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Abstract 6 

Drainage systems can significantly improve the water management in agricultural fields. However, they may transport 7 

contaminants originating from fertilizers and pesticides and threaten ecosystems. Determining the quantity of drainage 8 

water is an important factor for constructed wetlands and other drainage mitigation techniques. This study was carried out 9 

in Denmark where tile drainage systems are implemented in more than half of the agricultural fields. The first aim of the 10 

study was to predict the annual discharge of tile drainage systems using machine-learning methods, which have been highly 11 

popular in recent years. The second objective was to assess the importance of the parameters and their impact on the 12 

predictions. Data from 53 drainage stations distributed in different regions of Denmark were collected and used for the 13 

analysis. The covariates contained 35 parameters including the calculated percolation and geographic variables such as 14 

drainage probability, clay content in different depth intervals, and elevation, all extracted from existing national maps. 15 

Random Forest and Cubist were selected as predictive models. Both models were trained on the dataset and used to predict 16 

yearly drainage discharge. Results highlighted the importance of the cross-validation methods and indicated that both 17 

Random Forest and Cubist can perform as predictive models with a low complexity and good correlation between predicted 18 

and observed discharge. Covariate importance analysis showed that among all of the used predictors, the percolation and 19 

elevation have the largest effect on the prediction of tile drainage discharge. This work opens up for a better understanding 20 

of the dynamics of tile drainage discharge and proves that machine-learning techniques can perform as predictive models 21 

in this specific concept. The developed models can be used in regard to a national mapping of expected tile drain discharge. 22 

Keywords: Tile drainage discharge, Random Forest, Cubist, Cross-validation 23 

1. Introduction 24 

Artificial subsurface drainage has a huge impact on the hydrology, nutrient cycling, and sediment dynamics in 25 

agricultural systems (Blann et al. 2009). In temperate climates with fine-textured soils as well as semi-arid regions with 26 
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irrigated fields (Ayars et al. 2006), tile drainage is a crucial water management system to control runoff, prevent 27 

waterlogging, and to increase water use efficiency. On the other hand, tile drainage affects both the quantity and the 28 

quality of water resources (Schilling et al. 2012). Nutrient losses and chemical remnants can either be transported 29 

through drains to surface water bodies such as lakes and rivers (Stenberg et al. 2012) or be leached to the groundwater, 30 

and this fresh-water contamination can threaten both human and ecosystem health (Kuzmanovski et al. 2015). 31 

Constructed wetlands are a means to eliminate excessive amounts of nitrogen from drainage water benefiting from 32 

natural nitrate reducing processes in a controlled environment (Messer et al. 2017). These systems are mainly installed to 33 

reduce the pollution from drainage water from agricultural fields and run-off from industrial areas (Magmedov et al. 34 

1996). In order to design constructed wetlands with appropriate sizes, it is necessary to quantify artificial drainage 35 

discharge. Physically-based hydrological models have been developed either to estimate the drainage discharge or to 36 

include it as a component (De Schepper et al. 2017). These models have a common use in academic research and may as 37 

well be used to evaluate various scenarios (Zia et al. 2015). However, they depend on numerous parameters and require 38 

calibration to individual areas (Basha et al. 2008), which makes them complicated and time consuming to apply on a 39 

national scale. Another disadvantage of these models is the conceptualization as the fundament, which leads to invalid 40 

predictions when new empirical data are introduced (Bredehoeft 2005). Beside physically based models, many statistical 41 

approaches have been used to model and to predict state variable such as discharge, but there are limited number of 42 

literature predicting tile drainage discharge with the means of machine learning approaches. This type of data-driven 43 

modelling requires fewer parameters and can perform as an accurate estimation technique and these models have proved 44 

to be flexible and robust enough for many regression applications (Park et al., 2016). 45 

Machine learning is related to computational statistics and is commonly used for predictions based on learning from 46 

historical relationships and trends in the data. Classification and Regression Trees (CART) are a frequently used form of 47 

machine learning models. They work by searching through the covariates of a dataset to find the best splitting single 48 

value. This creates two different groups of data. The process is repeated for the both created groups until a decision tree 49 

forms. Zia et al. (2015) predicted drainage discharge utilizing an M5 decision tree modelling technique on a 17 ha 50 

drained farmland in southern Ireland. Predictions were carried out on a daily basis for a 12-month period. They validated 51 

the suitability of a simplified discharge prediction model for implementation on a system with limited resources. 52 

Kuzmanovski et al. (2015) evaluated machine-learning models in predicting sub-surface tile drainage discharge and 53 

surface runoff on an experimental site in La Jaillière, France using daily data from eleven fields including a reference 54 

field. The dataset was based on meteorological measurements, agricultural practices, and crop management. By 55 
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comparing the results from these models with the performance of two physically based models, they found an 56 

improvement in the sub-surface discharge predictions.  57 

In the present study, two different machine-learning models were used to predict yearly tile drainage discharge, Random 58 

Forest (RF) (Breiman, 2001) and Cubist (CB) (Quinlan, 1993). RF is an ensemble approach based on CART (Breiman, 59 

2001). It trains a number of regression trees from bootstrap samples drawn from the original dataset and averages the 60 

results from each tree for the final prediction. The algorithm furthermore introduces randomness into the splitting process 61 

by selecting the optimal split from a random subset of the covariates in each split. CB is a rule-based regression 62 

technique, which does not retrieve one final model like RF but a set of rules related to multivariate models (Walton, 63 

2008). A specific set of covariates will choose an actual prediction model based on the rule that best fits the predictors. 64 

As a commercial and proprietary product, CB has the least algorithmic documentation comparing to random forest. 65 

However, Kuhn et al. (2013) ported it into R, which led to its popularity and it is currently being widely used as a 66 

regression method.  67 

Both RF and CB have been used widely in the recent decades to predict different climatic or environmental parameters. 68 

However, there are few studies, which aim to compare RF and CB models. Walton (2008) estimated urban forest canopy 69 

cover and impervious surface cover using three different models including CB and RF and compared their performances. 70 

They concluded that CB was the best choice for predicting urban impervious surface cover. Noi et al. (2017) compared 71 

the results of Multiple Linear Regression, Cubist Regression, and Random Forest Algorithms in estimation of daily air 72 

surface temperature. They concluded that using different combinations of data, RF or CB algorithms resulted in high 73 

accuracies. 74 

In this study, the chosen methodology is based on machine learning, which is considered as a promising modelling 75 

method in the fields of agriculture and environmental science (Debeljak and Dzeroski 2011). Here we aim to assess the 76 

performance of RF and CB in predicting yearly tile-drainage discharge, to compare the results achieved by both RF and 77 

CB, and to analyze and rank the importance of the covariates.  78 

2. Materials and Methods 79 

2.1. Study Area 80 

Denmark is located in northern Europe with a total area of 42,895 km2, of which 66% are used for agricultural purposes 81 

(Statistics Denmark, n.d.). The climate is temperate with an approximate mean annual precipitation (P) of 770 mm 82 

(Wong, 2013).  The mean temperature is 7.7˚C  ranging from 1.5°C in January to 16.3°C in July. The mean elevation is 83 

31 m above sea level and the landscape is generally flat. The geology divides Denmark into two main areas. An eastern 84 
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part with loamy Weichselian moraines and a western part with sandy glacial outwash plains and Saalian moraines. 85 

According to historical maps, wetlands originally covered more than over 20% of the country but due to drainage 86 

activities, they have been reduced in extent during the 19th and 20th centuries.  87 

2.2. Data 88 

Data from 53 drainage stations in different locations and regions of Denmark were used in this study (Fig. 1). It included 89 

data from 18 stations established between 2012 and 2016 and historical data from 34 older stations established between 90 

1971 and 2009, of which some are still running and some had been shut down (Hansen & Pedersen 1975; Hansen 1981; 91 

Simmelsgaard 1994; Grant et al. 2009; Kjær et al. 2011; Kjærgaard et al. 2016). Some data originates from ongoing 92 

unpublished drain discharge stations, which have been established in relation to the monitoring of constructed mini-93 

wetlands. Other data belongs to a former project, iDræn (www.idraen.dk, 2011) where data for some of the stations have 94 

been published earlier (Hansen et al. 2018a,b; Varvaris et al. 2019a,b). For many stations, drainage discharge (Q) was 95 

measured on a daily basis but for some, Q was only measured on a weekly, monthly, or yearly basis. Based on the drain 96 

catchment area, yearly values were converted to a water height per year (mm y-1) based on the period from 1 July to the 97 

end of June to incorporate a full hydrological year. Most of the old stations had available data for a range of 19 to 23 98 

years, whereas for some of the new stations there was only data for a few years (1 to 5 years). The lowest discharge (0 99 

mm y-1) was recorded in southeast Funen during the year 1995 – 1996, whereas the maximum discharge (1183 mm y-1) 100 

was recorded in eastern Jutland during the year 2015 – 2016. The mean discharge for all the stations was 228 mm y-1. 101 

The catchment sizes varied from 1 to 164 ha with a mean of 9 ha.  102 

 103 

Thirty-seven different covariates were used as predictors (Table 1). Percolation out of the root zone (Db) was calculated 104 

with the simple water balance model EVACROP (Olesen and Heidmann, 1990) driven by input of daily precipitation (P) 105 

and reference evapotranspiration (ET0). This was done since it was not expected that P during the growing season would 106 

contribute to Q due to the high ET during this period minimizing the percolation out of the root zone. However, the 107 

calculated Db is in general closely related to P and Q (Fig. 2). The average Q and the average Db were calculated for 108 

each station to determine the ratio between Q and Db (Fig 3). As shown in Figure 3, for seven stations out of 53, the tile 109 

drainage discharge is more than the percolated water. These stations are located in large catchments often in stream 110 

valleys where external sources (such as regional groundwater) probably flow to the tile drains from outside the 111 

catchment. The absolute amounts of discharged water in all the stations is normalized based on catchment area. 112 
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Thirty-three out of 37 covariates were extracted from existing national maps. Topographical variables were calculated by 113 

(Møller et al. 2018) based on a digital elevation model (DEM, Fig. 4A) with a 30.4-meter grid size aggregated from a 114 

DEM with a 1.6-meter resolution. Adhikari et al. (2013) predicted maps of clay contents for the upper two meter of the 115 

soil at a resolution of 30.4 m. These were aggregated by Møller et al. (2018) producing input data in form of maps of clay 116 

content in four depth intervals (Clay A%, Clay B%, Clay C%, Clay D%, Table 1, Fig. 4B). Values of clay content were 117 

also obtained from a national soil profile database using values from the nearest excavated soil profile. Depth to 118 

groundwater (Gwd_model, Table 1, Fig. 4C) was first calculated based on a model at a 500-meter resolution (Henriksen 119 

et al., 2012) and then the groundwater table was resampled to a 30.4-meter resolution using bilinear interpolation (Møller 120 

et al. 2018). Topographic Wetness Index (TWI, Table 1, Fig. 4D) that quantifies topographic controls of basic 121 

hydrological processes (Schillaci et al., 2015) was derived through interactions of fine-scale landform coupled to the up-122 

gradient contributing land surface area by Møller et al. (2018). A map of soil drainage classes (Møller et al., 2017), a 123 

rasterized choropleth map of geology (Jacobsen et al., 2015), and a map of wetland areas (Wetlands, Table 1, Greve et al. 124 

2014) were also used in the analysis. Horizontal and vertical distances to surface waterbodies were included based on 125 

Møller et al. (2018), who calculated horizontal distances to waterbodies as the two-dimensional Euclidean distance to 126 

vector layers of waterbodies. Hereafter, they calculated the slope to channel as the angle to the hydrologically nearest 127 

waterbody taking into account the surface flow direction. Møller et al. (2018) predicted artificially drained areas 128 

(D_DK_New, Table 1) in Denmark by means of a selective model ensemble including number of geographic variables. 129 

All 37 covariates were used as input to the statistical models. 130 

2.3. Models and Measures of Accuracy 131 

As mentioned earlier, two machine-learning algorithms Cubist (CB) (Quinlan, 1993) and Random Forest (RF) (Breiman, 132 

2001) were used to predict tile drainage discharge.  Cross-validation was used to adjust the parameters of the models and 133 

to assess their predictive accuracy. Cross-validation is a resampling procedure used to evaluate machine-learning models 134 

on a given dataset. For CB, the parameters were adjusted to committees and neighbors. The parameter committees sets 135 

the number of boosting iterations while the parameter neighbors set a number of nearby cases, which can be used for 136 

interpolation in order to adjust the predictions. For RF, the parameter mtry was adjusted, which sets the number of 137 

randomly selected covariates that are available in each split. 138 

For both algorithms, three different cross-validation procedures were used. Firstly, in order to assess the ability of each 139 

model to predict the tile drain discharge at a new location, leave-station-out (LSO) cross-validation was performed. In 140 

this procedure, all the measurements were removed from one station in the data sample and a model was trained from the 141 
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remaining measurements and used to predict Q for the excluded cases. This process was repeated for all stations and 142 

resulting accuracy was calculated. 143 

The stations used in this study are highly clustered in geographic space (Fig. 1). Spatial autocorrelation may therefore 144 

affect the accuracy of the LSO procedure as stations may show similar patterns only because they are located close to 145 

each other. Therefore, a second cross validation procedure as leave-cluster-out was used as well, in which the clusters of 146 

stations were left out instead of individual stations. To achieve this, clusters were generated based on the distances 147 

between the stations. Stations located less than 10 km from each other were therefore grouped into clusters. This 148 

procedure resulted in 23 clusters with 1 – 10 stations each. These clusters were later used for cross-validation. 149 

Finally, k-fold cross-validated (KF) RF and CB models were trained on the whole dataset. In this procedure, the dataset 150 

were randomly divided into k disjoint folds, which are approximately equal in size. Each of the folds is used to test the 151 

generated model from the rest of k-1 folds. The performance of the algorithm was evaluated by the average of the 152 

resulting k accuracies from the cross-validation. When a specific value for k was chosen, it could be used in place of k in 153 

the reference to the model, which in this case k = 10 and it could therefore be referred as 10-fold cross-validation (Wong 154 

2015). 155 

In total, six models were trained as the CB and RF models were trained separately with leave-station-out (LSO),  leave-156 

cluster-out (LCO), and k-fold (KF) cross validations. The accuracy of all five models were assessed with root mean 157 

square error (RMSE): 158 

RMSE=√
∑ (𝑄𝑚𝑖

 − 𝑄𝑜𝑖
)2𝑛

𝑖=1

𝑛
                                                                                                                           (1) 159 

where Qmi is the predicted value of yearly drainage discharge for the i-th instance, Qoi is the observed or measured value 160 

of yearly drainage discharge for the i-th instance, and n is the total number of instances. 161 

The Nash-Sutcliffe efficiency (NSE) was used for validation as well: 162 

𝑁𝑆𝐸 = 1 −  
∑ (𝑄𝑚𝑖

−𝑄𝑜𝑖
)2𝑛

𝑖=1

∑ (𝑄𝑜𝑖
− �̅�𝑜)2𝑛

𝑖=1

                               (2) 163 

where �̅�𝑜 is the mean of observed discharges. 164 

Furthermore, to analyze the effect of the covariates in each model, the covariate importance was extracted from all six 165 

models. The covariate importance measures were scaled to 100% for the most important covariate in each model. In the 166 

beginning, all of the 37 parameters were introduced as covariates to the model. However, the purpose of using machine-167 
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learning is to find a simpler way to predict the target and to determine the most effective parameters, which helps to 168 

reduce the number of covariates and exclude the ineffective ones. 169 

 170 

3. Results and Discussion 171 

3.1. Model accuracy 172 

The most accurate predictions were obtained by 10-Fold (KF) cross-validated Cubist (CB) and 10-Fold (KF) cross-173 

validated random forest (RF) with RMSE of 75 and 77 mm/y and NSE of 0.73 and 0.74, respectively (Fig. 5, Table 2). 174 

According to Singh et al. (2005), an acceptable value for RMSE in hydrological modelling would normally be half of the 175 

standard deviation of training data, which for the current data set was 166 (mm/y).  Therefore, leave-station-out (LSO) 176 

cross-validated random forest (RF) with an RMSE of 110 mm/y and LCO cross-validated CB with an RMSE of 113 177 

mm/y could be considered as acceptable models regarding the prediction of Q.  178 

The purpose of performing three different cross-validations was to test the model accuracy with and without the effect of 179 

geological biases. In LSO, a single station containing an entire data set is removed from the training dataset as the target 180 

of prediction. However, the model is still trained on the neighbor stations, which are regionally close to the target. That 181 

could cause overfitting issues. On the other hand, the LCO ensures that on each run of the model, one of the 23 clusters is 182 

excluded as the prediction target, which diminishes the possibility of overfitting caused by geo-regional similarities.  183 

Finally, KF randomly divided the whole dataset into 10 fold with equal size, which does not consider the distribution of 184 

the stations. Data is sampled based on the rows and the difference in size between the training set used in each fold and 185 

the entire dataset is only a single pattern. Each fold contains 41 rows that are selected randomly and each time one of the 186 

10 folds is the validation or test data set. The repeated cross-validation guarantees that different combinations of 187 

randomly selected stations are in different training folds limiting the possibility of overfitting. 188 

With all three cross-validation methods, the accuracies with RF and CB were quite similar. Furthermore, the accuracies 189 

calculated with LSO and LCO are relatively similar, compared to KF, which had a substantially higher NSE and lower 190 

RMSE than the two other cross-validation methods.  191 

3.2. Covariate importance 192 

Results of all the six models indicate that the percolation or discharge out of the root zone (Db) has the largest effect on 193 

the tile-drainage discharge prediction with 100% importance (Fig. 6). The analyses show that elevation (DEM) follows the 194 

Db as the second most important covariate in all the models with more than 80 % importance in LSO-CB and LCO-CB 195 
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(Fig. 6 a and b) and between approximately 40 to 50% effectiveness for the other four models (Fig. 6c to f). The clay 196 

content in the D horizon was the third most important covariate in KF-CB and KF-RF (Fig. 6c to f). For the LCO-CB and 197 

LSO-RF models, horizontal distance to the nearest waterbody appears as the third most important covariate with 45% and 198 

21% importance, respectively (Fig. 6a and d). Whereas for the LSO-CB model, clay content in the C horizon and the LCO-199 

RF model clay content in the B horizon where the third most important covariates (Fig. 6 b and c). The rest of the list 200 

differs between the different models. However, it is observable that for the RF models (Fig 6c to e) only the first covariates 201 

have a significant effect where the rest have less than 20% importance. Nevertheless, for all CB models (Fig 6 a, b, and f) 202 

the top 10 covariate all have more than 20% importance. As previously stated, percolation and elevation have the largest 203 

importance to all of the trained models for the prediction of discharge. Based on the analyses of covariate importance, the 204 

results of the predictions for the two most effective covariates were compared to their measurements (Fig. 7). This 205 

comparison demonstrates how well the models can simulate the relationship between the most important covariates (Db 206 

and elevation) and the prediction target (Q). The open black circles represent the predictors on the x-axis against the 207 

measured drainage discharge (Q) on the y-axis. The red open circles represent the predictors on x axis and predicted 208 

drainage discharge (Q) on the y-axis by each of the six models mentioned on top of the plots. The best match could be 209 

observed on the k-fold cross-validated CB (Fig. 7 e and f). 210 

3.3. Discussion 211 

Similar studies targeting the prediction of discharge with machine learning models developed their models in a catchment 212 

scale for time series and chose the daily meteorological data, agricultural practices, and crop management as covariates 213 

(Kuzmanovski et al. 2015, Zia et al. 2015). Also in these studies, they used 10-fold cross-validation to evaluate the 214 

robustness of their model performance. The present study was carried out on a larger scale with catchments of different 215 

sizes distributed in different regions. Along with the percolation, a number of different geological features were used as 216 

input parameters to assess if it is possible to predict the tile drainage discharge based on spatially variable geophysical 217 

characteristics of the different sites. In the few similar studies (Rasouli et al. 2012, Kuzmanovski et al. 2015, Zia et al. 218 

2015), the study area was either one specific catchment or few fields or catchments very close to each other. This means 219 

that the geological features were similar. Being able to train machine-learning models on different catchments in very 220 

different locations had enabled us to make use of differing geographical characteristics as predictor variables. Predictions 221 

were carried out in a yearly basis and were cross-validated with three different methods. 222 

The accuracies of RF and CB models in comparison to each other for all the cross-validation methods were quite similar. 223 

On the other hand, the obtained accuracies from LSO and LCO are relatively similar but lower compared to KF, which 224 
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had a substantially higher NSE and lower RMSE than the two other cross-validation methods. The higher accuracies 225 

achieved by KF is most likely results from having the observations of a given station from other years during the 226 

prediction procedure. The accuracy obtained with KF could be considered as the internal accuracy of the model, while 227 

LSO and LCO better represent the accuracies at new locations without previous measurements of tile drain discharge at 228 

the same station. The proposed tile-drainage discharge predictive model is not dependent on the climatic and constantly 229 

measured data and makes it possible to use different geographical properties as predictive parameters. 230 

Logically, Db is the main driving variable since it takes into account water lost by evaporation from the soil surface, 231 

transpiration of water by the crop, and the increase of water stored in the soil. During the growing season, a high value of 232 

P will not necessarily lead to a corresponding high value of Q since it is only the part of P that infiltrate out of the root 233 

zone that potentially can flow into the tile drains. It is also expected that the clay content in the soil, especially the clay 234 

content in the lower horizons below tile drain depths, would have an effect on the drain discharge. A high clay content in 235 

the subsoil would lead to a secondary groundwater table building up outside the growing season to the level of the tile 236 

drains. That the clay content not play a more important role as a covariate might be explained by the relatively high 237 

prediction error of the clay content especially at lower depths for the used soil maps. 238 

The position of the tile-drained field in the landscape will have an effect on the tile drain discharge. At low positions in 239 

the landscape, the flow of water to the drains is expected to be relatively high due to a high contributing area of expected 240 

incoming regional groundwater generated from a larger area outside the tile-drained field. Such areas are also indicated 241 

in Figure 3 corresponding to high values of Q/Db. On the other hand, at higher positions in the landscape with no or only 242 

a minor contribution of regional groundwater, a proportional part of the water infiltrating into the drains is generated 243 

mainly locally from water percolating out of the root zone (Db). It was expected that DEM derived indices such as TWI 244 

or SagaWI (Table 1) would describe more precisely the contribution of water in the tile drains and therefore supposed to 245 

be important covariates. Both indices attempt to describe the hydrological flow paths in the landscape and should be able 246 

to identify areas with a high contribution of water flowing to the drains. However, only for the k-fold cross-validated RF 247 

model (Fig. 6E), TWI is found within the list of the top 10 most import covariates. On the other hand, DEM is placed as 248 

the second most or the most important covariate for all models. This proves that the position in the landscape does have 249 

an effect on the tile drain discharge. That the derived topographical indices only play a minor role in the statistical 250 

models might be related to the fact that it can vary considerably within the individual drained catchments. On the other 251 

hand, other derived DEM indices such as valley depth (Valldepth), vertical distance to the nearest waterbody (Vdtochn), 252 

horizontal distance to the nearest waterbody (Hdtochn), and downhill gradient to the nearest waterbody (Slptochn) are all 253 

found in the top 10 list.  254 
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By applying input from a distributed model predicting Db it is possible to apply the developed model on a national scale 255 

developing maps that can be used as a tool to predict the yearly drain discharge. National water resource models in 256 

Denmark exists that can be used for such purposes (e.g. Højberg et al. 2013). Outputs from the model can be based on 257 

averages for a certain period. Also, the possible variation between years as well as outputs in relation to future climatic 258 

scenarios can be studied. 259 

4. Conclusion 260 

For the current study, two different machine-learning models (RF and CB) were applied on a relatively big dataset 261 

containing measured yearly drainage discharge (Q) and 37 parameters as covariates and the results indicated a successful 262 

implementation. The predictive models were trained on 53 drainage stations distributed all over Denmark with different 263 

characteristics and multiple years of data and cross-validated with three different methods. The best results were 264 

achieved by k-fold (KF) cross-validated Cubist (CB) and random forest (RF) and the performance measures certifies the 265 

results. RMSE and NSE of both models indicates a good accuracy of the predictive models based on the hydrological 266 

modelling standards. Instead of physically-based models that acquire numerous parameters, machine learning models 267 

could perform as strong tools for quantifying the tile-drainage discharge with lower complexity. In this study, percolation 268 

or discharge out of the root zone (Db) calculated with the simple water balance model EVACROP, and elevation (DEM) 269 

where the most important covariate for predicting yearly discharge. Finally, it was concluded that considering the 270 

distribution of stations, the method of sampling and the cross-validation has a large effect on estimates of model 271 

accuracies. The developed model can be used in relation to a national mapping of yearly tile drain discharge. 272 
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 375 

Figure 1. Study area and the location of the 53 drainage stations throughout Denmark    376 

 377 

Figure 2. a) Measured yearly drainage discharge (Q) against calculated percolation (Db) b) Observed precipitation (P) against 378 
calculated percolation (Db) 379 

 380 

 381 
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 382 

Figure 3. Ratio of average measured drainage discharge (Q) and average calculated percolation (Db) for each station 383 
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 384 

 385 

Figure 4. A. Elevation based on a Digital Elevation Map (DEM).  B. Aggregated clay content in the C-horizon (Møller et al., 386 

2018) C. Interpolated depth to groundwater (Møller et al., 2018) D. Topographical wetness index (Møller et al., 2018) 387 
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 388 

Figure 5. LSO-RF: Leave station out cross-validated random forest model. LSO-CB: Leave station out cross-validated cubist 389 

model. LCO-RF: Leave cluster out cross-validated random forest model. LCO-RF: Leave cluster out cross-validated cubist 390 

model. KF-RF: K-Fold cross-validated random forest model. KF-CB: k-fold cross-validated Cubist model. 391 
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 392 

Figure 6. a) Top 10 most important covariates of the leave-cluster-out cross-validated CB model b) Top 10 most important 393 

covariates of the leave-station-out cross-validated CB model c) Top 10 most important covariates of the leave-cluster-out cross-394 

validated RF model d) Top 10 most important covariates of the leave-station-out cross-validated RF model E) Top 10 most 395 

important covariates of k-fold cross-validated RF model F) Top 10 most important covariates of the k-fold cross-validated CB 396 

model. 397 
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 398 

Figure 7. a, c, and e) Measured discharge against calculated percolation in black open circles, predicted discharge against 399 

calculated percolation in red open circles for the selected models with the best prediction. b, d, and f) Measured discharge against 400 
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elevation in black open circles, predicted discharge against elevation in red open circles for selected models with the best 401 

prediction 402 

Table 1. List of covariates used to predict the discharge including a description of the parameter and a range specifying the 403 

type of covariate. 404 

Predictors Description Range/ Class 

Db Percolation/Discharge out of the root zone (mm 

y-1) 

0 – 1033  

Geological_R Geological region 7 classes 

DEM Elevation (m) 0.74 – 83.16 

Geological_C Geology of the area 10 classes 

F_Accu Flow Accumulation/Number of unslope cells 1 – 1108  

SagaWI SAGA Wetness Index 12.16 - 16.58  

TWI Topographic Wetness Index 3.47 – 12.33 

BS Depth of Sink (m) 0 – 2.17 

D_Class Drainage class 5 classes 

Clay A %† Clay content 0-30 cm soil depth 3 – 20.3 

Clay B %† Clay content 30-60 cm soil depth 2 – 29.1  

Clay C %† Clay content 60-100 cm soil depth 1.5 – 31  

Clay D %† Clay content 100-200 cm soil depth 2.2 – 32.6  

DDJD LER-A%‡ Clay content in A horizon 3 – 24.8  

DDJD LER-B%‡ Clay content in B horizon 0 – 31.97 

DDJD LER-C%‡ Clay content in C horizon 0 – 29.1 

JB Danish soil classification for the A horizon 12 classes 

Gwd_Int Depth to groundwater table interpolated from 

well observations and surface water (m) 

0 – 25.31 

Wetlands 0: Non-wetlands; 1: Wetlands; 2: Central 

wetlands; 3: Peatlands. 

4 classes 

D_DK_New Artifical drainage-new map 2 classes 

DP_New Drainage probability-new map 0 – 0.86 
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D_DK Artifcial drainage-old map 2 classes 

DP Drainage probability-old map 0 – 0.82 

Demdetrend Elevation minus the mean elevation in a 4 km 

radius (m) 

-11.4 – 26.04 

Dirinsola Direct insolation (kWh/year) 1150.08 – 

1348.61 

Gwd_model Depth to groundwater from the model (m) 0 – 32.42  

Hdtochn Horizontal distance to the nearest waterbody (m) 0 – 1114.89 

Midslppos Mid-slope position 0 – 0.7 

Mrvbf Multi-resolution index of valley bottom flatness 0.07 – 8.68 

Slpdeg Surface slope gradient (degrees) 0.09 – 7.53 

Slptochn Downhill gradient to the nearest waterbody (m) 0 – 3.48 

Vdtochn Vertical distance to the nearest waterbody (m) 0 – 19.28 

Valldepth Valley depth (m) 2.43 – 21.35 

Landscape Landform types 11 classes 

† From the map of Adhikari et al. (2013); ‡from the national soil database 405 

Table 2. Error summary of six trained models 406 

                        Model 

 

Error 

 

LSO-CB 

 

LCO-CB 

 

LSO-RF 

 

LCO-RF 

 

KF-RF 

 

KF-CB 

RMSE 116.53 115.04 110.65 115.82 76.05 70.98 

NSE 0.37 0.39 0.44 0.38 0.73 0.74 

 407 

 408 

https://doi.org/10.5194/hess-2019-650
Preprint. Discussion started: 2 January 2020
c© Author(s) 2020. CC BY 4.0 License.


