do so, we propose the stochastic simulation approach called Phase 

Randomization Simulation using wavelets (here after called PRSim.wave) which combines… ”. 

L11. To avoid confusing the reader, and provided that a few lines above it is mentioned that “We 

apply and evaluate PRSim.wave on a large set of 671 catchments in the contiguous United States.”, I 

suggest to write: “…at multiple sites (up to four)…” 

L34. I wonder what are the “potential non-stationarities” mentioned by the Authors? Are you 

refereeing to the typical cyclostationary behavior exhibited by hydrological processes?  

Given the opportunity, and as a side note, I would like highlight that stationarity is an essential tool 

for inferencing from data (e.g., model fitting). Stationarity should not be seen as a shortcoming, nor 

dead. Non-stationarity implies non-ergodicity, which in turn makes inference from observed data 

impossible, unless of course the deterministic dynamics of the process are known; which in my 

understanding, is never the case in hydrological sciences.  On this topic, I recommend the recent work 

of Serinaldi et al. (2018), with emphasis on section 4.2, as well as the works of Koutsoyiannis and 

Montanari, (2007), (2015), Lins and Cohn (2011), Matalas (Matalas, 2012), and Montanari and 

Koutsoyiannis (2014), that argue in favor of stationarity. See also the very interesting, note of Harry 

F. Lins1. As Harry F. Lins concludes his note: 

Stationarity ≠ static 

Non-stationarity ≠ change (or trend) 

L36. I am not sure what is the meaning of “continuous” here? Can you please elaborate/specify? Also, 

some references would be useful. 

                                                             
1 http://www.wmo.int/pages/prog/hwrp/chy/chy14/documents/ms/Stationarity_and_Nonstationarity.pdf 

mailto:itsoukal@mail.ntua.gr
http://www.wmo.int/pages/prog/hwrp/chy/chy14/documents/ms/Stationarity_and_Nonstationarity.pdf


L40. Although I understand its rationale, I am not a big fan of the now-typical classification of 

stochastic models on “parametric and non-parametric”, since in my view, there is no model without 

parameters. Typically, the literature uses the term “non-parametric” to refer to approaches that use 

some kind of resampling mechanism (e.g., k-nn algorithm) and/or “non-parametric” distribution 

functions (e.g., kernel-based approximation of the density function) to generate synthetic data. But, 

one should take a moment and think, are these really non-parametric? Isn’t the k (i.e., the number of 

nearest neighbors) in k-nn algorithm a parameter? Isn’t the choice of the kernel smoothing function 

(e.g., normal, epanechnikov, box, triangle) a parameter? Isn’t the bandwidth of the kernel a parameter 

(also called the smoothing parameter)? Aren’t the data per se used as parameters (e.g., when a non-

parametric method relies on the sampling from the empirical CDF or kernel-based CDF. What if we 

have new data or alter a few? Does the model change?)? Having said these, I suggest to the Authors 

to reconsider using the employed classification, as well as review the recent literature (e.g., Serinaldi 

and Kilsby, 2014; Tsoukalas et al., 2019) for finding an alternative classification. 

L41-43. The Authors write: “…and temporal disaggregation models such as fractional Gaussian noise 

models (Mandelbrot, 1965), fast fractional Gaussian noise models (Mandelbrot, 1971), broken line 

models (Mejia et al., 1972), and fractional autoregressive integrated moving average models 

(Hosking, 1984).”.  

To clarify, these are not disaggregation models, but models able to simulate processes exhibiting 

long-range dependence (particularly, designed to simulate fractional Gaussian noise (fGn) processes 

or else, processes exhibiting Hurst behavior). See a similar discussion in the introduction section of 

Tsoukalas et al. (2018b). 

L44-45. The Authors write: “Nonparametric models are based on disaggregation and resample from 

the data with perturbations and include…”.  

I think that this statement can be confusing, and needs some refinement. “Non-parametric” models 

are not necessarily based on the notion of disaggregation. Of course, the literature offers “non-

parametric” disaggregation methods (e.g., Lee et al., 2010; Tarboton et al., 1998), but this does not 

makes all “non-parametric” methods, methods that “based on disaggregation and resample”. Further 

details on disaggregation methods can be found on the seminal works of Valencia and Schakke 

(1973), and Mejia and Rousselle (1976), as well in the work of Koutsoyiannis (2001) who provide a 

detailed overview on the subject. For a more recent overview and discussion on the topic of 

disaggregation and multi-temporal simulation see also work of Tsoukalas et al. (2019). 

L48-49. The Authors write: “…but none of these time domain methods can capture the spectral 

properties of the observed time series (Erkyihun et al., 2017).”.  

In my view this statement is a bit confusing, requiring the Authors attention, for two reasons.  

1) A timeseries (i.e., a sequence of observations ordered in time) does not has spectral 

properties, it exhibits some form of dependence structure (which can be quantified using 

statistics/stochastics, e.g., through the empirical correlation coefficients and the empirical 

spectrum). What has spectral properties is the stochastic process that it is assumed that 

generated the observed timeseries.  

2) Having said the above, and since correlation and spectrum are interrelated quantities, if a 

model is capable of reproducing the process’s correlation structure it also reproduces its 



spectrum (and vice versa). For further details and references, see my previous comment 

(Tsoukalas, 2019) on a recent work co-authored by the first Author of this work. 

L49-50. In my view the sentence “Furthermore, these time-domain models struggle with the 

representation of spatial dependence” is a bit “strict”, since as far as I see it, there is no struggle, but 

many research efforts (past, and new). 

The stochastic hydrology literature offers several “time-domain” models that can simulate 

parsimoniously multivariate processes, including both stationary and cyclostastionary processes 

(e.g., Efstratiadis et al., 2014; Koutsoyiannis, 2001, 2000), reproducing also the moments of the 

observed processes (typically up to third order). Further to these models/methods, more recent 

approaches allows the parsimonious simulation of multivariate stationary and cyclostationary 

processes with any marginal distribution and correlation structure (Kossieris et al., 2019; Tsoukalas, 

2018; Tsoukalas et al., 2018a, 2018b), also in a multi-scale context (Tsoukalas et al., 2019). Apart 

from the last work, for another multi-scale and multivariate simulation study involving daily rainfall 

at 4 sites the Authors are referred to Appendix D, section D.2, of Tsoukalas (2018). Therefore, taking 

into consideration the above-mentioned works I would suggest the Authors to revise the sentence 

accordingly, as well as provide some references. 

L54-55. The Authors write: “In contrast to time-domain models, frequency-domain models allow for 

the simulation of surrogate data with the same Fourier spectra as the raw data”.  

This can be also true for time-domain methods (but not a good modelling practice in either of the two 
cases; see below). For instance, if one employs an AR or MA model of high order can simulate a 
realization of a process exhibiting exactly the empirical autocorrelation coefficients up to the order 
dictated by the model. However, this is not a good modeling practice since it is well-known that the 
empirical estimators of auto- (and cross-) correlation coefficients are (downward) biased (Beran, 
1994; Koutsoyiannis, 2003, 2000), especially in the case of long-range dependence, short samples, 
and large lags. See also Matalas (1967 p. 945) who remark that: 

“Parameters that are determined in terms of high order moments of large time lags are subject to 

large standard errors and consequently large operational biases. Operational biases can never be 

eliminated, but they can be minimized by the use of regionalization to account for the temporal and 

spatial variations inherent in the historic sequences…”. 

Of course, the same applies for the empirical estimators of spectrum (see the comparative work of 

(Dimitriadis and Koutsoyiannis (2015)). Note that this kind of approaches are not parsimonious 

(since all the empirical estimates used in model fitting are essentially model parameters). To cope 

with these, the recent literature (Kossieris et al., 2019; Tsoukalas et al., 2019, 2018b), as well some 

works already cited in the manuscript (i.e., Papalexiou (2018)), has leaned towards the use of 

parametric models (e.g., with two or three parameters) to parsimoniously describe the dependence 

structure of the processes. The Authors are referred to the work of Koutsoyiannis (2000) which in 

my view popularized that idea in hydrological domain, also introducing a parsimonious two-

parameter auto-correlation structure. It is also interesting to note the work of Papalexiou (2018) 

(already cited in the manuscript), who employed the functional form provided by the survival 

function of a distribution to define several auto-correlation structures.   

L70-72. The Authors write: “In addition, it may help to improve the representation of spatial 

dependencies because it does not require a transformation to the normal distribution and back to 



the original, skewed distribution, which usually weakens spatial correlations (Embrechts et al., 

2010).“ 

First, the comment on “weaken spatial correlations” applies for all “types” of correlations (that 

emerge from the mapping/transformation from the Gaussian to the actual domain) – not only spatial. 

Particularly, in the case of stochastic processes, it also applies for the auto-correlation structure of a 

stationary processes, as well as for the season-to-season correlations of a cyclostationary process 

(Tsoukalas et al., 2018a, 2017). It also holds for multivariate cases. However, I am afraid that I cannot 
see the improvement of the representation of spatial dependencies mentioned above by the Authors. 

The cross-correlations as well as the auto-correlation are still not accurately reproduced (see my 

comments below on the results/plots). It is my understanding that a previous comment of mine 

(Tsoukalas, 2019) on a recent work co-authored by the first Author of this work holds also for this 

method. This is due to the following: 

L145. The Authors write: “Derivation of random phases: A random discharge time series 

(white noise) of the same length as the input series is sampled from a normal distribution 

with mean 0 and standard deviation 1.” 

L170-173. The Authors write: “Transformation to kappa distribution: The simulated values 

are transformed to the kappa domain using the fitted daily kappa distributions from Step 2. 

For each day, a random sample is generated from the fitted, daily kappa distribution. The 

simulated values are replaced by the values generated from the kappa distribution using 

rank-ordering. This procedure is repeated for each day in the year.” 

Based on the above the method presented herein depends on an auxiliary Gaussian process and uses 

the target ICDFs, as well as the rank-correlations to establish the (auto- and cross-) dependence 

structure. It is reminded that such a procedure will preserve the ranks correlation coefficients (which 

do not depend on the marginals) but not the Pearson’s, (which depends on the marginals; since it 

involves the cross-product moment of the among the variables). For further details the Authors are 

referred to the comment mentioned above, as well as in the references therein. It is my understanding 

that the mechanics of the method that dictate the preservation of ranks is the reason why the auto- 

(and cross-) correlations are not so well reproduced by the proposed method. 

L149 (and elsewhere): The use of Kappa distribution. As mentioned in a previous comment of mine 

in HESS related with a work co-authored by an Author of this manuscript there are few complications 

worth considering when using the Kappa distribution. The following comments are excerpted with 

minimum or no modifications at all from Tsoukalas (Tsoukalas, 2019). 

1. Since you are using the Kappa distribution it could be insightful to mention that under certain 

parameter combinations, this distribution may lead to infinite moments. This can be a delicate 

issue, since if the fitted distribution exhibits infinite variance then the Pearson’s correlation 

cannot be defined (the denominator contains the variance), and thus the proposed model (as well 

as many other models) cannot be used. This situation is discussed in section 3.4 of Tsoukalas et 

al. (2018b; and references therein), where it is advocated (based on empirical, as well as 

theoretical reasoning) that physical processes are characterized by finite variance 

(Koutsoyiannis, 2016).  

Particularly, if 𝑋 is a Kappa-distributed random variable, and 𝜇𝑟 = 𝐸[𝑋𝑟] denotes the 𝑟𝑡ℎ raw 

moment, as discussed in Hosking (1994), and elsewhere, the existence of the 𝑟𝑡ℎ depends on the 

values of ℎ and 𝑘. Specifically, the moments exist: 



for all 𝑟   if   ℎ ≥ 0 and 𝑘 ≥ 0 

for 𝑟 < − 1 ℎ𝑘⁄   if  ℎ < 0 and 𝑘 ≥ 0, and 

for 𝑟 < − 1 𝑘⁄ if 𝑘 < 0 

It is also interesting to mention that Hosking (1994) notes that the first four moments cannot 

uniquely determine the parameters of the distribution, since some combinations of moments 

(expressed by skewness and kurtosis coefficients) correspond to different pairs of ℎ and 𝑘.  

 

2. How do you handle negative values? As far as I am aware the left (and right) support of Kappa 

distribution is not necessarily zero (e.g., when 𝑘 = 0 and ℎ ≤ 0, then the supports of the 

distribution are, −∞ < 𝑥 < ∞; see Hosking (1994)). In any case, the generation of negative values 

can be eliminated by using a distribution function defined in the positive real line. Particularly, I 

would suggest the investigation/use of the Generalized Gamma and Burr type-XII distributions, 

which are more parsimonious (they entail three parameters; instead of four as in Kappa) and 

were found adequate for modelling of hydrometeorological variables; particularly rainfall (e.g., 

Papalexiou and Koutsoyiannis, 2016). Examples of their use within the context of stochastic 

modelling can be found the work Papalexiou (2018), as well as in Tsoukalas et al. (2019, 2018b) 

and Tsoukalas (2018). 

L158-160. The Authors write: “We fit a separate distribution for each day to take into account 

seasonal differences in the distribution of daily streamflow values. To do so, we use the daily values 

in a 30-day window around the day of interest.” 

Can you please elaborate on this? Just to be sure, for each “site” and for each day of the year a Kappa 

distribution has been fitted with different parameters? If this is the case, just for the marginal 

behavior, and for each site you fitted Kappa 365 times, which implies that the model has 

365 × 4 (the number of parameter of Kappa) = 1460 × the number of sites, parameters (not 

accounting those for the specification of the auto and cross-dependence structure of the process). If 

this is the case, I am afraid that this is not a parsimonious model, something that should be clearly 

stated in the manuscript (also mentioning the total number of its parameters).  

Also, I don’t think that it is reasonable to assume that days belonging in the same month (e.g., the 19th 

and the 20th of August) have different marginal distribution (although, I have seen stochastic 

simulation related works following that approach, I am not aware of any paper supporting this 

assumption). The standard approach for daily (or finer time) scales is to consider stationarity within 

the monthly interval (i.e., in the case of daily data consider that all days belonging in the month have 

the same marginal distribution). An arguably more parsimonious approach, since in this case the 

total number of parameters for the marginal behavior would be 12 ×

4 (the number of parameter of Kappa) = 48 × the number of sites. Note that the number of 

parameters could be further reduced by using, instead of Kappa, alternative 2- or 3-parameter 

distribution models. 

L162-164. The Authors write: “In a few regions with many zero discharge values (e.g. some 

catchments in the Great Plains) fitting the kappa distribution is not possible and we therefore use the 

empirical distribution instead.”  

This is a work-around that could work, but I wonder, why not use an alternative distribution model 

(e.g., zero-inflated or mixed) that can model simultaneously both the discrete (i.e., probability of no 

discharge) and continuous part (i.e., distribution of non-zero discharge) of the process? Also, can you 



provide an estimate on the number of cases where the empirical distribution is employed instead of 

Kappa? 

L218-219. The Authors write: “the seasonal (3d) and monthly distributions (3e–g) are well captured 

by the simulations.”  

This is a confusing description of the plots. The (3e–g) plots show that some seasonal summary 

statistics are reproduced (i.e., monthly mean, monthly maxima, monthly minima), not the seasonal 

distributions (to do so you need alternative plots, comparing the empirical distribution of each month 

with the corresponding theoretical one). Also, I don’t understand what plot 3d shows? What does 

“seasonal statistics” means in the title of this plot? What does the phrase “the seasonal discharge 

distribution” means at the legend of Figure 3? These are box-plots, and by no means should be used 

to compare distribution functions (they provide way too few information - about specific quantiles). 

L220-222. The Authors write: “the temporal correlation characteristics (4a–c), …. are well captured 

by the simulations as well.”  

In my view there is an important difference between the simulated and empirical autocorrelation 

coefficients. For instance, by eye-balling the median of the orange lines (simulated) for time lag 10 

we get a value about equal to 0.5, while the observed one is 0.4. This should be clearly stated in the 

manuscript. For the readers convenience, I also suggest the inclusion of a line depicting the median 

of the simulated quantities (orange lines). Providing lines for a low and high quantile (say 0.05 and 

0.95) would be nice also. This comment applies for all similar plots throughout this manuscript.  

L223-225. The Authors write: “Both high- and low- extremes are realistically modeled as illustrated 

by the distributions of the above and below threshold events of the four catchments in the Pacific 

Northwest (Fig. 5).”  

To avoid confusion with actual distribution functions, e.g., the Kappa, instead of using the phase “as 

illustrated by the distributions of the above and below threshold events”, I would suggest the use of 

phrase similar to: “as illustrated box-plots of Fig.5, constructed by the values of the above and below 

threshold events”. 

L223-225. Please remind the reader the selected threshold values.  

Figure 6 (legend). I assume that you wanted to write: “… (b) for the three catchments in the….”. 

L230-233. The Authors write: “This visual impression of a good performance with respect to the 

reproduction of spatial correlations in daily discharge data is confirmed by comparing observed and 

stochastically simulated cross-correlation functions for the catchments in the Pacific Northwest (Fig. 

7). Both the shape and magnitude of the cross-correlation functions are well simulated”. 

I am afraid that this sentence is needs some refinement, since as with the case of auto-correlation 

coefficients, Fig. 7 shows a significant deviation of the simulated cross-correlation coefficients from 

the observed ones. This should be reflected in the manuscript. For the readers convenience, I would 

also suggest the inclusion of a line depicting the median of all simulations (orange lines). Providing 

lines for a low and high quantile (say 0.05 and 0.95) would be nice also. 

Figure 7. There is something wrong with the labeling of the panels (i.e., multiple panels are labeled 

as ii, iii, iv, while some others are completely unlabeled). 



L239. The Authors write: “…but also for extreme values as illustrated by the peak-over-threshold 

(POT) values for the different stations in the three illustration regions (Fig. 9). These results show 

that besides regional flood co-occurrences, the temporal clustering behavior of events is also 

reproduced.” 

In my view, Figure 9 is not very informative (the y-axis has been omitted intentionally?). Can you 

please provide an alternative figure, as well as a quantitative metric, quantifying the reproduction of 

temporal clustering behavior of events? 

Discussion section. In my view all the above points should be discussed in this section, highlighting 

also the limitations of the presented method. Further to these, it should be noted that the proposed 

model has been tested for multivariate problems involving 4 processes, as well as the method is 

capable of generating synthetic timeseries with length equal to the observed one (I haven’t read how 

to handle the case where one wants to generate longer timeseries – is it possible to generate synthetic 

timeseries with length different than the observed one?).  

L258-259. The Authors write: “This difference between methods may be related to the fact that the 

wavelet transform compared to the Fourier transform does not necessitate a transformation to the 

normal domain, and a back transformation to the domain of the skewed distribution, which has been 

shown to weaken spatial correlations”.  

I think that the answer is is much simpler than the one stated above. The former method is simply 

designed for the simulation of univariate processes, i.e., not to account for the cross-correlations (or 

cross-spectrum) among processes. I suggest the Authors to consider more carefully the “mechanics” 

of the aforementioned methods, and revise the sentence accordingly. Also, as mentioned before, the 

comment on “weaken spatial correlations” applies for all “types” of correlations (that emerge from 

the mapping/transformation from the Gaussian to the actual domain) – not only spatial. Particularly, 

in the case of stochastic processes, it also applies for the auto-correlation structure of a stationary 

processes, as well as for the season-to-season correlations of a cyclostationary process (Tsoukalas et 

al., 2018a, 2017). It also holds for multivariate cases. 

L270-271. The Authors write: “Thanks to a spatio-temporal model based on phase randomization, 

temporal short- and long range dependencies, non-stationarities, and spatial dependencies are 

reproduced.” 

Please consider my comments on the parameterization (i.e., number of parameters), as well as on the 

performance of the model and revise this sentence accordingly. 

A general comment. A final comment regards the title of the manuscript, which is: “Stochastic 

simulation of streamflow and spatial extremes: a continuous, wavelet-based approach”. By reading 

the paper I see that the Authors pay special focus on the reproduction of extremes, but it is not clear 

to me why this model is different from any other in that aspect (e.g., see those mentioned above)? 

What makes this model suitable when aiming to reproduce extremes? Other similarly parameterized 

models behave differently? If yes, why? I believe that a theoretical justification or even an empirical 

comparison with alternative model(s) would be particularly useful and an added value for the paper. 

Regards, 

Ioannis Tsoukalas  



References 

Beran, J., 1994. Statistics for long-memory processes. CRC press. 

Dimitriadis, P., Koutsoyiannis, D., 2015. Climacogram versus autocovariance and power spectrum in 
stochastic modelling for Markovian and Hurst–Kolmogorov processes. Stoch. Environ. Res. Risk 
Assess. 29, 1649–1669. https://doi.org/10.1007/s00477-015-1023-7 

Efstratiadis, A., Dialynas, Y.G., Kozanis, S., Koutsoyiannis, D., 2014. A multivariate stochastic model 
for the generation of synthetic time series at multiple time scales reproducing long-term 
persistence. Environ. Model. Softw. 62, 139–152. 
https://doi.org/10.1016/j.envsoft.2014.08.017 

Hosking, J.R.M., 1994. The four-parameter kappa distribution. IBM J. Res. Dev. 38, 251–258. 
https://doi.org/10.1147/rd.383.0251 

Kossieris, P., Tsoukalas, I., Makropoulos, C., Savic, D., 2019. Simulating Marginal and Dependence 
Behaviour of Water Demand Processes at Any Fine Time Scale. Water 11, 885. 
https://doi.org/10.3390/w11050885 

Koutsoyiannis, D., 2016. Generic and parsimonious stochastic modelling for hydrology and beyond. 
Hydrol. Sci. J. 61, 225–244. https://doi.org/10.1080/02626667.2015.1016950 

Koutsoyiannis, D., 2003. Climate change, the Hurst phenomenon, and hydrological statistics. Hydrol. 
Sci. J. 48, 3–24. https://doi.org/10.1623/hysj.48.1.3.43481 

Koutsoyiannis, D., 2001. Coupling stochastic models of different timescales. Water Resour. Res. 37, 
379–391. https://doi.org/10.1029/2000WR900200 

Koutsoyiannis, D., 2000. A generalized mathematical framework for stochastic simulation and 
forecast of hydrologic time series. Water Resour. Res. 36, 1519–1533. 
https://doi.org/10.1029/2000WR900044 

Koutsoyiannis, D., Montanari, A., 2015. Negligent killing of scientific concepts: the stationarity case. 
Hydrol. Sci. J. 60, 1174–1183. https://doi.org/10.1080/02626667.2014.959959 

Koutsoyiannis, D., Montanari, A., 2007. Statistical analysis of hydroclimatic time series: Uncertainty 
and insights. Water Resour. Res. 43, 1–9. https://doi.org/10.1029/2006WR005592 

Lee, T., Salas, J.D., Prairie, J., 2010. An enhanced nonparametric streamflow disaggregation model 
with genetic algorithm. Water Resour. Res. 46, 1–14. https://doi.org/10.1029/2009WR007761 

Lins, H.F., Cohn, T.A., 2011. Stationarity: Wanted dead or alive? J. Am. Water Resour. Assoc. 
https://doi.org/10.1111/j.1752-1688.2011.00542.x 

Matalas, N.C., 2012. Comment on the Announced Death of Stationarity. J. Water Resour. Plan. Manag. 
138, 311–312. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000215 

Matalas, N.C., 1967. Mathematical assessment of synthetic hydrology. Water Resour. Res. 3, 937–945. 
https://doi.org/10.1029/WR003i004p00937 

Mejia, J.M., Rousselle, J., 1976. Disaggregation models in hydrology revisited. Water Resour. Res. 12, 
185–186. https://doi.org/10.1029/WR012i002p00185 

Montanari, A., Koutsoyiannis, D., 2014. Modeling and mitigating natural hazards: Stationarity is 
immortal! Water Resour. Res. 50, 9748–9756. https://doi.org/10.1002/2014WR016092 



Papalexiou, S.M., Koutsoyiannis, D., 2016. A global survey on the seasonal variation of the marginal 
distribution of daily precipitation. Adv. Water Resour. 94, 131–145. 
https://doi.org/10.1016/j.advwatres.2016.05.005 

Serinaldi, F., Kilsby, C.G., 2014. Simulating daily rainfall fields over large areas for collective risk 
estimation. J. Hydrol. 512, 285–302. https://doi.org/10.1016/j.jhydrol.2014.02.043 

Serinaldi, F., Kilsby, C.G., Lombardo, F., 2018. Untenable nonstationarity: An assessment of the fitness 
for purpose of trend tests in hydrology. Adv. Water Resour. 
https://doi.org/10.1016/j.advwatres.2017.10.015 

Tarboton, D.G., Sharma, A., Lall, U., 1998. Disaggregation procedures for stochastic hydrology based 
on nonparametric density estimation. Water Resour. Res. 34, 107. 
https://doi.org/10.1029/97WR02429 

Tsoukalas, I., 2019. Interactive comment on “Technical note: Stochastic simulation of streamflow 
time series using phase randomization” by Manuela I. Brunner et al. 

Tsoukalas, I., 2018. Modelling and simulation of non-Gaussian stochastic processes for optimization 
of water-systems under uncertainty. PhD Thesis, Department of Water Resources and 
Environmental Engineering, National Technical University of Athens (Defence date: 20 
December 2018). 

Tsoukalas, I., Efstratiadis, A., Makropoulos, C., 2019. Building a puzzle to solve a riddle: A multi-scale 
disaggregation approach for multivariate stochastic processes with any marginal distribution 
and correlation structure. J. Hydrol. 575, 354–380. 
https://doi.org/10.1016/j.jhydrol.2019.05.017 

Tsoukalas, I., Efstratiadis, A., Makropoulos, C., 2018a. Stochastic Periodic Autoregressive to Anything 
(SPARTA): Modeling and simulation of cyclostationary processes with arbitrary marginal 
distributions. Water Resour. Res. 54, 161–185. https://doi.org/10.1002/2017WR021394 

Tsoukalas, I., Efstratiadis, A., Makropoulos, C., 2017. Stochastic simulation of periodic processes with 
arbitrary marginal distributions, in: 15th International Conference on Environmental Science 
and Technology. CEST 2017. Rhodes, Greece. 

Tsoukalas, I., Makropoulos, C., Koutsoyiannis, D., 2018b. Simulation of stochastic processes exhibiting 
any-range dependence and arbitrary marginal distributions. Water Resour. Res. 
https://doi.org/10.1029/2017WR022462 

Valencia, R.D. V., Schakke, J.C., 1973. Disaggregation processes in stochastic hydrology. Water Resour. 
Res. 9, 580–585. https://doi.org/10.1029/WR009i003p00580 

 


