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This supplementary material consists of equations of methods, tables and prediction maps in the paper 

and in the following 5 sections. Section S1 is the equations description of machine-learning models. 

Section S2 shows parameter adjustment of machine-learning models. Section S3 includes the uncertainty 

assessment of soil PSFs interpolation. Section S4 includes the prediction maps of silt and clay fractions. 

Section S5 demonstrates the indirect classification maps using ALR and CLR transformation methods. 10 
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Section S1 The equations description of machine-learning models 

 

For K-nearest neighbor (KNN), for a train set of observed data 𝐿 = {(𝑦𝑖 , 𝑥𝑖), 𝑖 = 1, . . . , 𝑛𝐿}, class 𝑦𝑖 ∈15 

{1, . . . , 𝑐} , and the predictor values 𝑥′𝑖 = (𝑥𝑖1 , . . . , 𝑥𝑖𝑝) . For a new observation (𝑦, 𝑥) , the nearest 

neighbor (𝑦(1), 𝑥(1)) is based on the distance function which is as follows: 

𝑑(𝑥, 𝑥(1)) = 𝑚𝑖𝑛𝑖( 𝑑(𝑥, 𝑥𝑖)),                 (S1.1) 

and �̂� = 𝑦(1) refers to the nearest neighbor, which is the prediction for 𝑦. Value 𝑥(𝑗) and 𝑦(𝑗) are the 

𝑗th nearest neighbor of 𝑥 and class of training set, respectively.  20 

For multilayer perceptron neural network (MLP), each neuron 𝑗 sums input environmental covariate 

in our study 𝑥𝑖 after multiplying them by the connection weights 𝑤𝑗𝑖  respectively, and calculates its 

output 𝑦𝑗 (soil PSFs components or texture class) as a function of the sum:  

𝑦𝑗 = 𝑓(∑ 𝑤𝑗𝑖𝑥𝑖),                    (S1.2) 

where 𝑓  is the activation function, which can be a linear or logistic function. The sum of squared 25 

differences between the predicted values and observed values of the output results of neurons 𝐸  is 

defined as follows:  

𝐸 =
1

2
∑ (𝑦𝑝𝑗 − 𝑦𝑜𝑗)2

𝑗 ,                  (S1.3) 

where 𝑦𝑝𝑗  and 𝑦𝑜𝑗  is the predicted and observed value of output neuron 𝑗, respectively. Each 𝑤𝑗𝑖  is 

adjusted to reduce 𝐸 and the adjustment of 𝑤𝑗𝑖  depends on the training algorithm. 30 

For random forest (RF), the equations for Gini index and minimizing the sum of the squares of the 

mean deviations (M) are as follows: 

𝐺𝑖𝑛𝑖 = 1 − ∑ 𝑝𝑘
2𝐾

𝑘=1 ,                  (S1.4) 

𝐺𝑖𝑛𝑖(𝐷, 𝐴) =
|𝐷1|

|𝐷|
𝐺𝑖𝑛𝑖(𝐷1) +

|𝐷2|

|𝐷|
𝐺𝑖𝑛𝑖(𝐷2),              (S1.5) 

M = 𝑚𝑖𝑛𝐴[ 𝑚𝑖𝑛𝑐1
∑ (𝑦𝑖 − 𝑐1)𝑥𝑖∈𝐷1(𝐴)

2
+ 𝑚𝑖𝑛𝑐2

∑ (𝑦𝑖 − 𝑐2)𝑥𝑖∈𝐷2(𝐴)
2

],             (S1.6) 35 

where 𝑝𝑘 refers to the proportion of 𝑘th class in the data set on the current node, for feature 𝐴 = 𝑎, 

data set 𝐷 is divided into two parts (𝐷1 and 𝐷2), 𝐷1 describes the data set which meets the condition 



𝐴 = 𝑎 and 𝐷2 is the opposite of 𝐷1; 𝐺𝑖𝑛𝑖(𝐷, 𝐴) represents the uncertainty of set 𝐷 after binary split; 

𝑦𝑖  is the predicted value of input value 𝑥𝑖; 𝑐1 and 𝑐2 is the mean of data set 𝐷1 and 𝐷2, respectively.  

In support vector machine (SVM), for a data set {𝑥𝑖 , 𝑦𝑖}, 𝑖 = 1, . . . , 𝑘, 𝑥 ∈ 𝑅 and 𝑥 refers to an n-

dimensional vector, 𝑦 ∈ {−1, +1}  is the class corresponding to 𝑥 , the equation for calculating a 

hyperplane of SVM is defined as follows: 5 

𝑚𝑖𝑛
𝑤,𝑏,𝜉

1

2
𝑤𝑇 × 𝑤 + 𝐶 ∑ 𝜉𝑖

𝑘
𝑖=1 ,  

s.t. 𝑦𝑖(𝑤𝑇 × 𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖, 𝜉𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑘,           (S1.7)    

where 𝜙(𝑥𝑖) refers to the mapping from the input space to the feature space, 𝐶 > 0 is penalty factor 

(cost), 𝑤, 𝑏, and 𝜉 are the parameters need to be optimized during the process of model training, which 

can be determined by the Lagrange multipliers: 10 

𝑓(𝑥) = 𝑠𝑔𝑛( 𝑦𝑖𝑎𝑖𝑘(𝑥𝑖 , 𝑥) + 𝑏∗),                (S1.8) 

where 𝑎𝑖 refers to the support vector, 𝑘(𝑥𝑖 , 𝑥) refers to the kernel function, and 𝑏∗ is the bias.  

For extreme gradient boosting (XGB), the general prediction function at step t is defined as follows: 

𝑓𝑖
(𝑡)

= ∑ 𝑓𝑘(𝑥𝑖) = 𝑓𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖)
𝑡
𝑘=1 ,               (S1.9) 

where 𝑓𝑡(𝑥𝑖) refers to the tree (learner) at step t, 𝑓𝑖
(𝑡)

 and 𝑓𝑖
(𝑡−1)

 refer to the predicted values at steps 15 

t and t − 1, and 𝑥𝑖 is the input value. 

𝑂𝑏𝑗(𝑡) = ∑ 𝑙(𝑦𝑖 , 𝑦𝑖)𝑛
𝑘=1 + ∑ 𝛺(𝑓𝑖)

𝑛
𝑘=1 ,             (S1.10) 

where 𝑂𝑏𝑗(𝑡) is the regularized objective, 𝑦𝑖  and 𝑦𝑖  refer to the prediction value and observed value, 𝑙 

refers to the loss function, 𝑛 is the number of data set, and 𝛺 refers to the regularization term, which 

equation is defined as follows:  20 

𝛺(𝑓) = 𝛾𝑇 +
1

2
𝜆‖𝜔‖2,                 (S1.11) 

where 𝜔 refers to the weight vector, 𝑇 denotes the total number of features, 𝜆 is the regularization 

term, and 𝛾 is the minimum loss.  
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Section S2 Parameter adjustment of machine-learning models 

 

For the parameter adjustment in Table S2.1, for KNN, the kmax was 15; the distance was 1; the kernel 

was rectangular. For MLP, the size ranged between 5 and 10. For RF, the ntree was 1000; the mtry 

fluctuated from 9 to 11. For SVM, the gamma was 0.01; the cost was 1. For XGB, the max_depth was 3 30 

– 4; the eta was 0.05 – 0.1; the colsample_bytree was 0.6 – 0.8, the nrounds was 30; the subsample was 

0.8 – 1; the gamma was 0 – 0.4; the min_child_weight was 0.6 – 0.8. 



Table S2.1 Adjusted parameters for different machine-learning methods. “rectan” is short for rectangular, “opt” is short for optimal and “ep” is short for epanechnikov. 

Models Parameters alr1 alr2 clr1 clr2 clr3 ilr1 ilr2 sand silt clay class 

KNN kmax 13 13 14 14 15 15 14 14 15 15 15 

 distance 1 1 1 1 1 1 1 1 1 1 1 

 
kernel rectan rectan rectan rectan rectan rectan opt rectan rectan ep rectan 

MLP size 5 5 5 5 5 5 5 10 10 10 5 

RF ntree 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

 
mtry 9 9 9 9 9 9 9 6 11 11 7 

SVM gamma 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.01 

 cost 1 1 1 1 1 1 1 1 1 1 1 

XGB max_depth 3 3 3 3 3 3 3 3 4 3 4 

 
eta 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.1 

 
colsample_bytree 0.6 0.6 1 0.8 0.6 0.6 1 0.6 0.6 0.6 0.8 

 
nrounds 20 30 40 40 30 20 30 30 30 30 30 

 
subsample 1 1 0.8 1 0.6 0.8 0.8 0.6 0.6 0.6 1 

 gamma 0.6 1 0.7 0.4 0.7 0 0.3 0.8 0.8 0.8 0.1 

  min_child_weight 0.6 0.8 0.6 1 0.6 1 1 0.8 0.8 0.8 0.6 
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Section S3 Uncertainty assessment of soil PSFs interpolation 

 

For the assessment of the uncertainties of models, Table S3.1 showed that ORI delivered lower SDs 5 

than those of log ratio methods among five machine-learning models for sand, silt and clay. Moreover, 

the ranges of 95 % confidence interval (CI) of indicators were also computed, which indicated relatively 

low values compared with assessment indicators (Table S3.1). For KNN, MLP and RF, ORI method 

showed lower values of CI of RMSE, MAE and R2 than those of log ratio methods, and for SVM and 

XGB, SVM_CLR and XGB_CLR revealed slight better performance compared with ORI of sand 10 

(CI_RMSE: 0.49 %; CI_MAE: 0.33 %) and silt (CI_MAE: 0.44 %), respectively. For the values of the 

ranges of 95 % CI of AD and STRESS, all models generated the same results (AD: 0.03, STRESS: 0.01) 

aside from RF_ILR (AD: 0.02), showing better performance. Thus, the estimators’ variabilities had 

reasonable order of magnitudes for the values of the estimates and these indicators were representative 

of the actual errors on independent test sets.  15 



 

Table S3.1. The standard deviation of prediction, the ranges of 95 % confidence interval (CI) of indicators for different machine-learning models combined with original and transformed data. 

  SD CI_RMSE (%) CI_MAE (%) CI_R2 (%) CI_AD CI_STRESS 

 Sand Silt Clay Sand Silt Clay Sand Silt Clay Sand Silt Clay   

KNN_ALR 0.18 0.14 0.08 0.71 0.65 0.25 0.51 0.44 0.16 4.45 5.03 4.18 0.03 0.01 

KNN_CLR 0.18 0.14 0.08 0.71 0.64 0.26 0.47 0.41 0.16 4.57 4.95 4.23 0.03 0.01 

KNN_ILR 0.18 0.14 0.08 0.73 0.64 0.27 0.48 0.41 0.16 4.78 5.18 4.4 0.03 0.01 

KNN_ORI 0.15 0.11 0.07 0.55 0.51 0.28 0.38 0.37 0.19 3.41 3.48 4 0.03 0.01 

MLP_ALR 0.17 0.13 0.06 0.65 0.67 0.33 0.38 0.41 0.2 4.21 5.07 5.44 0.03 0.01 

MLP_CLR 0.16 0.13 0.06 0.64 0.65 0.32 0.38 0.41 0.19 4.07 4.96 5.12 0.03 0.01 

MLP_ILR 0.16 0.13 0.06 0.64 0.65 0.32 0.37 0.41 0.2 4.04 4.95 5.04 0.03 0.01 

MLP_ORI 0.15 0.11 0.06 0.65 0.58 0.23 0.37 0.4 0.17 3.72 4.02 2.72 0.03 0.01 

RF_ALR 0.18 0.15 0.08 0.62 0.54 0.25 0.42 0.38 0.17 4.03 3.91 4.03 0.03 0.01 

RF_CLR 0.18 0.15 0.07 0.66 0.64 0.27 0.42 0.42 0.18 4.25 4.45 4.12 0.03 0.01 

RF_ILR 0.18 0.15 0.08 0.69 0.66 0.27 0.44 0.42 0.18 4.34 4.75 4.31 0.02 0.01 

RF_ORI 0.15 0.12 0.07 0.53 0.54 0.25 0.4 0.41 0.16 2.95 3.47 3.06 0.03 0.01 

SVM_ALR 0.17 0.12 0.06 0.45 0.49 0.25 0.35 0.43 0.17 3.27 3.74 2.82 0.03 0.01 

SVM_CLR 0.16 0.12 0.06 0.49 0.5 0.27 0.33 0.35 0.18 3.05 3.35 3.47 0.03 0.01 

SVM_ILR 0.16 0.12 0.06 0.51 0.51 0.25 0.34 0.36 0.18 3.07 3.38 3.18 0.03 0.01 

SVM_ORI 0.15 0.11 0.06 0.51 0.49 0.25 0.34 0.35 0.17 2.92 3.14 2.95 0.03 0.01 

XGB_ALR 0.17 0.14 0.07 0.67 0.57 0.23 0.48 0.41 0.16 4.07 3.97 3.6 0.03 0.01 

XGB_CLR 0.19 0.15 0.07 0.73 0.65 0.25 0.44 0.44 0.16 4.9 5 3.82 0.03 0.01 

XGB_ILR 0.17 0.13 0.08 0.72 0.69 0.26 0.46 0.48 0.19 4.52 4.86 4.44 0.03 0.01 

XGB_ORI 0.16 0.12 0.06 0.6 0.61 0.24 0.41 0.46 0.16 3.4 4.03 2.9 0.03 0.01 

 



Supplementary Material 

Section S4 Prediction maps of silt and clay fractions 

 

Figure S4.1. The prediction maps of silt fraction using five machine-learning models with ORI and ILR 

data. 



 

Figure S4.2. The prediction maps of clay fraction using five machine-learning models with ORI and ILR 

data. 
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Section S5 Indirect classification maps using ALR and CLR transformation methods 

 

Figure S5.1. Soil texture classification prediction maps by soil PSFs interpolation (ALR and CLR log 

ratio transformation methods) of KNN, MLP, RF, SVM and XGB. 


