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Reviewer 1 

GENERAL COMMENTS  
The manuscript proposes a wavelet-based phase randomization approach to generate multisite 
hydrological extremes, which is argued to be able to capture both spatial dependencies and non-
stationarities. The stochastic simulated data is reconstructed with the same values as original data in 
another temporal order, and this assures the reproduction of temporal dependence, extremes and 
nonstationarities. 
In addition, the multiplication of the same set of random phases to all the investigated sites ensures 
spatial dependences. The paper is clearly written, and the idea is well explained. However, I have 
listed some comments below which needs to be addressed before the manuscript is considered 
further for publications. 
 
Reply: Thank you very much for your comments, which we address point-by-point below. 
 
Major comments:  
COMMENT1: The spatial dependence can be simulated by using the same randomized phases for 
multiple time series among sites. You claimed this in your introduction and Section 3.2 step 1 without 
detailed explanation and references. From my understanding, the phases represent the time of the 
timing of changes or variations (in your case, it is extreme events), so if you use the same randomized 
phases, it is expected that there will be spatial dependence of extremes among the sites you 
investigated. Thus, could you give explanations or illustrations on this statement. 
Reply: Prichard and Theiler (1994) and Schreiber and Schmitz (2000) describe that the phases of all 
sites have to be randomized in the same way to preserve cross-correlations for multivariate time 
series. We added the two references to the description of Step 1. Chavez and Cazelles (2019) later 
proposed a surrogate approach for multivariate time series for a dataset of weekly measles 
notifications and an electroencephalographic recording where they apply a phase randomization 
procedure using random phases extracted from a random, normally distributed time series. We also 
added this reference to the corresponding section. 
Figure 1 in this response to the reviewer shows on the example of the four stations in the Pacific 
Northwest (see Figure 1 in paper) that the observed cross-correlation would not be captured by the 
simulations if the phases were randomized for each catchment individually instead of using the same 
set of randomized phases across all catchments. 
Modification: p.4, l.97; p.6, l.151 
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Figure 1: Comparison of observed (black) and simulated (orange) cross-correlation functions (ccfs) for the daily discharge 
values of the four catchments (i--iv) in the Pacific Northwest. 20 simulations were generated for each site individually, 
neglecting spatial dependence. 

 
COMMENT2: Section 3.2, step 1 shows how the random phases are computed from 
a random discharge time series from a normal distribution with mean 0 and standard 
deviation 1. Could you explain the specific reason to choose normal distribution or have 
you tested with other distribution for example, gamma and kappa distribution?  
Reply: It is correct that we compute the random phases from a normal distribution. We have also 
tested the kappa distribution, which did not change the results. We decided to go with the normal 
distribution as such a distribution was also used by Chavez and Cazelles (2019) who proposed a 
surrogate approach for multivariate time series for a dataset of weekly measles notifications and an 
electroencephalographic recording. This reference was added to the description of Step 1. 
Modification: p.6, l.151 
 
Another similar question is about the selection of wavelet family and scale. In this study, you 
use Morlet wavelet, what is the specific reason to use this wavelet family, and how 
about other wavelet families, e.g., Paul, DOG and Marr (Torrence and Compo, 1998)? 
The sensitivity of your approach to the selection of wavelet family and scale? For the 
application of wavelet method in real world, the selection of wavelet family and scales 
is of great importance. 
Reply: Because of the phase randomization step, our application requires a complex wavelet with an 
imaginary part in addition to a real part. The DOG wavelet family is real valued while the Morlet and 
Paul wavelets are complex valued [Torrence and Compo, 1998]. Among the complex valued wavelets, 
we use the Morlet wavelet because it has been found suitable for hydrological applications in 
previous studies [Lafrenière and Sharp, 2003; Labat et al., 2005; Schaefli et al., 2007]. It provides a 
better frequency localization than other complex wavelets such as the Paul wavelet [Torrence and 
Compo, 1998]. We added the additional references (Lafreniere et al. 2003 and Labat et al. 2005) to 
the text. It is important that the number of scales is chosen high enough to allow for a fine resolution 
[Torrence and Compo, 1998]. Using e.g. only 20 scale results in reconstructed time series that do not 
reflect all the necessary detail. We chose 100 scales because further increasing the number of scales 
no longer improves reconstruction performance. 
Modification: p.4, l.120-121 
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Additionally, I am unable to visualise where exactly the random phases go back into 
equation 3?  
Reply: The complex part of the wavelet transform Wn(h) comes in via the complex conjugate * in 
Equation 2. During back-transformation in Equation 3, it comes back in when deriving the real part at 
each scale h through R(Wn(hj)). 
 
What should have been the values of these phases with the observed data in the first place?  
Reply: The phases are uniformly distributed over the range of -𝜋 to 𝜋, which was specified in the text. 
Modification: p.7, caption of Figure 2 
 
Why should these phases be the same? I suspect the only impact these phases have is on spatial 
dependence. In that case why are the majority of results that are presented focusing on temporal 
dependence attributes? Figure 6 gives some flavour of the multi-suite stochastic generation. It looks 
troublingly similar to the observations. What would happen if non-identical phases used across all 
the sites? These questions are important to address to establish the contribution here is an improved 
representation of spatial dependence compared to other alternatives. 
Reply: The random phases have to be the same across all stations to retain spatial dependence, 
which is mentioned in the text and is why the spatial aspect receives a lot of attention in the 
validation part of the manuscript (Figures 6-11, i.e. half of the figures). Figure 6 gives an impression of 
what the simulated time series look like for three regions with four stations each. While the general 
distributional and temporal characteristics of the series are retained by the simulations, the 
simulations do not reproduce observed events but instead generate new series of potential 
successions of events. Figure 7 shows the cross-correlation functions among pairs of stations for the 
four catchments in the Pacific Northwest. If non-identical phases were used, these spatial correlations 
would not be reproduced as demonstrated in Figure 1 shown above. Figure 8 summarizes spatial 
dependencies over the whole distribution for all pairs of stations (671 times 671) in a variogram. 
Figure 9 gives an overview of spatio-temporal characteristics of simulated flood events and Figure 10 
summarizes spatial dependencies for all pairs of stations (671 times 671) via the F-madogram, a 
measure of extremal dependence. Also the last Figure (11) focuses on the spatial dependence aspect 
by comparing observed with simulated tail dependence coefficients, which are again computed for all 
pairs of stations. We clarify the description of the evaluation procedure by specifying that the general 
spatial dependence structure and the spatial dependence in high extremes is evaluated. Figure 1 in 
this response to the reviewer shows that spatial correlations are not retained if non-identical phases 
are used across all sites. 
Modification: p.9, l.199-200 
 
Regarding other alternatives, is there a possibility of comparing this method with the 
commonly used spatial stochastic generators such as SPIGOT or other equally worthy alternatives? I 
would like to see the variogram figure possibly expanded to also show alternate outcomes using 
other formulations of spatial dependence (i.e. different ways of specifying phases). 
Reply: We rerun the simulations for the whole set of stations without using the same phases across 
all stations but generating a set of random phases for each station individually. Figure 2 in this 
response to the reviewer shows that spatial dependence is modeled much worse than when 
randomizing the phases for all catchments in the same way (Figure 8 in manuscript).  
We agree that a comparison of different spatial stochastic generators with respect to how they 
represent spatial extremes would be interesting and valuable. In order to make such a model 
comparison study beneficial for the community, ideally a broad range of models ranging from 
continuous to event-based models should be compared as there exists no commonly accepted 
benchmark/reference model. Such a comparison goes beyond the scope of this manuscript and should 
be addressed in a separate study. 
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Figure 2: Comparison of observed (black) and simulated (orange) variograms for 20 simulation runs where the phases were 
randomized for each station individually. 

 
COMMENT3: Section 3.2, step 4 mentions how the reconstruction is done by using 
the inverse wavelet transform (Eq. (3)) combining the derived random phases and the 
amplitudes in previous steps. Could you write the combination explicitly in the from of 
the equation (i.e., include the random phases in the Eq. (3))? 
Reply: The complex part of the wavelet transform Wn(h) comes in via the complex conjugate * in 
Equation 2. The complex conjugate is derived using the modulus and argument, i.e. the phases, of the 
complex numbers contained in the Morlet wavelet (Equation 1). The wavelet coefficients Wn(h) 
resulting from the transform are also complex numbers where the argument of the complex wavelet 
value Wn(h) corresponds to the wavelet phase. During back-transformation in Equation 3, the phases 
come back in when deriving the real part at each scale h through R(Wn(hj)). 
 
Minor comments: Line 147: h=100 wavelet scales, I think you mean number of wavelet 
scales is 100, not the scale itself equals 100.  Wavelet scales should be hj = h0*2ˆ(j*dj), j=0,1,: : :J. Or 
is this some parameter that is specific to a continuous wavelet transform? Why is it of relevance, 
what impact does it make, and why use the same value for all locations is something that should be 
discussed. 
TORRENCE, C. & COMPO, G. P. 1998. A Practical Guide to Wavelet Analysis. Bulletin of the American 
Meteorological Society, 79, 61-78. 
Reply: Thank you for pointing this out, yes, we intended to refer to the number of wavelet scales. This 
was adjusted in the text. The number of scales can be freely chosen in the case of the continuous 
wavelet transform. A high number of scales compared to a low number of scales allows for a finer 
resolution [Torrence and Compo, 1998] and for a detailed reconstruction of the original time series. 
Modification: p.8, l.173 
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