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Reviewer 1 

GENERAL COMMENTS  
The manuscript proposes a wavelet-based phase randomization approach to generate multisite 
hydrological extremes, which is argued to be able to capture both spatial dependencies and non-
stationarities. The stochastic simulated data is reconstructed with the same values as original data in 
another temporal order, and this assures the reproduction of temporal dependence, extremes and 
nonstationarities. 
In addition, the multiplication of the same set of random phases to all the investigated sites ensures 
spatial dependences. The paper is clearly written, and the idea is well explained. However, I have 
listed some comments below which needs to be addressed before the manuscript is considered 
further for publications. 
 
Reply: Thank you very much for your comments, which we address point-by-point below. 
 
Major comments:  
COMMENT1: The spatial dependence can be simulated by using the same randomized phases for 
multiple time series among sites. You claimed this in your introduction and Section 3.2 step 1 without 
detailed explanation and references. From my understanding, the phases represent the time of the 
timing of changes or variations (in your case, it is extreme events), so if you use the same randomized 
phases, it is expected that there will be spatial dependence of extremes among the sites you 
investigated. Thus, could you give explanations or illustrations on this statement. 
Reply: Prichard and Theiler (1994) and Schreiber and Schmitz (2000) describe that the phases of all 
sites have to be randomized in the same way to preserve cross-correlations for multivariate time 
series. We added the two references to the description of Step 1. Chavez and Cazelles (2019) later 
proposed a surrogate approach for multivariate time series for a dataset of weekly measles 
notifications and an electroencephalographic recording where they apply a phase randomization 
procedure using random phases extracted from a random, normally distributed time series. We also 
added this reference to the corresponding section. 
Figure 1 in this response to the reviewer shows on the example of the four stations in the Pacific 
Northwest (see Figure 1 in paper) that the observed cross-correlation would not be captured by the 
simulations if the phases were randomized for each catchment individually instead of using the same 
set of randomized phases across all catchments. We added Figure one to the appendix of the 
manuscript. 
Modification: p.4, l.97; p.6, l.151, Figure A1 
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Figure 1: Comparison of observed (black) and simulated (orange) cross-correlation functions (ccfs) for the daily discharge 
values of the four catchments (i--iv) in the Pacific Northwest. 20 simulations were generated for each site individually, 
neglecting spatial dependence. 

 
COMMENT2: Section 3.2, step 1 shows how the random phases are computed from 
a random discharge time series from a normal distribution with mean 0 and standard 
deviation 1. Could you explain the specific reason to choose normal distribution or have 
you tested with other distribution for example, gamma and kappa distribution?  
Reply: It is correct that we compute the random phases from a normal distribution. We have also 
tested the kappa distribution, which did not change the results. We decided to go with the normal 
distribution as such a distribution was also used by Chavez and Cazelles (2019) who proposed a 
surrogate approach for multivariate time series for a dataset of weekly measles notifications and an 
electroencephalographic recording. This reference and a note that we also tested the kappa 
distribution was added to the description of Step 1. 
Modification: p.6, l.154-155 
 
Another similar question is about the selection of wavelet family and scale. In this study, you 
use Morlet wavelet, what is the specific reason to use this wavelet family, and how 
about other wavelet families, e.g., Paul, DOG and Marr (Torrence and Compo, 1998)? 
The sensitivity of your approach to the selection of wavelet family and scale? For the 
application of wavelet method in real world, the selection of wavelet family and scales 
is of great importance. 
Reply: Because of the phase randomization step, our application requires a complex wavelet with an 
imaginary part in addition to a real part. The DOG wavelet family is real valued while the Morlet and 
Paul wavelets are complex valued [Torrence and Compo, 1998]. Among the complex valued wavelets, 
we use the Morlet wavelet because it has been found suitable for hydrological applications in 
previous studies [Lafrenière and Sharp, 2003; Labat et al., 2005; Schaefli et al., 2007]. It provides a 
better frequency localization than other complex wavelets such as the Paul wavelet [Torrence and 
Compo, 1998]. We added the additional references (Lafreniere et al. 2003 and Labat et al. 2005) to 
the text. It is important that the number of scales is chosen high enough to allow for a fine resolution 
[Torrence and Compo, 1998]. Using e.g. only 20 scale results in reconstructed time series that do not 
reflect all the necessary detail. We chose 100 scales because further increasing the number of scales 
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no longer improves reconstruction performance. This specification was added to the text. 
Modification: p.4, l.120-121 and p.6 l. 156-158 
 
Additionally, I am unable to visualise where exactly the random phases go back into 
equation 3?  
Reply: The complex part of the wavelet transform Wn(h) comes in via the complex conjugate * in 
Equation 2. During back-transformation in Equation 3, it comes back in when deriving the real part at 
each scale h through R(Wn(hj)). We added this information to the description of Steps 3 and 4 of the 
simulation procedure. 
Modification: p.8, l.179-186 
 
What should have been the values of these phases with the observed data in the first place?  
Reply: The phases are uniformly distributed over the range of -𝜋 to 𝜋, which was specified in the text. 
Modification: p.7, caption of Figure 2 
 
Why should these phases be the same? I suspect the only impact these phases have is on spatial 
dependence. In that case why are the majority of results that are presented focusing on temporal 
dependence attributes? Figure 6 gives some flavour of the multi-suite stochastic generation. It looks 
troublingly similar to the observations. What would happen if non-identical phases used across all 
the sites? These questions are important to address to establish the contribution here is an improved 
representation of spatial dependence compared to other alternatives. 
Reply: The random phases have to be the same across all stations to retain spatial dependence, 
which is mentioned in the text and is why the spatial aspect receives a lot of attention in the 
validation part of the manuscript (Figures 6-11, i.e. half of the figures). Figure 6 gives an impression of 
what the simulated time series look like for three regions with four stations each. While the general 
distributional and temporal characteristics of the series are retained by the simulations, the 
simulations do not reproduce observed events but instead generate new series of potential 
successions of events. Figure 7 shows the cross-correlation functions among pairs of stations for the 
four catchments in the Pacific Northwest. If non-identical phases were used, these spatial correlations 
would not be reproduced as demonstrated in Figure 1 shown above. Figure 8 summarizes spatial 
dependencies over the whole distribution for all pairs of stations (671 times 671) in a variogram. 
Figure 9 gives an overview of spatio-temporal characteristics of simulated flood events and Figure 10 
summarizes spatial dependencies for all pairs of stations (671 times 671) via the F-madogram, a 
measure of extremal dependence. Also the last Figure (11) focuses on the spatial dependence aspect 
by comparing observed with simulated tail dependence coefficients, which are again computed for all 
pairs of stations. We clarify the description of the evaluation procedure by specifying that the general 
spatial dependence structure and the spatial dependence in high extremes is evaluated. Figure 1 in 
this response to the reviewer, which was added as an appendix to the manuscript, shows that spatial 
correlations are not retained if non-identical phases are used across all sites. 
Modification: p.9, l.210-211, Figure A1 
 
Regarding other alternatives, is there a possibility of comparing this method with the 
commonly used spatial stochastic generators such as SPIGOT or other equally worthy alternatives? I 
would like to see the variogram figure possibly expanded to also show alternate outcomes using 
other formulations of spatial dependence (i.e. different ways of specifying phases). 
Reply: We rerun the simulations for the whole set of stations without using the same phases across 
all stations but generating a set of random phases for each station individually. Figure 2 in this 
response to the reviewer, which was added to the appendix of the manuscript, shows that spatial 
dependence is modeled much worse than when randomizing the phases for all catchments in the 
same way (Figure 8 in manuscript).  
We agree that a comparison of different spatial stochastic generators with respect to how they 
represent spatial extremes would be interesting and valuable. In order to make such a model 
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comparison study beneficial for the community, ideally a broad range of models ranging from 
continuous to event-based models should be compared as there exists no commonly accepted 
benchmark/reference model. Such a comparison goes beyond the scope of this manuscript and should 
be addressed in a separate study. 
Modification: Figure A2 

 
Figure 2: Comparison of observed (black) and simulated (orange) variograms for 20 simulation runs where the phases were 
randomized for each station individually. 

 
COMMENT3: Section 3.2, step 4 mentions how the reconstruction is done by using 
the inverse wavelet transform (Eq. (3)) combining the derived random phases and the 
amplitudes in previous steps. Could you write the combination explicitly in the from of 
the equation (i.e., include the random phases in the Eq. (3))? 
Reply: The complex part of the wavelet transform Wn(h) comes in via the complex conjugate * in 
Equation 2. The complex conjugate is derived using the modulus and argument, i.e. the phases, of the 
complex numbers contained in the Morlet wavelet (Equation 1). The wavelet coefficients Wn(h) 
resulting from the transform are also complex numbers where the argument of the complex wavelet 
value Wn(h) corresponds to the wavelet phase. During back-transformation in Equation 3, the phases 
come back in when deriving the real part at each scale h through R(Wn(hj)). These explanations were 
added to the text. 
Modification: p.8, l.179-186 
 
Minor comments: Line 147: h=100 wavelet scales, I think you mean number of wavelet 
scales is 100, not the scale itself equals 100.  Wavelet scales should be hj = h0*2ˆ(j*dj), j=0,1,: : :J. Or 
is this some parameter that is specific to a continuous wavelet transform? Why is it of relevance, 
what impact does it make, and why use the same value for all locations is something that should be 
discussed. 
TORRENCE, C. & COMPO, G. P. 1998. A Practical Guide to Wavelet Analysis. Bulletin of the American 
Meteorological Society, 79, 61-78. 
Reply: Thank you for pointing this out, yes, we intended to refer to the number of wavelet scales. This 
was adjusted in the text. The number of scales can be freely chosen in the case of the continuous 
wavelet transform. A high number of scales compared to a low number of scales allows for a finer 
resolution [Torrence and Compo, 1998] and for a detailed reconstruction of the original time series. 
Modification: p.8, l.179 
 
 

Reviewer 2: Dr. Sandhya Patidar 
 
The paper presents a continuous wavelet-based phase randomisation approach for the 
stochastic generation of streamflow time series. This is an interesting paper that 
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substantially extends the original techniques developed in [1] for stochastic simulation of 
streamflow using Fourier transformation based phase randomisation. The original method, 
presented in [1] is associated with certain limitations such as application of Fourier 
transformation does not account for the non-stationarities in time series and resulted in an 
underestimation of spatial dependencies (e.g. cross-correlation) in both daily discharge and 
extreme events across the multiple sites. The present paper address some of the limitations 
observed in [1] by replacing Fourier transformation with a complex wavelet-based approach. 
The efficiency of original method has been evaluated to generate realistic series for 
distributional and temporal correlation characteristics and is validate through the application 
across four catchments in Switzerland. The proposed model is applied to a large dataset of 
671 catchments in the contiguous United States and the efficiency of the model has been 
evaluated by assessing its ability to capture distributional and temporal characteristics at 
individual sites along with the spatial dependencies across the multiple sites, and extreme 
events (floods) including duration and volume. 
 
Some general comments  
Section 1 - Considering the theme of paper that signifies the application of wavelet 
approach, the Introduction section presents an interesting critical review on recently 
developed/applied modelling schematics that involves wavelet-based phase randomisation 
as a key approach. 
Line 70-73: To add clarity it would be helpful if the authors' team add some brief explanation 
on how data normalisation procedure and back transformation impacts the spatial 
dependencies. 
Reply: Thank you for pointing out the need for clarification. We specify that ‘This weakening is 
because phase randomization preserves the cross-correlation in the normal domain but not 
necessarily in the domain of the original distribution as linear correlation is not invariant under non-
linear strictly increasing transformations.’ 
Modification: p.3, l.71-73 
 
Line 87-88: Please add some clarity on how continuous wavelet transform is more effective 
than a discrete wavelet transforms in minimising/overcoming issues around the long-term 
periodicities and/or non-stationarities. Is there any specific studies carried out to investigate 
such issues. 
Reply: The discrete wavelet transform only allows for real wavelet functions while the continuous 
transform allows for complex wavelet functions. Stochastic approaches randomizing only real-valued 
amplitudes have been shown to have problems with the reproduction of non-stationarities 
[Breakspear et al., 2003]. Chavez and Cazelles (2019) show that the randomization of phases 
(information stored in the complex-valued coefficients) allows for the generation of non-stationary 
time series. We rephrased the whole paragraph to clarify that the advantage of using a continuous 
instead of a discrete transform comes from the additional phase information gained when using 
complex wavelet functions which are only available for the continuous transform. 
Modification: p.3, l.83-83 and l.89-93 
 
Section 2 - Theoretical background section provides suffiecient details on the wavelet 
decomposition approach. 
Reply: We are glad that you consider the background section to provide sufficient detail. 
 
Section 3 Data – For illustration and validation purposes, dataset are organised in three different 
region based on the general hydrological characteristics. It is not clear which specific properties has 
been used and how rigorously they have been appied. I think, this work could have benefitted if 
Authors’ have considered using some form of clustering approaches (e.g. K-mean) based on key 
characterisetic for clustering the sites. 
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Reply: Thank you very much for this suggestion. We indeed applied a clustering procedure to define 
these regions which are similar in terms of their flood characteristics. The clustering was applied on a 
distance matrix computed from the F-madogram, which is a measure of extremal dependence, 
between pairs of stations. The clustering was applied to the 671 catchments and resulted in 15 
clusters among which we selected 3 for illustration purposes. We added a short description of the 
clustering procedure to the text. Our manuscript, where we describe this clustering procedure and the 
resulting clusters, is currently under review and we will include its reference here if it receives a DOI 
before this manuscript eventually goes into press.  
Modification: p.5, l. 142-154 
 
Section 3 Method - It seems that the model interconnect different site only as part of step 1 (phase 
randomisation/perturbation applied throught the medium of white noise). All the remaing steps (1-4 
steps) are applied independently across all the sites. I think the approach is appropriate. A separate 
Kappa distribution is fitted for each day for a 30-day window to factor in seasonal differences. I have 
a minor concern here, What is the motivation for the selection of a 30 day window, how does it 
effect data with different seasonal periods across different sites (e.g. may be one site having monthly 
seasonality but other having weekly seasonal characteristics or say over a three months period). 
Reply: Thank you for acknowledging the appropriateness of our approach. We chose a window of 30 
days to temporally pool data prior to the estimation of the daily parameters of the kappa distribution. 
The idea of the smoothing is to reduce the effect of sampling uncertainty and to reduce day-to-day 
variability in parameters under the assumption that the distribution of flow on day x is unlikely to be 
substantially different from the one on day x+1. A value of 30 days was chosen for the moving 
window to enable sufficient smoothing in the parameter space and to ensure a sufficient sample size 
for the estimation of the four parameters. The moving-window nature of the approach allows for 
capturing seasonal and partly also weekly variations. We clarified in the method description that this 
approach corresponds to a moving window approach.  
Modification: p.8, l.171 
 
Section 4 
A robust evaluation has been conducted that includes careful seletion of sites (distinct and 
representative). Statistics used for comparision are appropriate and results are well explained.  
Reply: Thank you for appreciating the representativeness of our evaluation. 
 
Some minor comments  
Figure 9 – Visually observed and simulated looks in good agreement for occurance of POT events but 
for a robust comparision some measurements should bave been used in parallel. 
Reply: We computed differences in the mean inter-event duration (i.e. time elapsing between two 
successive events) of observed and simulated series and the standard deviation of inter-event 
duration for events where 1, 2, and 3 stations were jointly affected, respectively. We find that over all 
three regions, relative differences in mean and standard deviation of inter-event duration lie mostly 
below 10%. However, we find that a visual comparison is most effective here to demonstrate the 
value of the simulation approach. 
 
Figure 10 gives a good illustration of how spatial dependencies could be effected among th sites with 
respect ot the Euclidean distance. However, for the readers benefit it would be appreciate if Authors’ 
consider to provide few sentences to explain F-madograms plots, specifically, what should a relative 
difference of 0.05 in observed and simulated values should be interpreted. 
Reply: We specified in the figure caption that the F-madogram is a measure of extremal dependence. 
We also state that an overestimation of spatial dependence means that a pair of stations co-
experiences more joint floods than in the observations. What a difference of 0.05 means in terms of 
differences in regional hazard estimates is hard to say and would need to be investigated in a proper 
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study where the stochastic simulations are used to estimate regional flood hazard. 
Modification: p.17, caption of Figure 10 
 
Section 5 and 6 – Overall good and capture key aspects of the paper. 
Reply: Thank you. 
 
Reference 
[1] Manuela I. Brunner, András Bárdossy, and Reinhard Furrer, Technical note: Stochastic 
simulation of streamflow time series using phase randomization, Hydrol. Earth Syst. Sci., 23, 
3175–3187, 2019. 
 

Commentator Tsoukalas 

 

Introduction  
This is an interesting work aiming to provide a method (as well as implement it in an R package; 
function called PRSim.wave within PRsim R package) for the simulation of multivariate hydrological 
processes (for now, focusing on streamflow) - which according to the results presented by the 
Authors has a good potential, requiring yet some improvements.  
In general, I find the manuscript well-organized and straightforward to understand, yet in my view, 
there are several points that require the Authors attention.  
All comments and suggestions are meant to be constructive and aim to improve the quality of the 
manuscript, as well as the findings obtained.  
Reply: Thank you for your detailed comments, which we address below. 
 

Comments  
 L6-7. I suggest to write: “To do so, we propose the stochastic simulation approach called 

Phase Randomization Simulation using wavelets (here after called PRSim.wave) which 
combines… ”.  
Reply: We added brackets around PRSim.wave. 
Modification: p.1, l.7 
 

 L11. To avoid confusing the reader, and provided that a few lines above it is mentioned that 
“We apply and evaluate PRSim.wave on a large set of 671 catchments in the contiguous 
United States.”, I suggest to write: “…at multiple sites (up to four)…”  
Reply: We mean to say that we evaluate the set on 671 catchments. However, it is correct 
that we focus on three sets of four stations each in order to present a few more detailed 
results. Since we show that the approach works for very large datasets, we think that a 
generalization to ‘multiple sites’ is justified. 
 

 L34. I wonder what are the “potential non-stationarities” mentioned by the Authors? Are you 
refereeing to the typical cyclostationary behavior exhibited by hydrological processes?  
Given the opportunity, and as a side note, I would like highlight that stationarity is an 
essential tool for inferencing from data (e.g., model fitting). Stationarity should not be seen 
as a shortcoming, nor dead. Non-stationarity implies non-ergodicity, which in turn makes 
inference from observed data impossible, unless of course the deterministic dynamics of the 
process are known; which in my understanding, is never the case in hydrological sciences. On 
this topic, I recommend the recent work of Serinaldi et al. (2018), with emphasis on section 
4.2, as well as the works of Koutsoyiannis and Montanari, (2007), (2015), Lins and Cohn 
(2011), Matalas (Matalas, 2012), and Montanari and Koutsoyiannis (2014), that argue in favor 
of stationarity. See also the very interesting, note of Harry F. Lins. As Harry F. Lins concludes 
his note:  
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Stationarity ≠ static  
Non-stationarity ≠ change (or trend)  
Reply: What we state in this manuscript is that PRSim.wave is able to reproduce non-
stationarities in the data. This is shown in Figures 4e. It is shown there that the wavelet power 
corresponding to different scales varies over time, i.e. the importance of different cyclical 
features varies over time. We are neither saying that stationarity is dead nor that it is a 
shortcoming. In contrast, we point out that developing stochastic models that can handle 
non-stationarities is important.  

 
L36. I am not sure what is the meaning of “continuous” here? Can you please 
elaborate/specify? Also, some references would be useful. 
Reply: We specify that continuous approaches correspond to discrete-time models in the 
stochastic literature. 
Modification: p.2, l.36-37 
 

 40. Although I understand its rationale, I am not a big fan of the now-typical classification of 
stochastic models on “parametric and non-parametric”, since in my view, there is no model 
without parameters. Typically, the literature uses the term “non-parametric” to refer to 
approaches that use some kind of resampling mechanism (e.g., k-nn algorithm) and/or “non-
parametric” distribution functions (e.g., kernel-based approximation of the density function) 
to generate synthetic data. But, one should take a moment and think, are these really non-
parametric? Isn’t the k (i.e., the number of nearest neighbors) in k-nn algorithm a 
parameter? Isn’t the choice of the kernel smoothing function (e.g., normal, epanechnikov, 
box, triangle) a parameter? Isn’t the bandwidth of the kernel a parameter (also called the 
smoothing parameter)? Aren’t the data per se used as parameters (e.g., when a non-
parametric method relies on the sampling from the empirical CDF or kernel-based CDF. What 
if we have new data or alter a few? Does the model change?)? Having said these, I suggest to 
the Authors to reconsider using the employed classification, as well as review the recent 
literature (e.g., Serinaldi and Kilsby, 2014; Tsoukalas et al., 2019) for finding an alternative 
classification.  
Reply: We here understand a parametric approach as an approach where a model is fitted to 
the data. We agree, however, that the choice of k in a nearest-neighbor algorithm might also 
be viewed as a parameter in a wider sense. We would, however, not go as far as to say that 
the data are parameters. However, they are subject to sampling uncertainty, which influences 
model fitting. 
 

 L41-43. The Authors write: “…and temporal disaggregation models such as fractional 
Gaussian noise models (Mandelbrot, 1965), fast fractional Gaussian noise models 
(Mandelbrot, 1971), broken line models (Mejia et al., 1972), and fractional autoregressive 
integrated moving average models (Hosking, 1984).”.  
To clarify, these are not disaggregation models, but models able to simulate processes 
exhibiting long-range dependence (particularly, designed to simulate fractional Gaussian 
noise (fGn) processes or else, processes exhibiting Hurst behavior). See a similar discussion in 
the introduction section of Tsoukalas et al. (2018b).  
Reply: We rephrased the sentence as follows: ‘Parametric models include autoregressive 
moving average (ARMA) models and their modifications (Stedinger1982, Paplexiou2018), and 
fractional Gaussian noise models (Mandelbrot1965) comprising fast fractional Gaussian noise 
models (Mandelbrot1971), broken line models (Mejia1972), and fractional autoregressive 
integrated moving average models (Hosking1984).’ 
Modification: p.2, l.42 
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 L44-45. The Authors write: “Nonparametric models are based on disaggregation and 
resample from the data with perturbations and include…”.  
I think that this statement can be confusing, and needs some refinement. “Non-parametric” 
models are not necessarily based on the notion of disaggregation. Of course, the literature 
offers “non-parametric” disaggregation methods (e.g., Lee et al., 2010; Tarboton et al., 1998), 
but this does not makes all “non-parametric” methods, methods that “based on 
disaggregation and resample”. Further details on disaggregation methods can be found on 
the seminal works of Valencia and Schakke (1973), and Mejia and Rousselle (1976), as well in 
the work of Koutsoyiannis (2001) who provide a detailed overview on the subject. For a more 
recent overview and discussion on the topic of disaggregation and multi-temporal simulation 
see also work of Tsoukalas et al. (2019).  
Reply: Thank you for pointing out that this statement is confusing. We rephrased the 
sentence to ‘Nonparametric models include kernel density estimation (Lall1996, Sharma1997) 
and various bootstrap approaches...’ 
Modification: p.2, l.44-45 
 

 L48-49. The Authors write: “…but none of these time domain methods can capture the 
spectral properties of the observed time series (Erkyihun et al., 2017).”.  
In my view this statement is a bit confusing, requiring the Authors attention, for two reasons.  
1) A timeseries (i.e., a sequence of observations ordered in time) does not has spectral 
properties, it exhibits some form of dependence structure (which can be quantified using 
statistics/stochastics, e.g., through the empirical correlation coefficients and the empirical 
spectrum). What has spectral properties is the stochastic process that it is assumed that 
generated the observed timeseries.  
2) Having said the above, and since correlation and spectrum are interrelated quantities, if a 
model is capable of reproducing the process’s correlation structure it also reproduces its 
spectrum (and vice versa). For further details and references, see my previous comment 
(Tsoukalas, 2019) on a recent work co-authored by the first Author of this work.  
Reply: Thank you for pointing out that this statement was confusing. We removed the first 
part of this sentence and now state ‘and the representation of spatial dependence in such 
time-domain models is challenging.’ 
Modification: p.2, l.48 
 

 L49-50. In my view the sentence “Furthermore, these time-domain models struggle with the 
representation of spatial dependence” is a bit “strict”, since as far as I see it, there is no 
struggle, but many research efforts (past, and new).  
The stochastic hydrology literature offers several “time-domain” models that can simulate 
parsimoniously multivariate processes, including both stationary and cyclostastionary 
processes (e.g., Efstratiadis et al., 2014; Koutsoyiannis, 2001, 2000), reproducing also the 
moments of the observed processes (typically up to third order). Further to these 
models/methods, more recent approaches allows the parsimonious simulation of 
multivariate stationary and cyclostationary processes with any marginal distribution and 
correlation structure (Kossieris et al., 2019; Tsoukalas, 2018; Tsoukalas et al., 2018a, 2018b), 
also in a multi-scale context (Tsoukalas et al., 2019). Apart from the last work, for another 
multi-scale and multivariate simulation study involving daily rainfall at 4 sites the Authors are 
referred to Appendix D, section D.2, of Tsoukalas (2018). Therefore, taking into consideration 
the above-mentioned works I would suggest the Authors to revise the sentence accordingly, 
as well as provide some references.  
Reply: We rephrased the sentence to ‘and the representation of spatial dependence in such 
time-domain models is challenging.’ 
Modification: p.2, l.48 
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 L54-55. The Authors write: “In contrast to time-domain models, frequency-domain models 
allow for the simulation of surrogate data with the same Fourier spectra as the raw data”.  
This can be also true for time-domain methods (but not a good modelling practice in either of 
the two cases; see below). For instance, if one employs an AR or MA model of high order can 
simulate a realization of a process exhibiting exactly the empirical autocorrelation 
coefficients up to the order dictated by the model. However, this is not a good modeling 
practice since it is well-known that the empirical estimators of auto- (and cross-) correlation 
coefficients are (downward) biased (Beran, 1994; Koutsoyiannis, 2003, 2000), especially in 
the case of long-range dependence, short samples, and large lags. See also Matalas (1967 p. 
945) who remark that:  
“Parameters that are determined in terms of high order moments of large time lags are 
subject to large standard errors and consequently large operational biases. Operational 
biases can never be eliminated, but they can be minimized by the use of regionalization to 
account for the temporal and spatial variations inherent in the historic sequences…”.  
Of course, the same applies for the empirical estimators of spectrum (see the comparative 
work of (Dimitriadis and Koutsoyiannis (2015)). Note that this kind of approaches are not 
parsimonious (since all the empirical estimates used in model fitting are essentially model 
parameters). To cope with these, the recent literature (Kossieris et al., 2019; Tsoukalas et al., 
2019, 2018b), as well some works already cited in the manuscript (i.e., Papalexiou (2018)), 
has leaned towards the use of parametric models (e.g., with two or three parameters) to 
parsimoniously describe the dependence structure of the processes. The Authors are 
referred to the work of Koutsoyiannis (2000) which in my view popularized that idea in 
hydrological domain, also introducing a parsimonious two-parameter auto-correlation 
structure. It is also interesting to note the work of Papalexiou (2018) (already cited in the 
manuscript), who employed the functional form provided by the survival function of a 
distribution to define several auto-correlation structures.  
Reply: We weakened the statement and rephrased the sentence to: ‘In contrast to most time-
domain models,..’ 
Modification: p.2, l.53 
 

 L70-72. The Authors write: “In addition, it may help to improve the representation of spatial 
dependencies because it does not require a transformation to the normal distribution and 
back to the original, skewed distribution, which usually weakens spatial correlations 
(Embrechts et al., 2010).“  
First, the comment on “weaken spatial correlations” applies for all “types” of correlations 
(that emerge from the mapping/transformation from the Gaussian to the actual domain) – 
not only spatial. Particularly, in the case of stochastic processes, it also applies for the auto-
correlation structure of a stationary processes, as well as for the season-to-season 
correlations of a cyclostationary process (Tsoukalas et al., 2018a, 2017). It also holds for 
multivariate cases. However, I am afraid that I cannot see the improvement of the 
representation of spatial dependencies mentioned above by the Authors. The cross-
correlations as well as the auto-correlation are still not accurately reproduced (see my 
comments below on the results/plots). It is my understanding that a previous comment of 
mine (Tsoukalas, 2019) on a recent work co-authored by the first Author of this work holds 
also for this method. This is due to the following:  
Reply: We here specifically talk about the effect of back transformation on spatial correlation 
because this is the focus of this study. As mentioned in the manuscript the wavelet transform 
employed here does, compared to the Fourier transform, not necessitate a transformation to 
the normal domain, and a back transformation to the domain of the skewed distribution, 
which improves the representation of spatial correlations as compared to the Fourier 
transform based approach [Brunner et al., 2019]. Figure 1 shown in the response to reviewer 
1 was added to the manuscript (A1) and illustrates that spatial correlations are not well 
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represented if phases are randomized for each station individually. In contrast, the use of the 
same random phases for all the stations as proposed in this manuscript leads to a nice 
reproduction of spatial dependencies as illustrated e.g. by the cross-correlation functions 
shown in Figure 7 in the manuscript. 
Modification: Figure A1 
 

 L145. The Authors write: “Derivation of random phases: A random discharge time series 
(white noise) of the same length as the input series is sampled from a normal distribution 
with mean 0 and standard deviation 1.”  

 L170-173. The Authors write: “Transformation to kappa distribution: The simulated values 
are transformed to the kappa domain using the fitted daily kappa distributions from Step 2. 
For each day, a random sample is generated from the fitted, daily kappa distribution. The 
simulated values are replaced by the values generated from the kappa distribution using 
rank-ordering. This procedure is repeated for each day in the year.”  
Based on the above the method presented herein depends on an auxiliary Gaussian process 
and uses the target ICDFs, as well as the rank-correlations to establish the (auto- and cross-) 
dependence structure. It is reminded that such a procedure will preserve the ranks 
correlation coefficients (which do not depend on the marginals) but not the Pearson’s, 
(which depends on the marginals; since it involves the cross-product moment of the among 
the variables). For further details the Authors are referred to the comment mentioned above, 
as well as in the references therein. It is my understanding that the mechanics of the method 
that dictate the preservation of ranks is the reason why the auto- (and cross-) correlations 
are not so well reproduced by the proposed method.  
Reply: The results shown throughout Figures 7-11 demonstrate that the wavelet-based 
phase-randomization approach we present in this manuscript is well capable of reproducing 
observed spatial dependencies which is not the case when randomizing the phases of the 
Fourier transform as shown in Brunner et al. (2019). 
 

 L149 (and elsewhere): The use of Kappa distribution. As mentioned in a previous comment 
of mine in HESS related with a work co-authored by an Author of this manuscript there are 
few complications worth considering when using the Kappa distribution. The following 
comments are excerpted with minimum or no modifications at all from Tsoukalas (Tsoukalas, 
2019).  
1. Since you are using the Kappa distribution it could be insightful to mention that under 
certain parameter combinations, this distribution may lead to infinite moments. This can be a 
delicate issue, since if the fitted distribution exhibits infinite variance then the Pearson’s 
correlation cannot be defined (the denominator contains the variance), and thus the 
proposed model (as well as many other models) cannot be used. This situation is discussed in 
section 3.4 of Tsoukalas et al. (2018b; and references therein), where it is advocated (based 
on empirical, as well as theoretical reasoning) that physical processes are characterized by 
finite variance (Koutsoyiannis, 2016). Particularly, if 𝑋 is a Kappa-distributed random variable, 
and 𝜇𝑟=[𝑋𝑟] denotes the 𝑟𝑡ℎ raw moment, as discussed in Hosking (1994), and elsewhere, the 
existence of the 𝑟𝑡ℎ depends on the values of ℎ and 𝑘. Specifically, the moments exist: for all 
𝑟 if ℎ≥0 and 𝑘≥0 for 𝑟<−1ℎ𝑘⁄ if ℎ<0 and 𝑘≥0,and for 𝑟<−1𝑘⁄if 𝑘<0  
It is also interesting to mention that Hosking (1994) notes that the first four moments cannot 
uniquely determine the parameters of the distribution, since some combinations of moments 
(expressed by skewness and kurtosis coefficients) correspond to different pairs of ℎ and 𝑘.  
2. How do you handle negative values? As far as I am aware the left (and right) support of 
Kappa distribution is not necessarily zero (e.g., when 𝑘=0 and ℎ≤0, then the supports of the 
distribution are, −∞<𝑥<∞; see Hosking (1994)). In any case, the generation of negative values 
can be eliminated by using a distribution function defined in the positive real line. 
Particularly, I would suggest the investigation/use of the Generalized Gamma and Burr type-
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XII distributions, which are more parsimonious (they entail three parameters; instead of four 
as in Kappa) and were found adequate for modelling of hydrometeorological variables; 
particularly rainfall (e.g., Papalexiou and Koutsoyiannis, 2016). Examples of their use within 
the context of stochastic modelling can be found the work Papalexiou (2018), as well as in 
Tsoukalas et al. (2019, 2018b) and Tsoukalas (2018).  
Reply: We tested the Burr type XII (validation results see Figure 1 in https://www.hydrol-
earth-syst-sci-discuss.net/hess-2019-142/hess-2019-142-AC1-supplement.pdf) and 
generalized Gamma distributions, which were, however, not flexible enough to model the 
marginal distributions of the daily discharge values and led to unrealistically extreme high 
flows in the simulations and will therefore not be considered as alternatives to the kappa 
distribution. The R-package PRSim, however, allows for the implementation of any 
distribution chosen by the user as specified in the section code and data availability. We 
specify that negative simulated values are replaced by 0, which corresponds to the use of a 
bounded kappa distribution. 
Modification: p.8, l.189 

 

 L158-160. The Authors write: “We fit a separate distribution for each day to take into 
account seasonal differences in the distribution of daily streamflow values. To do so, we use 
the daily values in a 30-day window around the day of interest.”  
Can you please elaborate on this? Just to be sure, for each “site” and for each day of the year 
a Kappa distribution has been fitted with different parameters? If this is the case, just for the 
marginal behavior, and for each site you fitted Kappa 365 times, which implies that the 
model has 365×4 (the number of parameter of Kappa)=1460× the number of sites, 
parameters (not accounting those for the specification of the auto and cross-dependence 
structure of the process). If this is the case, I am afraid that this is not a parsimonious model, 
something that should be clearly stated in the manuscript (also mentioning the total number 
of its parameters).  
Also, I don’t think that it is reasonable to assume that days belonging in the same month 
(e.g., the 19th and the 20th of August) have different marginal distribution (although, I have 
seen stochastic simulation related works following that approach, I am not aware of any 
paper supporting this assumption). The standard approach for daily (or finer time) scales is to 
consider stationarity within the monthly interval (i.e., in the case of daily data consider that 
all days belonging in the month have the same marginal distribution). An arguably more 
parsimonious approach, since in this case the total number of parameters for the marginal 
behavior would be 12×4 (the number of parameter of Kappa)=48× the number of sites. Note 
that the number of parameters could be further reduced by using, instead of Kappa, 
alternative 2- or 3-parameter distribution models.  
Reply: Yes, the kappa distribution was fitted for each day of the year. A moving window 
approach was used to reduce the effect of sampling uncertainty and to reduce day-to-day 
variability in parameters under the assumption that the distribution of flow on day x is 
unlikely to be substantially different from the one on day x+1. We acknowledge in the 
discussion section that ‘ it [the model] requires the fitting of many parameters, which make 
the model non-parsimonious (Koutsoyiannis2016). 
 

 L162-164. The Authors write: “In a few regions with many zero discharge values (e.g. some 
catchments in the Great Plains) fitting the kappa distribution is not possible and we therefore 
use the empirical distribution instead.”  
This is a work-around that could work, but I wonder, why not use an alternative distribution 
model (e.g., zero-inflated or mixed) that can model simultaneously both the discrete (i.e., 
probability of no discharge) and continuous part (i.e., distribution of non-zero discharge) of 
the process? Also, can you provide an estimate on the number of cases where the empirical 
distribution is employed instead of Kappa?  
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Reply: This work around was necessary for those stations in the Great Plains showing an 
intermittent flow regime with many 0 values. If desired, the R-package PRSim allows for the 
implementation of an alternative distribution as specified in the data and code availability 
section. 
 

 L218-219. The Authors write: “the seasonal (3d) and monthly distributions (3e–g) are well 
captured by the simulations.”  
This is a confusing description of the plots. The (3e–g) plots show that some seasonal 
summary statistics are reproduced (i.e., monthly mean, monthly maxima, monthly minima), 
not the seasonal distributions (to do so you need alternative plots, comparing the empirical 
distribution of each month with the corresponding theoretical one). Also, I don’t understand 
what plot 3d shows? What does “seasonal statistics” means in the title of this plot? What 
does the phrase “the seasonal discharge distribution” means at the legend of Figure 3? These 
are box-plots, and by no means should be used to compare distribution functions (they 
provide way too few information - about specific quantiles).  
Reply: We rephrased this sentence to ‘the seasonal and monthly distribution characteristics’. 
The boxplots are used here to give an impression of the good match between median, upper, 
and lower quartile. We see the information provided by the boxplots as a proxy for important 
distribution characteristics. Tails of the observed and simulated distributions are not expected 
to perfectly match as the theoretical distribution allows for the extrapolation to unobserved 
values. 
Modification: p.9, l.236 
 

 L220-222. The Authors write: “the temporal correlation characteristics (4a–c), …. are well 
captured by the simulations as well.”  
In my view there is an important difference between the simulated and empirical 
autocorrelation coefficients. For instance, by eye-balling the median of the orange lines 
(simulated) for time lag 10 we get a value about equal to 0.5, while the observed one is 0.4. 
This should be clearly stated in the manuscript. For the readers convenience, I also suggest 
the inclusion of a line depicting the median of the simulated quantities (orange lines). 
Providing lines for a low and high quantile (say 0.05 and 0.95) would be nice also. This 
comment applies for all similar plots throughout this manuscript.  
Reply: As illustrated by Figure 4, the simulated temporal correlation characteristics are very 
close to the observed ones. We depict individual lines for individual realizations to 
communicate the variability inherent in the simulations to the reader. 
 

 L223-225. The Authors write: “Both high- and low- extremes are realistically modeled as 
illustrated by the distributions of the above and below threshold events of the four 
catchments in the Pacific Northwest (Fig. 5).”  
To avoid confusion with actual distribution functions, e.g., the Kappa, instead of using the 
phase “as illustrated by the distributions of the above and below threshold events”, I would 
suggest the use of phrase similar to: “as illustrated box-plots of Fig.5, constructed by the 
values of the above and below threshold events”.  
Reply: We rephrased the sentence to ‘as illustrated by the boxplots depicting the distribution 
of the above and below threshold events.’ 
Modification: p.13, l.240 
 

 L223-225. Please remind the reader the selected threshold values.  
Figure 6 (legend). I assume that you wanted to write: “… (b) for the three catchments in 
the….”.  
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Reply: We actually meant to write for the four catchments in the three example regions. The 
‘three’ was added for clarification. 
Modification: p.14, caption of Figure 6 
 

 L230-233. The Authors write: “This visual impression of a good performance with respect to 
the reproduction of spatial correlations in daily discharge data is confirmed by comparing 
observed and stochastically simulated cross-correlation functions for the catchments in the 
Pacific Northwest (Fig. 7). Both the shape and magnitude of the cross-correlation functions 
are well simulated”.  
I am afraid that this sentence is needs some refinement, since as with the case of auto-
correlation coefficients, Fig. 7 shows a significant deviation of the simulated cross-correlation 
coefficients from the observed ones. This should be reflected in the manuscript. For the 
readers convenience, I would also suggest the inclusion of a line depicting the median of all 
simulations (orange lines). Providing lines for a low and high quantile (say 0.05 and 0.95) 
would be nice also.  
Reply: Figure 7 shows that the ccfs derived from the simulations are very close to those 
derived from the observations. For a reference we provide Figure 1 in response to reviewer 1, 
which shows that a model where phases are randomized for each catchment individually 
would result in a poor reproduction of observed ccfs. 
 

 Figure 7. There is something wrong with the labeling of the panels (i.e., multiple panels are 
labeled as ii, iii, iv, while some others are completely unlabeled).  
Reply: Each row and column receives a label for the catchment it refers to. These are pairwise 
plots where cross-correlations are computed for pairs of stations. This specification was 
added to the caption. 
Modification: p.15, caption of Figure 7 
 

 239. The Authors write: “…but also for extreme values as illustrated by the peak-over-
threshold (POT) values for the different stations in the three illustration regions (Fig. 9). 
These results show that besides regional flood co-occurrences, the temporal clustering 
behavior of events is also reproduced.”  
In my view, Figure 9 is not very informative (the y-axis has been omitted intentionally?). Can 
you please provide an alternative figure, as well as a quantitative metric, quantifying the 
reproduction of temporal clustering behavior of events?  
Reply: We labeled the y-axis with ‘event occurrences’. We think that the figure gives a good 
impression on whether the temporal clustering features of the observations are reproduced 
by the simulations. Finding intuitive quantitative measures for this is challenging. However, 
we computed differences in the mean inter-event duration (i.e. time elapsing between two 
successive events) of observed and simulated series and the standard deviation of inter-event 
duration for events where 1, 2, and 3 stations were jointly affected, respectively. We find that 
over all three regions, relative differences in mean and standard deviation of inter-event 
duration lies mostly below 10%. However, we find that a visual comparison is most effective 
here to demonstrate the value of the simulation approach. 
Modification: p.17, Figure 9 

 

 Discussion section. In my view all the above points should be discussed in this section, 
highlighting also the limitations of the presented method. Further to these, it should be 
noted that the proposed model has been tested for multivariate problems involving 4 
processes, as well as the method is capable of generating synthetic timeseries with length 
equal to the observed one (I haven’t read how to handle the case where one wants to 
generate longer timeseries – is it possible to generate synthetic timeseries with length 
different than the observed one?).  
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Reply: In the discussion we address the limitations of our approach by stating that the 
approach only allows for the simulation of time series of the same length as the observed 
series (l 257-259). We would like to highlight here that the modeled range of dependence is 
also limited to the one in the observed series if one very long time series is generated. 
We also discuss the disadvantages related to working with distributions fitted to daily values.  

 

 L258-259. The Authors write: “This difference between methods may be related to the fact 
that the wavelet transform compared to the Fourier transform does not necessitate a 
transformation to the normal domain, and a back transformation to the domain of the 
skewed distribution, which has been shown to weaken spatial correlations”.  
I think that the answer is is much simpler than the one stated above. The former method is 
simply designed for the simulation of univariate processes, i.e., not to account for the cross-
correlations (or cross-spectrum) among processes. I suggest the Authors to consider more 
carefully the “mechanics” of the aforementioned methods, and revise the sentence 
accordingly. Also, as mentioned before, the comment on “weaken spatial correlations” 
applies for all “types” of correlations (that emerge from the mapping/transformation from 
the Gaussian to the actual domain) – not only spatial. Particularly, in the case of stochastic 
processes, it also applies for the auto-correlation structure of a stationary processes, as well 
as for the season-to-season correlations of a cyclostationary process (Tsoukalas et al., 2018a, 
2017). It also holds for multivariate cases.  
Reply: We here specifically focused on the spatial aspect because the focus of our study was 
on generating spatially consistent time series and event sets. The Fourier-based method 
results in much weaker spatial correlations than the wavelet-based approach even if phases 
are randomized in the same way across catchments. 
 

 L270-271. The Authors write: “Thanks to a spatio-temporal model based on phase 
randomization, temporal short- and long range dependencies, non-stationarities, and spatial 
dependencies are reproduced.”  
Please consider my comments on the parameterization (i.e., number of parameters), as well 
as on the performance of the model and revise this sentence accordingly.  
Reply: We think that this conclusion is supported by the results presented in our model 
evaluations throughout the results section, which is also acknowledged by Reviewer 2. 
 

 A general comment. A final comment regards the title of the manuscript, which is: 
“Stochastic simulation of streamflow and spatial extremes: a continuous, wavelet-based 
approach”. By reading the paper I see that the Authors pay special focus on the reproduction 
of extremes, but it is not clear to me why this model is different from any other in that 
aspect (e.g., see those mentioned above)? What makes this model suitable when aiming to 
reproduce extremes? Other similarly parameterized models behave differently? If yes, why? I 
believe that a theoretical justification or even an empirical comparison with alternative 
model(s) would be particularly useful and an added value for the paper.  
Regards,  
Ioannis Tsoukalas  
Reply: We show that PRSim.wave is capable of reproducing spatial dependencies in extremes 
which has been shown to be challenging in previous studies [Sharma et al., 1997; Caraway et 
al., 2014]. Our wavelet-based approach has the advantage of being non-parametric in terms 
of the spatio-temporal model. It avoids assumptions on the distribution and dependence 
structure of the data. We combine this non-parametric spatio-temporal model with a flexible 
four-parameter distribution allowing for the representation of a wide range of tail behaviors. 
We agree that a comparison of different spatial stochastic generators with respect to how 
they represent spatial extremes would be interesting and valuable. In order to make such a 
model comparison study beneficial for the community, ideally a broad range of models 
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ranging from continuous to event-based models should be compared as there exists no 
commonly accepted benchmark/reference model. Such a comparison goes beyond the scope 
of this manuscript and should be addressed in a separate study. 
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Abstract. Stochastically generated streamflow time series are used for various water management and hazard estimation ap-

plications. They provide realizations of plausible but yet unobserved streamflow time series with the same temporal and distri-

butional characteristics as the observed data. However, the representation of non-stationarities and spatial dependence among

sites remains a challenge in stochastic modeling. We investigate whether the use of frequency-domain instead of time-domain

models allows for the joint simulation of realistic, continuous streamflow time series at daily resolution and spatial extremes at5

multiple sites. To do so, we propose the stochastic simulation approach called Phase Randomization Simulation using wavelets

(PRSim.wave) which combines an empirical spatio-temporal model based on the wavelet transform and phase randomization

with the flexible four-parameter kappa distribution. The approach consists of five steps: (1) derivation of random phases, (2)

fitting of kappa distribution, (3) wavelet transform, (4) inverse wavelet transform, and (5) transformation to kappa distribu-

tion. We apply and evaluate PRSim.wave on a large set of 671 catchments in the contiguous United States. We show that10

this approach allows for the generation of realistic time series at multiple sites exhibiting short- and long-range dependence,

non-stationarities, and unobserved extreme events. Our evaluation results strongly suggest that the flexible, continuous simu-

lation approach is potentially valuable for a diverse range of water management applications where the reproduction of spatial

dependencies is of interest. Examples include the development of regional water management plans, the estimation of regional

flood or drought risk, or the estimation of regional hydropower potential among others.15

Keypoints:

1. Stochastic simulation of continuous streamflow time series using an empirical, wavelet-based, spatio-temporal model in

combination with the parametric kappa distribution.

2. Generation of stochastic time series at multiple sites showing temporal short- and long range dependence, non-stationarities,

and spatial dependence in extreme events.20

3. Implementation of PRSim.wave in R-package PRSim: Stochastic Simulation of Streamflow Time Series using Phase

Randomization.
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1 Introduction

Stochastic models are used to generate long time series or large event sets showcasing the full variability of a phenomenon. In

hydrology, we use stochastically generated time series or event sets to refine water management plans, to get a better idea of25

potential reservoir inflows, or to develop suitable adaptation strategies for droughts and floods. If the focus is on such extreme

events, event-based instead of continuous simulation approaches are often employed (e.g. Bracken et al., 2016; Diederen et al.,

2019; Quinn et al., 2019). This strategy requires an a priori definition of extreme events and leads to a loss of temporal

information, e.g. on the season of occurrence. In contrast, continuous simulation approaches allow for the simulation of time

series including, but not limited to, extreme events which are provided together with their time of occurrence. Such continuous30

approaches enable the investigation of drought and flood characteristics going beyond magnitude and extending to timing,

duration, or volume. However, the model representation of this additional information on timing adds some challenges because

the temporal characteristics of the data need to be represented in addition to their distribution. These temporal characteristics

include fluctuations on short and long timescales (Rajagopalan et al., 2010) and potential non-stationarities in the data (Nowak

et al., 2011).35

There exists a variety of continuous, stochastic modeling approaches (corresponding to discrete-time models in the stochas-

tic literature) which differ in their capability of representing distributional and/or temporal characteristics in the data. Here,

we focus on direct modeling approaches that directly simulate streamflow using a stochastic model as opposed to indirect

approaches which use a hydrological model to transform stochastically generated precipitation to streamflow. The most com-

monly used stochastic simulation approaches belong to the two classes of parametric and nonparametric models. Parametric40

models include autoregressive moving average (ARMA) models and their modifications (Stedinger and Taylor, 1982; Pa-

palexiou, 2018), and fractional Gaussian noise models (Mandelbrot, 1965) comprising fast fractional Gaussian noise models

(Mandelbrot, 1971), broken line models (Mejia et al., 1972), and fractional autoregressive integrated moving average models

(Hosking, 1984). Nonparametric models include kernel density estimation (Lall and Sharma, 1996; Sharma et al., 1997) and

various bootstrap approaches such as simple bootstrap, moving block-bootstrap, nearest-neighbor bootstrap (Salas and Lee,45

2010; Herman et al., 2016), matched-block bootstrap (Srinivas and Srinivasan, 2006), or maximum-entropy bootstrap (Sri-

vastav and Simonovic, 2014). These parametric and non-parametric methods have different strengths and weaknesses as e.g.

discussed in Rajagopalan et al. (2010) and the representation of spatial dependence in such time-domain models is challenging.

For parametric models, the number of parameters grows rapidly with the number of locations (Caraway et al., 2014) and the

spatial dependence structure is similar for high, medium, and low flow values, which is not the case for observed data (Sharma50

et al., 1997). Similarly, non-parametric approaches are not effective for multiple-site streamflow generation because of the high

dimension of the problem (Nowak et al., 2010).

In contrast to most time-domain models, frequency-domain models allow for the simulation of surrogate data with the same

Fourier spectra as the raw data (Theiler et al., 1992) and can easily be extended to multiple sites (Prichard and Theiler, 1994;

Schreiber and Schmitz, 2000). Such methods are based on the randomization of the phases of the Fourier transform and are55

known as the amplitude-adjusted Fourier transform (AAFT) (Lancaster et al., 2018). They have only recently been used in
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hydrology for other applications besides hypothesis testing, trend detection (Radziejewski et al., 2000), and the identification

of nonlinearities in time series (Schmitz and Schreiber, 1996; Kugiumtzis, 1999; Venema et al., 2006; Maiwald et al., 2008).

Serinaldi and Lombardo (2017) used an iterative AAFT method to generate binary series of rainfall occurrence and non-

occurrence. Brunner et al. (2019) used a phase randomization approach in combination with the flexible four-parameter kappa60

distribution (Hosking, 1994) to simulate continuous discharge time series including unobserved extremes. The approach is

implemented in the R-package Stochastic Simulation of Streamflow Time Series using Phase Randomization PRSim (Brunner

and Furrer, 2019) and can be applied to both individual and multiple sites. This phase randomization approach has been shown

to reproduce the distributional and temporal characteristics of the data at individual sites well (Brunner et al., 2019; Brunner

and Tallaksen, 2019). However, the approach has some deficiencies when applied to multiple sites because spatial dependencies65

in both daily discharge and extreme events are underestimated. In addition, the approach does not allow for the consideration

of non-stationarities.

In contrast to the Fourier transform, the wavelet transform allows for the representation of non-stationarities in time series

(Rajagopalan et al., 2010). For a short introduction to the wavelet transform see Sect. 2. In addition, it may help to improve

the representation of spatial dependencies because it does not require a transformation to the normal distribution and back70

to the original, skewed distribution, which usually weakens spatial correlations (Embrechts et al., 2010). This weakening is

because phase randomization preserves the cross-correlation in the normal domain but not necessarily in the domain of the

original distribution as linear correlation is not invariant under non-linear strictly increasing transformations. Because of its

favorable properties, the wavelet transform has been used in stochastic time series generation in various ways. Kwon et al.

(2007) proposed a wavelet-based autoregressive modeling approach (WARM) suitable for systems with a quasi-periodic long75

memory behavior. They used the continuous wavelet transform to decompose a time series into several statistically signifi-

cant components. Each of these components was fitted using a linear AR model which was subsequently used for simulation.

Later, Nowak et al. (2011) adapted this WARM approach such that it can handle non-stationarities. Another possibility of han-

dling non-stationarities is the wavelet-based time series bootstrap model introduced by Erkyihun et al. (2016) which generates

wavelet-derived signal components with a block resampling approach therefore replacing the AR component of the WARM.80

An alternative to these approaches where only certain signal components are modified are approaches that randomize the

wavelet coefficients for all components. These approaches typically perform a discrete wavelet decomposition using real

wavelet functions (as opposed to complex wavelet functions), randomize the real-valued wavelet coefficients (i.e. amplitudes)

and then invert the transform to produce a new realisation of a time series (Breakspear et al., 2003; Keylock, 2007; Wang

et al., 2010; Lancaster et al., 2018). However, a completely random shuffling of coefficients destroys their periodicity. To85

overcome this drawback, Breakspear et al. (2003) used block resampling on coefficients and Keylock (2007) introduced a

threshold criterion that is used to pin particular wavelet coefficients to the same position in the wavelet domain for both the

original and the surrogate data. Despite these workarounds, some of the long-term periodicities and/or non-stationarities may

not be preserved (Breakspear et al., 2003). Using a continuous instead of a discrete wavelet transform allows for the use of

complex wavelet functions which provide complex-valued coefficients containing information on the phase in addition to am-90

plitude. The use of this additional phase information in the randomization process instead of the amplitude can prevent the
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loss of non-stationarities. To generate non-stationary surrogate time series, Chavez and Cazelles (2019) extended the classic

phase-randomised surrogate data algorithm to the time-frequency domain using a dataset of weekly measles notifications and

an electroencephalographic recording. They randomized the phases resulting from the continuous wavelet transform instead of

the real valued amplitudes. This approach has the advantage of being non-parametric, avoids assumptions on the distribution95

and dependence structure of the data, allows for multiple realizations, and can be extended to multiple sites by randomizing

the phases for multiple time series in the same way (Prichard and Theiler, 1994; Schreiber and Schmitz, 2000).

We investigate whether such a wavelet-based phase randomization approach allows for a realistic representation of spatial

dependence in both continuous streamflow time series and spatial extremes. To do so, we propose a continuous wavelet-based

approach for the stochastic generation of streamflow time series, hereafter referred to as PRSim.wave which is based on the100

empirical spatio-temporal model used by Chavez and Cazelles (2019), i.e. wavelet-based phase randomization. This empirical

approach is supposed to overcome difficulties in modeling spatial dependence over a large domain as occurs when using

parametric models (Caraway et al., 2014). We combine this empirical spatio-temporal model with a parametric distribution

to enable the generation of hydrological extremes exceeding the range of the observed values. By doing so, we extend the

approach by Brunner et al. (2019) from the Fourier to the wavelet domain therefore improving the representation of spatial105

dependencies and non-stationarities.

We implement PRSim.wave in the R-package PRSim (Brunner et al., 2019) and apply and evaluate it on a large dataset of 671

catchments in the contiguous United States. Our evaluation results indicate that the flexible, continuous simulation approach

can be used for a diverse range of water management applications requiring continuous discharge time series at multiple sites

or for regional drought and flood hazard assessments not limited to peak magnitude or maximum deficit but extending to event110

duration and volume.

2 Theoretical background

Wavelet decomposition transforms a one-dimensional time series to a two-dimensional time-frequency space (Daubechies,

1992; Torrence and Compo, 1998) using either a discrete or continuous wavelet transform. Both transforms decompose a

hydrological series into a set of coefficients, representing different scales or frequency bands (Sang, 2012). The coefficients115

of the discrete transform are real numbers representing amplitudes. In contrast, the coefficients derived from the continuous

transform have a real and an imaginary part corresponding to an amplitude and phase, respectively. This additional information

on the phases makes complex wavelet functions more suitable for capturing oscillatory behavior (Torrence and Compo, 1998).

The wavelet function used for the transform should reflect the features present in the time series. Because of its smooth

features, the Morlet wavelet has often been used in hydrological applications (Labat et al., 2005; Lafrenière and Sharp, 2003;120

Schaefli et al., 2007) and is given by (Torrence and Compo, 1998):

ψ0(η) = π−1/4eiω0ηe−η
2/2, (1)
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where η is a non-dimensional time parameter, ω0 is the non-dimensional frequency, and i=
√
−1 is the imaginary unit. The

continuous wavelet transform is defined as the convolution of a time series xn of length n with a scaled version of ψ0(η):

Wn(h) =

N−1∑
n′=0

xn′ψ∗
[
(n′−n)δt

h

]
, (2)125

where the (*) indicates the complex conjugate. Varying the wavelet scale h and translating along the localized time index n

allows for showing the amplitude of certain features versus scale and how the amplitude varies with time and scale. An inverse

filter can be used to reconstruct the original time series as the sum of the real part of the wavelet transform over all scales

(h1, ...,hJ ):

xn =
δjδt1/2

Cδψ0(0)

J∑
j=0

R (Wn(hj))

h
1/2
j

, (3)130

where the factor ψ0(0) removes the energy scaling, h1/2j converts the wavelet transform to an energy density, and the factor Cδ

is a constant for each wavelet function (0.776 for the Morlet wavelet).

3 Data and Methods

We develop and apply the stochastic simulation approach PRSim.wave using a large-scale dataset of 671 stations in the contigu-

ous United States (CONUS). We evaluate the approach with respect to distributional and temporal characteristics at individual135

sites and with respect to spatial dependencies across multiple sites in general and for floods in particular.

3.1 Study area

The 671 catchments in the United States cover a wide range of discharge regimes minimally influenced by human activity

(Newman et al., 2015; Addor et al., 2017). Daily discharge data were downloaded for the period 1981–2018 from the USGS

water information system (USGS, 2019) using the R-package dataRetrieval (De Cicco et al., 2018).140

For illustration and validation purposes, we select three regions which are distinct in terms of their hydrological regimes

and their flood behavior. Flood similarity regions are determined using hierarchical clustering (Gordon, 1999) on a distance

matrix computed from the F-madogram, which is a measure of extremal dependence between pairs of stations (Cooley et al.,

2006). The clustering is applied to the 671 catchments and results in 15 clusters among which we select 3 for illustration

purposes: (1) catchments in the lower-elevation coastal Pacific Northwest characterized by high mean annual precipitation and145

a strong discharge seasonality experiencing floods mainly in December and January (2) catchments in Texas with low mean

discharge, weak seasonality, and flood occurrence in spring to fall, and (3) catchments in the Mid-Atlantic coastal plain and

central Appalachian Mountains with a strong streamflow seasonality showing flood occurrence for much of the year except

early-mid summer. For each of these regions, four catchments are chosen for illustration purposes (Fig. 1).
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Figure 1. Location of 671 stations in the dataset and of four catchments chosen per example region: (1) Pacific Northwest (red; 590, 608,

661, and 668), (2) Texas (light green; 431, 451, 464, and 474), and (3) Mid-Atlantic (purple; 43, 104, 117, 249).

3.2 Simulation procedure150

The stochastic simulation procedure PRSim.wave for multiple sites consists of 5 main steps (Fig. 2), which can be run p times

to generate p spatially consistent time series over n sites at daily resolution:

1. Derivation of random phases: A random discharge time series (white noise) of the same length as the input series is

sampled from a normal distribution with mean 0 and standard deviation 1 (Chavez and Cazelles, 2019). We also tested

the kappa distribution, which did, however, not significantly change the model performance. The wavelet transform is155

applied to the white noise series using the Morlet wavelet (Eq. (1)) for h= 100 wavelet scales. 100 scales are used as

using only few scales (e.g. 20) results in reconstructed time series that do not reflect all the necessary detail while further

increasing the number of scales no longer improves reconstruction performance. The phases of the wavelet transform

are derived. These same phases are used for all the sites considered to retain spatial dependencies among sites (Prichard

and Theiler, 1994; Schreiber and Schmitz, 2000).160

2. Fitting of kappa distribution: The flexible four-parameter kappa distribution (Hosking, 1994) is fit to the daily values

of the observed input time series using L-moments. These daily distributions will be used for the transformation in Step

5 to simulates extreme values going beyond the empirical distribution. The cumulative distribution function of the kappa
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Figure 2. Illustration of stochastic simulation approach PRSim.wave: (1) Derivation of random phases which are uniformly distributed over

the range of −π to π, using a white noise time series to be used for the simulation at all stations; for each station: (2) Fitting of kappa

distribution to the observed streamflow time series using L moments; (3) Wavelet transform to derive the amplitudes and phases of the time

series; (4) Inverse wavelet transform recomposing a time series using the random phases from Step 1 in combination with the amplitudes

of Step 3; and (5) Transformation to the kappa distribution using the kappa distribution fitted in Step 2. Steps 1–5 are repeated p times to

generate p time series.
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distribution is expressed as

F (x) =
{
1− ξ[1−κ(x−µ)/σ]1/κ]

}1/ξ

, (4)165

where µ is the location parameter, σ is the scale parameter which must be positive, and κ and ξ are the shape parameters

(R-package homtest Viglione, 2009).

The kappa distribution was found suitable for fitting observed streamflow data in U.S. catchments (Blum et al., 2017). A

suitable fit is also found for our data as confirmed by the Kolmogorov–Smirnov and Anderson–Darling tests (Chernobai

et al., 2015) which did not reject the null hypothesis at α= 0.05 for most catchments. We fit a separate distribution170

for each day using a moving window approach to take into account seasonal differences in the distribution of daily

streamflow values. To do so, we use the daily values in a 30-day window around the day of interest. This procedure

guarantees a large enough sample for the parameter fitting procedure, and allows for smoothly changing distributions

along the year. For leap years, flows from February 29 are removed to maintain constant sample sizes across years as

in Blum et al. (2017). In a few regions with many zero discharge values (e.g. some catchments in the Great Plains)175

fitting the kappa distribution is not possible and we therefore use the empirical distribution instead. After fitting the daily

distributions, the mean discharge is subtracted from the observed discharge values to center the observations.

3. Wavelet transform: The wavelet transform (Eq. (2)) is applied to the input time series using the complex-valued Morlet

wavelet (Eq. (1)) to derive the amplitudes for h= 100 number of wavelet scales. The complex part of the wavelet

transform Wn(h) comes in via the complex conjugate ∗ in Eq. 2. The complex conjugate is derived using the modulus180

and argument, i.e. the phases, of the complex numbers contained in the Morlet wavelet (Eq. 1). The wavelet coefficients

Wn(h) resulting from the transform are also complex numbers, where the argument of the complex wavelet valueWn(h)

corresponds to the wavelet phase.

4. Inverse wavelet transform: Reconstruction of the series in the time domain by using the inverse wavelet transform

(Eq. (3)) combining the random phases derived in Step 1 and the amplitudes derived in the previous step. During back-185

transformation in Eq. 3, the phases come back in when deriving the real part at each scale h through R(Wn(hj)).

5. Transformation to kappa distribution: The simulated values are transformed to the kappa domain using the fitted daily

kappa distributions from Step 2. For each day, a random sample is generated from the fitted, daily kappa distribution.

Negative simulated values are replaced by 0. The simulated values are replaced by the values generated from the kappa

distribution using rank-ordering. This procedure is repeated for each day in the year.190

Step 1 is run only once per iteration to maintain spatial dependencies in the data while Steps 2–5 are run for each station

separately.

3.3 Evaluation

We run the stochastic simulation algorithm for the 671 catchments in the dataset n= 100 times to generate 100 time series of

the same length as the observed time series, i.e. 38 years. We look at (1) individual sites to evaluate the general distributional195
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and temporal correlation characteristics as well as the reproduction of high- and low flows; (2) three sets of four stations each

to evaluate the spatial consistencies in daily discharge and floods: Pacific Northwest, Texas, and Mid-Atlantic (Fig. 1); and (3)

at the set of 671 catchments to evaluate spatial consistencies in floods across large scales.

The evaluation at individual sites encompasses a comparison of observed and simulated distributional and temporal discharge

characteristics. The distributional characteristics considered are the mean annual hydrograph showing variation of flow with200

season, three years of daily data illustrating the overall behavior of the series, the seasonal distributions (winter: Dec–Feb,

spring: Mar–May, summer: June–Aug, fall: Sept–Nov), and monthly mean, maximum and minimum values. The temporal

characteristics considered include the autocorrelation (acf) and partial autocorrelation functions (pacf) measuring the strength

of temporal dependence for different time lags, the power spectrum indicating how power varies with frequency and showing

high values at those frequencies that correspond to strong periodic components (Shumway and Stoffer, 2017), the normalized205

average power per scale over all time steps indicating oscillations, and the scale-averaged wavelet power (Erkyihun et al., 2016)

for the three scales with the highest average power revealing non-stationarities in oscillations. To evaluate the capability of the

approach to simulate extreme values, we compare observed and simulated low- and high-flows, i.e., flows below or above a

threshold corresponding to the 0.05 and 0.95 percentiles, respectively.

The evaluation at multiple sites comprises both an assessment of how the general spatial dependence structure in the data210

is reproduced and an assessment of how the spatial dependence in high extremes is captured. The assessment of the general

dependence structure encompasses a comparison of observed and simulated discharge time series for the catchments in the

three example regions, a comparison of pairwise observed and simulated cross-correlations for the example stations in the

Pacific Northwest region, and a comparison of variograms of the observed and simulated series across all stations (R-package

SpatialExtremes; Ribatet, 2019) given by (Cressie, 1993):215

2γ(s1,s2) = var(Z(s1)−Z(s2)) = E[(Z(s1)−Z(s2))2], (5)

where Z is a random variable (here, streamflow) measured at two locations s1 and s2. In order to be able to discern the shapes

of the variograms, they are first smoothed using splines.

For assessing how spatial dependencies in extremes are reproduced, we first compare observed and simulated times of

occurrences of flood events for the catchments in the three example regions. We then compare observed to simulated F-220

madograms for flood events across all stations. The F-madogram is a measure of spatial dependence that compares the ordering

of extreme events between two time series of extreme events (Cooley et al., 2006) and is expressed as:

vF (d) =
1

2
E |F [Z(s+ d)]−F [Z(s)]| , (6)

where Z(s) are transformed to have Fréchet margins so that F (s) = exp(−1/s), and d is the distance between a pair of stations

(R-package SpatialExtremes; Ribatet, 2019). We finally compute the tail dependence coefficient χ across all stations defined225

as (Coles, 2001):

χ(u) = Pr{Y > G−1(u) |X > F−1(u)}= Pr{V > u | U > u}, (7)
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where X and Y are uniformly distributed random variables with distribution functions F and G, and u is a threshold (R-

package extRemes; Gilleland and Katz, 2016, ). Tail dependence estimators depend heavily on the sample size and are subject

to large uncertainty given the sample size of 38 years (Serinaldi et al., 2015).230

4 Results

4.1 Single-site simulations

Both the distributional and temporal dependence characteristics of the time series at individual sites are well modeled as

shown by comparing observed and stochastically simulated time series for the two stations on the Nehalem and Navidad rivers

(Fig. 3 and 4). The hydrological regimes (3a), the overall behavior of the time series (3b–c), the seasonal (3d) and monthly235

distribution characteristics (3e–g) are well captured by the simulations. The simulations, however, are capable of simulating

values going beyond the range of the observations as intended by using the kappa distribution. In addition to these distributional

characteristics, the temporal correlation characteristics (4a–c), the oscillations in the data (4d), and the non-stationarities in

these oscillations (4d) are well captured by the simulations as well.
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Figure 3. Comparison of observed (black) and simulated (orange) distributional discharge characteristics for (i) the station Nehalem River

near Foss, OR (USGS 14301000, id 661) in the Pacific Northwest and (ii) the station Navidad Rv near Hallettsville, TX (USGS 08164300, id

464) in Texas: (a) mean annual hydrographs, (b and c) observed and simulated time series for three years, (d) seasonal discharge distribution

characteristics, (e) monthly mean discharge, (f) monthly maximum discharge, and (g) monthly minimum discharge.
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Figure 4. Comparison of observed (black) and simulated (orange) temporal discharge characteristics for (i) the station Nehalem River near

Foss, OR (USGS 14301000, id 661) in the Pacific Northwest and (ii) the station Navidad Rv near Hallettsville, TX (USGS 08164300, id

464) in Texas: (a) acf, (b) pacf, (c) power spectrum, (d) normalized average power, and (e) scale averaged-wavelet power.
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Figure 5. Comparison of observed (grey) (a) low- and (b–c) high-flow distributions (with and without outliers) with simulated distributions

of 10 runs (orange) for the four catchments in the Pacific Northwest: (i) Calawah River near Forks, WA (USGS 12043000, id 590), (ii)

Stillaguamish River near Arlington, WA (USGS 12167000, id 608), (iii) Nehalem River near Foss, OR (USGS 14301000, id 661), and (iv)

Steamboat Creek near Glide, OR (USGS 14316700, id 668).

Both high- and low- extremes are realistically modeled as illustrated by the boxplots depicting the distributions of the above240

and below threshold events of the four catchments in the Pacific Northwest (Fig. 5). While the median of the observed low and

high-flow distributions is well met by the simulated medians, again the simulations allow for the generation of extreme low-

and high flows going beyond the observed values because of the use of the theoretical kappa distribution.
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4.2 Multi-site simulations
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Figure 6. Comparison of three years of multi-site observations (a) with multi-site stochastic simulations (b) for the four catchments in the

three example regions (i) Pacific Northwest, (ii) Texas, and (iii) Mid-Atlantic. Each region is displayed on its own scale.

The stochastic simulation approach PRSim.wave not only allows for the reproduction of the distributional and temporal charac-245

teristics of time series at single sites but also for simulating spatially coherent time series at multiple sites (Fig. 6). Independent

of the region considered, the simulations realistically represent the observed behavior of the time series. This visual impression

of a good performance with respect to the reproduction of spatial correlations in daily discharge data is confirmed by comparing

observed and stochastically simulated cross-correlation functions for the catchments in the Pacific Northwest (Fig. 7). Both the

shape and magnitude of the cross-correlation functions are well simulated. The good performance in terms of reproducing the250

general spatial dependence structure in the data can be generalized to other regions as shown by a comparison of observed and

simulated variograms (Fig. A2). Figures A1 and A2 in the appendix demonstrate that neither the observed cross-correlation

nor variogram would not be captured by the simulations if the phases were randomized for each catchment individually instead

of using the same set of randomized phases across all catchments.
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Figure 7. Comparison of observed (black) and simulated (orange) cross-correlation functions (ccfs) for the daily discharge values for pairs

of stations in the set of the four catchments (i–iv) in the Pacific Northwest.
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Figure 8. Comparison of observed (black) and simulated (orange) variograms.

Spatial dependencies are not only maintained for the bulk of the distribution, by which we mean the part of the distribution255

excluding extremes or outliers, but also for extreme values as illustrated by the peak-over-threshold (POT) values for the

different stations in the three illustration regions (Fig. 9). These results show that besides regional flood co-occurrences, the

temporal clustering behavior of events is also reproduced.
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Figure 9. Observed (a; black) vs. stochastically simulated (b; orange) POT events for the four stations (color shadings) in the three regions

(i) Pacific Northeast, (ii) Texas, and (iii) Mid-Atlantic. Vertical bars indicate event occurrences over the 38 years.

Figure 10. Observed (black) vs. simulated (orange) F-madograms , a measure for the strength of spatial dependence, plotted against Euclidean

distance. The lower the value, the higher the dependence between a pair of stations.
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The F-madograms shown in Fig. 10 indicate that there is generally good agreement between observed and simulated spatial

dependence despite a slight overestimation of the spatial dependence of floods by the stochastic simulations. This overesti-260

mation means that a certain pair of stations may experience more joint floods according to the simulations than seen in the

observations. The good agreement between observed and simulated spatial dependence and the weak overestimation in spatial

dependence is also visible if we look at the tail dependence coefficient χ for the two thresholds 0.8 and 0.95 (Fig. 11). For most

pairs of stations, both the simulations and observations indicate no tail dependence (grey dots). If the observations indicate tail

dependence, the simulations mostly also simulate upper tail dependence (green dots). Only in very few cases, the simulations265

do not capture the tail dependence in the observations (black dots). There are, however, quite a few cases where the simulations

indicate tail dependence despite its absence in the observations (orange dots). Overall, the model shows good performance in

the reproduction of observed spatial (in)dependencies.

Figure 11. Observed vs. simulated tail dependence coefficient χ for the two thresholds 0.8 (a) and 0.95 (b). Grey dots indicate pairs of

stations with no upper tail dependence, green dots pairs where both observations and simulations indicate upper tail dependence, black dots

pairs of stations where only the observations indicate tail dependence, and orange dots pairs of stations where only the simulations indicate

tail dependence.

5 Discussion

Similar to the Fourier transform based simulation approach PRSim by Brunner et al. (2019), the wavelet-based simulation270

approach PRSim.wave presented here allows for the generation of many time series of the same length as the observed series.

This means that the representation of temporal dependence is limited to ranges within the length of the observed series.

However, the modeled range of dependence is also limited to the one in the observed series if one very long time series

is generated. In addition to the representation of temporal dependence, PRSim.wave allows for the reproduction of realistic
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spatial dependencies both in the general distribution and in extreme events. This representation of spatial dependence is not275

possible if using the Fourier transform as in PRSim. This difference between methods may be related to the fact that the

wavelet transform compared to the Fourier transform does not necessitate a transformation to the normal domain, and a back

transformation to the domain of the skewed distribution, which has been shown to weaken spatial correlations (Embrechts

et al., 2010; Papalexiou, 2018). The use of the kappa distribution in combination with the spatio-temporal model allows for the

generation of extremes beyond the range of the observed values. However, it requires the fitting of many parameters, which280

make the model non-parsimonious (Koutsoyiannis, 2016). Depending on the application, the approach can therefore be used

with a distribution with fewer parameters, a distribution fitted to a monthly instead of daily scale, or the empirical distribution.

The application of the approach is not limited to observed streamflow time series. It is applicable to other variables such

as precipitation if combined with a suitable distribution as well as to modeled time series. The use of streamflow time series

generated with a hydrological model extends the application of PRSim.wave to climate impact studies where a hydrological285

model is driven by meteorological time series generated with global and/or regional climate models.

6 Conclusions

Our results show that the continuous, wavelet-based stochastic simulation approach PRSim.wave reliably simulates discharge

and extremes at multiple sites. Thanks to a spatio-temporal model based on phase randomization, temporal short- and long

range dependencies, non-stationarities, and spatial dependencies are reproduced. In combination with the parametric kappa290

distribution, spatial extremes at multiple sites can be reliably simulated as well. The stochastic approach of PRSim.wave is

very flexible and easy to use because of its availability in the R-package PRSim. Its versatility and advantageous properties

make it generally useful for various water management applications where spatio-temporal patterns are of interest and, in

particular, valuable for hazard assessments requiring information on spatial extremes.

Code and data availability. The wavelet-based stochastic simulation procedure for multiple sites PRSim.wave using the empirical, kappa, or295

any other distribution and some of the functions used to generate the validation plots are provided in the R-package PRSim. The stable version

can be found in the CRAN repository https://cran.r-project.org/web/packages/PRSim/index.html, and the current development version is

available at https://git.math.uzh.ch/reinhard.furrer/PRSim-devel. The observational discharge data was provided by the USGS and can be

downloaded via: https://waterdata.usgs.gov/nwis.

Appendix A: Simulations randomizing phases for each catchment individually300
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Figure A1. Comparison of observed (black) and simulated (orange) cross-correlation functions (ccfs) for the daily discharge values for pairs

of stations in the set of

the four catchments (i–iv) in the Pacific Northwest. 20 simulations were generated for each site individually, neglecting spatial

dependence.
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Figure A2. Comparison of observed (black) and simulated (orange) variograms for 20 simulation runs where the phases were randomized

for each station individually.
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