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Commentator Tsoukalas 

 

Introduction  
This is an interesting work aiming to provide a method (as well as implement it in an R package; 
function called PRSim.wave within PRsim R package) for the simulation of multivariate hydrological 
processes (for now, focusing on streamflow) - which according to the results presented by the 
Authors has a good potential, requiring yet some improvements.  
In general, I find the manuscript well-organized and straightforward to understand, yet in my view, 
there are several points that require the Authors attention.  
All comments and suggestions are meant to be constructive and aim to improve the quality of the 
manuscript, as well as the findings obtained.  
Reply: Thank you for your detailed comments, which we address below. 
 

Comments  
 L6-7. I suggest to write: “To do so, we propose the stochastic simulation approach called 

Phase Randomization Simulation using wavelets (here after called PRSim.wave) which 
combines… ”.  
Reply: We added brackets around PRSim.wave. 
Modification: p.1, l.7 
 

 L11. To avoid confusing the reader, and provided that a few lines above it is mentioned that 
“We apply and evaluate PRSim.wave on a large set of 671 catchments in the contiguous 
United States.”, I suggest to write: “…at multiple sites (up to four)…”  
Reply: We mean to say that we evaluate the set on 671 catchments. However, it is correct 
that we focus on three sets of four stations each in order to present a few more detailed 
results. Since we show that the approach works for very large datasets, we think that a 
generalization to ‘multiple sites’ is justified. 
 

 L34. I wonder what are the “potential non-stationarities” mentioned by the Authors? Are you 
refereeing to the typical cyclostationary behavior exhibited by hydrological processes?  
Given the opportunity, and as a side note, I would like highlight that stationarity is an 
essential tool for inferencing from data (e.g., model fitting). Stationarity should not be seen 
as a shortcoming, nor dead. Non-stationarity implies non-ergodicity, which in turn makes 
inference from observed data impossible, unless of course the deterministic dynamics of the 
process are known; which in my understanding, is never the case in hydrological sciences. On 
this topic, I recommend the recent work of Serinaldi et al. (2018), with emphasis on section 
4.2, as well as the works of Koutsoyiannis and Montanari, (2007), (2015), Lins and Cohn 
(2011), Matalas (Matalas, 2012), and Montanari and Koutsoyiannis (2014), that argue in favor 
of stationarity. See also the very interesting, note of Harry F. Lins. As Harry F. Lins concludes 
his note:  
Stationarity ≠ static  
Non-stationarity ≠ change (or trend)  
Reply: What we state in this manuscript is that PRSim.wave is able to reproduce non-
stationarities in the data. This is shown in Figures 4e. It is shown there that the wavelet power 
corresponding to different scales varies over time, i.e. the importance of different cyclical 
features varies over time. We are neither saying that stationarity is dead nor that it is a 
shortcoming. In contrast, we point out that developing stochastic models that can handle 
non-stationarities is important.  

 
L36. I am not sure what is the meaning of “continuous” here? Can you please 
elaborate/specify? Also, some references would be useful. 



2 
 

Reply: We specify that continuous approaches correspond to discrete-time models in the 
stochastic literature. 
Modification: p.2, l.36-37 
 

 40. Although I understand its rationale, I am not a big fan of the now-typical classification of 
stochastic models on “parametric and non-parametric”, since in my view, there is no model 
without parameters. Typically, the literature uses the term “non-parametric” to refer to 
approaches that use some kind of resampling mechanism (e.g., k-nn algorithm) and/or “non-
parametric” distribution functions (e.g., kernel-based approximation of the density function) 
to generate synthetic data. But, one should take a moment and think, are these really non-
parametric? Isn’t the k (i.e., the number of nearest neighbors) in k-nn algorithm a 
parameter? Isn’t the choice of the kernel smoothing function (e.g., normal, epanechnikov, 
box, triangle) a parameter? Isn’t the bandwidth of the kernel a parameter (also called the 
smoothing parameter)? Aren’t the data per se used as parameters (e.g., when a non-
parametric method relies on the sampling from the empirical CDF or kernel-based CDF. What 
if we have new data or alter a few? Does the model change?)? Having said these, I suggest to 
the Authors to reconsider using the employed classification, as well as review the recent 
literature (e.g., Serinaldi and Kilsby, 2014; Tsoukalas et al., 2019) for finding an alternative 
classification.  
Reply: We here understand a parametric approach as an approach where a model is fitted to 
the data. We agree, however, that the choice of k in a nearest-neighbor algorithm might also 
be viewed as a parameter in a wider sense. We would, however, not go as far as to say that 
the data are parameters. However, they are subject to sampling uncertainty, which influences 
model fitting. 
 

 L41-43. The Authors write: “…and temporal disaggregation models such as fractional 
Gaussian noise models (Mandelbrot, 1965), fast fractional Gaussian noise models 
(Mandelbrot, 1971), broken line models (Mejia et al., 1972), and fractional autoregressive 
integrated moving average models (Hosking, 1984).”.  
To clarify, these are not disaggregation models, but models able to simulate processes 
exhibiting long-range dependence (particularly, designed to simulate fractional Gaussian 
noise (fGn) processes or else, processes exhibiting Hurst behavior). See a similar discussion in 
the introduction section of Tsoukalas et al. (2018b).  
Reply: We rephrased the sentence as follows: ‘Parametric models include autoregressive 
moving average (ARMA) models and their modifications (Stedinger1982, Paplexiou2018), and 
fractional Gaussian noise models (Mandelbrot1965) comprising fast fractional Gaussian noise 
models (Mandelbrot1971), broken line models (Mejia1972), and fractional autoregressive 
integrated moving average models (Hosking1984).’ 
Modification: p.2, l.42 
 

 L44-45. The Authors write: “Nonparametric models are based on disaggregation and 
resample from the data with perturbations and include…”.  
I think that this statement can be confusing, and needs some refinement. “Non-parametric” 
models are not necessarily based on the notion of disaggregation. Of course, the literature 
offers “non-parametric” disaggregation methods (e.g., Lee et al., 2010; Tarboton et al., 1998), 
but this does not makes all “non-parametric” methods, methods that “based on 
disaggregation and resample”. Further details on disaggregation methods can be found on 
the seminal works of Valencia and Schakke (1973), and Mejia and Rousselle (1976), as well in 
the work of Koutsoyiannis (2001) who provide a detailed overview on the subject. For a more 
recent overview and discussion on the topic of disaggregation and multi-temporal simulation 
see also work of Tsoukalas et al. (2019).  
Reply: Thank you for pointing out that this statement is confusing. We rephrased the 
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sentence to ‘Nonparametric models include kernel density estimation (Lall1996, Sharma1997) 
and various bootstrap approaches...’ 
Modification: p.2, l.44-45 
 

 L48-49. The Authors write: “…but none of these time domain methods can capture the 
spectral properties of the observed time series (Erkyihun et al., 2017).”.  
In my view this statement is a bit confusing, requiring the Authors attention, for two reasons.  
1) A timeseries (i.e., a sequence of observations ordered in time) does not has spectral 
properties, it exhibits some form of dependence structure (which can be quantified using 
statistics/stochastics, e.g., through the empirical correlation coefficients and the empirical 
spectrum). What has spectral properties is the stochastic process that it is assumed that 
generated the observed timeseries.  
2) Having said the above, and since correlation and spectrum are interrelated quantities, if a 
model is capable of reproducing the process’s correlation structure it also reproduces its 
spectrum (and vice versa). For further details and references, see my previous comment 
(Tsoukalas, 2019) on a recent work co-authored by the first Author of this work.  
Reply: Thank you for pointing out that this statement was confusing. We removed the first 
part of this sentence and now state ‘and the representation of spatial dependence in such 
time-domain models is challenging.’ 
Modification: p.2, l.48 
 

 L49-50. In my view the sentence “Furthermore, these time-domain models struggle with the 
representation of spatial dependence” is a bit “strict”, since as far as I see it, there is no 
struggle, but many research efforts (past, and new).  
The stochastic hydrology literature offers several “time-domain” models that can simulate 
parsimoniously multivariate processes, including both stationary and cyclostastionary 
processes (e.g., Efstratiadis et al., 2014; Koutsoyiannis, 2001, 2000), reproducing also the 
moments of the observed processes (typically up to third order). Further to these 
models/methods, more recent approaches allows the parsimonious simulation of 
multivariate stationary and cyclostationary processes with any marginal distribution and 
correlation structure (Kossieris et al., 2019; Tsoukalas, 2018; Tsoukalas et al., 2018a, 2018b), 
also in a multi-scale context (Tsoukalas et al., 2019). Apart from the last work, for another 
multi-scale and multivariate simulation study involving daily rainfall at 4 sites the Authors are 
referred to Appendix D, section D.2, of Tsoukalas (2018). Therefore, taking into consideration 
the above-mentioned works I would suggest the Authors to revise the sentence accordingly, 
as well as provide some references.  
Reply: We rephrased the sentence to ‘and the representation of spatial dependence in such 
time-domain models is challenging.’ 
Modification: p.2, l.48 
 

 L54-55. The Authors write: “In contrast to time-domain models, frequency-domain models 
allow for the simulation of surrogate data with the same Fourier spectra as the raw data”.  
This can be also true for time-domain methods (but not a good modelling practice in either of 
the two cases; see below). For instance, if one employs an AR or MA model of high order can 
simulate a realization of a process exhibiting exactly the empirical autocorrelation 
coefficients up to the order dictated by the model. However, this is not a good modeling 
practice since it is well-known that the empirical estimators of auto- (and cross-) correlation 
coefficients are (downward) biased (Beran, 1994; Koutsoyiannis, 2003, 2000), especially in 
the case of long-range dependence, short samples, and large lags. See also Matalas (1967 p. 
945) who remark that:  
“Parameters that are determined in terms of high order moments of large time lags are 
subject to large standard errors and consequently large operational biases. Operational 
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biases can never be eliminated, but they can be minimized by the use of regionalization to 
account for the temporal and spatial variations inherent in the historic sequences…”.  
Of course, the same applies for the empirical estimators of spectrum (see the comparative 
work of (Dimitriadis and Koutsoyiannis (2015)). Note that this kind of approaches are not 
parsimonious (since all the empirical estimates used in model fitting are essentially model 
parameters). To cope with these, the recent literature (Kossieris et al., 2019; Tsoukalas et al., 
2019, 2018b), as well some works already cited in the manuscript (i.e., Papalexiou (2018)), 
has leaned towards the use of parametric models (e.g., with two or three parameters) to 
parsimoniously describe the dependence structure of the processes. The Authors are 
referred to the work of Koutsoyiannis (2000) which in my view popularized that idea in 
hydrological domain, also introducing a parsimonious two-parameter auto-correlation 
structure. It is also interesting to note the work of Papalexiou (2018) (already cited in the 
manuscript), who employed the functional form provided by the survival function of a 
distribution to define several auto-correlation structures.  
Reply: We weakened the statement and rephrased the sentence to: ‘In contrast to most time-
domain models,..’ 
Modification: p.2, l.53 
 

 L70-72. The Authors write: “In addition, it may help to improve the representation of spatial 
dependencies because it does not require a transformation to the normal distribution and 
back to the original, skewed distribution, which usually weakens spatial correlations 
(Embrechts et al., 2010).“  
First, the comment on “weaken spatial correlations” applies for all “types” of correlations 
(that emerge from the mapping/transformation from the Gaussian to the actual domain) – 
not only spatial. Particularly, in the case of stochastic processes, it also applies for the auto-
correlation structure of a stationary processes, as well as for the season-to-season 
correlations of a cyclostationary process (Tsoukalas et al., 2018a, 2017). It also holds for 
multivariate cases. However, I am afraid that I cannot see the improvement of the 
representation of spatial dependencies mentioned above by the Authors. The cross-
correlations as well as the auto-correlation are still not accurately reproduced (see my 
comments below on the results/plots). It is my understanding that a previous comment of 
mine (Tsoukalas, 2019) on a recent work co-authored by the first Author of this work holds 
also for this method. This is due to the following:  
Reply: We here specifically talk about the effect of back transformation on spatial correlation 
because this is the focus of this study. As mentioned in the manuscript the wavelet transform 
employed here does, compared to the Fourier transform, not necessitate a transformation to 
the normal domain, and a back transformation to the domain of the skewed distribution, 
which improves the representation of spatial correlations as compared to the Fourier 
transform based approach [Brunner et al., 2019]. Figure 1 shown in the response to reviewer 
1 illustrates that spatial correlations are not well represented if phases are randomized for 
each station individually. In contrast, the use of the same random phases for all the stations 
as proposed in this manuscript leads to a nice reproduction of spatial dependencies as 
illustrated e.g. by the cross-correlation functions shown in Figure 7 in the manuscript. 
 

 L145. The Authors write: “Derivation of random phases: A random discharge time series 
(white noise) of the same length as the input series is sampled from a normal distribution 
with mean 0 and standard deviation 1.”  

 L170-173. The Authors write: “Transformation to kappa distribution: The simulated values 
are transformed to the kappa domain using the fitted daily kappa distributions from Step 2. 
For each day, a random sample is generated from the fitted, daily kappa distribution. The 
simulated values are replaced by the values generated from the kappa distribution using 
rank-ordering. This procedure is repeated for each day in the year.”  
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Based on the above the method presented herein depends on an auxiliary Gaussian process 
and uses the target ICDFs, as well as the rank-correlations to establish the (auto- and cross-) 
dependence structure. It is reminded that such a procedure will preserve the ranks 
correlation coefficients (which do not depend on the marginals) but not the Pearson’s, 
(which depends on the marginals; since it involves the cross-product moment of the among 
the variables). For further details the Authors are referred to the comment mentioned above, 
as well as in the references therein. It is my understanding that the mechanics of the method 
that dictate the preservation of ranks is the reason why the auto- (and cross-) correlations 
are not so well reproduced by the proposed method.  
Reply: The results shown throughout Figures 7-11 demonstrate that the wavelet-based 
phase-randomization approach we present in this manuscript is well capable of reproducing 
observed spatial dependencies which is not the case when randomizing the phases of the 
Fourier transform as shown in Brunner et al. (2019). 
 

 L149 (and elsewhere): The use of Kappa distribution. As mentioned in a previous comment 
of mine in HESS related with a work co-authored by an Author of this manuscript there are 
few complications worth considering when using the Kappa distribution. The following 
comments are excerpted with minimum or no modifications at all from Tsoukalas (Tsoukalas, 
2019).  
1. Since you are using the Kappa distribution it could be insightful to mention that under 
certain parameter combinations, this distribution may lead to infinite moments. This can be a 
delicate issue, since if the fitted distribution exhibits infinite variance then the Pearson’s 
correlation cannot be defined (the denominator contains the variance), and thus the 
proposed model (as well as many other models) cannot be used. This situation is discussed in 
section 3.4 of Tsoukalas et al. (2018b; and references therein), where it is advocated (based 
on empirical, as well as theoretical reasoning) that physical processes are characterized by 
finite variance (Koutsoyiannis, 2016). Particularly, if 𝑋 is a Kappa-distributed random variable, 
and 𝜇𝑟=[𝑋𝑟] denotes the 𝑟𝑡ℎ raw moment, as discussed in Hosking (1994), and elsewhere, the 
existence of the 𝑟𝑡ℎ depends on the values of ℎ and 𝑘. Specifically, the moments exist: for all 
𝑟 if ℎ≥0 and 𝑘≥0 for 𝑟<−1ℎ𝑘⁄ if ℎ<0 and 𝑘≥0,and for 𝑟<−1𝑘⁄if 𝑘<0  
It is also interesting to mention that Hosking (1994) notes that the first four moments cannot 
uniquely determine the parameters of the distribution, since some combinations of moments 
(expressed by skewness and kurtosis coefficients) correspond to different pairs of ℎ and 𝑘.  
2. How do you handle negative values? As far as I am aware the left (and right) support of 
Kappa distribution is not necessarily zero (e.g., when 𝑘=0 and ℎ≤0, then the supports of the 
distribution are, −∞<𝑥<∞; see Hosking (1994)). In any case, the generation of negative values 
can be eliminated by using a distribution function defined in the positive real line. 
Particularly, I would suggest the investigation/use of the Generalized Gamma and Burr type-
XII distributions, which are more parsimonious (they entail three parameters; instead of four 
as in Kappa) and were found adequate for modelling of hydrometeorological variables; 
particularly rainfall (e.g., Papalexiou and Koutsoyiannis, 2016). Examples of their use within 
the context of stochastic modelling can be found the work Papalexiou (2018), as well as in 
Tsoukalas et al. (2019, 2018b) and Tsoukalas (2018).  
Reply: We tested the Burr type XII (validation results see Figure 1 in https://www.hydrol-
earth-syst-sci-discuss.net/hess-2019-142/hess-2019-142-AC1-supplement.pdf) and 
generalized Gamma distributions, which were, however, not flexible enough to model the 
marginal distributions of the daily discharge values and led to unrealistically extreme high 
flows in the simulations and will therefore not be considered as alternatives to the kappa 
distribution. The R-package PRSim, however, allows for the implementation of any 
distribution chosen by the user as specified in the section code and data availability. We 
specify that negative simulated values are replaced by 0, which corresponds to the use of a 
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bounded kappa distribution. 
Modification: p.8, l.178 

 

 L158-160. The Authors write: “We fit a separate distribution for each day to take into 
account seasonal differences in the distribution of daily streamflow values. To do so, we use 
the daily values in a 30-day window around the day of interest.”  
Can you please elaborate on this? Just to be sure, for each “site” and for each day of the year 
a Kappa distribution has been fitted with different parameters? If this is the case, just for the 
marginal behavior, and for each site you fitted Kappa 365 times, which implies that the 
model has 365×4 (the number of parameter of Kappa)=1460× the number of sites, 
parameters (not accounting those for the specification of the auto and cross-dependence 
structure of the process). If this is the case, I am afraid that this is not a parsimonious model, 
something that should be clearly stated in the manuscript (also mentioning the total number 
of its parameters).  
Also, I don’t think that it is reasonable to assume that days belonging in the same month 
(e.g., the 19th and the 20th of August) have different marginal distribution (although, I have 
seen stochastic simulation related works following that approach, I am not aware of any 
paper supporting this assumption). The standard approach for daily (or finer time) scales is to 
consider stationarity within the monthly interval (i.e., in the case of daily data consider that 
all days belonging in the month have the same marginal distribution). An arguably more 
parsimonious approach, since in this case the total number of parameters for the marginal 
behavior would be 12×4 (the number of parameter of Kappa)=48× the number of sites. Note 
that the number of parameters could be further reduced by using, instead of Kappa, 
alternative 2- or 3-parameter distribution models.  
Reply: Yes, the kappa distribution was fitted for each day of the year. A moving window 
approach was used to reduce the effect of sampling uncertainty and to reduce day-to-day 
variability in parameters under the assumption that the distribution of flow on day x is 
unlikely to be substantially different from the one on day x+1. We acknowledge in the 
discussion section that ‘ it [the model] requires the fitting of many parameters, which make 
the model non-parsimonious (Koutsoyiannis2016). 
 

 L162-164. The Authors write: “In a few regions with many zero discharge values (e.g. some 
catchments in the Great Plains) fitting the kappa distribution is not possible and we therefore 
use the empirical distribution instead.”  
This is a work-around that could work, but I wonder, why not use an alternative distribution 
model (e.g., zero-inflated or mixed) that can model simultaneously both the discrete (i.e., 
probability of no discharge) and continuous part (i.e., distribution of non-zero discharge) of 
the process? Also, can you provide an estimate on the number of cases where the empirical 
distribution is employed instead of Kappa?  
Reply: This work around was necessary for those stations in the Great Plains showing an 
intermittent flow regime with many 0 values. If desired, the R-package PRSim allows for the 
implementation of an alternative distribution as specified in the data and code availability 
section. 
 

 L218-219. The Authors write: “the seasonal (3d) and monthly distributions (3e–g) are well 
captured by the simulations.”  
This is a confusing description of the plots. The (3e–g) plots show that some seasonal 
summary statistics are reproduced (i.e., monthly mean, monthly maxima, monthly minima), 
not the seasonal distributions (to do so you need alternative plots, comparing the empirical 
distribution of each month with the corresponding theoretical one). Also, I don’t understand 
what plot 3d shows? What does “seasonal statistics” means in the title of this plot? What 
does the phrase “the seasonal discharge distribution” means at the legend of Figure 3? These 
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are box-plots, and by no means should be used to compare distribution functions (they 
provide way too few information - about specific quantiles).  
Reply: We rephrased this sentence to ‘the seasonal and monthly distribution characteristics’. 
The boxplots are used here to give an impression of the good match between median, upper, 
and lower quartile. We see the information provided by the boxplots as a proxy for important 
distribution characteristics. Tails of the observed and simulated distributions are not expected 
to perfectly match as the theoretical distribution allows for the extrapolation to unobserved 
values. 
Modification: p.9, l.225 
 

 L220-222. The Authors write: “the temporal correlation characteristics (4a–c), …. are well 
captured by the simulations as well.”  
In my view there is an important difference between the simulated and empirical 
autocorrelation coefficients. For instance, by eye-balling the median of the orange lines 
(simulated) for time lag 10 we get a value about equal to 0.5, while the observed one is 0.4. 
This should be clearly stated in the manuscript. For the readers convenience, I also suggest 
the inclusion of a line depicting the median of the simulated quantities (orange lines). 
Providing lines for a low and high quantile (say 0.05 and 0.95) would be nice also. This 
comment applies for all similar plots throughout this manuscript.  
Reply: As illustrated by Figure 4, the simulated temporal correlation characteristics are very 
close to the observed ones. We depict individual lines for individual realizations to 
communicate the variability inherent in the simulations to the reader. 
 

 L223-225. The Authors write: “Both high- and low- extremes are realistically modeled as 
illustrated by the distributions of the above and below threshold events of the four 
catchments in the Pacific Northwest (Fig. 5).”  
To avoid confusion with actual distribution functions, e.g., the Kappa, instead of using the 
phase “as illustrated by the distributions of the above and below threshold events”, I would 
suggest the use of phrase similar to: “as illustrated box-plots of Fig.5, constructed by the 
values of the above and below threshold events”.  
Reply: We rephrased the sentence to ‘as illustrated by the boxplots depicting the distribution 
of the above and below threshold events.’ 
Modification: p.13, l.229 
 

 L223-225. Please remind the reader the selected threshold values.  
Figure 6 (legend). I assume that you wanted to write: “… (b) for the three catchments in 
the….”.  
Reply: We actually meant to write for the four catchments in the three example regions. The 
‘three’ was added for clarification. 
Modification: p.14, caption of Figure 6 
 

 L230-233. The Authors write: “This visual impression of a good performance with respect to 
the reproduction of spatial correlations in daily discharge data is confirmed by comparing 
observed and stochastically simulated cross-correlation functions for the catchments in the 
Pacific Northwest (Fig. 7). Both the shape and magnitude of the cross-correlation functions 
are well simulated”.  
I am afraid that this sentence is needs some refinement, since as with the case of auto-
correlation coefficients, Fig. 7 shows a significant deviation of the simulated cross-correlation 
coefficients from the observed ones. This should be reflected in the manuscript. For the 
readers convenience, I would also suggest the inclusion of a line depicting the median of all 
simulations (orange lines). Providing lines for a low and high quantile (say 0.05 and 0.95) 
would be nice also.  
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Reply: Figure 7 shows that the ccfs derived from the simulations are very close to those 
derived from the observations. For a reference we provide Figure 1 in response to reviewer 1, 
which shows that a model where phases are randomized for each catchment individually 
would result in a poor reproduction of observed ccfs. 
 

 Figure 7. There is something wrong with the labeling of the panels (i.e., multiple panels are 
labeled as ii, iii, iv, while some others are completely unlabeled).  
Reply: Each row and column receives a label for the catchment it refers to. These are pairwise 
plots where cross-correlations are computed for pairs of stations. This specification was 
added to the caption. 
Modification: p.15, caption of Figure 7 
 

 239. The Authors write: “…but also for extreme values as illustrated by the peak-over-
threshold (POT) values for the different stations in the three illustration regions (Fig. 9). 
These results show that besides regional flood co-occurrences, the temporal clustering 
behavior of events is also reproduced.”  
In my view, Figure 9 is not very informative (the y-axis has been omitted intentionally?). Can 
you please provide an alternative figure, as well as a quantitative metric, quantifying the 
reproduction of temporal clustering behavior of events?  
Reply: We labeled the y-axis with ‘event occurrences’. We think that the figure gives a good 
impression on whether the temporal clustering features of the observations are reproduced 
by the simulations. Finding intuitive quantitative measures for this is challenging. However, 
we computed differences in the mean inter-event duration (i.e. time elapsing between two 
successive events) of observed and simulated series and the standard deviation of inter-event 
duration for events where 1, 2, and 3 stations were jointly affected, respectively. We find that 
over all three regions, relative differences in mean and standard deviation of inter-event 
duration lies mostly below 10%. However, we find that a visual comparison is most effective 
here to demonstrate the value of the simulation approach. 
Modification: p.15, Figure 9 

 

 Discussion section. In my view all the above points should be discussed in this section, 
highlighting also the limitations of the presented method. Further to these, it should be 
noted that the proposed model has been tested for multivariate problems involving 4 
processes, as well as the method is capable of generating synthetic timeseries with length 
equal to the observed one (I haven’t read how to handle the case where one wants to 
generate longer timeseries – is it possible to generate synthetic timeseries with length 
different than the observed one?).  
Reply: In the discussion we address the limitations of our approach by stating that the 
approach only allows for the simulation of time series of the same length as the observed 
series (l 257-259). We would like to highlight here that the modeled range of dependence is 
also limited to the one in the observed series if one very long time series is generated. 
We also discuss the disadvantages related to working with distributions fitted to daily values.  

 

 L258-259. The Authors write: “This difference between methods may be related to the fact 
that the wavelet transform compared to the Fourier transform does not necessitate a 
transformation to the normal domain, and a back transformation to the domain of the 
skewed distribution, which has been shown to weaken spatial correlations”.  
I think that the answer is is much simpler than the one stated above. The former method is 
simply designed for the simulation of univariate processes, i.e., not to account for the cross-
correlations (or cross-spectrum) among processes. I suggest the Authors to consider more 
carefully the “mechanics” of the aforementioned methods, and revise the sentence 
accordingly. Also, as mentioned before, the comment on “weaken spatial correlations” 
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applies for all “types” of correlations (that emerge from the mapping/transformation from 
the Gaussian to the actual domain) – not only spatial. Particularly, in the case of stochastic 
processes, it also applies for the auto-correlation structure of a stationary processes, as well 
as for the season-to-season correlations of a cyclostationary process (Tsoukalas et al., 2018a, 
2017). It also holds for multivariate cases.  
Reply: We here specifically focused on the spatial aspect because the focus of our study was 
on generating spatially consistent time series and event sets. The Fourier-based method 
results in much weaker spatial correlations than the wavelet-based approach even if phases 
are randomized in the same way across catchments. 
 

 L270-271. The Authors write: “Thanks to a spatio-temporal model based on phase 
randomization, temporal short- and long range dependencies, non-stationarities, and spatial 
dependencies are reproduced.”  
Please consider my comments on the parameterization (i.e., number of parameters), as well 
as on the performance of the model and revise this sentence accordingly.  
Reply: We think that this conclusion is supported by the results presented in our model 
evaluations throughout the results section, which is also acknowledged by Reviewer 2. 
 

 A general comment. A final comment regards the title of the manuscript, which is: 
“Stochastic simulation of streamflow and spatial extremes: a continuous, wavelet-based 
approach”. By reading the paper I see that the Authors pay special focus on the reproduction 
of extremes, but it is not clear to me why this model is different from any other in that 
aspect (e.g., see those mentioned above)? What makes this model suitable when aiming to 
reproduce extremes? Other similarly parameterized models behave differently? If yes, why? I 
believe that a theoretical justification or even an empirical comparison with alternative 
model(s) would be particularly useful and an added value for the paper.  
Regards,  
Ioannis Tsoukalas  
Reply: We show that PRSim.wave is capable of reproducing spatial dependencies in extremes 
which has been shown to be challenging in previous studies [Sharma et al., 1997; Caraway et 
al., 2014]. Our wavelet-based approach has the advantage of being non-parametric in terms 
of the spatio-temporal model. It avoids assumptions on the distribution and dependence 
structure of the data. We combine this non-parametric spatio-temporal model with a flexible 
four-parameter distribution allowing for the representation of a wide range of tail behaviors. 
We agree that a comparison of different spatial stochastic generators with respect to how 
they represent spatial extremes would be interesting and valuable. In order to make such a 
model comparison study beneficial for the community, ideally a broad range of models 
ranging from continuous to event-based models should be compared as there exists no 
commonly accepted benchmark/reference model. Such a comparison goes beyond the scope 
of this manuscript and should be addressed in a separate study. 
 

 
References used in this response to the commentator 
 
Brunner, M. I., A. Bárdossy, and R. Furrer (2019), Technical note : Stochastic simulation of streamflow 

time series using phase randomization, Hydrol. Earth Syst. Sci., 23, 3175–3187, 
doi:10.5194/hess-23-3175-2019. 

Caraway, N. M., J. L. McCreight, and B. Rajagopalan (2014), Multisite stochastic weather generation 
using cluster analysis and k-nearest neighbor time series resampling, J. Hydrol., 508, 197–213, 
doi:10.1016/j.jhydrol.2013.10.054. 

Sharma, A., D. G. Tarboton, and U. Lall (1997), Streamflow simulation: a nonparametric approach, 
Water Resour. Res., 33(2), 291–308. 



10 
 

 
 


