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Abstract. Soil texture and soil particle size fractions (PSFs) play an increasing role in physical, chemical and hydrological 10 

processes. Many previous studies have used machine-learning and log ratio transformation methods for soil texture 

classification and soil PSFs interpolation to improve the prediction accuracy. However, few reports systematically compared 

the performance of them in both classification and interpolation. Here, a total of 45 evaluation models generated from five 

machine-learning models – K-nearest neighbor (KNN), multilayer perceptron neural network (MLP), random forest (RF), 

support vector machines (SVM), extreme gradient boosting (XGB), combined with original and three log ratio methods – 15 

additive log ratio (ALR), centered log ratio (CLR) and isometric log ratio (ILR), were applied to evaluate and compare both 

of them using 640 soil samples in the Heihe River Basin in China. The results demonstrated that log ratio transformation 

methods decreased skewness of distributions of soil PSFs data. For soil texture classification, RF and XGB showed better 

performance with the overall accuracy and kappa coefficients, they were also recommended to evaluate classification capacity 

of imbalanced data according to the area under the precision-recall curve (AUPRC) analysis. For soil PSFs interpolation, RF 20 

delivered the best performance among five machine-learning models with the lowest root mean squared error (RMSE, sand: 

15.09 %, silt: 13.86 %, clay: 6.31 %), mean absolute error (MAE, sand: 10.65 %, silt: 9.99 %, clay: 5.00 %), Aitchison distance 

 
  Abbreviations: PSFs, particle size fractions; HRB, Heihe River Basin; KNN, K-nearest neighbor; MLP, multilayer 

perceptron neural network; RF, random forest; SVM, support vector machines; XGB, extreme gradient boosting; ALR, 

additive log ratio; CLR, centered log ratio; ILR, isometric log ratio; ORI, original; PRC, precision-recall curve; AUPRC, 

area under the PRC; RMSE, root mean squared error; MAE, mean absolute error; R2, coefficient of determination; MAD, 

median absolute deviation; AD, Aitchison distance; STRESS, standardized residual sum of squares; SD, standard deviation; 

KNN_ALR, KNN_CLR, KNN_ILR, KNN_ORI, MLP_ALR, MLP_CLR, MLP_ILR, MLP_ORI, RF_ALR, RF_CLR, 

RF_ILR, RF_ORI, SVM_ALR, SVM_CLR, SVM_ILR, SVM_ORI, XGB_ALR, XGB_CLR, XGB_ILR, XGB_ORI, KNN, 

MLP, RF, SVM, XGB combined with ALR, CLR, ILR, ORI, respectively; ClLo, clay loam; Lo, loam; LoSa, loamy sand; Sa, 

sand; SaClLo, sandy clay loam; SaLo, sandy loam; Si, silt; SiClLo, silty clay loam; SiLo, silt loam. 
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(AD, 0.84) and standardized residual sum of squares (STRESS, 0.61), and the highest coefficient of determination (R2, sand: 

53.28 %, silt: 45.77 %, clay: 53.75 %). STRESS was improved using log ratio methods, especially CLR and ILR. For the 

comparison of direct and indirect classification, prediction maps were similar on the middle and upper reaches and different 

on the lower reaches of the HRB. Moreover, indirect classification maps based on log ratio transformed data had more detailed 

information. There is a pronounced improvement with 21.3 % of kappa coefficient using indirect methods for soil texture 5 

classification compared to the direct ones. RF was recommended as the best strategy among these five machine-learning 

models according to the accuracy evaluation of soil PSFs interpolation and soil texture classification, and ILR was 

recommended for component-wise machine-learning methods without multivariate treatment considering the constrained 

nature of compositional data. In addition, XGB was preferred than other models when trade-off of accuracy and time was 

considered. Our findings can provide a reference for other research of spatial prediction of soil PSFs and texture using machine-10 

learning methods with skewed distribution soil PSFs data in a large area. 

1 Introduction 

Soil texture, classified by ranges of soil particle size fractions (PSFs), is one of the most important attributes affecting the soil 

properties and the physical, chemical and hydrological processes covering soil porosity, soil fertility, water retention, 

infiltration, drainage and aeration. Soil texture distribution can be used for soil fertility management (Pahlavan-Rad and 15 

Akbarimoghaddam, 2018), water management (Thompson et al., 2012), maintenance of organic carbon (Bationo et al., 2007), 

provision of ecosystem services (Adhikari and Hartemink, 2016) etc. The soil PSFs – sand, silt and clay, are vital in most 

hydrological, ecological, and environmental risk assessment models (Liess et al., 2012). The spatial distributions of soil texture 

and soil PSFs affect and control runoff generation, slope stability, depth of accumulation and soluble salt content (McNamara 

et al., 2005; Follain et al., 2006; Yoo et al., 2006; Gochis et al., 2010; Crouvi et al., 2013). 20 

The soil PSFs prediction should consider the ancillary data especially in a large area region, which can enhance the 

performance of interpolation (Wang and Shi, 2017). Machine-learning methods such as boosting regression trees (Jafari et al., 

2014; Yang et al., 2016), random forests (RF) (Hengl et al., 2015; Zeraatpisheh et al., 2017) and artificial neural networks 

(Bagheri Bodaghabadi et al., 2015; Taalab et al., 2015) have been most commonly employed in both regression and 

classification combined with environmental covariates in soil science. Machine-learning methods such as RF and gradient 25 

boosting had better performance than statistical linear model (e.g., multiple linear regression) in the prediction of soil properties 

because they are robust to noise and had low bias when dealing with large data sets (Hengl et al., 2015; Hengl et al., 2017). 

For the accuracy assessment of soil classes prediction among machine-learning methods, artificial neural network and “tree 

learners” (e.g., decision trees) were preferred because of relatively high overall accuracy and kappa coefficients and the 

interpretability of the results and the speed of parameterization (Taghizadeh-Mehrjardi et al., 2015; Heung et al., 2016). Most 30 

previous studies selected one or more machine-learning algorithms to simulate soil category or continuous variables for 
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classification or regression problems. However, few studies systematically analyzed both soil texture classification and soil 

PSFs interpolation using different machine-learning methods.  

  The soil PSFs, which can be classified as soil texture, are not only continuous variables but also compositional data – the 

sum constant (1 or 100 %) should be guaranteed. Soil PSFs data, including three dimensions, are typical compositional data, 

these individual variables in the data set are not independent of each other, which are related by being expressed as a percentage 5 

(Filzmoser et al., 2009). Because of the spurious correlations between components, different results would occur on different 

measurement scales, which makes more complicated interpretation (Abdi et al., 2015; Reimann and Filzmoser, 2000). 

Indicators and statistical methods defined in the Euclidean geometry or based on Euclidean distances could reveal misleading 

or biased results (Butler, 1979). Numerous different interpretations of compositional data in soil science have been suggested 

(Gobin et al., 2001; Salazar et al., 2015; Tolosana-Delgado et al., 2019; Hengl et al., 2018), and the most extensively used 10 

method was a combination of log ratio transformation methods involving the additive log ratio (ALR) and the centered log 

ratio (CLR) put forward by Aitchison (1982), as well as the isometric log ratio (ILR) from Egozcue et al. (2003). Soil PSFs 

can be predicted using models such as multiple linear regression (Huang et al., 2014) and kriging (Wang and Shi, 2018; Zhang 

et al., 2013) combining with log ratio transformation methods. However, few studies conducted systematic comparison of 

accuracy, strengths and weaknesses for different machine-learning methods combing with original (untransformed) data and 15 

different log ratio transformed data.  

  Soil texture classification can be predicted by machine-learning methods directly, and can be derived indirectly from soil 

PSFs. For the direct soil texture classification, tree-based model such as RF and classification tree (CT) performed better than 

multinomial logistic regression, support vector machines (SVM) and artificial neural network (ANN) (Camera et al., 2017; 

Wu et al., 2018). For the indirect classification of soil texture, Poggio and Gimona (2017) combined hybrid geostatistical 20 

generalized additive models with ALR and modeled soil particle classes at 250 m resolution in Scotland, expecting that 

vegetation index, morphological features and information about the phenological season were of vital significance as 

environmental covariates. Considering the particularity of compositional data, the results of soil PSFs classification and 

regression could be compared from the direct and indirect soil texture classification in terms of the relationship between soil 

texture and soil PSFs. Nevertheless, few studies systematically compared the different machine-learning methods for both 25 

direct and indirect soil texture classification.  

  In our study, five machine-learning models – K-nearest neighbor (KNN), multilayer perceptron neural network (MLP), RF, 

SVM, and extreme gradient boosting (XGB) – were applied for soil texture classification and soil PSFs interpolation. 

Furthermore, the original and log ratio transformed data were also combined with these five machine-learning methods for soil 

PSFs interpolation. Hence, the objectives of this study are (i) to compare the performance of five machine-learning models for 30 

soil texture classification and soil PSFs interpolation, (ii) to evaluate the performance of machine-learning models using 

original and different log ratio transformed data for soil PSFs interpolation, and (iii) to estimate the performance of direct and 

indirect soil texture classification using these methods. 
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2 Data and methods 

2.1 Study area 

The Heihe River Basin (HRB, 97 °6 ' – 102 °3 ' E, 37 °43 ' – 42 °40 ' N) is situated in the Hexi Corridor in northwest of China, 

covering the Inner Mongolia Autonomous Region, Gansu and Qinghai provinces, which is the second largest inland river basin 

in China with an area of 146,700 km2 (Fig. 1a). The elevation is from 669 m to 5573 m (Fig. 1b). For the upper reaches of 5 

HRB, the mean annual precipitation is 350 mm; the annual mean temperature is from -5 to 4 °C; the annual average evaporation 

is 1000 mm. For the middle reaches of HRB, the mean annual precipitation declines between 250 and 50 mm; the annual 

average evaporation increases from 2000 (east) to 4000 mm (west); the mean annual temperature is from 2.8 to 7.6 °C. The 

lower reaches of HRB are situated in Ejina Banner on the Alxa Plateau, which is an arid desert climate with annual precipitation 

under 50 mm and annual average evaporation above 3500 mm; the mean annual temperature is from 8 to 10 °C.  10 

The vegetation of the upper reaches of the HRB (Fig. 1c) is influenced from the southeast to northwest by hydrothermal 

conditions. The main vegetation types are alpine vegetation (4000 – 5000 m), alpine meadow vegetation belt (3000 – 4000 m), 

alpine shrub meadow (3200 – 3800 m), mountain forest meadow belt (2400 – 3200 m), mountain grassland belt (1800 – 2400 

m), and desert base belt (less than 1800 m). The main vegetation types of the middle and lower reaches of the HRB are 

relatively fewer, including cultivated vegetation and desert, and the areas near the Heihe River on the lower reaches are shrub 15 

and steppe. 

The main soil types (Fig. 1d) are frigid desert soils (higher than 4000 m), alpine meadow soil and alpine steppe soil (3600 

– 4000 m), gray cinnamon soil and chernozem (3200 – 3600 m), sierozem and gray cinnamon soil (2600 – 3200 m), gray 

cinnamon soil (2300 – 2600 m) and sierozem (1900 – 2300 m) on the upper reaches of the HRB. The main soil types on the 

middle reaches of HRB are aeolian sandy soil, frigid frozen soil and gray brown desert soil. The main soil types in the lower 20 

reaches of HRB are aeolian sandy soil, gray brown desert soil (northwest) and lithosol (northeast). 

The main types of geomorphology on the upper reaches of the HRB are modern glaciers, alpine, hilly, and intermountain 

basin (Fig. e). Narrow plains are distributed on the middle reaches of HRB. For the lower reaches, the main types of 

geomorphology are hilly (northwest), plain, sandy land and platform (east), and the area near Heihe River is a flood plain.  

The main land use types of upper reaches, middle reaches and lower reaches were forest land and grassland, cultivated land, 25 

unused land, respectively (Fig. 1f). Water area and construction area were mainly distributed on the middle reaches of the HRB 

and near the Heihe River. 
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Figure 1. The (a) China boundary and the Heihe River Basin (HRB) boundary (b) Heihe River, elevation and soil sampling 

points of the HRB and (c) vegetation types, (d) soil types, (e) geomorphology types, (f) land use types. 
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2.2 Soil sampling 

A total of 640 soil sampling points was collected in the HRB from the Science Data Center of Cold and Arid Regions (WestDC) 

in China (http://westdc.westgis.ac.cn/), involving 392 soil sampling points on the upper reaches and 248 soil sampling points 

on the middle and lower reaches of the HRB (Fig. 1b). The soil types, vegetation types, distribution of DEM and 

geomorphology types of the HRB were considered in soil sample collection according to the location and proportion of these 5 

types for the purpose of more representative spatial characteristics of soil PSFs using limited soil samples. There were more 

soil sampling points on the middle and upper reaches of HRB due to the more complicated soil types and vegetation types in 

these areas. In contrast, the types on the lower reaches are relatively similar with more desert in the northwest. Hence, the east 

of the lower reaches of the HRB contained more soil sampling points. All soil samples had information about soil PSFs using 

Malvern Mastersizer 2000 laser diffraction particle size analyzer (average measurement error is less than 3 %). The global 10 

position system (GPS) information and related environmental covariates were recorded. Purposive sampling was used as the 

sampling strategy to collect soil samples and to characterize the spatial variability of soil PSFs especially on such a regional 

scale of the study area. In this strategy, sample sites were chosen based on the variability of soil formation factors, which 

represented the heterogeneity of the soil PSFs in the HRB such as the distribution of climate and categorical maps etc. To 

reduce the noise effect of soil sample, the average of mixed 3 – 5 topsoil (0 – 20 cm) samples for each soil sample and its 15 

parallel sample was used as the final measurement. Subsequently, the samples were dried, analyzed and measurement of soil 

PSFs (approximately 30 g of each sample).  

2.3 Environmental covariates and pre-processing 

The environmental covariates, such as topographic variables, remote sensing variables, climate and position variables, soil 

physicochemical variables and categorical maps, are related to the distributions of soil PSFs. System for Automated 20 

Geoscientific Analysis (SAGA) GIS (Conrad et al., 2015) was used to compute the topographic variables from DEM, including 

slope, aspect, convergence index, general curvature, plane curvature, profile curvature and valley depth. Remote sensing 

variables, including the normalized difference vegetation index (NDVI) (Huete et al., 2002), the Brightness index (BI) 

(Metternicht and Zinck, 2003), and the soil adjusted vegetation index (SAVI) (Huete, 1988) were derived from the Landsat 7 

based on band operation. We also collected climate variables from the National Meteorological Information Center (NMIC, 25 

http://data.cma.cn/) such as the mean annual precipitation and the mean annual temperature. Latitude and longitude were also 

considered because of the large region of the HRB. Mean annual surface evapotranspiration variable (Wu et al., 2012) were 

gathered from WestDC (http://westdc.westgis.ac.cn/) as well as soil physicochemical variables – soil organic carbon, saturated 

water content, field water holding capacity, wilt water content, saturated hydraulic conductivity, and soil thickness (Yi et al., 

2015; Song et al., 2016; Yang et al., 2016). Additionally, the categorical maps, which were of significance such as 30 

geomorphology types, soil types, land use types and vegetation types were also used (Fig. 1).  
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2.4 Machine-learning methods and parameters optimization 

2.4.1 K-nearest neighbor 

K-nearest neighbor (KNN) is a simple non-parametric classifier based on the known instance to label unknown instance (Cover 

and Hart, 1967). For the test set, K-nearest training set vectors (k) were found, and maximum summed kernel densities were 

computed for classification. Moreover, continuous variables can also be predicted for regression with the average values of K-5 

nearest neighbors. The parameters of KNN contain the maximum value of k (kmax), the distances of the nearest neighbors 

(distance) and the types of a kernel function (kernel). The KNN model is available in the R package “kknn” (Schliep and 

Hechenbichler, 2016). 

2.4.2 Multilayer perceptron neural network 

Multilayer perceptron neural network (MLP), which was currently one of the most commonly multilayer feedforward 10 

backpropagation networks (Zhang et al., 2018), was selected to train artificial neural network (ANN) models in our study due 

to its rapid operation, the small set of training requirements and ease of implementation (Subasi, 2007). MLP neurons can 

perform classification or regression depending on whether the response variable is categorical or continuous. The MLP has 

three sequential layers: input layer, hidden layer and output layer. The resilient backpropagation algorithm was chosen because 

the learning rate of this algorithm was adaptive, avoiding oscillations and accelerating the learning process (Behrens and 15 

Scholten, 2006). The range of the data set should be standardized because MLPs operate in terms of scale 0 to 1. MLP can be 

run using the R package “RSNNS” (Bergmeir and Benitez, 2012). 

2.4.3 Random forest 

Random forest (RF) was developed by Breiman (2001), combining the bagging method (Breiman, 1996) with the random 

variable selection, and the principle was to merge a group of “weak learners” together to form a “strong learner”. Bootstrap 20 

sampling is used for each tree of RF, and the rules to binary split data are different for regression and classification problems. 

For classification, the Gini index is used to split the data; for regression, minimizing the sum of the squares of the mean 

deviations can be selected to train each tree model. Benefits of using RFs are that the ensembles of trees are used without 

pruning. In addition, RF is relatively robust to overfitting, and standardization or normalization is not necessary because it is 

insensitive to the range of value. Two parameters should be adjusted for the RF model: the number of trees (ntree) and the 25 

number of features randomly sampled at each split (mtry). The RF model is available in the R package “randomForest” (Liaw 

and Wiener, 2002). 
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2.4.4 Support vector machine 

Support vector machine (SVM), proposed by Cortes and Vapnik (1995), is a type of generalized linear classifier that is widely 

applied for classification and regression problems in soil science (Burges, 1998). The main principle of SVM is to classify 

different classes by constructing an optimal separating hyperplane in the feature space (so-called “structural risk 

minimization”). Regression problems also can be solved by minimization of the structural risk using loss functions (Vapnik, 5 

1998) in SVM, named support vector regression. The advantages of SVM are that they are effective in high dimensional spaces. 

Linear function was selected for SVM as the kernel function in our study, and two other parameters need to be tuned, i.e., cost 

and gamma, controlling the tradeoff between the classification accuracy and complexity, and the ranges of radial effect, 

respectively. The SVM model is available in the R package “e1071” (Meyer et al., 2017). 

2.4.5 Extreme gradient boosting 10 

Extreme gradient boosting, put forward by Chen and Guestrin (2016), is an efficient method of implementation for gradient 

boosting frames, tree learning algorithms, and efficient linear model solvers to solve both classification and regression 

problems (Chen et al., 2018). Like the boosted regression trees (Elith et al., 2008), it follows the principle of gradient 

enhancement; however, more regularized model formalization is applied to XGB to control over-fitting, making it perform 

better in terms of accuracy assessment. The residuals of the first tree can be fitted by the second tree to enhance the model 15 

accuracy and the sum of the prediction of each tree generates the ultimate prediction. There are seven parameters in XGB – 

the learning rate (eta), the maximum depth of a tree (max_depth), the max number of boosting iterations (nrounds), the 

subsample ratio of columns (colsample_bytree), the subsample ratio of the training instance (subsample), the minimum loss 

reduction (gamma) and the minimum sum of instance weight (min_child_weight). The XGB model is available in the R 

package “xgboost” (Chen et al., 2018). 20 

2.4.6 Parameters optimization 

R package “caret” (Kuhn, 2018) for MLP, SVM, XGB, “randomForest” for RF and “kknn” for KNN were used to adjust 

parameters. A set of parameters with the lowest RMSE for regression and the highest kappa coefficient for classification by 

cross-validation will be selected as the best parameters. There are 11 dependent variables (i.e., “sand, silt, clay, ilr1, ilr2, alr1, 

alr2, clr1, clr2, clr3” for regression and “class” for classification) trained with environmental covariates (independent variables). 25 

The adjusted parameters and equation description of five machine-learning methods can be found in Appendix A. 

2.5 Log ratio transformation methods  

For the composition of ܦ elements ܠ ൌ ሾݔଵ ǡ Ǥ Ǥ Ǥ ǡ ݔ ,ሿݔ  Ͳ, ݆ ൌ ͳǡ ʹǡ Ǥ Ǥ Ǥ and σ ,ܦ ୀଵݔ ൌ ͳ, the transformation equation 

for ALR, CLR and ILR are defined as follows: 
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ሻܠሺݎ݈ܽ ൌ ሺ݈݊ ௫భ௫ೕ ǡ Ǥ Ǥ Ǥ ǡ ݈݊ ௫ೕషభ௫ೕ ǡ ݈݊ ௫ೕశభ௫ೕ ǡ Ǥ Ǥ Ǥ ǡ ݈݊ ௫ವ௫ೕ ሻ,                                    (1) ݈ܿݎሺܠሻ ൌ ሺ݈݊ ௫భටς ௫ೕವೕసభವ ǡ Ǥ Ǥ Ǥ ǡ ݈݊ ௫ವටς ௫ೕವೕసభವ ሻ,            (2) 

ܢ ൌ ሺݖଵ ǡ Ǥ Ǥ Ǥ ିଵሻݖ ൌ ݖ ሻ,                        (3)ܠሺݎ݈݅ ൌ ට ିିାଵ ݈݊ ௫ටς ௫ೕವೕసశభವష , for ݅ ൌ ͳǡ Ǥ Ǥ Ǥ ǡ ܦ െ ͳ,                     (4) 

where ݖ  is the ith component. The inverse transformation equations for ALR, CLR and ILR were computed in the 5 

“compositions” R package (van den Boogaart and Tolosana-Delgado, 2008), which were defined as follows:  ݈ܽݎሺݔሻ ൌ ௫ሺሺ௫ೕሻሻσ ௫ሺሺ௫ೕሻሻವೕసభ  ,                       (5) 

ሻݔሺݎ݈ܿ ൌ ௫ሺሺ௫ೕሻሻσ ௫ሺሺ௫ೕሻሻವೕసభ  ,                       (6) 

ܻሺݔሻ ൌ σ ሺ௫ೕሻඥൈሺାଵሻୀଵ െටିଵ ൈ ሻݔሺݎ݈݅ ሻ ,                    (7)ݔሺݎ݈݅ ൌ ሻݔሺݎ݈݅ ൌ Ͳ ,                        (8) 10 ݈݅ݎሺݔሻ ൌ ௫ሺሺ௫ೕሻሻσ ௫ሺሺ௫ೕሻሻವೕసభ  ,                        (9) 

 For original data, the standardization function was used to ensure predictions of soil PSFs were between 0 and 100 and 

that their sum was 100%:  ݀݊ܽݏ௦ ൌ ௦ௗሺ௦ௗା௦௧ା௬ሻ ൈ ͳͲͲ,                                   (10) 

where ݀݊ܽݏ௦ is the content of sand after standardization, and the same as silt and clay fractions.  15 

2.6 Validation 

2.6.1 Validation method 

We used a total of 45 models including five machine-learning methods combined with original (ORI) and three log ratio 

methods (ALR, CLR, ILR): five machine-learning methods for direct soil texture classification (5 models), and these methods 

combined with original data and log ratio transformed data for indirect soil texture classification (20 models) and soil PSFs 20 

interpolation (20 models) (Table 1). The data were randomly divided into two sets: 448 soil samples (70 %) for training and 

192 soil samples (30 %) for validation. This process was repeated 30 times. 

Table 1. The method system of soil texture classification and soil PSFs interpolation. 

Methods 
Soil texture classification Soil PSFs interpolation 

Direct classification Indirect classification 瀤 
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Original data  
(ORI) KNN, MLP, RF, SVM, XGB KNN_ORI, MLP_ORI, RF_ORI, SVM_ORI, XGB_ORI  

Log-ratio 
transformed data  
(ALR, CLR, ILR) 

瀤 
KNN_ALR, KNN_CLR, KNN_ILR, MLP_ALR, MLP_CLR, 
MLP_ILR, RF_ALR, RF_CLR, RF_ILR, SVM_ALR, 
SVM_CLR, SVM_ILR, XGB_ALR, XGB_CLR, XGB_ILR,  

2.6.2 Validation indicators for soil texture classification 

We used the overall accuracy, kappa coefficients, area under the precision-recall curve (AUPRC) and abundance index to 

validate the performance of different models. The first two indicators were selected to evaluate the overall prediction 

performance of soil texture types, and the last two were applied to evaluate the performance of each soil texture type.  

The overall accuracy represents all samples of soil texture types correctly classified by machine-learning models, divided 5 

by the total number of samples of soil texture types used in the validation. The overall accuracy is defined as follows (Brus et 

al., 2011): ܱݕܿܽݎݑܿܿܣ ݈݈ܽݎ݁ݒ ൌ ்ା்ே்ା்ேାிାிே,                           (11) 

where ܶܲǡ ܶܰǡ ǡܲܨ   .were true positive, true negative, false positive and false negative, respectively ܰܨ

Kappa coefficient demonstrates the agreement of observed classes and measured classes, which is calculated based on the 10 

confusion matrix, the equation is defined as:  ݇ܽܽ ൌ ିଵି ,                       (12) 

where   is the probability of observed agreement (overall accuracy) and   is the probability of agreement when two 

classes are unconditionally independent. The strength of the kappa coefficients is interpreted in the following manner: 0.01 – 

0.20: slight, 0.21 – 0.40: fair, 0.41 – 0.60: moderate, 0.61 – 0.80: substantial, 0.81 – 1.00: almost perfect (Landis and Koch, 15 

1977). The probabilities of different soil texture types (sum to 1) obtained during the training and predicting processes of 

machine-learning models were selected to calculate the precision and recall, which indicated the extent of identifying positive 

cases: ܴ݈݈݁ܿܽ ൌ ்்ାிே,                         (13) ܲ݊ݏ݅ܿ݁ݎ ൌ ்்ାி,                         (14) 20 

 Soil texture are a class-imbalanced data set of positive and negative with 62.5% silt loam types, and the negative classifier 

would be overvalued under these circumstances because of the overabundance of majority (negative) examples, additionally 

revealing overly optimistic findings (Davis and Goadrich, 2006). PRCs are informative in dealing with class-imbalanced data 
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(Fu et al., 2017). The R package “precrec” (Saito and Rehmsmeier, 2017) can generate PRCs and compute AUPRC for each 

soil texture type. This process was repeated 30 times and eventually, and then the average PRCs and AUPRCs were obtained.  

Similarly, confusion index (COI) based on prediction probability was calculated to evaluate the uncertainties of machine-

learning models of classification (Burrough et al., 1997), which equation was as follows: ܫܱܥ ൌ σ ሾଵିሺೌೣǡ ିೞೌೣǡ ሻሿసభ                     (15) 5 

where ܲ௫ǡ   refers to the maximum value of probability of soil sampling point ݅  and ௦ܲ௫ǡ   represents the second 

highest value of probability of soil sampling point ݅. A lower COI indicates better performance of model.  

Abundance index was applied to describe the proportion of all soil texture types and well-classified soil texture types in 

prediction maps, which was defined as follows: ݔ݁݀݊݅ ݁ܿ݊ܽ݀݊ݑܾܣ ൌ  10 (16)              ,ݐȀ

where  is all soil texture types in prediction maps and ݐ is well-classified soil texture type(s) in test sets. All nine soil texture 

types were involved in the test sets to ensure the balance of the soil texture types, including clay loam (ClLo: 12), loam (Lo: 

57), loamy sand (LoSa: 18), sand (Sa: 23), sandy clay loam (SaClLo: 4), sandy loam (SaLo: 58), silt (Si: 31), silty clay loam 

(SiClLo: 37), and silt loam (SiLo: 400).  

2.6.3 Validation indicators for soil PSFs interpolation 15 

Five statistical indicators, including coefficient of determination (R2), root mean square error (RMSE), mean absolute error 

(MAE), Aitchison distance (AD) (Aitchison, 1992), and standardized residual sum of squares (STRESS) (Martin-Fernandez 

et al., 2001) were used to validate the methods of soil PSFs interpolation. The equations for the validation indicators R2, RMSE, 

MAE, AD and STRESS are as follows: ܴଶ ൌ σ ሺǡିǡሻసభσ ሺǡିሜ ǡሻసభ ,                         (17) 20 

ܧܵܯܴ ൌ ටଵ σ ሺ ܻǡ െ ܻǡሻଶୀଵ ܧܣܯ (18)                         , ൌ ଵ σ ห ܻǡ െ ܻǡหୀଵ ,                      (19) 

where ܻǡ ǡ ܻǡ ǡ ሜܻǡ and n are measured, estimated and the mean of measured soil PSFs and the number of observations (soil 

sampling points for validation). Closer to 1 and higher values of R2 and the lower values of RMSE and MAE show better 

performance of models. 25 ܦܣ ൌ σ ቂ݈݃ ௫ሺ௫ሻ െ ݈݃ ሺሻቃୀଵ ଶ൨ଵȀଶ
,                     (20) 

ܵܵܧܴܶܵ ൌ σ ሺೣǡೕିǡೕሻమಬೕσ ሺೣǡೕሻమಬೕ ൨ଵȀଶ
,                      (21) 
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where ݔ is the observed value; ܺ is the predicted value; ܦ is the number of dimensions (for soil PSFs are 3); ݃ሺݔሻ denotes 

the geometric mean ሺݔଵǤ Ǥ Ǥ ௫ǡܦܣ ;ሻଵȀݔ  and ܦܣǡ  are the ݏܦܣ between the observed soil PSFs and the predicted soil 

PSFs at sites ݅ and ݆. Both present that model performances are better when the values are lower. The standard deviation (SD) 

of prediction values and the ranges of 95 % confidence interval (CI) (Streiner, 1996) of indicators derived from running models 

30 times to assess model uncertainty. 5 

2.7 Statistical analysis for the original and log ratio transformed data 

The standard deviation (SD), coefficient of variation (CV), mean, minimum (Min), maximum (Max), median absolute 

deviation (MAD), skewness (Skew), kurtosis and Kolmogorov-Smirnov (k-s) test (p > 0.05) were employed for descriptive 

statistical analysis of the original and log ratio transformed data. Furthermore, multivariate median based on depth measures 

(Bedall and Zimmermann, 1979; Gower, 1974; Small, 1990) were used because of the sum-constraint of compositional soil 10 

PSFs data. The arithmetic mean of log ratio transformation data should be back-transformed to the original space. For ܆ ൌሾܺଵǡ Ǥ Ǥ Ǥ ǡ ܺሿ, the MAD can be calculated according to the Eq. (22) as below: ܦܣܯሺ܆ሻ ൌ ݉݁݀݅ܽ݊ሺȁܺ െ ݉݁݀݅ܽ݊ሺ܆ሻȁሻ.           (22) 

3 Results 

3.1 The descriptive statistics for the original and log ratio transformed soil PSFs data 15 

For the original data of sand content, the mean (30.64 %) was much higher than that of median center (26.06 %). In contrast, 

silt and clay contents were the opposite, with lower means (silt: 55.79 %, clay: 13.57 %) than median centers (silt: 59.51 %, 

clay: 14.43 %). For the log ratio transformed data, different log ratio methods delivered the same means for sand, silt and clay. 

Additionally, the means of sand (28.69 %) and silt (60.54 %) were closer to the median centers of the original data except for 

clay with a mean of 10.78 %. For SD and CV, soil PSFs data in log ratio geometry had more stability and less variability 20 

compared with the original data. ILR and CLR had the lowest MAD for the first component (0.66) and the second component 

(0.43), respectively (Fig. 2). Although the p values of the original and different log ratio transformed data were not significant, 

log ratios made the data more symmetric according to the skews (Fig. 2). All log ratio methods had lower skews (ALR: 0.77, 

CLR: 0.88, ILR: -1.20) than those of the original data (1.24) of the first component. All the kurtoses of log ratio methods were 

much higher compared with the results generated from original data.  25 
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Figure 2. Descriptive statistical analysis for the original and log ratio transformed soil sampling data of (a) sand, (b) silt, (c) 

clay, (d) ALR_1, (e) ALR_2, (f) CLR_1, (g) CLR_2,(h) CLR_3, (i) ILR_1 and (j) ILR_2. SD is standard deviation, CV is the 

coefficient of variation, and the Median is multivariate median based on depth measures. ALR and ILR transformed ܵଷ (the 

simplex) to ܴଶ (the real space), and CLR transformed ܵଷ to ܴଷ. Note that the means of log ratio transformed data were 5 

back-transformed to the real space. Blue dashed lines showed the multivariate medians of original data. 

3.2 Comparison of the machine-learning models in the classification of soil texture types 

3.2.1 Comparison of the validation indicators for soil texture classification 

The overall accuracy of each model ranged from 0.613 to 0.636 (Fig. 3a). RF had the highest overall accuracy (0.636) among 

the five models, followed closely by the accuracy of KNN (0.630) and MLP (0.627). SVM (0.618) and XGB (0.613) were 10 

relatively lower than other models. The highest kappa coefficient was generated from MLP (0.242), followed by RF (0.238), 
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XGB (0.229), KNN (0.213) and SVM (0.213) (Fig. 3b). For uncertainties of models with confusion indices (COIs), XGB 

(0.278) delivered the best performance, and RF (0.501) demonstrated the highest confusion of models (Fig. 3c).  

 
Figure 3. (a) The overall accuracy, (b) kappa coefficients and (c) confusion index (COI) for different machine-learning models 

of KNN, MLP, RF, SVM and XGB. 5 

We combined the PRCs of the five machine-learning methods in Fig. 4 to evaluate the performance of them in predicting 

each soil texture type using imbalanced data with different samples of each type. We found that the AUPRCs of types with 

fewer positive examples were typically small, especially in the case of SaClLo (only 4 samples), which resulted in unsatisfying 

results because the lack of soil sampling points made models learn poorly during the training process. Hence, the soil texture 

types (Lo, SaLo, SiLo, SiClLo) with more positive examples delivered superior results to those with fewer positive examples. 10 

Moreover, these soil texture types had significant differences in AUPRCs. For example, SiLo, which had the largest number 

of samples, was the most effective among these nine types. For soil texture classes with more samples, RF and XGB performed 

better, and for soil texture classes with less samples, RF and SVM had better performance according to the AUPRCs.  
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Figure 4. The AUPRCs for different machine-learning methods of each soil texture type (a) ClLo (b) Lo (c) LoSa (d) Sa (e) 

SaClLo (f) SaLo (g) Si (h) SiClLo (i) SiLo; n was the sampling points of different soil texture types. 

3.2.2 Comparison of the prediction maps for soil texture classification   

Prediction maps of soil texture types in the HRB using machine-learning models delivered quite different spatial distributions 5 

in the overall performance of different models (Fig. 5). The abundance indices pointed out that SVM can predicted all of 9 
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types, KNN and XGB predicted 8 of 9 types, followed closely by RF (7 of 9 types) and MLP (6 of 9 types). The maps predicted 

by RF, SVM and XGB illustrated that the main soil texture types in the northwest of the lower reaches of HRB were mostly 

LoSa, while other prediction models produced SaLo. On the upper reaches of the HRB, soil texture types generated from RF 

were more abundant and more in accordance with the real environment (Fig. 1). 

 5 
Figure 5. Soil texture classification prediction maps of different soil texture types of (a) KNN, (b) MLP, (c) RF, (d) SVM and 

(e) XGB. 

3.3 Comparison of the machine-learning models combined with log ratio transformed methods in the interpolation of 
soil PSFs 

3.3.1 Comparison of the validation indicators for interpolation of soil PSFs 10 

We compared the performance of each machine-learning model combined with the original and the log ratio transformed data 

of soil PSFs. The results indicated that the STRESS of the methods using log ratio transformed data were superior to these 

methods using original data (Table 2). The RMSE, MAE, R2 and AD generated from KNN, MLP, RF and XGB using original 

data outperformed the results using log ratio transformed data. By comparison among different log ratio transformed data of 

the same machine-learning model, ILR and CLR outperformed ALR in these models. In Table 2, KNN_CLR demonstrated the 15 

most remarkable performance with the highest R2 and the lowest RMSE and MAE among KNN using the three log ratios. 

Furthermore, RF and SVM using CLR and ILR transformed data generated relatively similar results. XGB_ILR showed the 

best performance with most of the indicators except for RMSE (6.75 %) and MAE (5.36 %) of clay, and STRESS (0.63). RF 
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had the lowest RMSE and MAE, the highest R2, and the lowest AD and STRESS for ALR, CLR and ILR. For original data, 

RF also outperformed other models.  

Table 2. The comparisons of accuracy of different machine-learning models combined with original and transformed data. 

  RMSE (%) MAE (%) R2 (%) AD STRESS 
 Sand Silt Clay Sand Silt Clay Sand Silt Clay   

KNN_ALR 16.05  15.04  7.12  11.35  10.93  5.59  47.02  36.11  41.07  0.90  0.62  
KNN_CLR 15.82  14.77  7.09  11.21  10.74  5.58  48.48  38.37  41.43  0.88  0.62  
KNN_ILR 15.82  14.82  7.14  11.22  10.84  5.60  48.46  37.88  40.74  0.88  0.64  
KNN_ORI 15.51  14.47  7.05  11.12  10.51  5.49  50.59  40.92  42.24  0.84  0.66  
MLP_ALR 15.83  15.07  7.43  11.42  11.06  5.97  48.50  35.82  35.79  0.92  0.66  
MLP_CLR 15.84  15.07  7.41  11.45  11.05  5.96  48.42  35.86  36.19  0.92  0.66  
MLP_ILR 15.84  15.07  7.40  11.46  11.04  5.95  48.40  35.85  36.32  0.92  0.66  
MLP_ORI 15.80  14.72  6.96  11.50  10.85  5.52  48.75  38.84  43.72  0.90  0.68  
RF_ALR 15.50  14.43  6.62  10.90  10.52  5.24  50.57  41.23  48.90  0.86  0.61  
RF_CLR 15.28  14.22  6.61  10.70  10.25  5.21  51.95  42.89  49.16  0.86  0.61  
RF_ILR 15.27  14.25  6.66  10.66  10.26  5.26  51.99  42.60  48.28  0.86  0.61  
RF_ORI 15.09  13.86  6.31  10.65  9.99  5.00  53.28  45.77  53.75  0.84  0.66  
SVM_ALR 15.66  14.59  6.76  11.66  10.88  5.34  49.61  39.87  46.89  0.88  0.66  
SVM_CLR 15.27  14.36  6.87  11.01  10.41  5.41  52.12  41.85  45.14  0.87  0.65  
SVM_ILR 15.29  14.37  6.84  10.92  10.43  5.42  51.99  41.69  45.58  0.87  0.65  
SVM_ORI 15.30  14.38  6.92  10.94  10.32  5.43  51.98  41.71  44.45  0.87  0.67  
XGB_ALR 15.82  14.92  6.72  11.32  11.01  5.35  48.57  37.23  47.44  0.88  0.64  
XGB_CLR 15.70  14.80  6.75  10.96  10.67  5.39  49.23  38.10  46.90  0.88  0.62  
XGB_ILR 15.45  14.57  6.75  10.91  10.52  5.36  50.88  40.01  47.01  0.88  0.63  
XGB_ORI 15.15  14.05  6.47  10.88  10.15  5.15  52.85  44.27  51.36  0.86  0.68  

3.3.2 Comparison of the interpolation prediction maps of soil PSFs  

Interpolation prediction maps of soil PSFs using log ratio transformed data (ILR) and original data were represented in Figs. 5 

6, A1 and A2. The maps generated from models combined with ILR transformed data showed closer ranges to the original soil 

sampling data in the case of sand (0.98 – 99.66 %), silt (0.17 – 95.87 %) and clay (0.03 – 39.77 %), and the texture features 

were more suitable for the distributions of the real environment (Figs. 6, A1 and A2). With respect to different machine-learning 

models, RF and XGB delivered prediction maps that were closer to the range of the distribution of original data than did KNN, 

SVM and MLP. 10 
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Figure 6. The interpolation prediction maps of sand fraction. All the ranges of prediction maps of sand (approximately 9.0 – 

90.0 %) were within the range of original data (0.98 – 99.66 %). RF_ILR (7.9 – 94.7 %) and XGB_ORI (1.8 – 92.4 %) 

generated wider output distributions and were relatively closer to the range of the distribution of original data than other 
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prediction maps such as KNN_ILR (7.3 – 88.6 %), KNN_ORI (7.8 – 80.8 %), MLP_ILR (8.8 – 90.8 %), MLP_ORI (9.0 – 

90.3 %), RF_ORI (9.0 – 81.0 %), SVM_ILR (6.5 – 85.6 %), SVM_ORI (7.3 – 90.0 %) and XGB_ILR (5.0 – 88.5 %). 

3.4 Comparison of direct and indirect soil texture classification 

3.4.1 Comparison of the validation indicators for direct and indirect soil texture classification 

The overall accuracy and kappa coefficients of indirect classification were improved by using log ratio transformed data, 5 

especially RF and XGB (Fig. 7). ILR of five machine-learning models showed the highest overall accuracy among three log 

ratio transformation methods, which also demonstrated the best performance according to kappa coefficients, except for MLP. 

We also compared direct classification (Fig. 3) with indirect classification and found that the differences of overall accuracy 

of direct and indirect classification were negligible. In turn, the kappa coefficients were greatly modified using indirect 

classification compared with direct classification other than MLP; peculiarly, RF_ILR increased the kappa coefficient to 0.291 10 

(21.3 % improvement) while keeping accuracy stable. 
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Figure 7. Overall accuracy and kappa coefficients calculated from soil texture classification by soil PSFs interpolation using 

five machine-learning models combined with original data and log ratio transformed data. Note that the highest overall 

accuracy is SVM_ORI (0.638), and the highest kappa coefficient is RF_ILR (0.291). 

3.4.2 The prediction performance of soil texture types from different methods  

The distributions of soil texture classes using original data and ILR transformed data were illustrated in the USDA soil texture 5 

triangle (Fig. 8). The triangle of the original soil PSFs data (Fig. 8a) demonstrated wider ranges of spatial dispersion than the 

interpolation data using machine-learning models, revealing the properties of aggregate from the sides to the center of triangles. 

With respect to these machine-learning models, RF showed the most dispersed feature in accordance with the original soil 

PSFs data. The distributions predicted from models combined with ILR transformed data were more discrete and more 

associated with the original soil PSFs data than those resulting from ORI methods. The results of prediction represented striking 10 

differences in that the error ratio (yellow color) of soil sampling points on types of LoSa, SaLo and Lo (left side of triangles) 

were significantly more than those on types of SiLo and Si (the right side of triangles) for most models, especially KNN and 

MLP. The log ratio methods overestimated the component of silt in the process of transformation (Fig. 2); in this way, these 

points were biased to the right of the USDA soil texture triangle based on overall contraction (regression smoothing effects), 

crossing the classification boundary and becoming other soil texture types. RF_ILR (Fig. 8f) delivered the highest right ratio 15 

(RR) among these models, and the classification accuracy was enhanced using the ILR method (83.9%) compared with ORI 

(81.7%). In the case of other models, the differences between ORI and ILR were negligible. We also compared the RRs of 

indirect classification models with those of direct classification, demonstrating all RRs of direct classification were higher 

(KNN: 67.97 %; MLP: 75.16 %; RF: 100 %; SVM: 66.09 %; XGB: 81.09 %), especially RF and XGB; however, we removed 

this evaluation indicator because the same data sets were employed in the processes of training and predicting. 20 
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Figure 8. Soil texture types of 640 soil samples shown in USDA texture triangle. The results of soil PSFs were generated from 

(a) soil PSFs samples (b) KNN_ILR, (c) KNN_ORI, (d) MLP_ILR, (e) MLP_ORI, (f) RF_ILR, (g) RF_ORI, (h) SVM_ILR, 

(i) SVM_ORI, (j) XGB_ILR, and (k) XGB_ORI. Note that right points (green) mean that the predicted soil texture classes and 

these classes corresponding to the original data were the same; wrong points (yellow) were the opposite. The predicted right 

ratios (RRs) of the soil texture classes were in the bracket after interpolators in plots. 5 

3.4.3 Comparison of prediction maps of direct and indirect soil texture classification 

The soil texture maps predicted using original data were different from those generated from log ratio transformed data, and 

classification maps of the machine-learning models combined with the log ratio transformed data had more detailed 

information (Figs. 9 and A3). The machine-learning model using three log ratio transformed data were similar in the number 

of each predicted type; however, there were significant differences between using original data and log ratio transformed data. 10 

All machine-learning models combined with original data predicted more Lo and SaLo, and fewer LoSa and Si (Fig. 9). We 

also compared the prediction of soil texture classes by direct classification (Fig. 5) with those generated from indirect 

classification using the same machine-learning model, revealing completely difference between them on the lower reaches of 

Heihe River Basin such as the distribution of LoSa; on the middle and upper reaches of Heihe River Basin, all the prediction 

maps were similar, mainly distributed with SiLo. 15 
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Figure 9. Soil texture classification prediction maps by soil PSFs interpolation ILR log ratio transformation method and the 

original method) of KNN, MLP, RF, SVM and XGB. 
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3.4.4 Comparison of total computing time for each model in soil texture classification and soil PSFs interpolation 

Time spending for models was computed to compare the efficiency of different machine-learning models in soil texture 

classification and soil PSFs interpolation (Fig. 10). Because the difference in time spent among ORI and log ratio methods 

were similar, time spent of ILR was selected for soil PSFs interpolation. For the different models, RFs required the longest 

time for both classification (453.73 s) and regression (188.87 s), which may cause it to lose advantages when dealing with 5 

large data sets. KNN (classification: 4.2 s, regression: 23.6 s) and SVM (classification: 4.15 s, regression: 12.4 s) both showed 

shorter time in not only classification but also regression. XGB (classification: 21.6 s, regression: 17.13 s) was much more 

stable and used less time, and the data processes were simpler compared with MLP (classification: 47.28 s, regression: 152.31 

s). Moreover, XGB delivered better performance than KNN and SVM in prediction maps of HRB, demonstrating an effective 

way of dealing with larger data sets. 10 

 
Figure 10. Average time spent running 30 times of KNN, MLP, RF, SVM and XGB of soil texture classification and soil 

PSFs interpolation. 

4 Discussion 

4.1 The systematic comparison of the five machine-learning models 15 

We found that tree-based machine-learning models – RF and XGB delivered better performance than KNN, MLP and SVM, 

which conclusion is the same as Heung et al. (2016). For the total computing time, RF revealed the longest time with respect 
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to both classification and regression mode. In addition, for trade-offs of the total computing time of model and accuracy, XGB 

was superior to any other model, reducing the computing time significantly while maintaining the accuracy not drop too much. 

In fact, parallel calculations can be automatically executed during the training phase of the XGB model, presenting a great 

advantage in large data sets, as the XGB can be more than ten times faster than the existing gradient boosting model (Chen 

and Guestrin, 2016). Therefore, XGB was recommended with sub-optimal accuracy but fast at the expense of a loss in precision, 5 

which can be selected when researchers deal with large data sets and regional scale study area. Considering the precise methods, 

RF can deliver the most accurate results, but it takes the longest computing time.  

4.2 The systematic comparison of the models combined with log ratio transformed data and original data 

Log ratio transformation methods can provide a perspective to open the “closure effect” inducing spurious correlation, which 

were combined with independent models to obtaining the interpolation map, then the results can be back-transformed using 10 

inverse equations. However, in the process of parameters optimization, the optimal parameters of different machine-learning 

methods were obtained using log ratio transformed data, which cannot guarantee the most accurate back-transformed results. 

This is because that the values of assessment indicators (e.g. MAEs, RMSEs, etc.) will remain stable with limited differences 

due to the small range of log ratio transformed data. Therefore, when the prediction values of log ratio methods were back-

transformed to the real space, these values of indicators will be enlarged. 15 

Among the three log ratio methods, ILR and CLR were superior to ALR, which can be explained by that ILR and CLR were 

isometric transformations, which could preserve distances (Filzmoser and Hron, 2009). Moreover, ALR has been criticized 

because the choice of the denominator is subjective, which can influence the results. In addition, slightly better performance 

of ILR than CLR were obtained, because in CLR, the geometric mean composed of all compositions of soil PSFs is the 

denominator, and one-to-one mapping of equations and soil PSFs could be implemented. Nevertheless, the sum of the 20 

dimensions of CLR is 0, the problem of collinear is still present. ILR transformed all the information into D-1 orthogonal log 

contrasts (Egozcue et al. 2003) and overcame the data collinearity problem and sub-compositional incoherence of CLR by 

using an appropriate choice of the basis (Egozcue and Pawlowsky-Glahn, 2005). Furthermore, each component of log ratio or 

original soil PSFs data were independently modeled using component-wise approaches (machine-learning methods), that may 

be sub-optimal compared with joint fractions approach under the circumstances dealing with the multivariate treatment. For 25 

example, CLR transformed data are still characterized by collinearity because of the linear constraint of sum 0, but there is no 

guarantee that the sum of three components of CLR is 0 due to the use of independent modeling. Though the final predictions 

were not influenced (still sum to 100 %) since the inverse equations for CLR, collinear constraints reduced the prediction 

accuracy. By contrast, ILR method is more meaningful and appropriate than other log ratio methods and original method 

because it indeed removes the data constraints. This is another reason for the better performance of the machine-learning 30 

methods combing with ILR in accuracy assessment. Therefore, ILR is more recommended for component-wise modeling of 

machine-learning unless multivariate extensions of the methods are considered.  
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Another more meaningful multivariate treatment of soil PSFs using the probability density functions of soil particle size 

curves (PSCs) could be considered in the future, since non-negative values integrating to 1 (or 100 %) can be considered as 

compositional data with infinitesimal parts (so-called functional compositions) (Menafoglio et al., 2014). Unlike conventional 

component-wise approaches, the viewpoints of functional compositions are beneficial to acquiring complete and continuous 

information rather than discrete information. Soil texture and soil PSFs can be extracted from the stochastic simulation of soil 5 

PSCs (Menafoglio et al., 2016a), applying jointly to the fractions and exploiting fully the richness of information. Menafoglio 

et al., (2016b) applied such functional-compositional data for the stochastic simulation of PSCs based on geostatistical Monte 

Carlo and Bayes space approach combined with CLR transformation method in heterogeneous aquifer systems in 

hydrogeology, demonstrating more remarkable improvement of characterizations of the spatial variability and uncertainty 

compared with traditional methods.  10 

4.3 The systematic comparison of the direct and indirect soil texture classification for soil PSFs 

Compared with the real soil texture distribution and environment of the HRB, SiLo overlaid the upper reaches of HRB, and 

SaLo and Lo were in the south of the upper reaches of HRB showed strip distribution. Moreover, an uncovered area was 

detected in the northwest of the lower reaches of HRB, where it cannot be predicted due to a lack of information input in the 

process of model training. The main soil texture classes of the lower reaches of the HRB were SiLo, LoSa and small amounts 15 

of SaLo and Lo, which distributed in the uncovered area. The main soil texture classes predicted from direct classification 

using machine-learning models were SaLo and SiLo; RF and XGB delivered much more LoSa than other direct classification 

models. However, all these models predicted that the main soil type of the lower reaches of HRB was SaLo, which was not 

fitted for the real environment (LoSa). In fact, LoSa and SaLo were obviously most confused classes. However, they are fairly 

similar to each other (Fig.8). In addition, because of the limitation of the train sets, direct classification can only predict types 20 

which contained in train sets. In contrast, indirect classification broke such limitations, and new prediction types arose due to 

the transformation from soil PSFs to soil texture types. Moreover, more suitable matching performance with the real 

environment should be considered such as the log ratio methods of MLP and RF models, KNN_ ALR, KNN_ ILR and 

XGB_CLR.  

5 Conclusion 25 

We systematically compared a total of 45 models for direct and indirect soil texture classification, and soil PSFs interpolation 

using five machine-learning methods combined with original and three different log ratio transformed data in the HRB. As 

flexible and stable models, tree learners such as RF delivered powerful performance in both classification and regression and 

were superior to other machine-learning models mentioned above. As a new and sub-optimal machine-learning method in soil 

science, XGB appeared to be more meaningful and more computationally efficient when dealing with large data sets. RF and 30 
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XGB were recommended to evaluate classification capacity of imbalanced data. In addition, the log ratio methods had 

advantages of modifying STRESS in soil PSFs interpolation. Moreover, the indirect soil texture classification outperformed 

the direct one, especially when combined with the log ratio methods. The indirect soil texture classification generated 

preferable results in both cases of accuracy indicators and prediction maps. More appropriate environmental covariates and 

interpolation techniques, more efficient soil PSFs data transformation methods, different perspectives of compositional data 5 

selection (e.g., functional compositions and multivariate treatments) and systematic parameter adjustment algorithms of 

compositional data are key to improving accuracy in the future. 
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