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Abstract 20 

Optimum performance of  irrigated crops in regions with shallow saline groundwater 21 

requires a careful balance between application of  irrigation water and upward movement 22 

of  salinity from the groundwater. Few field validated surrogate models are available to 23 

aid in the management of  irrigation water under shallow groundwater conditions. The 24 

objective of  this research is to develop a model that can aid in the management using a 25 

minimum of  input data that is field validated. In this paper a 2-year field experiment was 26 

carried out in the Hetao irrigation district in Inner Mongolia, China and a physically based 27 

integrated surrogate model for arid irrigated areas with shallow groundwater was 28 

developed and validated with the collected field data. The integrated model that links 29 

crop growth with available water and salinity in the vadose zone is called Evaluation of  30 

the Performance of  Irrigated Crops and Soils (EPICS). EPICS recognizes that field capacity 31 

is reached when the matric potential is equal to the height above the groundwater table 32 

and thus not by a limiting hydraulic conductivity. In the field experiment, soil moisture 33 

contents and soil salt conductivity at 5 depths in the top 100 cm, groundwater depth, 34 

crop height, and leaf  area index were measured in 2017 and 2018. The field results were 35 

used for calibration and validation of  EPICS. Simulated and observed data fitted 36 

generally well during both calibration and validation. The EPICS model that can predict 37 

crop growth, soil water, groundwater depth and soil salinity can aid in optimizing water 38 

management in irrigation districts with shallow aquifers. 39 

Key words: Surrogate hydrological model, irrigated crops, shallow aquifer40 
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1. Introduction 41 

Irrigation water is a scarce resource, especially in arid and semi-arid areas of  the world. 42 

Irrigation improves quality and quantity of  food production; however, excess irrigation 43 

and salinization remain one of  the key challenges. Almost 20% of  the irrigated land in 44 

the world is affected by salinization and this percentage is still on the rise (Li et al., 2014). 45 

Salinity affects agricultural production (Williams, 1999). Soil salinization and water 46 

shortages, especially associated with surface irrigated agriculture in arid to semi-arid 47 

areas, is a threat to the well-being of  local communities in these areas (Dehaan and 48 

Taylor, 2002; Rengasamy, 2006).  49 

In arid and semi-arid surface irrigation districts without a drainage infrastructure, the 50 

groundwater table is close to the surface because more water has been applied than 51 

crop evapotranspiration. Capillary rise of  the shallow groundwater can be used to 52 

supplement irrigation and thereby, in closed basins, can possibly save water for irrigating 53 

additional areas downstream (Gao et al., 2015; Yeh and Famiglietti, 2009; Luo and 54 

Sophocleous, 2010.). However, at the same time, capillary upward moving water carries 55 

salt from the groundwater increasing the salt in the upper layers of  the soil leading to 56 

soil degradation and possibly decreasing yields and change of  crop patterns to more salt 57 

tolerant crops (Guo et al., 2018; Huang et al., 2018). Over 50% of  the total irrigated 58 

cropland, 5250 km2 in the Hetao irrigation district in the Yellow River basin, is affected 59 

by salinity (Feng et al., 2005). Therefore, understanding the interaction of  improved crop 60 

yield, soil salinization and decreased surface irrigation is important to the sustainability 61 

of  the surface irrigation water systems in arid and semi-arid areas. This will require 62 
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experimentation under realistic farmers’ field conditions, as well as modeling to extend 63 

the findings beyond the plot scale. 64 

Field scale models for water, solute transport and crop growth are widely available. 65 

Crop growth models use either empirical functions or model the underlying physiological 66 

processes (Liu, 2009). Models widely used for simulating crop growth are EPIC (Williams 67 

et al., 1989), DSSAT (Uehara, 1989), WOFOST (Diepen et al., 1989) and AquaCrop 68 

(Hsiao et al., 2009; Raes et al., 2009; Steduto et al., 2009). Models focused on water 69 

and solute movement in the vadose zone using some form of  Richards’ equation are 70 

HYDRUS (Šimůnek et al., 1998) and SWAP (Dam et al., 1997). Models that integrate crop 71 

growth and water-solute movement processes are SWAP-WOFOST (Hu et al., 2019), 72 

SWAP-EPIC (Xu et al., 2015; Xu et al., 2016), HYDRUS-EPIC ((Wang et al., 2015), and 73 

HYDRUS-DSSAT (Shelia et al., 2018). These integrated models require input data that are 74 

usually not available when applied over extended areas (Liu et al., 2009; Xu et al., 2016; 75 

Hu et al., 2019). The EPIC crop growth model is often preferred in integrated crop 76 

growth hydrology models because it requires relatively few input data and is accurate 77 

(Wang et al., 2014; Xu et al., 2013; Chen et al., 2019). 78 

There is a tendency with the advancement of  computer technology to include more 79 

physical processes in these models (Asher et al., 2015; Doherty and Simmons, 2013; 80 

Leube et al., 2012). Detailed spatially input of  soil hydrological properties and crop 81 

growth are required to take advantage of  the model complexity (Flint et al., 2002; Rosa 82 

et al., 2012). This greater model complexity, both in space and time, requires longer 83 

model run times, especially for the time-dependent models (Leube et al., 2012). These 84 
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models are useful for research purposes but for actual field applications, the required 85 

input data are not available and expensive to obtain. In such cases, simpler surrogate 86 

models are a good alternative (Blanning, 1975; Willcox and Peraire, 2002; Regis and 87 

Shoemaker, 2005). Surrogate models run faster and are as accurate as the complex 88 

models for a specific problem (shallow groundwater here) but not as versatile as the 89 

more complex models that can be applied over a wide range of conditions (Asher et al., 90 

2015).  91 

Simple surrogate models are abundant in China for areas where the groundwater is 92 

deeper than approximately 10 m (Kendy et al., 2003; Chen et al., 2010; Ma et al., 2013; 93 

Li et al., 2017), but are limited and relatively scarce for areas where the goundwater is 94 

near the surface in the arid to semi-arid areas (Xue et al., 2018; Gao et al., 2017; Liu et 95 

al., 2019). When the groundwater is deep, the change in matric potential in the subsoil is 96 

small and the hydraulic potential is equal to the gravity potential. However, for areas with 97 

shallow aquifers (i.e., less than approximately 3 m), the matric potential cannot be 98 

ignored. The flow of  water is upward when the absolute value of  matric potential is 99 

greater than the groundwater depth or downward when it is less than the groundwater 100 

depth (Gardner, 1958; Gardner et al., 1970a; b; Steenhuis et al., 1988). The field 101 

capacity in these soils is reached when the hydraulic gradient is constant (i.e., the 102 

constant value of  sum of  matric potential and gravity potential). In this case, the soil 103 

water is in equilibrium and no flow occurs. 104 

Because of  the shortcomings in the above complex models, the objective of  this 105 

research was to develop a field validated surrogate model that could be used to optimize 106 
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both water use efficiency and crop yield in irrigated areas with shallow groundwater and 107 

salinized soil with a minimum of  input parameters. To validate the surrogate model, we 108 

performed a 2-year field experiment in the Hetao irrigation district that investigated the 109 

change in soil salinity, moisture content, groundwater depth and maize and sunflower 110 

growth during the growing season. 111 

 112 

2. Model description 113 

2.1 Introduction of  the model 114 

In a recent study, we presented a surrogate model for the vadose zone with shallow 115 

groundwater using the novel concept that the moisture content at field capacity is a 116 

unique function of  the groundwater depth after irrigation or precipitation that wets up 117 

the entire soil profile. The model, called the Shallow Vadose Groundwater model, applies 118 

directly to surface irrigated districts where the groundwater is within 3.3 m from the soil 119 

surface (Liu et al. 2019). The model was a proof  of  concept with calibrated values for 120 

evapotranspiration and soil salinity and was not simulated. 121 

To make the Shallow Vadose Groundwater model more physically realistic, we added 122 

a crop growth model and included the effect of  salinity and moisture content on 123 

evaporation and transpiration directly in this study. The new model that combines parts 124 

of  the Environmental Policy Integrated Climate (EPIC) with Shallow Vadose Groundwater 125 

model is called the Evaluation of  the Performance of  Irrigated Crops and Soils (EPICS). 126 

2.2 Structure of  the EPICS model 127 

In the EPICS model, the soil profile is divided into five layers of  20 cm (from the soil 128 

https://doi.org/10.5194/hess-2019-656
Preprint. Discussion started: 14 January 2020
c© Author(s) 2020. CC BY 4.0 License.



7 

surface down) and a sixth layer that stretches from the 100 cm depth to the water table 129 

below (Fig. 1). 130 

131 

Fig 1. Schematic diagram of  model components and water movement 132 

The moisture content and salt content are calculated for each day (Fig.1). All flow 133 

takes place within the day and the water and salt content are in “equilibrium” (i.e., fluxes 134 

are zero) at the end of  the day for which the calculations are made. Daily fluxes 135 

considered in the vadose model are the following: at the surface, the fluxes are irrigation, 136 

both irrigation water, I(t), and salt, S0(t), and precipitation, P(t), and for each layer, j, on 137 

days with irrigation and rainfall, the downward flux of  water, Rw(j,t), and salt, S(j,t), 138 

between the layers. On days without water input at the soil surface, an upward 139 

groundwater flux U(j,h,t), and salt, S(j,t) are considered. The flux to the surface depends 140 

on the groundwater depth. Finally, transpiration, T(j,t), removes water from the layers 141 

with roots of  the crops and evaporation, E(j,t), from all layers. 142 

https://doi.org/10.5194/hess-2019-656
Preprint. Discussion started: 14 January 2020
c© Author(s) 2020. CC BY 4.0 License.



8 
 

The EPICS model consists of  two modules: the VADOSE module and the CROP 143 

module. The two modules are linked through the evapotranspiration flux in the soil (Fig. 144 

2).   145 

 146 

Fig 2. Schematic diagram of  the linked novel Shallow Aquifer-Vadose zone surrogate 147 

module and EPIC module. Note: ET0 is the reference evapotranspiration, Ep and Tp are the 148 

potential evaporation and potential transpiration, Ea and Ta are the actual evaporation 149 

and actual transpiration, Kc is the crop coefficient, τ is the development stage of  the leaf  150 

canopy, and rj is the root function of  soil layer j. 151 

 152 

The CROP module employs functions of  the EPIC model (Williams et al., 1989) and 153 

root growth distribution (Novak, 1987; Kendy et al., 2003; Chen et al. 2019). The CROP 154 

module calculates daily values of  crop height, root depth and leaf  area index (LAI) based 155 

on climatic data (Fig. 2). 156 

The VADOSE module calculates the moisture and salt content in the root zone and 157 
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the upward movement of  the groundwater (Fig.2). Field capacity varies with depth and is 158 

a function of  the (shallow) groundwater depth and the soil characteristic curve (Liu et al., 159 

2019). Moisture contents become less than field capacity when the upward flux is less 160 

than the actual evapotranspiration.   161 

Finally, the link between the VADOSE and the CROP modules is achieved by 162 

calculating the actual evapotranspiration with parameters of  both modules consisting of  163 

the moisture content and the salt content simulated in the VADOSE module and root 164 

distribution and potential evapotranspiration in the CROP module (Fig. 2).  165 

2.3 Theoretical background of  the EPICS model 166 

In the next section, the equations of  the CROP in the VADOSE modules are presented. 167 

The calculations are carried out sequentially on a daily time step. Finer resolution is not 168 

needed for managing water and salt content for irrigation. In the first step, the actual 169 

evaporation and transpiration are calculated for each layer in the model. Next, the 170 

moisture content and salt content are adjusted for the various fluxes. Since the equations 171 

for the downward movement on days of  rainfall and/or irrigation are different than for 172 

upward movement from the groundwater on the remaining days, we present upward and 173 

downward movement in separate sections. The code was written in Matlab 2014a and 174 

Microsoft Excel was used for data input and output. 175 

2.3.1 CROP module 176 

The crop module uses functions of  EPIC (Erosion Productivity Impact Calculator, Williams 177 

et al., 1989) to calculate leaf  area index, LAI, crop height and the root depth (green 178 
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boxes in Fig. 2), and the potential transpiration, T, and evaporation, E (orange boxes in 179 

Fig, 2). Input data for the CROP module included: mean daily temperature (Tmean), 180 

maximum daily temperature (Tmx), minimum daily temperature (Tmn), maximum crop height 181 

(Hmx), maximum LAI (LAImx), maximum root depth (RDmx), dimensionless canopy extinction 182 

coefficient (Kb), and total potential heat units required for crop maturation (PHU). 183 

The potential rates of  evaporation, 𝐸𝑃(𝑗, 𝑡), and transpiration,𝑇𝑃(𝑗, 𝑡), of  different184 

layers are derived from the total rates and a root function that determines the 185 

distribution of  roots in the vadose zone 186 

𝑇𝑃(𝑗, 𝑡) = 𝑟𝑇(𝑗, 𝑡)𝑇𝑝(𝑡)  (1𝑎) 187 

𝐸𝑝(𝑗, 𝑡) = 𝑟𝐸(𝑗, 𝑡)𝐸𝑝(𝑡)  (1𝑏) 188 

where the letters in the parenthesis are the independent variables on which the 189 

parameter before the parenthesis depends, 𝑇𝑃(𝑡) is the total potential transpiration and190 

𝐸𝑃(𝑡) is the total potential transpiration at time, t. Both are calculated with the CROP191 

module (S1 in the supplementary material). Root functions (Sau et al., 2004; Delonge et 192 

al., 2012) were used to calculate transpiration and evaporation of  different soil layer. 193 

𝑟𝑇(𝑗, 𝑡) is the root function for the transpiration and 𝑟𝐸(𝑗, 𝑡) is the root function for the 194 

evaporation. Both have the same general equation but with a different value for the 195 

constant δ. 196 

𝑟𝑇(𝑗, 𝑡) = [
1

1 − 𝑒𝑥𝑝(−𝛿)
] {𝑒𝑥𝑝 [−𝛿 (

𝑍1𝑗

𝑍2𝑗
)] [1 − 𝑒𝑥𝑝 (−𝛿

𝑍2𝑗 − 𝑍1𝑗

𝑍𝑟
)]}  (2𝑎) 197 

𝑟𝐸(𝑗, 𝑡) = [
1

1 − 𝑒𝑥𝑝(−𝛿)
] {𝑒𝑥𝑝 [−𝛿 (

𝑍1𝑗

𝑍2𝑗
)] [1 − 𝑒𝑥𝑝 (−𝛿

𝑍2𝑗 − 𝑍1𝑗

𝑍𝑟
)]}  (2𝑏) 198 

Where z1j is the depth of  the upper boundaries of  the soil layer j. For 𝑟𝑇(𝑗, 𝑡) if  the root199 
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depth is smaller than the lower boundaries of  the soil layer j, 𝑍2𝑗 is equal to the root 200 

depth and if  the root depth is greater than the lower boundaries of  the soil layer j, 𝑍2𝑗  is 201 

the depth of  the lower boundaries of  the soil layer j. For 𝑟𝐸(𝑗, 𝑡), 𝑍2𝑗 is depth of  the202 

lower boundaries of  the soil layer j. 𝑍𝑟 is the root zone depth and δ is the water use 203 

distribution parameter. Note that the sum of  𝑟𝑇(𝑗, 𝑡) of  all soil layers is equal to 1. In the204 

study of  Novark (1987), the value of  δ for corn is 3.64 and we used this value. To obtain 205 

𝑟𝐸(𝑗, 𝑡), δ was set to 10 (Chen et al., 2019; Kendy et al., 2003). Sunflower root function206 

simulation employed the same δ values as for maize. 207 

The actual evaporation rates, 𝐸𝑎(𝑗, 𝑡), and transpiration, 𝑇𝑎(𝑗, 𝑡), for each soil layer, j, 208 

at time, t, are calculated as a proportion of  the potential values as:  209 

𝐸𝑎(𝑗, 𝑡) = 𝑘𝐸(𝑗, 𝑡)𝐸𝑝(𝑗, 𝑡)  (3𝑎) 210 

𝑇𝑎(𝑗, 𝑡) = 𝑘𝑇(𝑗, 𝑡)𝑆(𝑗, 𝑡)𝑇𝑝(𝑗, 𝑡)  (3𝑏) 211 

where 𝑘𝐸(𝑗) and 𝑘𝑇(𝑗) are water stress coefficients and 𝑆(𝑗) is a salt stress coefficient.212 

According to Raes et al. (2009), the water stress coefficients are 213 

𝑘𝐸(𝑗, 𝑡) = exp (−2.5
𝜃0.33(𝑗)−𝜃(𝑗,𝑡)

𝜃0.33(𝑗)−𝜃15(𝑗)
)   𝜃 ≤ 𝜃0.33  (4𝑎) 214 

𝑘𝐸(𝑗, 𝑡) = 1  𝜃 >  𝜃0.33 (4𝑏) 215 

where 𝜃0.33(𝑗) is the moisture content at 0.33 bar or -33 kPa for layer j, or when the216 

conductivity becomes limiting and 𝜃15(𝑗) is the moisture content at wilting point 15 bar217 

(1.5 Mpa), 𝜃(𝑗, 𝑡) is the soil moisture content for layer j at time t. 218 

Then water stress coefficient in Eq. 3b is: 219 

𝑘𝑇(𝑗, 𝑡) = 1 −
exp [(1 −

𝜃(𝑗, 𝑡) − 𝜃15(𝑗)
(1 − 𝑝)[𝜃0.33(𝑗) − 𝜃15(𝑗)]

) 𝑓𝑠ℎ𝑎𝑝𝑒] − 1

exp(𝑓𝑠ℎ𝑎𝑝𝑒) − 1
 𝜃 ≤  𝜃0.33  (5𝑎) 220 

𝑘𝑇(𝑗, 𝑡) = 1  𝜃 > 𝜃0.33   (5𝑏) 221 
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where 𝑓𝑠ℎ𝑎𝑝𝑒 is the shape factor of  𝑘𝑇(𝑗, 𝑡) curve, p is the fraction of  readily available222 

soil water relative to the total available soil water. Finally, the salt stress coefficient 223 

𝑆(𝑗, 𝑡) for each layer in Eq 3b can be calculated as (Allen et al., 1998; Xue et al., 2018): 224 

𝑆(𝑗, 𝑡) = 1 −
𝐵

100 𝑘𝑦

(𝐸𝐶𝑒(𝑗, 𝑡) − 𝐸𝐶𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)                   (6)225 

where 𝑘𝑦 is the factor that affects the yield, 𝐸𝐶𝑒 is the electrical conductivity of  the soil 226 

saturation extract (ms cm-1), 𝐸𝐶𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is the calibrated threshold of  the electrical 227 

conductivity of  the soil saturation extract when the crop yield becomes affected by salt 228 

(ms cm-1), and B is the calibrated crop specific parameter that describes the decrease rate 229 

of  crop yield when 𝐸𝐶𝑒  increases per unit below the threshold. The electrical 230 

conductivity of  the soil saturation extract can be calculated as (Rhoades et al., 1989): 231 

𝐸𝐶𝑒 = 1.33 + 5.88 × 𝐸𝐶1:5                         (7) 232 

where 𝐸𝐶1:5 is the electrical conductivity of  the soil extract that soil samples mixed with 233 

distilled water in a proportion of  1:5.  234 

2.3.2 VADOSE Module 235 

2.3.2.1 Moisture content at field capacity 236 

Field capacity with a shallow groundwater is different than in soils with deep 237 

groundwater where water stops moving when the hydraulic conductivity becomes 238 

limiting at -33 kPa. When the groundwater is shallow, the hydraulic conductivity is not 239 

limiting and the water stops moving when the hydraulic potential is constant and thus 240 

the matric potential is equal to the height above the water table (Gardner 1958; Gardner 241 

et al.,1970a, b; Steenhuis et al. 1988; Liu et al., 2019). Assuming a unique relationship 242 

between moisture content and matric potential (i.e. soil characteristic curve), the moisture 243 

https://doi.org/10.5194/hess-2019-656
Preprint. Discussion started: 14 January 2020
c© Author(s) 2020. CC BY 4.0 License.



13 
 

content at any point above the water table is a unique function of  the water table depth. 244 

Thus, any water added above field capacity will drain downward. When the groundwater 245 

is recharged, the water table will rise and increase the moisture contents at field capacity 246 

throughout the profile. 247 

The moisture contents at field capacity were found by Liu et al. (2019) using the 248 

simplified Brooks and Corey soil characteristic curve (Brooks and Corey, 1964) 249 

𝜃 = 𝜃𝑠 [
𝜑𝑚

𝜑𝑏
]

−𝜆

        𝑓𝑜𝑟  |𝜑𝑚| >  |𝜑𝑏|              (8𝑎) 250 

      𝜃 = 𝜃𝑠               𝑓𝑜𝑟  |𝜑𝑚| ≤  |𝜑𝑏|              (8𝑏) 251 

in which 𝜃 is the soil moisture content (cm3 cm-3), 𝜃𝑠 is the saturated moisture content 252 

(cm3 cm-3), 𝜑𝑏 is the bubbling pressure (cm), 𝜑𝑚 is matric potential (cm), and λ is the 253 

pore size distribution index. The moisture content at field capacity, 𝜃𝑓𝑐(𝑧, ℎ), for any 254 

point, z, from the surface water for a groundwater at depth, h, can be expressed as (Liu et 255 

al. 2019)  256 

𝜃𝑓𝑐(𝑧, ℎ) = 𝜃𝑠(𝑧) [
ℎ − 𝑧

𝜑𝑏
]

−𝜆

         𝑓𝑜𝑟  |ℎ − 𝑧| >  |𝜑𝑏(𝑧)|      (9𝑎) 257 

𝜃𝑓𝑐(𝑧, ℎ) = 𝜃𝑠(𝑧)                𝑓𝑜𝑟  |ℎ − 𝑧| ≤  |𝜑𝑏(𝑧)|      (9𝑏) 258 

where h is the depth of  the groundwater and z (cm) is the depth of  the point below the 259 

soil surface. Thus (h-z) is the height above the groundwater and this is equal to the 260 

matric potential for soil moisture content at field capacity.  261 

For shallow groundwater, the matric potential at the surface is -33kPa when the 262 

groundwater is 3.3 m depth. For this matric potential, as mentioned above, the 263 

conductivity becomes limiting. This depth of  the groundwater is therefore the lower limit 264 

over which the VADOSE module is valid.   265 
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Evapotranspiration can lower the soil moisture content below field capacity. Thus, 266 

the maximum moisture content in the VADOSE module is determined by the soil 267 

characteristic curve and the height of  the groundwater table, and the minimum is the 268 

wilting point that can be obtained by evapotranspiration by the crop. Note that the 269 

saturated hydraulic conductivity does not play a role in determining the moisture content 270 

because inherently it is assumed that it is not limiting in the distribution of  the water. 271 

2.3.2.2 Drainable porosity 272 

The drainable porosity that is a function of  the depth is calculated first because it is 273 

independent of  time. The drainable porosity is obtained by calculating the field capacity, 274 

𝑊𝑓𝑐(ℎ) (cm) for each layer at all groundwater depths. The total water content at field 275 

capacity of  the soil profile over a prescribed depth with a water table at depth h can be 276 

expressed as:  277 

𝑊𝑓𝑐(ℎ) =  ∑[𝐿(𝑗) 𝜃𝑓𝑐(𝑗, ℎ)]

𝑛

𝑗=1

                      (10) 278 

where 𝜃𝑓𝑐(𝑗, ℎ) is the average moisture content at field capacity of  layer j that can be 279 

found by integrating Eq. 8 from the upper to the lower boundary of  the layer and 280 

dividing by the length L(j) which is the height of  layer j. The matric potential at the 281 

boundary is equal to the height above the water table. The drainable porosity, 𝜇(ℎ), 282 

which is a function of  the groundwater depth h, can simply be found as the difference in 283 

water content when the water table is lowered over a distance of  2∆ℎ. 284 

𝜇(ℎ) =
𝑊𝑓𝑐(ℎ + ∆ℎ) − 𝑊𝑓𝑐(ℎ − ∆ℎ)

2∆ℎ
                 (11) 285 

where Δh =0.5𝐿(𝑗). 286 

https://doi.org/10.5194/hess-2019-656
Preprint. Discussion started: 14 January 2020
c© Author(s) 2020. CC BY 4.0 License.



15 

2.3.2.3 Downward flux (at times of  irrigation and/or precipitation) 287 

Water 288 

A downward flux occurs when either the precipitation or irrigation is greater than the 289 

actual evapotranspiration. In this case, upward flux will not occur because the actual 290 

evapotranspiration is subtracted from the input at the surface. We consider two cases 291 

when the groundwater is being recharged and when it is not.  292 

When the net flux at the surface (irrigation plus rainfall minus actual 293 

evapotranspiration) is greater than that needed to bring the soil up to equilibrium 294 

moisture content, the groundwater will be recharged and the distance of  the 295 

groundwater to soil surface decreases and the moisture content will be equal to the 296 

moisture at field capacity. The fluxes from one layer to the next can be calculated simply 297 

by summing the amount of  water needed to fill up each layer below to the new moisture 298 

content at field capacity. Hence, the percolation to groundwater, 𝑅𝑔𝑤(𝑡) , can be299 

expressed as: 300 

𝑅𝑔𝑤(𝑡) = 𝑃(𝑡) + 𝐼(𝑡) − 𝐸𝑎(𝑡) − 𝑇𝑎(𝑡) − ∑
[𝜃𝑓𝑐(𝑗, ℎ) − 𝜃(𝑗, 𝑡 − ∆𝑡)]𝐿(𝑗)

∆𝑡

𝑛

𝑗=1

 (12) 301 

where n is the total number of  layers, 𝜃(𝑗, 𝑡) is the average soil moisture content in day 302 

t of  layer j, 𝐸𝑎(𝑡) is the actual evaporation, 𝑇𝑎(𝑡) is the actual transpiration, 𝑃(𝑡) is303 

the precipitation, and 𝐼(𝑡) is the irrigation.  304 

When the groundwater is not recharged, the rainfall and the irrigation are added to 305 

uppermost soil layer and when the soil moisture content will be brought up to the field 306 

capacity and the excess water will infiltrate to next soil layer bringing it up to field 307 
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capacity. This process continues until all the rainwater is distributed. Formally the soil 308 

moisture can be expressed as 309 

𝜃(𝑗, 𝑡) = 𝑚𝑖𝑛 [𝜃𝑓𝑐(𝑗, ℎ), [𝜃(𝑗, 𝑡 − ∆𝑡) +
𝑅𝑤(𝑗−1,𝑡) ∆𝑡

𝐿(𝑗)
]]            (13)    310 

where 𝜃(𝑗, 𝑡) is the average soil moisture content in day t of  layer j,  𝑅𝑤(𝑗 − 1, 𝑡) is the 311 

percolation rate to layer j and can be found with Eq 12 by replacing j-1 for n in the 312 

summation sign.  313 

𝑅𝑤(𝑗 − 1, 𝑡) = 𝑃(𝑡) + 𝐼(𝑡) − 𝐸𝑎(𝑡) − 𝑇𝑎(𝑡) − ∑
[𝜃𝑓𝑐(𝑗, ℎ) − 𝜃(𝑗, 𝑡 − ∆𝑡)]𝐿(𝑗)

∆𝑡

𝑗−1

1

   (14) 314 

For the uppermost soil layer, the water percolation can be expressed as 315 

𝑅𝑤(0, 𝑡) = 𝐼(𝑡) + 𝑃(𝑡) − 𝐸𝑎(𝑡) − 𝑇𝑎(𝑡)                    (15)    316 

Salinity 317 

The salt concentration for layer j can be expressed by a simple mass balance as: 318 

𝐶(𝑗, 𝑡) =
𝜃(𝑗, 𝑡 − ∆𝑡) 𝐶(𝑗, 𝑡 − ∆𝑡)𝐿(𝑗) + [𝑅𝑤(𝑗 − 1, 𝑡) 𝐶(𝑗 − 1, 𝑡)  − 𝑅𝑤(𝑗, 𝑡) 𝐶(𝑗, 𝑡)] ∆𝑡

𝜃(𝑗, 𝑡)𝐿(𝑗)
   (16) 319 

where 𝐶(𝑗, 𝑡) is the salt concentration of  layer j at time t (g L-1). The equation can be 320 

rewritten as an explicit function of 𝐶(𝑗, 𝑡)  321 

𝐶(𝑗, 𝑡) = [
𝜃(𝑗, 𝑡)𝐿(𝑗)

1 + 𝑅𝑤(𝑗, 𝑡)  ∆𝑡
] [

𝜃(𝑗, 𝑡 − ∆𝑡) 𝐶(𝑗, 𝑡 − ∆𝑡)𝐿(𝑗) + 𝑅𝑤(𝑗 − 1, 𝑡) 𝐶(𝑗 − 1, 𝑡) ∆𝑡

𝜃(𝑗, 𝑡)𝐿(𝑗)
]  (17) 322 

For the surface layer j=1, we obtain 323 

𝐶(1, 𝑡)  = [
𝜃(1, 𝑡)𝐿(1)

1 + 𝑅𝑤(1, 𝑡)∆𝑡 
] [

𝜃(1, 𝑡)𝐿(1)

1 + 𝑅𝑤(1, 𝑡)∆𝑡 

𝜃(𝑗, 𝑡 − ∆𝑡) 𝐶(𝑗, 𝑡 − ∆𝑡)𝐿(𝑗) + 𝐼(𝑡) 𝐶𝐼 ∆𝑡

𝜃(𝑗, 𝑡)𝐿(𝑗)
 ] (18) 324 

where 𝐶𝐼 ∆𝑡 is the salt concentration in the irrigation water. 325 

The salt concentration of  the groundwater Cgw(t) can be estimated as： 326 

𝐶𝑔𝑤(𝑡) =
[𝐺(𝑡 − 1) × 𝐶𝑔𝑤(𝑡 − 1) + 𝐶(5, 𝑡) × 𝑅𝑤(𝑡)]

𝐺(𝑡 − 1) + 𝑅𝑤(𝑡)
               (19) 327 
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Where 𝐶(5, 𝑡) is the soil salinity concentration of  the soil layer 5 on day t (g L-1), 328 

𝐺(𝑡 − 1) is the difference of  the groundwater depth and the depth that the largest 329 

groundwater table fluctuations depth of  groundwater table on day (t-1) (m) (Xue et al., 330 

2018), 𝐶𝑔𝑤(𝑡) is the soluble salt concentration of  groundwater at day t (g L-1).331 

2.3.2.4 Upward flux 332 

For the upward flux period, it is assumed there is no downward water flux to 333 

groundwater in this study. The evapotranspiration leads to the decrease of  soil moisture 334 

content in the vadose zone and lowers the groundwater table due to the upward 335 

movement of  groundwater to crop root zone and soil surface. The soil moisture content 336 

is calculated by taking the difference of  equilibrium moisture content associated with the 337 

change of  groundwater depth.  338 

Water  339 

The groundwater upward flux, 𝑈𝑔𝑤(ℎ, 𝑡), is limited by either the maximum upward flux340 

of  groundwater, 𝑈𝑔𝑤,𝑚𝑎𝑥(ℎ), or the actual evapotranspiration, formally stated as:341 

𝑈𝑔𝑤(ℎ, 𝑡) = 𝑚𝑖𝑛 [[𝐸𝑎(𝑡) + 𝑇𝑎(𝑡)], 𝑈𝑔𝑤,𝑚𝑎𝑥(ℎ)]          (20)342 

𝐸𝑎(𝑡) = ∑ 𝐸𝑎(𝑗, 𝑡)  (21)

𝑛

𝑗=1

 343 

𝑇𝑎(𝑡) = ∑ 𝑇𝑎(𝑗, 𝑡)

𝑛

𝑗=1

  (22) 344 

The maximum upward flux can be expressed as (Liu et al., 2019; Gardner et al., 1958) 345 

𝑈𝑔𝑤,𝑚𝑎𝑥(ℎ) =
𝑎

𝑒𝑏ℎ − 1
 for  𝑈𝑔𝑤

ℎ ≤ 𝐸𝑇𝑝  (23) 346 

where a and b are constants that need to be calibrated. 347 

Two cases are considered for determining the moisture contents of  the layers 348 
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depending on whether the actual evapotranspiration is greater or less than the maximum 349 

upward flux.  350 

Case I: 𝑈𝑔𝑤,𝑚𝑎𝑥(ℎ) > 𝐸𝑎(𝑡) + 𝑇𝑎(𝑡)  351 

In this case, where the maximum upward flux is greater than the evaporative demand, the 352 

groundwater depth is updated  353 

ℎ(𝑡) = ℎ(𝑡 − ∆𝑡) +
𝐸𝑎(𝑡) + 𝑇𝑎(𝑡)

𝜇(ℎ̅)
                  (24) 354 

where 𝜇(ℎ̅) is the average drainable porosity over the change in groundwater depth h. 355 

The moisture content after the change in groundwater depth becomes  356 

𝜃(𝑗, 𝑡) = 𝜃(𝑗, 𝑡 − ∆𝑡) + 𝜃𝑓𝑐(𝑗, ℎ(𝑡)) − 𝜃𝑓𝑐(𝑗, ℎ(𝑡 − ∆𝑡))       (25) 357 

Note that when the layer is at field capacity and the upward flux is equal to the 358 

evaporative flux, the layer remains at field capacity for the updated groundwater depth at 359 

time t. 360 

Case II: 𝑈𝑔𝑤,𝑚𝑎𝑥(ℎ) ≤ 𝐸𝑎(𝑡) + 𝑇𝑎(𝑡)  361 

In this case, the groundwater depth is updated  362 

ℎ(𝑡) = ℎ(𝑡 − ∆𝑡) +
𝑈𝑔𝑤,𝑚𝑎𝑥(ℎ)

𝜇(ℎ̅)
                        (26) 363 

When the upward flux is less than the sum of  the actual evaporation and transpiration, 364 

the moisture content is updated with the difference between the two fluxes, 365 

𝑈𝑔𝑤,𝑚𝑎𝑥(ℎ) and [𝐸𝑎(𝑡) + 𝑇𝑎(𝑡)], according to a predetermined distribution extraction of  366 

water out of  the root zone  367 

𝜃(𝑗, 𝑡) = 𝜃(𝑗, 𝑡 − ∆𝑡)+𝜃𝑓𝑐(𝑗, ℎ(𝑡)) − 𝜃𝑓𝑐(𝑗, ℎ(𝑡 − ∆𝑡) −
𝑟(𝑗)[𝐸𝑎(𝑡) + 𝑇𝑎(𝑡) − 𝑈𝑔𝑤,𝑚𝑎𝑥(ℎ)]

𝐿(𝑗)
  (27) 368 

The upward flux of  water can be found by summing the differences in moisture content 369 
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above the layer j similar to Eq 14, but starting the summation at the groundwater. 370 

Salinity  371 

The salt from groundwater is added to the soil layers according to the root function. The 372 

soil salinity concentration in layer j at day t can be expressed as 373 

C(𝑗, 𝑡)  =
𝜃(𝑗, 𝑡 − ∆𝑡) 𝐶(𝑗, 𝑡 − ∆𝑡)𝐿(𝑗) + 𝑟(𝑗, 𝑡)𝑈𝑔(ℎ, 𝑡)𝐶𝑔𝑤(𝑡)

𝜃(𝑗, 𝑡 − ∆𝑡)𝐿(𝑗)+(𝜃𝑓𝑐(𝑗, ℎ(𝑡)) − 𝜃𝑓𝑐(𝑗, ℎ(𝑡 − ∆𝑡))𝐿(𝑗) − 𝑟(𝑗, 𝑡)(𝐸𝑎(𝑡) + 𝑇𝑎(𝑡) − 𝑈𝑔𝑤,𝑚𝑎𝑥(ℎ))
(28) 374 

Since water is extracted from the reservoir that has the same concentration as in the 375 

reservoir, the concentration will not change, hence the equation used to estimate the 376 

groundwater salt concentration can be expressed as 377 

𝐶𝑔𝑤(𝑡) = 𝐶𝑔𝑤(𝑡 − ∆𝑡)                          (29) 378 

3. Data collection 379 

3.1 Study area 380 

Field experiments were conducted in 2017 and 2018 in Shahaoqu experimental station 381 

in Jiefangzha sub-district, Heato irrigation district in Inner Mongolia, China (Fig. 3). 382 

Irrigation water originates from the Yellow River. The area has an arid continental climate. 383 

Mean annual precipitation is 155 mm a-1 of  which 70% falls from June to September. Pan 384 

evaporation is 2000 mm a-1 (Xu et al., 2010). The mean annual temperature is 7℃. The 385 

soils begin to freeze in the middle of  November and to thaw in end of  April or beginning 386 

of  May. Maize, wheat and sunflower are the main crops in Jiefangzha sub-district and are 387 

grown with flood irrigation. The groundwater depth is between 0.5-3 m. Regional 388 

exchange of  groundwater is minimal due to low gradient of  0.01-0.025 (Xu et al., 2010). 389 

Thus, the groundwater mainly moves in a vertical direction in the regional scale. Soil 390 
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salinity in the aquifer in over 86% of  the Hetao district is less than 2 g L-1. 391 

392 

393 

394 

395 

396 

397 

398 

399 

400 

401 

402 

403 

Fig. 3 Location of the Shahaoqu experimental field (Note: The figure about the layout of 

the experimental fields is download from © Google earth) 

3.2 Field observations and data 

The layout of  the experimental fields is shown in Figure 3. The areas of  fields A, B, C 

and D are 920, 2213, 1167, 1906 m2, respectively. Field A and D were planted with 

maize on May 10 and harvested on September 30, 2017. In 2018, fields A and D were 

planted with gourds and were therefore not monitored in 2018. Fields B and C were 

seeded with sunflower in both 2017 and 2018. The sunflower was planted on June 1, 

2017 and June 5, 2018. Harvest was on September 15 in both years. The fields were 

flood irrigated ranging from two to five times during the growing season (Table 1). A well 

was installed in each experimental field to monitor the groundwater depth. 

20 

404 

405 
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 406 

Table 1 Irrigation scheduling for the Shahaoqu experimental fields in 2017 and 2018 407 

Field Year Irrigation events Date Irrigation depth (mm) 

A  

(maize) 
2017 

1 5/30 100 

2 6/25 162 

3 7/14 275 

4 8/6 199 

B 

(sunflower) 

2017 
1 6/26 140 

2 7/23 121 

2018 

1 6/20 134 

2 6/24 60 

3 7/15 114 

4 7/22 40 

5 8/31 130 

C 

(sunflower) 

2017 
1 6/19 80 

2 6/30 80 

2018 
1 6/20 140 

2 7/14 100 

D  

(maize) 
2017 

1 6/13 150 

2 6/26 94 

3 7/6 50 

4 7/14 174 

5 8/6 120 

 408 

Daily meteorological data, including air temperature, precipitation, relative humidity, 409 

wind speed, and sunshine duration, originated from the weather station at the Shahaoqu 410 

experimental station. The soil moisture content for the four experimental fields in 2017 411 

and for field C in 2018 during the crop growing season was measured every 7-10 days 412 

at the depths of  0-20, 20-40, 40-60, 60-80, 80-100 cm by taking soil samples and 413 

oven drying. For field B in 2018, the soil moisture content was monitored daily in the top 414 

100cm at 20 cm intervals using Hydra Probe Soil Sensors (Stevens Water Monitoring 415 
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System Inc., Portland, OR, USA). In 2017, the groundwater depths were manually 416 

measured in all four experimental fields about every 7-10 days. In 2018, the 417 

groundwater depth in fields B and C was recorded at 30 min intervals using an HOBO 418 

Water Level Logger-U20 (Onset, Cape Cod, MA, USA). The sensors of  the soil moisture 419 

content and groundwater depth were connected to data loggers and downloaded via 420 

wireless transmission. The crop leaf  area and crop height were manually measured every 421 

7-12 days.  422 

Undisturbed soil samples were collected in 5 cm high rings with a diameter of  5.5 423 

cm from the five soil layers where the soil moisture were taken and used for textual 424 

analysis, saturated soil moisture content, field capacity and soil bulk density. The soil 425 

texture was analyzed with a laser particle size analyzer (Mastersizer 2000, Malvern 426 

Instruments Ltd., United Kingdom). The American soil texture classification method was 427 

used in this study. Finally, the soil samples were collected 7-10 days apart to monitor the 428 

change of  electrical conductivity (EC). The soil samples were mixed with distilled water in 429 

a proportion of  1:5 to measure the electrical conductivity of  the soil water by a portable 430 

conductivity meter. It is assumed that 1 ms cm-1 corresponds to 640 mg L-1 of  total 431 

dissolved salts (Wallender and Tanji, 2011; Xue et al., 2018). 432 

3.3 Model calibration and validation 433 

The observed soil moisture contents, groundwater depths, crop heights, LAIs and salinity 434 

concentrations for field A with maize and sunflower fields B and C in 2017 were used for 435 

calibration and the sunflower data of  fields B and C in 2018 and the maize data in field 436 

D in 2017 were used for validation. The initial θ0.33 was based on the measured data 437 
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(Table 2). The initial values of  θs and θ15 were derived from the soil texture with the 438 

method of  Ren et al. (2016) (Table2). The default values of  EPIC for sunflower and maize 439 

were used as initial values for simulating crop growth (Kcmax and LAImx in Eq. S3, Kb in Eq. 440 

S4, Hmx in Eq. S7, PHU in Eq. S9,Tb in Eq. S10, ad in Eq. S12, T0 and Tb in Eq. 16, RDmx in 441 

Eq. S18). The initial value maximum crop coefficient (Kcmax) in Eq. S3 in Supplementary S1 442 

for evapotranspiration calculation was taken from Sau et al., (2004). The initial values of  443 

two groundwater parameters (a and b in Eq. 23) were based on Liu et al., (2019). The 444 

Brooks and Corey soil moisture characteristic parameters (φb, λ in Eq. 8) were obtained 445 

by fitting the outer envelope of  the measure moisture content and water table data. 446 

Statistical indicators were used to evaluate goodness of  fit of  the hydrological model 447 

for both calibration and validation (Ritter and Muñoz-Carpena, 2013). The statistical 448 

indicators included the root mean square error (RMSE) (Abrahart and See, 2000),  449 

RMSE = √
1

𝑁
∑(𝑃𝑖 − 𝑂𝑖)2

𝑁

𝑖=1

                        (30) 450 

the mean relative error (MRE) (Dawson et al., 2006; Nash and Suscliff, 1970),  451 

MRE =
1

𝑁
∑

(𝑃𝑖−𝑂𝑖)

𝑂𝑖

𝑁

𝑖=1

× 100%                     (31) 452 

the Nash-Sutcliffe efficiency coefficient (NSE) (Nash and Suscliff, 1970),  453 

NSE = 1 −
∑ (𝑃𝑖 − 𝑂𝑖)

2𝑁
𝑖=1

∑ (𝑂𝑖 − �̅�)2𝑁
𝑖=1

                        (32) 454 

and the determination coefficient (R2) and regression coefficient (b) (Xu et al., 2015) 455 

R2 = [
∑ (𝑂𝑖 − �̅�)(𝑃𝑖 − �̅�)𝑁

𝑖=1

[∑ (𝑂𝑖 − �̅�)𝑁
𝑖=1 ]0.5[∑ (𝑃𝑖 − �̅�)𝑁

𝑖=1 ]0.5
]

2

          (33) 456 
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b =
∑ 𝑂𝑖 × 𝑃𝑖

𝑁
𝑖=1

∑ 𝑂𝑖=1
2𝑁

𝑖=1

                                (34) 457 

where N is the total number of  observations; Pi and Oi are the ith model predicted and 458 

observed values (i=1,2,3…N), respectively; �̅� and �̅� are the mean observed values and 459 

predicted values, respectively. The value of  RMSE and MRE close to 0 indicates good 460 

model performance. The value of  NSE ranges from -∞ to 1. NSE=1 means a perfect fit 461 

while the negative NSE value indicates the mean observed value is a better predictor 462 

than the simulated value (Moriasi et al., 2007). For b and R2, the value closest to 1 463 

indicates good model predictions. 464 

3.4 Parameters sensitivity analysis 465 

A sensitivity analysis was performed to determine how the input parameters 466 

affected output of  the models (Cloke et al., 2008; Cuo et al., 2011). Each parameter was 467 

varied over a range of  -30% to 30% to derive the corresponding impact on the model 468 

output. The change in output values was plotted against the change in input values.  469 

 470 

4 Results 471 

The 2017 and 2018 experimental data of  the Shahaoqu farmers’ fields in the Hetao 472 

irrigation district (Fig.3) are presented first, followed by the calibration and validation of  473 

the CROP and VADOSE modules of  EPICS model.  474 

4.1 Results of  the field experiment 475 

4.1.1 Water input 476 

The precipitation was 63 mm in 2017 (May 10 to September 30) and 108 mm in 477 

2018 (June 1 to September 15). The precipitation from the greatest rainstorm was 26 478 
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mm on September 1, 2018 (Fig. 4). Irrigation provided most of  the water for the crops. 479 

Field A (maize) was irrigated four times with a total of  736 mm and field D (maize) was 480 

irrigated five times for a total of  588 mm in 2017. Sunflower fields B and C were both 481 

irrigated twice with a total water amount of  261mm and 160mm, respectively, in 2017. 482 

In 2018, fields B and C were irrigated five and two times, respectively, with a total water 483 

amount of  478mm and 240mm, respectively. The total reference evapotranspiration 484 

from May 10 to September 30, 2017 was 595 mm and 368 mm from June 1 to 485 

September 15, 2018. On a daily basis, the reference evapotranspiration ranged from 1 486 

mm d-1 to a maximum of  6.4 mm d-1 during crop growth period (Fig. 4). 487 

 488 

Fig 4. Reference evapotranspiration (ET0) and precipitation during crop growth period in 489 

2017 and 2018. 490 

 491 

4.1.2 Soil physical properties 492 

Based on the soil textural analysis in Table 2, the soils were classified as silt, silt loam and 493 

loamy sand. Bulk densities varied from 1.24 to 1.47 Mg m-3 with the greatest bulk 494 

densities in the 0-20 cm soil layer. There was generally more sand in the top 40 cm than 495 

below. The subsoil was heavier and had the greatest percentage of  silt (Table 2). The 496 

moisture content at -33 kPa (0.33 bar) varied from 0.25 to 0.35 cm3cm-3 and at 1.5Mpa 497 
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(wilting point at15 bar) ranged from 0.08 to 0.15 cm3cm-3 (Table 2). 498 

Table 2 Soil texture and bulk density of  the experimental fields in Shahaoqu  499 

Field 
Soil depth 

(cm) 
Sand(%)    Silt(%)   Clay(%)   Soil type 

ρ(Mg 

m-3) 
θ0.33(m³m-3) θ15(m³m-3) 

A 

0-20cm 26 62 13 Silt loam 1.44 0.31 0.1 

20-40cm 76 22 2 
Loamy 

sand 
1.24 0.32 0.07 

40-60cm 10 79 10 Silt loam 1.33 0.33 0.12 

60-100cm 6 79 15 Silt loam 1.35 
0.34 0.14 

0.35 0.14 

B 

0-20cm 22 64 13 Silt loam 1.44 0.29 0.15 

20-40cm 16 73 11 Silt loam 1.24 0.26 0.13 

40-60cm 18 73 9 Silt loam 1.33 0.32 0.11 

60-80cm 8 77 16 Silt 
1.35 

0.34 0.14 

80-100cm 13 79 8 Silt loam 0.35 0.12 

C 

0-20cm 29 63 8 Silt loam 1.47 0.26 0.08 

20-40cm 37 56 6 Silt loam 1.33 0.25 0.08 

40-60cm 35 59 7 Silt loam 1.32 0.26 0.08 

60-80cm 14 74 12 Silt loam 1.38 0.31 0.12 

80-100cm 10 82 8 Silt 1.38 0.34 0.11 

D 

0-20cm 27 62 11 Silt loam 1.47 0.3 0.15 

20-40cm 5 80 15 Silt loam 1.33 0.27 0.14 

40-60cm 7 75 18 Silt loam 1.32 0.33 0.15 

60-100cm 10 81 9 Silt 1.38 
0.34 0.12 

0.31 0.14 

 500 

4.1.3 Soil moisture content 501 

Moisture content, rainfall and irrigation amounts are depicted for the five layers and 502 

the four fields in 2017 and two fields in 2018 in Fig. 5. Blue closed spheres indicate that 503 

the moisture content was determined on cored soil samples (Figs. 5a, b, c, e, f) and 504 

close-spaced spheres when the hydra probe was used (Fig. 5d). The moisture contents 505 

were near saturation when irrigation water was added and subsequently decreased due 506 

to crop transpiration and soil evaporation (Fig. 5). In all cases, the moisture contents 507 
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during the main growing period remained above the moisture content at -33 kPa that 508 

ranged from 0.25 cm3cm-3 to 0.34 cm3cm-3 for the 60-80 cm depth (Table 2, Fig.5). Only 509 

after the last irrigation and during harvest of  the crop did the moisture content in the top 510 

0-40 cm for maize and 0-60 cm for sunflower decrease below the moisture content at 511 

-33kPa. During the growing season, the variation of  moisture content was greater in the 512 

top 60 cm with the majority of  the roots than in the lower depths where, after the first 513 

irrigation, it remained nearly constant close to saturation.    514 

515 

Fig. 5 Observed (blue dots) and simulated soil moisture content of  the Shahaoqu 516 

experimental fields during model calibration (a,b,c) and validation (d,e,f) 517 

 518 
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4.1.4 Salinity 519 

 520 

Fig. 6 Observed (blue dots) and simulated soil salinity concentration of  the experimental 521 

fields in Shahaoqu during model calibration (a,b,c) and validation (d,e,f).  522 

 523 

Overall the salt concentration is greatest at the surface and increases at all depths 524 

during the growing season. Sunflower is more salt tolerant than maize and the overall 525 

salt concentration was greater in the sunflower fields (Fig. 6) at comparable times of  the 526 

crop development for field B but not for field C. Comparing the salt concentration and 527 

soil moisture patterns (Fig.5), we note that they behave similarly but opposite to each 528 

other (Fig. 6). The soil salinity concentration was decreasing during an irrigation event 529 
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due to dilution and then gradually increasing partly due to evaporation of  the water. 530 

Some of  the soil salt was transported to the layers below during irrigation and some salt 531 

was moving upward with the evaporation from the surface. As expected, after the harvest, 532 

the autumn irrigation decreased the salt concentration from fall 2017 to spring 2018.  533 

 534 

4.1.5 Groundwater observations 535 

The variation in groundwater depth during the growing season was very similar for 536 

both years and in all fields. The groundwater depth for all fields was between 50 and 537 

100 cm from the surface after an irrigation event and then decreased to around 150 cm 538 

before the next irrigation or rainfall (Fig.7). Only after the last irrigation in August 2017 539 

did the water table decrease to below 250 cm and to around 200 cm in 2018. Field D 540 

followed the same pattern but the groundwater was more down from the surface. In 541 

several instances, the groundwater table increased without an irrigation or rainfall event 542 

in sunflower field C (Fig. 7c and 7e). This was likely related to an irrigation event either 543 

from a spillover or an accidental irrigation that was not properly documented. We 544 

estimated the amount of  irrigation water based on the change in moisture content in the 545 

soil profile (orange bars in Fig. 7c and 7e). Finally, there was a notable rise in the water 546 

table of  an mean 375mm “autumn irrigation” after harvest between the end of  2017 547 

(Figs. 7 a, b, c) and the beginning of  2018 (Figs. 7 d, e, f) ,which is a common practice in 548 

the Jiefangzha irrigation district to leach the salt that has accumulated in the profile 549 

during the growing periods. 550 

Note that in Fig. 7, after an irrigation event, the groundwater depth was between 551 
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50-80 cm while the whole profile was saturated (Fig. 5). This is directly related to the 552 

bubbling pressure of  the water. After the irrigation event stopped, the water table was 553 

likely at the surface but then immediately decreased because a small amount of  554 

evaporated water will bring the water table down to a depth of  approximately equal to 555 

the bubbling pressure, 𝜑𝑏, in Eq. 5. The bubbling pressures are listed in Table 3. 556 

4.1.6 LAI and plant height 557 

Plant height and LAI followed the typical growth curve that started slowly to rise in 558 

the beginning, accelerated during the vegetative stage and then became constant during 559 

the seed setting and ripening stages (Fig. 8). In the maturing stage, the leaf  area index 560 

decreased.  561 

 562 

Fig. 7. Observed (blue dots) and simulated groundwater depth of  the experimental fields 563 

in Shahaoqu during model calibration (a, b, c) and validation (d, e, f) 564 
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 565 

Fig. 8 Observed crop height (a) and leaf  area index (b) of  the experimental field in 566 

Shahaoqu in 2017 and 2018. 567 

 568 

4.2 Soil Characteristic curve and drainable porosity 569 

To simulate the soil moisture content and to derive drainable porosity as a function of  570 

water table depth, the soil moisture characteristic curves were derived by plotting the 571 

observed soil moisture content in 2017 and 2018 versus the height above the water 572 

table to the soil surface for the five soil layers in Fig. 9. The Brooks-Corey equation 573 

(Brooks and Corey, 1964) was fitted through outer envelope of  the points. The 574 

parameters of  the Brooks-Corey equation were adjusted through a trial and error to 575 

obtain the best fit (Table 3a). In Fig. 9, points on the left side of  the soil moisture 576 

characteristic curve (moisture content smaller than the field capacity) were due to water 577 

removal at times when evaporative demand was greater than the upward water flux. The 578 

few points at the right of  the soil moisture characteristic curve indicate the soil moisture 579 

was greater than field capacity and matric potential and groundwater were not yet at 580 

equilibrium after an irrigation event. 581 

The fitted parameter values are consistent. Field A had a greater bubbling pressure 582 

and moisture content at -33 kPa than the other fields indicating that this field had more 583 
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clay. This was confirmed by the data in Table 2. For fields B, C and D, the bubbling 584 

pressure was greater at the 60-80 cm depth or the 80 -100 cm depth, which was also in 585 

accordance with the data in Table 2.  586 

Table 3a Calibrated soil hydraulic parameters in the Brooks and Corey soil moisture 587 

characteristic curve.  588 

Field Parameter 0-20cm 20-40cm 40-60cm 60-80cm 80-100cm 

A 

θs 0.4 0.36 0.43 0.45 0.47 

φb 80 100 90 70 50 

λ 0.18 0.21 0.22 0.18 0.15 

B 

θs 0.35 0.37 0.41 0.4 0.4 

φb 50 55 33 60 55 

λ 0.14 0.11 0.16 0.2 0.2 

C 

θs 0.38 0.37 0.39 0.71  0.43 

φb 55 50 40 60 40 

λ 0.26 0.24 0.2 0.18 0.13 

D 

θs 0.4 0.36 0.45 0.45 0.44 

φb 50 40 55 50 50 

λ 0.21 0.2 0.3 0.17 0.15 

Note: θs is the soil moisture at saturation (cm3cm-3), φb is bubbling pressure (cm), λ is the 589 

pore size distribution index. 590 

Table 3b Calibrated groundwater parameters  591 

Field\parameters A B C D 

a 70 75 110 70 

b 0.02 0.025 0.022 0.015 

 592 

https://doi.org/10.5194/hess-2019-656
Preprint. Discussion started: 14 January 2020
c© Author(s) 2020. CC BY 4.0 License.



33 
 

 593 

Figure. 9 Soil moisture characteristic curves of  five soil layers in the experimental fields. 594 

The red line is the fit with the Brooks-Corey equation. 595 

 596 

4.3 Parameters sensitivity analysis  597 

The results of  sensitivity analysis of  the 15 input parameters on 5 output parameters are 598 

shown in Fig. 10. The evaluated output parameters are soil moisture content, 599 

groundwater depth, soil salinity concentration, field evapotranspiration, and crop leaf  600 
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area index (LAI). Steeper lines indicate a greater sensitivity of  the parameter. 601 

The results of  the sensitivity analysis show that moisture content predictions (Fig 602 

10a) are the most sensitive to the input value of  the saturated moisture content (θs). 603 

None of  the other parameters are very sensitive. The input parameter with the most 604 

sensitivity for groundwater depth (Fig. 10b), is the saturated moisture content as well. 605 

Other less sensitive parameters are the exponent b and constant a in Eq. 23 in predicting 606 

the upward flux and the bubbling pressure, φb, of  the soil moisture characteristic curve 607 

(Eq. 8a). Likewise, in case of  the salinity predictions (Fig. 10c), the saturated moisture 608 

content gives the greatest relative change in salt content. Less sensitive, but still 609 

important, are the field capacity, 𝜃0.33, the bubbling pressure, φb, and the exponent λ of  610 

the soil characteristic curve (Eq. 8a) and b in Eq. 23. The sensitive parameters for the leaf  611 

area index (LAI) (Fig 10d) are the maximum potential leaf area index, LAImx, and fraction 612 

of growing season when leaf area declines (DLAI) followed by total potential heat units 613 

required for crop maturation (PHU). Finally, for the evapotranspiration (Fig 10e), the 614 

saturated soil moisture content is the most sensitive parameter, and other less sensitive 615 

parameters are the exponent b and field capacity.    616 

Thus, the model output is most sensitive to the input parameters that define the soil 617 

hydraulic properties, groundwater flux and crop growth. As expected, since the soil 618 

remains near field capacity, the parameters that relate to the reduction of  evaporation 619 

when the soil dries out are insensitive. When used in the simulation practices, the model 620 

needs to be calibrated and verified to avoid high error from parameters uncertainty.  621 
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 622 

Figure. 10 Parameters sensitivity analysis for (a) soil moisture content, (b) groundwater 623 

depth, (c) salt salinity concentration, (d) LAI, (e) ET  624 

 625 

4.4 Model calibration and validation 626 

The model parameters were calibrated and validated using the observed moisture 627 

contents, groundwater depth, plant height, leaf  area index and the calculated 628 

evapotranspiration. For calibration, the data collected in 2017 were used for sunflower 629 
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fields B and C and maize field A. Since farmers did not grow maize in 2018, the 2017 630 

data of  maize field D, together with sunflower fields B and C in 2018 were used for 631 

validation. The optimal parameter set was determined using graphical similarity between 632 

observed and predicted results together with near optimum performance of  the 633 

statistical indicators while keeping all values within physical acceptable ranges.  634 

    As a way of  reducing the number of  parameters that needed to be calibrated, we 635 

initially selected one to three most sensitive parameters for each of  the observed time 636 

series, starting with evapotranspiration (including LAI and crop height) followed by 637 

moisture content, groundwater depth, and salt content in the soil. This cycle was 638 

repeated several times until changes became small. The last stage of  the calibration 639 

consisted of  fine-tuning the remaining least sensitive parameters.  640 

To calibrate the parameters in the CROP module, we calculated evapotranspiration 641 

during the crop growth period with the observed soil moisture content and groundwater 642 

depth by the soil water balance method. In addition, we used the observed LAI 643 

measurements in 2017 and plant height in both 2017 and 2018. LAI was not measured 644 

in 2018. The DLAI, LAImx and Hmx in the crop module were adjusted to fit the observed 645 

LAI and crop height values. In addition, we fitted the 𝜃0.33 moisture content to obtain a 646 

good fit of  the evapotranspiration. The saturated moisture content values were not 647 

adjusted since they were already determined for fitting the soil characteristic curve. The 648 

exponent b and constant a in Eq. 23 were adjusted to fit the observed soil moisture 649 

content and groundwater depth. 650 

4.4.1 Evapotranspiration, crop height and leaf  area index 651 

https://doi.org/10.5194/hess-2019-656
Preprint. Discussion started: 14 January 2020
c© Author(s) 2020. CC BY 4.0 License.



37 
 

The predicted evapotranspiration and that calculated from the mass balance show a 652 

good agreement with Nash Sutcliff  values ranging from 0.96-0.89 during calibration and 653 

validation (Fig. 11 and Table 4). The calibrated predictions of  plant height fitted the 654 

observed values well during calibration and validation with Nash Sutcliff  values ranging 655 

from 0.77-0.96 for the individual fields (Table 4) and over 90% when the data was 656 

pooled for the fields during calibration and validation (Fig.12). LAI was not measured in 657 

2018. During calibration, Nash Sutcliff  predicted LAI values were good for sunflower but 658 

not as good for maize but the coefficient of  determination and slope in the regression 659 

were acceptable (Table 4, Fig. 13). In addition, the overall trend was predicted reasonably 660 

well (Fig. 13b). 661 

 662 

Fig. 11 Comparison of  predicted and observed actual evapotranspiration: a) Calibration 663 

and b) Validation 664 
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 665 

Fig.12 Comparison of  predicted and observed crop height: a) Calibration and b) 666 

Validation  667 

 668 

Fig. 13 Comparison of  predicted and observed LAI: a) Calibration and b) validation  669 

 670 

 671 

  672 
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Table 4 Model error statistics for calibration and validation of  model in 2017 and 2018 673 

(Mean relative error, MRE; root mean square error, RMSE; Regression slope; Coefficient of  674 

determination, R2; Regression coefficient, slope). 675 

Process Field Variable MRE (%) 

RMSE 

(cm3cm-3cm 

or gL-1or 

mm) 

NSE R2 

Regres

sion 

coeffici

entslop

e 

Calibration 

2017 Field A 

(maize) 

SWC (0-1m) 2.9 0.04 0.8 0.56 1.01 

GWD 4.5 33.8 0.64 0.64 0.97 

LAI -17.4 0.78 0.11 0.92 0.89 

hcrop 0.04 16.2 0.95 0 .99 0.97 

C 13.9 0.5 0.27 0.49 1.07 

2017 Field B 

(sunflower) 

SWC (0-1m) -1.2 0.04 0.71 0.74 0.97 

GWD 6.0 22.9 0.86 0.98 0.96 

LAI 4.7 0.58 0.9 0.92 0.91 

hcrop 6.8 33.5 0.83 0.96 1.1 

C 11.0 0.55 0.27 0.7 1.1 

2017 Field C 

(sunflower) 

SWC (0-1m) 8.5 0.04 0.88 0.9 1.05 

GWD -7.3 19.1 0.91 0.94 0.94 

LAI 48.6 1.0 0.59 0.93 1.29 

hcrop 5.42 27.4 0.88 0.98 1.07 

C -1.6 0.52 -0.64 0.08 0.94 

    ETa 12.2 40.5  0.92  0.96  1.11  

Validation 

2018 Field B 

(sunflower) 

SWC (0-1m) -2.3 0.03 0.43 0.68 0.98 

GWD 4.86 16.1 0.83 0.84 1.01 

hcrop 12.5 26.9 0.86 0.99 0.95 

C 4.0 0.35 0.18 0.72 1.06 

2018 Field C 

(sunflower) 

SWC (0-1m) 17.3 0.06 0.64 0.72 1.04 

GWD 2.1 13.8 0.86 0.87 1.01 

hcrop -10.3 36.4 0.77 0.97 0.84 

C 0.51 0.33 0.11 0.73 1.02 

2017 Field 

D (maize) 

SWC (0-1m) 6.1 0.04 0.68 0.77 1.05 

GWD 0.64 39.1 0.52 0.71 1.01 

LAI -10.7 0.79 -0.02 0.58 0.93 

hcrop -1.7 13.6 0.96 0.98 1 

C 9.8 0.51 -1.11 0.54 1.11 

    ETa 8.0  42.4  0.89  0.89  0.95  

Note: SWC is the soil moisture content, GWD is the groundwater depth, LAI is the leaf  676 

area index, hcrop is the height of  the crop, C is the soil salinity concentration, ETa is the 677 

actual evapotranspiration. 678 
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4.4.2 Soil moisture and groundwater depth 679 

Next, the moisture contents and groundwater table were fitted with the parameters in the 680 

Vadose model without changing the parameters in the CROP module. Saturated moisture 681 

content was the most sensitive parameter for calibrating the moisture content (Fig.10a). 682 

Since this value was already determined a priori from the soil characteristic curve (Table 683 

3a), we could not use other parameters to obtain a better fit since none were sensitive 684 

(Fig.10a). Therefore, we calibrated the groundwater parameters (i.e., a and b parameters 685 

(Eq. 23)) together with the moisture content to obtain the best fit for both. The fitted a 686 

and b values are listed in Table 3b. The fitted parameters between the four experimental 687 

fields were similar but not the same. This can be expected in river plains where soils can 688 

vary over short distances.  689 

Overall, the moisture contents were predicted well during calibration and validation 690 

(Figs. 5, 14 and Table 4) with the exception of  field B during validation (Table 4) with a 691 

NSE of  0.43. The moisture contents were predicted most accurately in the layers from 692 

40-100cm where the soil moistures were at field capacity during most of  the growing 693 

season (Fig. 14). In the top 40 cm, the predicted soil moisture content deviated from 694 

observed moisture contents, especially at the dryer end (Fig. 5 and 14). Unlike at deeper 695 

depths, evapotranspiration determined the moisture contents at shallow depths. 696 

Prediction of  evapotranspiration introduced additional uncertainties such as the 697 

distribution of  the root system. This uncertainty is also likely the reason why the 2018 698 

moisture contents during the validation are acceptable but not predicted as well as in 699 

2017.  700 

https://doi.org/10.5194/hess-2019-656
Preprint. Discussion started: 14 January 2020
c© Author(s) 2020. CC BY 4.0 License.



41 
 

 701 

Fig. 14 Comparison of  predicted and observed soil moisture content: a) calibration and b) 702 

validation  703 

 704 

The predicted and observed groundwater depths are in good agreement during both 705 

calibration and validation (Figs 7, 15). The MRE values were within  and the NSE 706 

values ranged from 0.52 for field D during validation to 0.91 in field C during calibration 707 

where some of  the recharge events were estimated (Table 4).  708 

 709 

 Fig. 15 Comparison of  predicted and observed groundwater depth a) calibration and b) 710 

validation.  711 

%10
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4.4.3 Soil salinity 712 

The only parameter that could be adjusted each year for calibration of  the salt 713 

concentrations was the initial salt concentration. Despite the limited calibration, the 714 

observed and predicted values were in close agreement (Fig. 6, 16) with predicted salt 715 

concentrations in the top layers decreasing after an irrigation event as observed. The 716 

Nash Sutcliffe efficiency values were poor (Table 4), likely because the concentration 717 

varied only slightly, and the mean was not predicted accurately. Similarly to the moisture 718 

contents, the salt concentration in the layers below 40 cm was predicted more accurately 719 

than the layers above the 40 cm. Overall, the model can predict the law of  salt 720 

concentration fluctuation during crop growth period and the prediction results are 721 

acceptable.  722 

 723 

Fig. 16 Comparison of  predicted and observed salt concentration during calibration (a) 724 

and validation (b) 725 

5. Discussion  726 
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The EPICS model is a surrogate model that can be applied in areas with shallow 727 

groundwater. It can simulate the soil moisture content and salt concentration for layers in 728 

the soil, the groundwater depth, upward movement of  water from groundwater, 729 

evapotranspiration, and plant growth.  730 

The model is different from traditional models that are based on Richards equation; 731 

instead of  calculating the fluxes first, in the EPICS model, the groundwater depth is 732 

calculated first based either on the amount of  water removed by evapotranspiration on 733 

days without rain or irrigation or recharge to groundwater on the other days. 734 

Subsequently, when the groundwater is sufficiently shallow and the potential upward flux 735 

from the groundwater is greater than the evaporative demand, the moisture contents are 736 

adjusted so that that soil moisture and groundwater depth are in equilibrium (i.e., field 737 

capacity). In this case, the matric potential is equal to the height above the water table 738 

and the moisture contents can be found with the soil characteristic curve. When the 739 

upward flux is less than the evaporative demand of  the atmosphere and crop, the 740 

difference between the upward moisture content is determined by first decreasing the 741 

moisture content below the field capacity. The flux of  water in the soil is then calculated 742 

based on the changes in water content. The advantage is fewer input parameters needed 743 

when compared with other numerical models (Šimůnek et al., 1996; Dam et al., 1997). 744 

For example, the hydraulic conductivity is not used in EPICS.  745 

Although the uncertainties of  field experimental observations and input data of  the 746 

model affected the accuracy of  simulation results, EPICS compares well with other models. 747 

Xu et al. (2015) tested the SWAP-EPIC for two lysimeters grown with maize on the same 748 
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experimental farm in the Hetao irrigation district where our experiment was carried out. 749 

The SWAP model solves the Richards’ Equation numerically with an implicit backward 750 

scheme and is combined by Xu et al. (2015) with the EPIC model. The accuracy of  our 751 

simulation results, despite the difference in complexity, are very similar. The moisture 752 

contents were simulated slightly better with EPICS, the groundwater depth was nearly 753 

the same, and the LAI values were predicted more accurately in the SWAP-EPIC model. 754 

Xue et al. (2015) did not simulate the salt content of  the soil. Compared to less data and 755 

computational intensive models that are applied in the Yellow River, the soil moisture 756 

content were simulated more accurately by EPICS than in the North China Plain with 30 757 

m deep groundwater by surrogate models of  Kendy et al. (2003) and Yang et al. (2015 758 

a,b) and in the Hetao irrigation district by Gao et al. (2017b) and Xue et al. (2018) during 759 

the crop growth period. 760 

To obtain more accurate results in the future, the upward capillary flux from 761 

groundwater needs to be improved. In addition, the evapotranspiration measured 762 

independently, using Eddy covariance (Zhang et al., 2012; Armstrong et al., 2008) and 763 

Bowen ratio-energy balance method (Zhang et al., 2007) should be further used to test 764 

performance of  the model in the future study. 765 

The limitation of  the EPICS model is it can only be applied in areas where 766 

groundwater is generally less than 3.3 m deep. When the groundwater is deeper than 3.3 767 

m, the field capacity of  the surface soil is determined by the moisture content when the 768 

hydraulic conductivity becomes limiting and not by the depth of  the groundwater. 769 

Overall, the present model has the advantage that it greatly simplifies the calculation 770 
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of  the moisture content, groundwater depth and salt content and despite that, gives 771 

results similar to or better than other models applied in the Yellow river basin.  772 

6. Conclusions  773 

A novel surrogate field hydrological model called Evaluation of  the Performance of  774 

Irrigated Crops and Soils (EPICS) was developed for irrigated areas with shallow 775 

groundwater. The model was tested with two years experimental data collected by us for 776 

sunflower and one year of  maize on replicated fields in the Hetao irrigation district, a 777 

typical arid to semi-arid irrigation district with a shallow aquifer. The EPICS model uses 778 

the soil moisture characteristic curve, upward capillary flux, and groundwater depth to 779 

derive the drainable porosity and predict the soil moisture contents and salinity. The 780 

evaporative flux is calculated with equations in EPIC (Environmental Policy Integrated 781 

Climate) and root distribution equation. 782 

The simulation results show that the EPICS model can predict the soil moisture 783 

content and salt concentration in different soil layers, groundwater depth, and crop 784 

growth on a daily time step with acceptable accuracy during calibration and validation. 785 

The saturated soil moisture content is the most sensitive parameter for soil moisture 786 

content, salt concentration, and ET in our model.  787 

In the future, the model should be tested in other areas with shallow groundwater 788 

that can be found in surface irrigated sites and in humid climates in river plains. Once 789 

fully tested, the EPICS model can be used for optimizing water use at the local scale but, 790 

more importantly, on a watershed scale in closed basins where every drop of  water 791 

counts.  792 
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