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Abstract 

The role of precipitation (P) variability on evapotranspiration (ET) and its two components transpiration (T) and evaporation 

(E) rates from savannas continues to draw significant research interest given its relevance to a number of eco-hydrological 

applications. The work here reports on six years of measured ET and energy flux components, and estimated T from a grazed 20 

savanna grassland collected at a research site situated in Welgegund, South Africa. During this period, annual P varied 

considerably in amount (421 mm to 614 mm), rainy season length and precipitation intensity. T was estimated using annual 

water use efficiency and gross primary production determined from eddy-covariance measurements of net ecosystem CO2 

exchange rates. The computed annual T was highly constrained to 352 ± 8 mm (T/ET=0.55) for four wet years when rainfall 

was near or above the long-term mean. This is explained by the near constant annual tree transpiration and moderate water 25 

stress of C4 grasses during these years. In a drought year with intermittent rainfall, the annual ecosystem T was reduced due to 

grass dieback-regrowth that alters the temporal dynamics of bare soil cover and infiltration, and complicates monthly T/ET 

relation to leaf-area index (LAI). However, annual ET remains approximately equal to annual precipitation (P) even during 

the drought year due to increased soil evaporation. Indeed, at annual scales, ET ≈ P and annual T is conservative despite 

variation in amount and timing in rainfall, due to constant water use of mature trees, and the ability of C4 grasses to maintain 30 

transpiration at moderate water stress and effectively use pulsed rainfall. 
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1 Introduction 

Wooded grasslands provide an important ecosystem service in the form of grazing in South Africa. In this semi-arid zone, 

almost all the annual precipitation (P500 mm) is consumed by evapotranspiration (ET) (ET/P is ~ 1.0), lost as transpiration 

(T) and evaporation (E) of similar magnitude (Zhang et al., 2001). The T component evaporates from stomata of leaves of the 

sparse tree component (~15 % of the ground cover), seasonal grasses, and the small amount of forbs. The E component is high 5 

following rain events but can persist as a loss from the rooting zone to the atmosphere over extended periods (> week) as 

discussed elsewhere (Perez-Priego et al., 2018). The partition of ET between E and T may affect the net radiation and surface 

temperature on short time scales (sub-daily). However, processes that increase the proportional (and amount of) water used in 

transpiration, thus facilitating greater carbon uptake and subsequent fodder production for cattle grazing, occur over time scales 

of weeks or longer. Because of the link between T and carbon uptake from the atmosphere, there is growing interest in how 10 

ET is partitioned into E and T in such semi-arid ecosystems (Merbold et al., 2009; Sankaran et al., 2004; Scanlon et al., 2002, 

2005; Scholes and Archer, 1997; Volder et al., 2013; Williams and Albertson, 2004; Xu et al., 2015; Yu and D’Odorico, 2015). 

The aim of this study is to explore this partitioning using a long-term record of measured fluxes of energy, water, CO2, and 

vegetation activity. The focus is restricted to processes operating at daily, monthly, and seasonal time scales, commensurate 

with controls over the annual partitioning of P into T, and the resulting carbon uptake in gross primary production (GPP). 15 

The two vegetation components of wooded grasslands have distinct seasonal dynamics of leaf area display and physiological 

activity. In the study site, the main woody species is Acacia erioloba, a deep rooted semi-deciduous tree with a low leaf 

turnover rate, resulting in minor leaf area changes. Furthermore, this species has been shown to absorb 37 % of its water below 

1 m depth, decoupling its physiological activity from recent precipitation and shallow soil water content (Beyer et al., 2018). 

The perennial C4 grass species at the site have shallower root system and are more physiologically responsive to intermittent 20 

rainfall events (Sankaran, 2019). Compared to the C3 trees, the C4 grass layer has CO2 concentrated in the bundle sheath that 

enables greater efficiency of light and water use in hot and open environment (Ripley et al., 2010). In general, for the same 

volume of soil, the C4 grass is an intensive and fast user of the soil water, reflected in higher photosynthesis yet not necessarily 

high gas-exchange sensitivity to water stress (Taylor et al., 2014). However, due to low water storage capabilities of grasses, 

severe drought may alter its leaf area dynamics. The objective here is therefore not only to partition measured ET into T and 25 

E, but also to quantify the effect of environmental variables on the seasonality of the grass activity.  

A number of methods have already been proposed for partitioning ET into T and E using simultaneous eddy covariance 

measured ET and net ecosystem exchange (NEE) of carbon dioxide. All these methods are premised on the fact that GPP, 

which can be inferred from eddy-covariance measured NEE and night-time respiration extrapolated to daytime, is linked 

through stomatal exchange of CO2 for water vapor to only the T component of ET. From definitions, it directly follows that 30 

the flux-based water use efficiency WUE = (GPP/T) ∝ (ca/VPD)(1 − ci/ca) , where ci  and ca  are the intercellular and 

ambient atmospheric CO2 concentration, and VPD is the vapor pressure deficit. Based on stomatal optimization theories that 

maximize carbon gain for a given amount of water in the rooting system per unit leaf area, (1 − ci/ca) ∝ √VPD  as 
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demonstrated in a number of studies reviewed elsewhere (Hari et al., 2000; Katul et al., 2009, 2010). When these theories are 

combined with the definition of WUE, T ∝ GPP × VPD0.5, provided that ca does not vary appreciably. The proportionality 

constant in the aforementioned expression is linked to the marginal water use efficiency (or the Lagrange multiplier in optimal 

stomatal theories) and must be externally supplied or determined from conditions when T≈  measured ET. When this 

proportionality constant is known, eddy-covariance measured GPP (and VPD) can be used to infer T and, as residual, E(=ET-5 

T). 

Three different methods that establish relations between T and GPP are used to estimate monthly T/ET. The first, which we 

call the Berkelhammer et al. (2016) method empirically establishes a T=ET by fitting a line to the minimum ET values, 

presumed to represent T only (5th percentile), and GPP × 𝑉𝑃𝐷0.5 bins. The T=ET line is used to estimate T/ET for each 

measured half-hour value. This T/ET estimate was shown to be in agreement with isotopic T/ET measurements (Berkelhammer 10 

et al., 2016). The second, the uWUE method uses quantile regression with zero-intercept to fit T=ET line (Zhou et al., 2016). 

These methods assume that T=ET half-hour values exist in the data and can be determined from minimum ET runs. Also, the 

optimal response of T to VPD must be assumed, a reasonable assumption based on a recent review (Stoy et al., 2019). The 

third, the transpiration estimation algorithm (TEA) method, is a nonparametric random forest model that does not assume 

optimal response of stomata to VPD but must assume that T/ET approaches 1.0. These methods were chosen for this study 15 

because previous application showed some success when applied to multi-site data sets, and thus their uncertainties have been 

explored at other sites. Comparing these methods here allows selecting the most suitable partitioning scheme for water limited 

ecosystems. 

The overarching question to be addressed here is how ET and its two components (E and T) vary with mean annual P and 

vegetation changes in a grazed savanna grassland ecosystem. This work offers a methodological test as to whether such 20 

partitioning can be achieved for water-limited ecosystem with fast changes in vegetation cover. The MODIS LAI and EVI 

were used to quantify the vegetation dynamics at the site. To guide the discussion, three study objectives are formulated: (i) 

quantifying the variation in P, ET and the estimated T based on meteorological measurements at this new long-term monitoring 

site, (ii) identifying the main drivers of the annual, seasonal and monthly variation in the water balance components, and (iii) 

identifying remote sensing variables that explain variations in T/ET and transpiration. 25 

2 Materials and methods 

2.1 Site description 

The Welgegund measurement site is located in a grazed savanna grassland in South Africa (26 ∘ 34’ 10" S, 26 ∘ 56’ 21" E, 

1480 m a.s.l.). The research site is a part of a large-scale commercial farm that houses about 1300 cattle head. This number of 

cattle head varies by some ±  300 depending on the year. The cattle grazing area is approximately 6000 ha. The area 30 

experiences two seasonal periods: a warm rainy season from October to April, and a cool dry season from May to September. 

The 16-year mean annual rainfall determined at a nearby weather station in Potchefstroom was 540 mm, with a standard 
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deviation of 112 mm (Räsänen et al., 2017). The soil around the site is loamy sand. The water table depth is not known but the 

farm well has a water table depth of 30 m with continuous supply of water. The vegetation in the area is an open thornveld. 

The dominant perennial C4 grass species are Eragrostis trichophora, Panicum maximum and Setaria sphacelata. The tree 

cover is 15 % and the dominant tree species is Vachellia erioloba and other less prominent species such as Celtis africana and 

Searsia pyroides. There are also forbs, of which the dominant species are Dicoma tomentosa, Hermannia depressa, Pentzia 5 

globosa and Selago densiflora. More details about the site and vegetation cover may be found elsewhere (Jaars et al., 2016; 

Räsänen et al., 2017). 

2.2 Measurements 

At the research site, atmospheric aerosols, trace gases and meteorological variables are measured continuously. Here we 

describe the measurements directly related to energy and water balance. The eddy covariance system consists of a triaxial 10 

sonic anemometer (METEK USA-1) and a Li-Cor (LI-7000) closed path infrared gas analyzer, both positioned at 9 m above 

the ground surface. The sampling frequency of the eddy covariance system was 10 Hz. The gas analyzer was calibrated every 

month with a high-precision CO2 span gas using synthetic air with CO2 < 0.5 ppm as a reference gas. The meteorological 

measurements included air temperature, atmospheric pressure, wind speed and direction, and relative humidity. The radiation 

measurements were made using a Kipp & Zonen NR-lite2 net radiometer positioned at 3 m above the ground with field of 15 

view at the grass field. The radiometer measures incoming and outgoing shortwave radiation that can be converted to 

photosynthetically active radiation (PAR), direct and reflected global radiation and net radiation. The soil surface heat flux 

was measured with Hukseflux HFP01 heat flux plate at a 5 cm depth. Annual precipitation was also reported from the nearby 

South African Weather Service (SAWS) Potchefstroom weather station (NCEI, 2015). 

There were two separate measurements of soil moisture that were used to calculate stored soil water. The measurements of 20 

individual soil moisture sensors at depths 5, 20 and 50 cm (Delta-T ML2) were converted to average soil moisture using the 

weights of 150, 150 and 200 mm, respectively. These soil moisture measurements cover the complete experiment period from 

September 2010 to August 2016. Starting from March 2012 onwards, Delta-T PR2/6 probes were installed recording soil 

moisture at 10, 20, 30, 40, 60 and 100 cm depths. This profile measurement was converted to stored water using the weights 

150, 100, 100, 150, 300 and 200 mm. The meteorological measurements were sampled every minute and 15 min averages 25 

were recorded. The meteorological variables were gapfilled using the marginal distribution sampling (Reichstein et al., 2005). 

The measurement site was visited once or twice a week during the measurement period to check the measurement status and 

correct errors if necessary. The measurement log was used during the data analysis phase to identify anomalies, outliers, or 

erroneous measurement periods. Further details about the site and the measurements are presented elsewhere (Aurela et al., 

2009; Räsänen et al., 2017). 30 
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2.3 Flux calculation and gapfilling 

The details of the turbulent flux calculations are presented in Räsänen et al. (2017) but are summarized here for completeness. 

The turbulent fluxes were calculated as 30 min block averages after double rotation and the WPL density correction (Webb et 

al., 1980). The low frequency correction was performed according to Moore (1986) and high-frequency losses were corrected 

using empirical transfer functions determined using sensible heat flux as a reference scalar. The sensible and latent heat flux 5 

values were discarded when the measured friction velocity u∗ was below 0.28 m s−1 , which was deemed as a state of low 

turbulence mixing. A steady state test was used to retain heat fluxes with less than 30 % and 100 % difference for gapfill model 

and final data, respectively (Aubinet et al., 2012). Latent heat fluxes were checked for acceptable range of H2O concentration 

and concentration variance to detect anomalous spikes due to condensation or rainfall. Heat flux values were filtered for outliers 

by taking values for each month of all measurement years and filtering outliers using adjusted boxplot (Hubert and 10 

Vandervieren, 2008). The steady state check resulted in less than 30 % filtered fluxes, which were gapfilled using the marginal 

distribution sampling (MDS) from REddyProc package (Reichstein et al., 2005). 

The inferred GPP was used to derive the water-use efficiencies to partition evapotranspiration into transpiration and 

evaporation. The measured NEE was partitioned into GPP and ecosystem respiration by using night-time mean respiration for 

daytime respiration and calculating GPP as the difference between NEE and ecosystem respiration. The night-time mean 15 

respiration was used instead of exponential temperature function because only 2 % of the fitting windows had a linear or 

exponential relation between ecosystem respiration and soil temperature. The difference between monthly estimated 

transpiration with night-time mean and exponential temperature function is small (Fig. S1). The GPP fit parameters and the 

night-time mean respiration were calculated in a moving data window that was defined for each day with an initial length of 6 

days. The moving window was expanded up to 20 days if necessary to include at least 50 measurement points. The measured 20 

NEE had one large 25 day gap in September 2013 and the fit parameters were linearly interpolated during this gap. The NEE 

was calculated using the same filters as the heat fluxes and more details of are provided elsewhere (Räsänen et al., 2017). 

The potential ET (PET) was calculated using the Priestley-Taylor formulation given by (Priestley and Taylor, 1972) 

𝑃𝐸𝑇 = 𝛼𝑃𝑇
𝛥

𝛥 + 𝛾𝑝
(Rn − G), (1) 25 

 

where 𝛼𝑃𝑇 = 1.26 is the Priestley-Taylor coefficient, 𝛥 = 𝑑𝑒∗/𝑑𝑇𝑎, 𝑒∗ is the saturation vapor pressure given by the Clausius-

Clayperon equation and evaluated at the measured air temperature 𝑇𝑎, Rn is net radiation, G is soil heat flux and 𝛾𝑝 is the 

psychrometric constant. The energy balance closure (EBC) slope was estimate for each year by regressing all measured half-

hour values of Rn-G against the sum of the measured latent and sensible heat fluxes for the same period. 
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2.4 Annual ET uncertainty 

The u* threshold was estimated using a bootstrap technique from 200 artificial replicates of the dataset (Wutzler et al., 2018). 

The mean u* estimate value for the whole dataset was 0.28, and heat flux and NEE values were discarded when u* was lower 

than this limit. The 5th, 50th, and 95th percentile of the estimates are 0.27, 0.29 and 0.32, respectively. The dataset was u* 

filtered and gapfilled with these three u* limits. The annual u* uncertainty range was calculated for each year k as follows 5 

𝐸𝑢∗,𝑘 =
𝐸𝑇𝑚𝑎𝑥,𝑘 − 𝐸𝑇𝑚𝑖𝑛,𝑘

𝐸𝑇𝑚𝑒𝑑𝑖𝑎𝑛,𝑘

, (2) 

 

where 𝐸𝑢∗,𝑘 is the u* uncertainty for year k in mm. 

The MDS gap-filling algorithm estimates random error for each half hour value based on the variance of the observed LE with 

similar meteorological conditions in a moving window using  10 

𝐸𝑟𝑎𝑛𝑑,𝑘 =∑𝜎2
𝑛

1

, (3) 

 

where 𝑛 is the number of 30 min periods in year 𝑘. The total uncertainty of the annual ET was calculated by adding the random 

error and u* uncertainty in quadrature to yield 

𝐸𝑡𝑜𝑡,𝑘 = √𝐸𝑢∗,𝑘
2 + 𝐸𝑟𝑎𝑛𝑑,𝑘

2 . (4) 

 15 

2.5 Partitioning ET 

One approach for partitioning ET to transpiration and evaporation is presented by Berkelhammer et al. (2016). Referred to as 

Berkelhammer method, it was applied to each year individually due to large changes in vegetation phenology between the 

years. The method assumes that when T=ET, ET is linearly related to GPP × VPD0.5  and T/ET ratio approaches 1 20 

intermittently. To estimate T/ET value for each 30 min period, GPP × VPD0.5 is plotted against ET for each year. For each 

equal sized GPP × VPD0.5 bin, the minimum value is defined as 5th percentile of ET. A linear regression line of these bins 

defines the ET value for which T=ET. Any value falling below the line is considered to have T/ET equal to 1.0. For other 

points T/ET is defined as the ratio between the observed and the minimum ET (representing T): 

𝑇

𝐸𝑇𝑜𝑝𝑡𝑖𝑚𝑎𝑙

=
𝑚𝑖𝑛𝐺𝑃𝑃||𝐸𝑇||

𝐸𝑇𝑓𝑙𝑢𝑥
(5) 25 

 

where 𝑚𝑖𝑛𝐺𝑃𝑃||𝐸𝑇|| is the minimum ET value and 𝐸𝑇𝑓𝑙𝑢𝑥 is the observed ET value. The slope and y-intercept of the T=ET 

line define the inverse of water use efficiency for each year based on the half-hour data. The monthly T/ET values were 
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calculated by taking mean of all values within the month. The 30 min data points used for the T/ET estimation were filtered 

with additional quality criteria following Zhou et al. (2016). Only data points with measured ET and positive GPP and net 

radiation were used. Data from rainy days were excluded. Two other methods were also used to estimate T so as to select the 

method most applicable to water limited ecosystems. In the water use efficiency (uWUE) method, the T=ET line is fitted using 

quantile regression with zero-intercept, referred to as (uWUEp) (Zhou et al., 2016). The uWUEp was defined by fitting all 6 5 

years of 30 min data, resulting in uWUEp = 11.55 gC ℎ𝑃𝑎0.5 / kg 𝐻2𝑂. Then monthly ET to GPP × VPD0.5 line is fitted using 

linear regression with zero-intercept (uWUEa) and the monthly T/ET value is the ratio of uWUEa and uWUEp. The difference 

between the Berkelhammer method and the uWUE method is in the fitting of the T=ET line and in the calculation of the 

monthly T=ET values. The ET was also partitioned using the Transpiration Estimation Algorithm (TEA) (Nelson et al., 2018). 

The TEA is a random forest regressor that first isolates most likely periods of T=ET, and then trains on GPP and T relations 10 

during these periods. 

2.6 Soil desorption 

The mean daily estimate of evaporation calculated from the half-hour estimates of T/ET allow indirect testing of whether 

estimated cumulative E scales linearly with 𝑡𝑑
1/2

, where 𝑡𝑑 is a single-event drydown duration in days. This scaling is expected 

for what is termed as stage-2 evaporation rate starting from the day after the rainfall event. During this stage, the daily E is 15 

limited by soil moisture conditions and soil physical properties (desorptivity) described elsewhere (Brutsaert and Chen, 1995). 

The daily evaporation rate can be expressed as E = (1/2)DEtd
−1/2

 and the cumulative daily E can be expressed as DEtd
1/2

, 

where 𝐷𝐸  is to be determined. The expected range of 𝐷𝐸  based on several experiments is about 3 to 6 mm d−1/2 as discussed 

elsewhere (Parlange et al., 1992). By regressing cumulative daily E inferred from the aforementioned partitioning methods 

upon √𝑡𝑑 for a single dry-down period, the soil desorptivity 𝐷𝐸  can be computed and compared to literature values. Dry season 20 

precipitation events were sampled from June to August each year with condition of at least 8-day long dry down and 0.02 

m3m−3 increase in surface soil moisture at 10 cm depth. The wet season precipitation events were searched from April of each 

hydrological year. In five hydrological years there was 8-days long dry down period after precipitation in April with continuous 

daily evaporation estimate. April is also the month with the lowest CV in monthly value of EVI excluding the dry season 

months. By sampling from late wet season, any differences in soil surface conditions may be seen in the late wet season 25 

evaporation events if ambient atmospheric variables do not exert stronger controls on the soil evaporation (as expected in 

stage-2 evaporation). The first day of fitting of the soil desorption was set to a day when soil evaporation decreased. This 

varied from 2 days to 6 days after the rainfall event. In April, the soil is dry enough for stage-2 conditions unlike in mid wet 

season when P frequency is higher and surface soil is wetter. The stage-2 soil evaporation after precipitation events was 

modeled with two different estimates of soil desorption. First, the soil evaporation was calculated using the aforementioned 30 

𝐷𝑒  from regression of cumulative soil evaporation. This represents the eddy covariance scale and the calculated daily 

evaporation should match with the partitioned soil evaporation estimate if the conditions for stage-2 evaporation are met. The 
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second estimate is a linearized solution for soil desorptivity based on initial surface soil moisture conditions (Black et al., 

1969) 

𝐷𝑒,𝜃 = 2(𝜃𝑖 − 𝜃0) (
𝐷

𝜋
)

1
2

(6) 

 

where 𝜃𝑖 is initial soil moisture, 𝜃0 is the soil moisture at surface and 𝐷 is the weighted-mean diffusivity that was set to 394 5 

mm2 d−1 (Brutsaert, 2014). The first day soil moisture value at 10 cm depth was used for 𝜃𝑖 and 𝜃0 was set to zero as a first 

approximation. 

2.7 Satellite data 

Changes in vegetation state were quantified using monthly average of MODIS 16-day EVI with 250 m spatial resolution 

(MOD13Q1, collection 6) (Didan, 2015). To compare estimated T/ET to variations in vegetation phenology, monthly average 10 

of MODIS 8-day LAI (MOD15A2H, collection 6) with 500 m spatial resolution was used to relate monthly T/ET to LAI. The 

EVI signal is a ratio of spectral bands whereas the LAI has correct units of foliage area per ground area. 

2.8 Rainy season timing and green-up dates 

The rainy season length was estimated based on climatological threshold of 5 % of the mean annual rainfall (Guan et al., 2014). 

The start of the rainy season was defined as the day when cumulative rainfall of the hydrological year (September to August) 15 

reached the threshold value 27 mm based on the long-term mean annual rainfall (540 mm). Similarly, the end of rainy season 

was estimated as the first day when cumulative rainfall, starting backwards from end of hydrological year (August), reached 

the same threshold value. The tree green-up dates were estimated from the raw 16-day EVI time series (Archibald and Scholes, 

2007). The tree green-up date was defined as the day when the EVI signal was higher than a moving average of previous four 

time steps at the beginning of hydrological year. This is the time when the EVI time series experiences a sudden increase. To 20 

characterize early wet season (September to November) precipitation, the mean daily rainfall statistics are estimated using 

daily mean precipitation amount (𝛼) and daily mean storm frequency (𝜆). The daily mean precipitation amount is the mean 

precipitation of rainy days. The mean storm frequency was calculated as the inverse of the mean time between rainy days. 

3 Results 

3.1 Hydrological years 25 

Hydrological years are defined from September to August and are referred to by the year in which they begin. In 2011, the 

annual precipitation was substantially (187 mm) lower than ET and the total rainfall time was 32 h shorter than in other years. 

The histogram of daily soil moisture increases shows that there were 5 extreme wetting events (soil moisture increase > 20 
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mm day−1) in 2011, whereas other years had only one extreme event (Fig. S2). The measured site precipitation was higher 

than values at the nearby weather station except in 2011 (Table 1 and Fig. S3). This comparison suggests that the 

underestimation in 2011 may be due to poor performance of the tipping bucket sensor during heavy rain events. The years 

2010, 2012, 2013 and 2014 were years with close to or above the long-term mean annual rainfall of 540 mm, while 2015 was 

an extreme drought year in South Africa. In general, annual P was lower than annual ET for each year (Table 1). The annual 5 

change of soil water storage, based on 10 cm to 100 cm depth soil moisture measurements, varied from 1 mm to 14 mm. This 

variation is small compared to the variation in other water balance components. The annual energy balance closure varied from 

0.75 to 0.85, and is comparable to those reported among FluxNet sites (Stoy et al., 2013; Wilson et al., 2002). The year 2011 

had a 2-week dry spell at the end January, and 2015 had a dry spell at the end of November, impacting the local EVI minimum 

(Fig. 1). In 2015, the grass experienced a dieback and regrowth, leading to the second peak in EVI. Although annual P in 2015 10 

was 77 mm lower than the long-term mean, the rainy season was nearly twice as long as in other years (Table 2). 

 

Table 1. Annual sum of water balance components for each hydrological year (September to August). The transpiration and 

evaporation are calculated from monthly T/ET estimates. The precipitation value in parenthesis indicates the annual sum from 

nearby weather station. The EBC-slope stands for the slope of the energy balance closure with ordinate defined by measured Rn-G 15 
and abscissa defined by the sum of the measured latent and sensible heat fluxes. 

Year P ET P–ET T E 𝛥𝛩1𝑚 T/ET PET 𝐸𝑉𝐼𝑚𝑎𝑥 𝑃𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 EBC-slope 

 (mm) (mm) (mm) (mm) (mm) (mm)  (mm)  (hours)  

2010–2011 574 (332) 658 ± 16 –84 362 295 - 0.55 1133 0.32 266 0.75 

2011–2012 421 (560) 608 ± 16 –187 291 317 - 0.48 1123 0.30 121 0.80 

2012–2013 614 (537) 667 ± 14 –53 352 314 14 0.53 1109 0.29 159 0.85 

2013–2014 530 (509) 600 ± 14 –70 348 252 12 0.58 1039 0.31 153 0.81 

2014–2015 582 (407) 642 ± 17 –60 344 297 3 0.54 1057 0.27 158 0.83 

2015–2016 465 (437) 463 ± 11 2 179 283 –1 0.39 1038 0.22 157 0.84 

Mean 531 606 –75 313 293 5 0.51 1083 0.28 169 0.81 

SD 68 69 57 64 22 6  0.06 40 0.03 45 0.03 
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Table 2. Rainy season timing and tree green-up dates. The start day refers to day of hydrological year and the end day to the day of 

subsequent year. Early wet season period spans from September to November. 

Year Tree 

green-

up 

Start of 

rain 

End of 

rain 

Rainy season 

length 

Percentage 

of rainy 

season T=ET 

values 

Mean 𝜃5𝑐𝑚 

of T=ET 

Early wet 

season 𝛼 

Early wet 

season 𝜆 

 (DOY) (DOY) (DOY) (days)  (m3m−3) (mm d−1) (storms 

d−1) 

2010–2011 238 309 127 183 75 0.10 5.0 0.44 

2011–2012 230 302 112 176 67 0.07 6.6 0.21 

2012–2013 242 250 109 224 84 0.05 6.1 0.35 

2013–2014 254 294 90 161 81 0.06 6.8 0.47 

2014–2015 241 298 108 175 81 0.08 6.4 0.38 

2015–2016 241 247 207 326 84 0.07 5.9 0.14 
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Figure 1. Time series of daily precipitation, soil water (0-50cm depth), evapotranspiration and EVI. 

The estimated annual T/ET ratio varied from 0.39 to 0.58 (Table 1). The T/ET ratio is 0.09 less for 2015 than for 2011. For 

2010, 2012, 2013 and 2014 the mean annual transpiration was 352 ± 8 mm year−1. The shape of the cumulative monthly 

transpiration is similar for these years with 2014 having a late start (Fig. 2). In 2011, the cumulative transpiration is reduced 5 

compared to other years in December and January. In 2015, the cumulative transpiration increases linearly until April. 
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Figure 2. a) Cumulative monthly transpiration for each hydrological year (September to August). b) Relation between annual 

maximum EVI and P–ET. The year 2011 (star) is not considered in the fit due to uncertain precipitation. 

The annual P–ET is not explained by the surface soil moisture storage changes (𝑅2 = 0.51, p-value = 0.28), but is inversely 

related to the annual maximum EVI (Fig. 2). Using this relation, the estimated annual precipitation in 2011 would be 542 mm. 5 

For the five normal years, the mean P–ET would be –67 mm. Also, the tree green-up days and start of the rainy period were 

not linearly related (Table 2, 𝑅2 = 0.03, p-value = 0.75), suggesting that the EVI signal rise at the onset of wet season is related 

to changes in tree leaf phenology and not to grass LAI. 
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3.2 ET partitioning and monthly transpiration 

 

Figure 3. Annual fitting of the T=ET line for each year. The x-axis is binned and one black dot is the minimum (5th percentile) of 

the bin. Linear regression is fitted to these minimum values. The grey dots indicate the half-hour data points. 

 5 

The bin values of the variable GPP × VPD0.5 were linearly related to 5th percentile of measured ET (Fig. 3) with the largest 

scatter during the drought year (𝑅2 = 0.82 in 2015). The GPP × VPD0.5 values vs. ET points are not similarly distributed every 

year. The years 2011 and 2013 had the same annual ET but there is more variation in ET values in 2011 for each GPP × VPD0.5 

bin. The slopes of annual T=ET lines have more variation than annual transpiration. In 2010 to 2014, the annual T amount was 

not significantly correlated with T=ET slope (𝑅2 = 0.28, p-value = 0.35). For all years, the mean surface soil moisture during 10 

T=ET instances is 0.1 𝑚3𝑚−3 or less (Table 2). The slope and y-intercept of T=ET line are linearly related (Fig. 4). In addition, 

the slope of T=ET line is inversely related to the rainy season length when the year 2011 is excluded from the fit (Fig. 4). The 

slope represents the T=ET values, and in 2011 only 67 % of those values were from the rainy season, as opposed to ranging 

75 % - 84 % in the other years (Table 2). A higher slope in 2011 value would mean lower water use efficiency. Nevertheless, 

based on these relations, it is possible to estimate the annual T=ET line based on the rainy season length alone. 15 

https://doi.org/10.5194/hess-2019-651
Preprint. Discussion started: 10 January 2020
c© Author(s) 2020. CC BY 4.0 License.



14 

 

 

Figure 4. a) Relation between slope and y-intercept of T=ET line. b) Relation between rainy season length and slope of T=ET line. 
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Figure 5. (a) Relation between monthly MODIS LAI and T/ET. The black line is the relation between LAI and T/ET for shrub and 

grass ecosystems (Wei et al., 2017). (b) Relation between monthly mean VPD and monthly GPP/Transpiration. The dashed line is 

the fit for T/ET estimated by Berkelhammer method (black dots) and the dash-dotted line is the fit for T/ET estimated by uWUE 

method (grey triangles). 5 
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Figure 6. Time series of monthly transpiration, EVI and T/ET. The T/ET ratio was estimated with Berkelhammer, uWUE and TEA 

methods. The dotted vertical line indicates start of the hydrological year (September 1st) and the dash dotted line indicates start of 

rainy season. 
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Figure 7. Rainy season relation between monthly MODIS LAI and T/ET (Berkelhammer method) for wet (2012 and 2013) and dry 

(2011 and 2015) years. The year 2013 had higher early wet season precipitation than year 2012. In 2015 the November, May and 

June values were excluded as outliers from the fit. 

 5 

The comparison of the three different monthly T/ET estimates shows that T/ET based on the TEA method is consistently 

higher than the other methods during the wet season (Fig. 6). The annual maximum T/ET by this method has small variance 

compared to that obtained by the other methods. The root-mean squared error of the LAI to T/ET relation is lower for the 

Berkelhammer method than for the uWUE method (Fig. 5). The uWUE method has high T/ET values at low LAI, which 

corresponds to the 2015 dry season values. These values exceed the values of a multi-site derived shrub-grass LAI vs. T/ET 10 

relation (Wei et al., 2017). The VPD response of monthly GPP/T of the Berkelhammer method is more non-linear than the 

uWUE estimate (Fig. 5). At the end of 2013 and early 2014, the monthly GPP/T was low (around 1.3 gC m−2 mm−1) and 

insensitive to changes in VPD. 

The largest difference between uWUE and Berkelhammer T/ET estimate are during 2015 from March to June. During that 

period, monthly GPP decreased and T/ET increased based on all methods, but the increase based on the Berkelhammer method 15 

is small relative to the others. In June 2016, Berkelhammer-based T/ET was 25 % lower than uWUE T/ET for EVI value that 

is half the typical wet season maximum value. The T/ET values in the late wet season of 2015 based on both TEA and uWUE 

methods are likely an overestimate, given the decrease in GPP and low EVI values during that drought year. 

The annual T/ET is higher for years with more frequent early wet season precipitation (Table 1 and 2). During the rainy season 

the T/ET is consistently higher in 2013 than in 2012 for the same LAI range, and explained by the higher precipitation 20 

frequency in 2013 (Fig. 7). During the drought year, dry season T/ET values are higher than wet season values due to significant 

precipitation during these months. In 2011 the tree green-up date was the earliest and the T/ET value at the start of the rainy 

season was the highest and close to annual maximum, and thus the rainy season relation between LAI and T/ET was a 

decreasing curve. 
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Figure 8. (a) Inverse of water use efficiency estimated from monthly transpiration and GPP with zero intercept. (b) Relation between 

annual slope of T/EVI (Fig. S4) and slope of T=ET line (Fig. 3). 

The monthly T and GPP were linearly related (Fig. 6, 𝑅2 = 0.93, p-value<0.01) and it enables an estimate of an effective 

(constant) ecosystem water use efficiency using a zero intercept regression. The inverse of the constant water use efficiency 5 

was 101 g H2O/g CO2 (Fig. 8). The mean annual fitted inverse of the water use efficiency was 100 ± 13 g H2O/g CO2. 

Similarly, monthly EVI and T were linearly related (𝑅2 = 0.86, p-value < 0.01). In 2013, the monthly EVI was lagging the 

estimated monthly T (Fig. 6). This is also the year when early wet season daily mean precipitation amount and storm frequency 

are the highest (Table 2). In 2010, the early wet season storm frequency is high and the annual EVI is the highest but the EVI 

does not lag T. The annual slope of T/EVI was linearly related to the slope of the T=ET line (Fig. 8). This means that for a dry 10 

year, the transpiration is smaller per unit of EVI than for a wet year, resulting in a lower slope of the T=ET line. 

3.3 Dry season water balance and soil desorption 

Due to the abnormal rainfall timing in 2015, the dry season precipitation was higher than the dry season ET, opposite of the 

other years (Table 3). The average dry season transpiration was 11 mm (3 months)−1 (Table 3). This estimate suggests a 

minimum tree transpiration of 44 mm year−1. The estimated cumulative E scales linearly with 𝑡𝑑
1/2

 (𝑅2 > 0.97) during five 15 
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late wet season events and four dry season precipitation events allowing us to check estimated E dry down trend to expected 

stage-2 evaporation and compare to soil moisture based estimate of E (Fig. 9, Table 4). For the dry season 2012 there was no 

precipitation event during June to August, and in dry season 2013 there was one precipitation event but the soil moisture at 10 

cm did not register that event. For these years, the dry season soil desorptivity was not estimated. In 2010 late wet season there 

was no 8-day dry down period and hence no estimate of desorption was possible for late wet season 2010. The late wet season 5 

soil desorption estimated from partitioned evaporation (𝐷𝑒) ranged from 2.6 to 7.1 mm d−1/2. The mean soil moisture based 

𝐷𝑒,𝜃 ranged from 2.0 to 3.5 mm d−1/2. The late wet season soil desorption (𝐷𝑒) increases linearly with increasing initial daily 

evaporation (Table 4, 𝑅2 = 0.86 , p-value<0.05) and for all events (𝑅2 = 0.54 , p-value<0.05). The 𝐷𝑒  values were not 

correlated with first day air temperature or water vapor deficit but there was significant correlation with soil moisture at 20 cm 

depth (𝑅2 = 0.63, p-value<0.02). The wet season 𝐷𝑒,𝜃 estimated from soil moisture is similar with 𝐷𝑒 , except in 2010 and in 10 

2013 when precipitation event was only 6.5 mm. For 2014 and 2015 the dry season 𝐷𝑒,𝜃 is higher than 𝐷𝑒 . One possible 

explanation for this difference is a potential drift in the dry season surface soil moisture sensor (due to changing sensor-soil 

contact). Evidence supporting this modest drift is that the minimum soil moisture value is approximately 0.04 higher in later 

years than in 2011. The much larger 𝐷𝑒,𝜃 in 2015 shows that the ‘small scale’ estimate can be much larger than the eddy 

covariance scale estimate although the overall mean 𝐷𝑒  is higher than 𝐷𝑒,𝜃 . Despite different initial conditions primarily 15 

controlled by the first day E, the wet and dry season estimated soil desorption are in similar range, and the 𝐷𝑒  estimate of wet 

season dry downs matches estimated daily E from the partitioning methods (Fig. 9). The lowest wet and dry season 𝐷𝑒  values 

where estimated during the drought year 2015, characterized by grass regrowth and reduction in annual transpiration. 

 

Table 3. Dry season (Jun-Aug) sum of water balance components. 20 

Dry season P ET T E 

 (mm) (mm) (mm) (mm) 

2010 22 52 11 41 

2011 17 40 8 31 

2012 2 33 10 22 

2013 6 29 6 23 

2014 12 34 9 24 

2015 60 47 23 24 
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Table 4. Late wet season (April) and dry season soil desorption estimated from partitioned evaporation (De) and from surface soil 

moisture (De,θ). E_day1 is the evaporation of the first day of soil desorption fit. 

Year Start date P amount 𝐷𝑒  𝐷𝑒,𝜃 𝐸𝑑𝑎𝑦1 𝜃𝑖 

  (mm) (mm d−1/2) (mm d−1/2) (mm) (m3m−3) 

Wet season       

2011 2012-04-01 45.0 7.1 3.1 2.7 0.14 

2012 2013-04-26 46.2 3.7 3.5 1.9 0.16 

2013 2014-04-24 6.5 3.0 2.0 1.8 0.09 

2014 2015-04-26 13.6 3.5 2.8 1.5 0.13 

2015 2016-04-23 10.8 2.6 2.7 1.1 0.12 

Dry season       

2010 2011-06-09 21.4 2.9 - 0.5 - 

2011 2012-06-24 13.6 2.7 2.1 0.5 0.10 

2014 2015-09-06 41.2 4.3 4.6 0.8 0.21 

2015 2016-07-26 47.4 2.3 5.2 0.8 0.25 
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Figure 9. Daily evaporation after rainfall event in April except in year 2010. The line is estimated daily evaporation from partitioning 

of ET. The dots indicate daily evaporation estimated from cumulative daily evaporation and triangles indicate daily evaporation 

estimated from initial surface soil moisture. 
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4 Discussion 

The annual T was highly constrained to 352 ± 8 mm year−1for four wet years with rainfall around or above long-term mean 

(P ≥ 540 mm). This is consistent with small interannual variation in water use of the deep-rooted trees, and moderate water 

stress of C4 grass, potentially aided by grazing pressure that limits the grass leaf area. During a drought year, the transpiration 5 

was reduced due to grass dieback-regrowth and possibly due to other changes in soil surface properties (cracks in surface crust) 

that enhanced evaporation. 

Roots of the dominant tree species, Vachellia erioloba, are deep, and this site is at the wet end of its distribution. The estimated 

radiocarbon age of these trees is approximately 20 years (Steenkamp et al., 2008). The roots of Vachellia erioloba have been 

reported to extend up to 60 m depth (Jennings, C.M.H., 1974), and the species was shown to take 37 % of its water below 1 m 10 

depth (Beyer et al., 2018). In addition, the horizontal extent of this species’ roots can exceed 20 m (Wang et al., 2007). While 

installing the soil moisture profile measurements at the site, tree roots were observed at 40 cm depth and 15 m away from the 

nearest tree. This suggest that trees at the site are likely decoupled from recent precipitation and shallow soil moisture, and 

that information from other studies can be used to compare to annual tree transpiration at the site. For example, in a similar 

site at this region (P=241 mm) the ratio of annual/(dry season) transpiration of Vachellia erioloba (5 m height) was 3.9/0.6 15 

mm d−1 (Tfwala et al., 2019). Multiplying this ratio with our 11 mm dry season tree transpiration results to 72 mm of annual 

tree transpiration. This is similar to the 87 mm yr−1 annual transpiration based on sap flow measurements conducted in a site 

of deep rooted Vachellia tortillis trees in Senegal, comprising 11 % of the ground cover (P=280 mm; Do et al., 2008). We note 

that a study of global pine plantation showed that, sap-flux-based annual transpiration of trees with access to sufficient soil 

moisture can be estimated as 0.55 mm d-1 * LAI (Tor-ngern et al., 2017). Based on woody species LAI in four seasons (1.12, 20 

0.12, 0.3 and 0.53) of one year at the site (Räsänen et al., 2017), annual pine transpiration at the site would be 102 mm, not 

much higher than estimated for the native trees in Senegal. The interannual variation in annual T based on sap flow 

measurements has been small. Finally, at a site of shallower rooted trees, at Nylsvley, South Africa, savannah of higher ET/P 

ratio, trees comprising 30 % cover transpired 126 mm annually based on measurements and modelling. Adjusting this estimate 

by fractional cover would yield 63 mm for our 15 % tree cover. Based on these estimates, the annual tree transpiration at the 25 

site may range from 60 to 90 mm. 

A hypothetical explanation for the small interannual variation in total transpiration during wet years is that the C4 grass was 

experiencing only moderate water stress. The reduction in photosynthesis in C4 grass is more related to non-stomatal limitations 

compared to C3 grass, which is predominantly limited by stomatal control (Ripley et al., 2010). In South African field 

conditions over one growing season, the C4 grass had tendency to maintain constant difference between predawn and midday 30 

leaf water potential, and transpiration was similar at rain-fed and irrigated pots (Taylor et al., 2014). The seasonal course of 

transpiration at our site was similar in wet years and only shifted in time due to different start date of the rainy season. A 
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rainfall timing experiment with C4 grass in growth chambers showed that there was no difference in the biomass for grass 

grown in frequent light shower and in intermittent storm every 12-day rainfall (Williams et al., 1998). It is likely that the 

variability in the rainfall timing in wet years did not produce water stress in the C4 grass layer, resulting in small interannual 

variation of C4 grass transpiration. 

The invariability of ecosystem scale transpiration was observed in many forest ecosystems with a mixture of species of 5 

different drought response (Oishi et al., 2010). The mechanism for the invariance in these forests is related to observed higher 

VPD during drought years. In contrast, at Welgegund the water availability for grass is the determining factor of transpiration. 

Transpiration is constant for wet years with frequent early season rainfall but during drought the grass undergoes a dieback-

regrowth period during mid wet season, resulting in reduced transpiration. During this period, bare soil cover, soil surface 

properties and increased proportion of tree transpiration of the total transpiration affect the monthly transpiration. It is difficult 10 

to generalize if this invariance of annual transpiration would hold for sites with higher grass LAI, and where grass and tree 

roots share the same soil volume. 

At monthly scale, transpiration and GPP were linearly related, producing a near-constant inverse water-use efficiency 

estimated at 100 ± 13 g H2O/g CO2. This is relatively close to the field scale long-term grass community value of 127 g H2O/g 

CO2, but different from the combined tree and grass value of 420 g H2O/g CO2 for the shallower rooted trees and 30 % tree 15 

cover savanna at Nylsvley, South Africa (Scholes and Walker, 1993).  

4.1 Uncertainty 

Wind-induced underestimation is a well-known problem in rainfall measurements. A comprehensive study estimated the 

underestimation for our rain gauge (Casella) at 0.5 m height to be 9.4 % at the measurement site with similar mean wind speed 

(5 m s−1) and annual rainfall (P=700–1000 mm) (Pollock et al., 2018). At higher wind site the underestimation was 11 % at 20 

0.5 m height and 17 % at 1.5 m height. The 9.4 % underestimation can be considered minimum and annual P adjustment 

(i.e. 1.094 measured P) would lead to annual mean P≈ ET for five years excluding the year 2011. A 15 % underestimation 

would result in a positive P–ET for the five years. 

The ratio of annual ET uncertainty to annual ET was 2 %, lower than 5 % to 9 % range reported from eddy covariance ET 

measurements from cultivated area in Benin (Mamadou et al., 2016). The difference may be due to different error terms in the 25 

uncertainty estimation. At this site, the mid dry season ET ranged from 45 to 67.5 mm (3 months)−1 (mid dry monthly value 

multiplied by three) in the cultivated site that has isolated trees (height < 10 m) and bare soil during the dry season (Mamadou 

et al., 2014, 2016). This is higher than the range of 29 to 52 mm measured here. A possible explanation is the relatively high 

water table at Benin site (depth is 3 m during the dry season at the Benin site) and its higher annual precipitation (P=1200 

mm). 30 
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4.2 Remote sensing of T/ET 

The difference in annual T/ET during the wet years was ≤ 0.09, which is an upper limit for a given ecosystem from a joint 

modeling and observation analysis (Paschalis et al., 2018). The comparison between the wet years with contrasting 

precipitation frequency suggest that higher precipitation frequency leads to higher monthly T/ET for the whole rainy season. 

However, the seasonal course of T/ET was different in the two years with lower annual T/ET. The earliest tree green-up 5 

resulted to high T/ET at start of the rainy season and an early decline in T/ET. The anomalous timing of rainfall in the drought 

year resulted to higher T/ET during the dry season. For these reasons, during years with higher water stress accompanied by 

higher relative contribution of tree transpiration, the relation between monthly LAI and T/ET maybe altered from the expected 

nonlinear response. 

For these water-stressed years, the partitioning of tree and grass contribution to LAI and T/ET may be needed in order to derive 10 

meaningful relationships at monthly scale. The analysis here does not reveal whether most of the deviations in the LAI-T/ET 

relation is due to grass or increasing role of bare soil evaporation and thus surface heterogeneity. A recent study used a canopy 

height model, Sentinel vegetation indexes (10 m spatial resolution) and Sentinel radar band, to analyse the 2015 drought in 

Kruger national park (Urban et al., 2018). These new remote sensing products combined with spatial measurements of surface 

soil conditions and tree transpiration may enable to partition LAI into grass and tree components. The effect of dieback-15 

regrowth to annual transpiration is also interesting because a stochastic model based on measured precipitation statistics with 

explicit bare soil, grass and tree cover showed that vegetation dynamics had little effect on annual transpiration and production 

(Williams and Albertson, 2005). 

4.3 Soil desorption 

Despite majority of the T=ET moments concentrate at the wet season, the analysis of soil desorption from wet and dry season 20 

shows that the estimated daily soil evaporation under stage-2 condition has the expected characteristics of diffusion limited 

soil evaporation. The experimental values of the initial stage-2 evaporation vary from 1 to 3 mm day−1 for various soils and 

boundary conditions (Shokri et al., 2009). The daily evaporation rate was less than 2.7 mm d−1 on the first day of all wet 

season drying events and below 1 mm d−1 of all dry season events, which means that evaporation was stage-2 in all the drying 

events considered here. The differences in 𝐷𝑒  values were not explained by ambient meteorological conditions but higher first 25 

day evaporation and initial soil moisture at 20 cm resulted to higher 𝐷𝑒 . In laboratory conditions with full wetting of sandy 

soil columns, the stage-2 evaporation was shown to increase with ambient temperature (Ben Neriah et al., 2014). In the lab, 

the soil are dried homogeneously and continuously whereas in field conditions there can be large variance in surface soil 

conditions and soil characteristics. The first day evaporation control of 𝐷𝑒  is expected due the large spatial scale of the eddy 

covariance measurement, whereas small scale ambient measurements may not explain average evaporation of large spatial 30 

extent. However, the significant correlation with soil moisture at 20 cm suggest that the soil moisture at this depth is a better 

representative of the column average soil moisture than the soil at 10 cm depth. The slightly lower values of soil desorption 
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during dry season compared to wet season are explained by the lower first day evaporation and thus give confidence that the 

estimated evaporation in dry season is also reasonable. 

4.4 ET partitioning methods 

The Berkelhammer and uWUE transpiration estimates were closer to reported grassland T/ET values and more similar than 

the TEA estimate. The largest difference between Berkelhammer and uWUE methods were in late wet season and the dry 5 

season of the drought year. During that time, the uWUE and TEA estimated T/ET values were high (up to 0.7) while GPP and 

EVI were low. For the uWUE method, one-to-one T=ET line is fitted using quantile regression for all six years’ data combined, 

and the intercept is forced through zero. Aperiodic, single T=ET line rather than annual line, and the quantile regression are 

likely the reason for the difference between the uWUE and Berklhammer method. On the other hand, the TEA algorithm had 

an unusually constant annual maximum T/ET and higher wet season T/ET estimates than the other two methods. The algorithm 10 

does not use measured soil moisture in the training period, and instead uses simple P and ET water balance (Nelson et al., 

2018). This is the most likely reason for small interannual variance of the maximum T/ET values of the TEA method. 

The low surface soil moisture values during T=ET periods and their concentration in the rainy season give confidence that the 

annual fitted T=ET lines correspond to periods when T equals ET. The water balance analysis focused on monthly and annual 

timescales when the ET partition methods have shown good agreement with independent estimates (Berkelhammer et al., 15 

2016; Zhou et al., 2018). Berkelhammer showed that a 3-day running mean of the half-hour T/ET estimates reduced the root-

mean-square difference to ≤ 0.2 between the Berkelhammer method and isotopic estimate of T/ET (Berkelhammer et al., 

2016). Therefore, the random error of the monthly means of the half-hour T/ET estimates in this study is assumed to be small. 

For a Mediterranean tree-grass savanna, it was shown that T/ET was rarely over 0.8 (Perez-Priego et al., 2018). In contrast to 

the Mediterranean site, the Welgegund site has sandy soil, deep rooted trees and no clay horizon close to surface soil. More 20 

importantly, the mean surface soil moisture was 0.1 𝑚3𝑚−3 or below for the half-hour moments when T=ET. This low soil 

moisture resulted in small diffusion limited soil evaporation and thus periods when T equals ET. This is another independent 

confirmation of the partitioning of ET to E and T (even at such short time scales). 

5 Conclusion 

The analyses shows that, on annual time scales, transpiration appears to be conservative at the grazed grassland savanna with 25 

deep rooted trees. The grazing limits maximum grass biomass and few mature trees are small but constant users of soil water 

from deeper layer. The tree transpiration is, to large extent, decoupled from short-term precipitation variability. The grazing 

pressure and moderate water stress of C4 grass lead to nearly constant C4 grass annual transpiration during the growing season. 

During drought caused by intermittent rainfall timing, the annual transpiration is reduced due to grass dieback-regrowth that 

alters temporal dynamics of bare soil cover and infiltration, and complicates monthly T/ET relation to LAI. The precipitation 30 

timing can alter annual growth of C4 grasses, that tend to maintain constant transpiration, but react quickly to severe drought, 
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potentially leading to large reduction in annual transpiration. However, annual ET remains approximately equal to P even 

during drought due to increased soil evaporation. Thus, at annual scales, ET ≈ P, and annual T is roughly conservative despite 

large variations in annual P. The work here showed that the conservative nature of T is not simply due to the presence of trees 

accessing deep water. The dynamics of C4 grasses and their water use efficiency also contributes to a conservative T. Although 

further work is required to assess the generality of these conclusions to other savanna systems, the methodologies developed 5 

and tested here can be employed in investigating a wide range of arid and semi-arid ecosystems experiencing water limitations. 
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