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Abstract. Understanding the influence of global warming on regional hydroclimatic extremes is challenging. To reduce the 

potential risk of extremes under future climate states, assessing the change in extreme climate events is important, especially 

in Asia, due to spatial variability of climate and its seasonal variability. Here, the changes in hydroclimatic extremes are 

assessed over the Asian monsoon region under global mean temperature warming targets of 1.5 and 2.0 °C above preindustrial 

levels based on representative concentration pathways (RCPs) 4.5 and 8.5. Analyses of the subregions classified using regional 10 

climate characteristics are performed based on the multimodel ensemble mean (MME) of five bias-corrected global climate 

models (GCMs). For runoff extremes, the hydrologic responses to 1.5 and 2.0 °C global warming targets are simulated based 

on the variable infiltration capacity (VIC) model. Changes in temperature extremes show increasing warm extremes and 

decreasing cold extremes in all climate zones with strong robustness under global warming conditions. However, the hottest 

extreme temperatures occur more frequently in low-latitude regions with tropical climates. Changes in mean annual 15 

precipitation and mean annual runoff and low runoff extremes represent the large spatial variations with weak robustness based 

on intermodel agreements. Global warming is expected to consistently intensify maximum extreme precipitation events 

(usually exceeding a 10 % increase in intensity under 2.0 °C of warming) in all climate zones. The precipitation change patterns 

directly contribute to the spatial extent and magnitude of the high runoff extremes. Regardless of regional climate 

characteristics and RCPs, this behavior is expected to be enhanced under the 2.0 °C (compared with the 1.5 °C) warming 20 

scenario and increase the likelihood of flood risk (up to 10 %). More importantly, an extra 0.5 °C of global warming under 2 

RCPs will amplify the change in hydroclimatic extremes on temperature, precipitation and runoff with strong robustness, 

especially in cold (and polar) climate zones. The results of this study clearly show the consistent changes in regional 

hydroclimatic extremes related to temperature and high precipitation and suggest that hydroclimatic sensitivities can differ 

based on regional climate characteristics and type of extreme variables under warmer conditions over Asia. 25 

1 Introduction 

Due to its large population and monsoon climate, Asia is highly vulnerable to natural disasters, such as floods and droughts 

(International Panel on Climate Change (IPCC), 2013). The climate system in this region has changed as a result of global 

warming, and consequently, the frequency and intensity of natural disasters related to climate (e.g., heatwaves, heavy 

precipitation, and floods) have increased (Thomas et al., 2013; IPCC, 2013; Thomas et al., 2014; Thomas et al., 2015). 30 

Moreover, further increases in atmospheric greenhouse gases (GHGs) will continue to enhance global warming and cause 

additional changes in the temporal and spatial patterns of both climate averages and climate extremes at the regional scale (e.g., 

Trenberth, 2011; Chevuturi et al., 2018). Therefore, it is essential to reliably simulate future climate changes to understand 

their impacts on climate extremes as well as hydrology over the Asia region. 

The general approach applied to assess the impacts of climate change is to project future climate changes based on scenarios 35 

using global climate models (GCMs), downscale the resulting climate projections to a regional scale, and finally evaluate the 

impacts on areas of interest (e.g., in terms of the climate, water resources and climate extremes). According to this process, 

many previous studies have been performed on changes in climate elements and hydrologic variables under global warming 
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based on certain 30-year future periods defined arbitrarily by a particular time span (i.e., the near future, mid-century or a 

distant future period) in comparison with a 30-year reference period (e.g., Bae et al., 2011; Jung et al., 2013). These studies 40 

have reported hydroclimatic responses in future periods, but understanding how these responses are regulated is limited by the 

degree of current global temperature rise and by more feasible future conditions. 

To avoid catastrophic consequences induced by climate change, a consensus on the warming targets of the global mean 

temperature was achieved in the 2015 Paris Agreement by parties to the United Nations Framework Convention on Climate 

Change (UNFCCC). The aim of this agreement was to keep the increase in the global mean temperature far below 2.0 °C 45 

above preindustrial (PI) levels and to seek targets to keep the increase within 1.5 °C above PI levels (UNFCCC, 2015). 

Therefore, recent studies have investigated both the impacts of certain warming targets (i.e., 1.5 and 2.0 °C) on climate 

variables and the benefits of achieving an extra 0.5 °C reduction in global warming (IPCC, 2018). These studies showed robust 

impacts of an extra 0.5 °C of global warming on climate extremes (Syllar et al., 2018 and Harrington and Otto, 2018 for Europe) 

and on hydrologic variable-related extremes (King et al., 2017; Marx et al., 2018 for Europe; Diedhiou et al., 2018 and 50 

Nkemelang et al., 2018 for Africa; Wang et al., 2019; Kharin et al., 2018 for global). These findings reflect the necessity of 

understanding the impacts of global warming on climate (and hydroclimatic) extremes and the need to develop 

countermeasures capable of reducing the potential damage that can be induced under increases in global mean temperature. 

For Asia, several studies have been conducted on the impacts of global warming on climate extremes at the continental scale. 

Chevuturi et al. (2018) evaluated daily natural temperature and precipitation extremes (i.e., the 99th percentile) over the Asian-55 

Australian monsoon region and suggested that both the frequency and persistence of extremes increase in response to warming. 

Bhowmick et al. (2019) analyzed extreme precipitation (99th percentile) changes across South Asia for each 0.5 °C increase 

in the global mean temperature and showed changes in extreme precipitation events throughout India. Ge et al. (2019) 

demonstrated changes in precipitation extremes across Southeast Asia at increases between 1.5 and 2.0 °C and showed the 

responses of extreme events to increases of 0.5 °C. On the other hand, some studies suggested that global warming would lead 60 

to extreme (e.g., temperature and precipitation) climate events at the country scale, especially in a 2.0 °C warming scenario 

compared to a 1.5 °C warming scenario (Li et al., 2018; Chen et al., 2018). Other studies predicted further increases in 

precipitation intensity and enhanced impacts on extreme precipitation in a warmer world throughout China (Zhou et al., 2018; 

Sui et al., 2018). 

The climate conditions of Asia are influenced by a large-scale climate system (e.g., monsoon system). Nevertheless, only a 65 

few studies have assessed the extreme hydroclimatic responses to global mean temperature increases at the continental scale 

(i.e., Asia). Instead, the studies conducted at the country and continental scales in Asia addressed predominantly climate 

extremes, and thus, there are limitations to examining the hydroclimatic (e.g., precipitation and runoff) extreme responses 

under target global warming levels. It should be noted, however, that some studies on hydroclimatic extreme responses to 

global warming have been conducted at the basin scale (Zhang et al., 2019; Wen et al., 2019; Jiao and Yuan, 2019), and they 70 

suggested increases in the intensity as well as the frequency of extreme events. The hydroclimatic changes in response to 

global warming reflect unique regional responses because the global temperature increases impact each region differently due 

to changes in regional climate features. However, examining how different regional hydroclimatic extremes are caused by the 

impact of global warming remains challenging. To the best of our knowledge, relatively few studies have examined the impacts 

of global warming on extreme hydroclimatic variable-related responses considering the regional climate in Asia (Liu et al., 75 

2019; Kim et al., 2020; Zhao et al., 2020). Therefore, the main purposes of this study are to examine the potential impacts of 

regional climate on hydroclimatic extremes under different global warming conditions and to investigate the regional-scale 

sensitivity of individual hydroclimatic variables to increases in the global mean temperature with diverse climate features. In 

this study, we assess the changes in climate (and hydroclimatic) extremes corresponding to the warming targets of 1.5 and 

2.0 °C with a focus on the broad continental-scale climate zones of the Asian monsoon region (Figure 1), as delineated by Bae 80 

et al. (2013). We classify the subregions in the Asian monsoon region considering regional climate characteristics to understand 
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the change behaviors of climate (and hydroclimatic) extremes under global warming. To consider the reliability of future 

projections, we present the results based on the multimodel ensemble mean (MME) derived from five selected GCM 

projections, including intermodal agreement. The level of agreement among the multiple projections is used to assess the 

robustness (or confidence) of climate projections (Tebaldi et al., 2011; Saeed et al., 2018). This study provides scientific 85 

information for policy makers to identify regional patterns of the changes in extremes and thereby recognize the impacts of 

anthropogenically induced warming. 

 

2 Materials and methodology  

2.1 Study area and climate zone classification 90 

The study area covers the Asian monsoon region with latitudes ranging from 9.75° S to 54.75° N and longitudes ranging from 

60.25° E to 149.75° E, as shown in Figure 1. This region is subdivided based on regional precipitation and temperature patterns 

using Köppen’s climate classification method (Köppen, 1936). Each subregion is categorized as a mainly tropical climate (A), 

arid climate (B), warm temperate climate (C), snow climate (D) or polar climate (E) according to the climate boundary 

conditions, which are based on threshold values of monthly temperature and precipitation (e.g., temperatures for climate zones 95 

A, C, D and E; moisture availability is required for plant growth in climate zone B). Due to its simplicity and ecologically 

meaningful classifications, this method has been widely used in many studies, such as assessments of the impacts of climate 

change on different climate characteristics (Lee et al., 2015; Fernandez et al., 2017). Table 1 shows a detailed description of 

the Köppen climate classification. To apply this method, we employ long-term observations (e.g., maximum temperature, 

minimum temperature and precipitation data) on a monthly time scale during the 30-year historical period (January 1976-100 

December 2005). A detailed description of the observational dataset is provided in section 2.2. 

2.2 Observational datasets 

Observational meteorological datasets are required as input variables to the hydrological model on a daily time scale and for 

validating the performance of the GCM simulations on a monthly time scale. We select the meteorological datasets considering 

the availability of long-term records and their time scales. To run the hydrological simulations (1950-2005), we collect 105 

precipitation data from the Asian Precipitation Highly Resolved Observational Data Integration Toward Evaluation of Water 

Resources (APHRODITE) product (Yatagai et al., 2012), and the maximum and minimum temperature data and wind speed 

data are obtained from gridded forcing datasets provided by the University of Washington (Adam and Lettenmaier, 2003; 

Adam et al., 2006). To evaluate the performance of the GCM simulations, the reanalysis data for the remaining climate 

variables are obtained from the Coupled European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis 110 

system-20C (CERA-20C) (Laloyaux et al., 2018) on a monthly basis due to the limited availability of data. These observational 

datasets, including the reanalysis data (hereafter “OBS”), are gridded at a 0.5° spatial resolution and interpolated to the same 

grid system as the GCMs. 

2.3 Methodology 

Figure 2 presents a flowchart of the entire procedure used in the study. To simulate the climate during both historical and 115 

future periods, climate projections forced by historical and representative concentration pathways (RCPs) 4.5 and 8.5 are 

selected. The five of the raw GCMs of the Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et al., 2012) are 

selected by applying a unique evaluation procedure (Kim et al., 2020). Then, a reference 30-year period and two future 30-

year periods of individual GCM projections are defined under warming targets of 0.48, 1.5 and 2.0 °C above PI levels (1861-

1890) based on a time sampling method. Then, these daily forcing data (e.g., precipitation, maximum temperature, and 120 

minimum temperature) are extracted from the five selected GCM projections and then statistically bias-corrected using the 
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quantile mapping method. The bias-corrected GCMs are used as meteorological forcings to run the variable infiltration 

capacity (VIC) hydrological model. The future changes in the hydroclimatic mean and extremes corresponding to the 

conditions at warming targets of 1.5 and 2.0 °C are spatially analyzed according to the identified subregions based on climate 

zones. We focus on the hydroclimatic extreme responses to temperature, precipitation, and runoff variations under global 125 

warming targets (i.e., 1.5 and 2.0 °C) using extreme indices. A more detailed description of each procedure is provided in 

section 2.4, section 2.5, and section 2.6. 

2.4 Climate change scenarios and definitions of the periods corresponding to 1.5 °C (2.0 °C) of warming 

Reliable climate change scenarios, which are derived from the selected GCMs, are important sources for estimating the impacts 

of global warming on hydroclimatic (e.g., temperature, precipitation, and runoff) extremes. Here, the method for selecting 130 

GCMs suggested by Kim et al. (2020) is employed while focusing on their performance in simulating the spatial patterns of 

observed climate features in Asia because the regional climate is affected by physical climate system processes that occur over 

large spatial scales (e.g., from the planetary scale to the synoptic scale and mesoscale). For future projections, the selected 

GCMs are applied to the entire domain regardless of the climate zone. First, we collect 19 CMIP5 GCMs while considering 

the data availability to compare each GCM’s ability to represent the climatological characteristics in the study area (Figure 1). 135 

Then, for the historical climate evaluation, we use twelve relevant variables, namely, seven two-dimensional surface 

meteorological variables (i.e., precipitation, near-surface air mean, maximum and minimum air temperatures, outgoing 

longwave radiation, sea level pressure, sea surface temperature) and five three-dimensional vertical meteorological variables 

(i.e., air temperature, geopotential height, specific humidity, zonal wind, and meridional wind). The individual raw GCMs are 

spatially disaggregated at a 0.5° horizontal resolution based on the bilinear interpolation algorithm. The GCMs are assessed in 140 

their simulation of the historical climate compared against observations (see section 2.2), namely, the climatological features 

of the twelve variables in the summer season (June-September) for the reference period (1976-2005). The spatial correlation 

coefficient (SCC) and root-mean-square error (RMSE) between the historical simulation fields derived from each GCM and 

the observed fields are calculated for each of the twelve relevant variables over the Asian monsoon region, as these statistics 

are commonly used to examine the performance of GCMs in the simulation of observed spatial climate features (IPCC, 2013; 145 

McSweeney et al., 2015). Next, we apply the MME-based scoring rule for the selection of GCMs (Nyunt et al., 2012) to 

exclude low-performing GCMs and identify only the best-performing GCMs using a relative concept because the scoring rule 

based on the observed data does not provide the information needed to screen the GCMs. Therefore, the individual GCM 

statistics (i.e., the SCC and RMSE) are judged by comparison with the MME statistic. The MME statistics are considered as 

criteria to score each GCM under the assumption that the MME is similar to the observed data compared with the output from 150 

only one GCM (Xu et al., 2020; Tegegne et al., 2020). The performance score of each GCM is then allocated based on the 

following criteria: 

1) A score of 1: the GCM has a lower RMSE and a higher SCC than the MME; 

2) A score of -1: the GCM has a higher RMSE and a lower SCC than the MME; 

3) A score of 0: the GCM satisfies only one condition. 155 

Finally, we select five GCMs, namely, bcc-csm1-1-m, CanESM2, CMCC-CMS, CNRM-CM5, and NorESM1-M, which 

provide the highest scores based on all the scores considering all variables, as shown in Table S1. The information of the 

selected GCMs is given in Table 2. 

Our focus is to understand the changes in extreme hydroclimatic conditions under global warming environments of 1.5 and 

2.0 °C. The timing to reach specific warming levels for individual GCMs depends on the representative concentration pathway 160 

because future projections are forced by these scenarios. The temperature response to different RCPs varies, and therefore, the 

increasing trend and slope of the global mean temperature differ. Here, the analysis is based on RCP4.5 and RCP8.5, which 

are commonly considered for realistic future projections. RCP4.5 is a stabilized emission scenario with radiative forcing of 
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approximately 4.5 W/m2 in the year 2100, and this value is never exceeded (Thomson et al., 2011; Van Vuuren et al., 2011). 

This scenario assumes that emission mitigation policies are implemented to limit emissions and radiative forcing. On the other 165 

hand, RCP8.5 is a very high emission scenario with radiative forcing of approximately 8.5 W/m2 in 2100. Although the global 

warming process under RCP4.5, which is based on a medium-low GHG emission pathway, is relatively slow compared to 

higher GHG emissions (e.g., RCP8.5), many studies have suggested that the global warming climate under RCP4.5 exerts 

impacts on hydroclimatic phenomena (Chen et al., 2017; Donnelly et al., 2017; Kim et al., 2020). However, global warming 

impacts under different RCPs on the regional changes in hydroclimatic extremes are not simple. In this regard, the results 170 

based on two RCPs (RCP4.5 and RCP8.5) can provide useful information for identifying the impacts of global warming on 

hydroclimatic extremes from those expected under different RCPs. This implies the need for minimum mitigation strategies 

as well as adaptation plans according to the global warming induced by GHG emissions, even those under the relatively low-

impact RCPs (e.g., RCP4.5). 

Next, for the selected five GCMs, we determine the reference period corresponding to a global mean temperature increase of 175 

0.48 °C and two future periods corresponding to increases of 1.5 and 2.0 °C above the temperature during the PI period (1861-

1890) under two RCPs using the time sampling method (James et al., 2017; Sylla et al., 2018). In this process, the individual 

30-year periods and their central years (i.e., the median year of each period) are determined based on the temperature anomalies 

relative to the temperature of the PI period. All five GCMs reach specific warming levels in their central years and in the 30-

year reference and future periods under both RCP4.5 and RCP8.5 (Table 3 and Figure S1). Because the individual GCMs 180 

simulate the climate based on their own physical climate system processes, the warming phases of the GCMs are different 

even under the same emissions forcing. In this study, the central year of each period is the first year in which the 30-year 

running temperature anomaly surpasses the target temperature above the temperature of the PI period. The temperature 

anomalies targeted in this study are 0.48 °C for the reference period and 1.5 and 2 °C for the two future periods. To accomplish 

this, the 30-year running global mean temperature is derived from the individual GCMs during the entire simulation period 185 

(1880-2100). Unlike the temperature taken from the central year of the PI period (1875), the temperature anomalies are 

calculated for the entire period. For the reference period, we select a warming level of 0.48 °C, which was derived by Sylla et 

al. (2018) based on HadCRUT.4.6 data. The central year and 30-year periods for each GCM with global mean temperature 

increases of 0.48, 1.5, and 2.0 °C based on the two RCPs are described in Table 3. Figure S1 shows differences in the central 

years and the global warming target periods for each RCP and GCM. The results indicate large spreads in the central year of 190 

1.5 and 2.0 °C warming across all 5 GCMs under RCP4.5 relative to RCP8.5 (Zhang et al., 2019; Chen et al., 2020). The 

central year for the 1.5 °C (2.0 °C) warming condition derived from the MME of the 5 GCMs is 2028 (2051) under RCP4.5 

and 2023 (2037) under RCP8.5. Under RCP8.5, there is a shorter time lag (14 years) between the timing of 1.5 °C and 2.0 °C 

global warming compared to RCP4.5 (i.e., 23 years). In addition, individual global mean temperatures derived from the 5 

GCMs are expected to increase above 3.0 °C by 2100 under RCP8.5. For the runoff simulations, each GCM with its own time 195 

period under global warming provides meteorological forcings to run the VIC hydrological model. The reference feature 

(denoted as REF) is derived from the MME of the selected GCMs averaged over the historical period corresponding to a 

warming level of 0.48 °C. Additionally, the future 1.5 °C (2.0 °C) warming feature (denoted as +1.5 °C and +2.0 °C, 

respectively) is derived from the MME averaged over the individual 30-year periods corresponding to the central year 

surpassing warming levels of 1.5 °C (2.0 °C). 200 

Although we select five GCMs with relatively superior performance in the study area, there is generally inadequate accuracy 

in simulating the observed climate characteristics because all GCMs contain a substantial bias. Additionally, the quality of 

meteorological forcings (e.g., precipitation and temperatures) for the hydrological model is more important for estimating 

hydrological responses to climate change. Therefore, we use the quantile mapping method to reduce statistical biases in the 

temperature and precipitation forcings on a daily basis. This method allows the whole distribution to be adjusted by matching 205 

the cumulative distribution function (CDF) of the climate model data to the CDF of the observed data, thereby improving the 
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mean, variance, and extreme values. This method is commonly used in many climate change studies based on climate models 

(MacDonald et al., 2018; Reiter et al., 2018). 

2.5 Hydrological model 

The VIC distributed hydrological model (Liang et al., 1994; 1996) is used to simulate runoff extremes in response to global 210 

warming. The VIC model simulates interactions between the land and atmosphere as well as water balances by sharing several 

fundamental schemes with other land surface models at the daily time step. Therefore, the VIC model is commonly coupled 

with a GCM not only at the continental scale but also at the global scale (Sheffield et al., 2009; Lee et al., 2015). We establish 

the VIC model at a spatial resolution of 0.5° (approximately 50 km) considering the study domain and run the model on a daily 

basis, as was suggested in Bae et al. (2015). 215 

In addition, we collect geophysical datasets that are required for the VIC model, that is, digital elevation model (DEM) data 

from the United States Geological Survey (USGS), soil data from the Food and Agriculture Organization (FAO, 1998), and 

land use data from the University of Maryland (Hansen et al., 2000). The collected datasets are converted to a 0.5° grid 

resolution to conform to the spatial resolution of the VIC model. 

Because runoff simulation results depend on the model parameters, it is important to calibrate and verify the hydrological 220 

model parameters to obtain a reliable runoff simulation (Bae et al., 2011). Some model parameters are estimated based on 

geophysical datasets and river networks for gauged basins, but the remaining parameters for ungauged basins are estimated 

indirectly by using the hydrological regionalization method (Parajka et al., 2013; Bae et al., 2015; Beck et al., 2016). We apply 

the hydrological regionalization method by transferring parameters obtained from gauged regions to ungauged regions based 

on the assumption that two basins with analogous climate features (e.g., based on the climate zone classification) exhibit 225 

similar hydrological responses. For runoff simulations at the global scale, Nijssen et al. (2001) obtained the parameters for an 

ungauged basin from the estimated parameters of a gauged basin with the same temperature and precipitation features. Xie et 

al. (2007) and Bae et al. (2013) employed the same approach leveraging climatological similarity according to Köppen’s 

climate classification method and suggested the applicability of this method over China and Asia, respectively. In this study, 

both gauged basins and ungauged basins are divided into one of the climate zones to apply the hydrological regionalization 230 

method. We examine the optimal parameters for individual climate zones that effectively simulate runoff based on the 

estimated parameter sets obtained from all gauged basins within each climate zone. The optimal parameters of each climate 

zone are then transferred to the ungauged basins belonging to the same climate zone. In our previous study, the regionalization 

results were verified by assuming that some gauged basins are considered ungauged basins (Bae et al., 2013), and the results 

support the adaptability and applicability of the VIC model to simulate runoff throughout our study area. 235 

The model parameters are estimated based on gridded runoff; therefore, we assume that the time delay described by the channel 

routing scheme is not significant considering the horizontal grid resolution. To evaluate the reliability of the runoff results, the 

simulated mean and extreme runoff (i.e., monthly maximum runoff) values are validated by comparison with measured data. 

In this study, the simulated runoff is driven by observational meteorological forcings for the historical period (1950-2005) to 

compare the historical runoff records obtained from the Global Runoff Data Centre (GRDC). Some parameter validation results 240 

for the VIC model in 20 river basins (Figure S2) considering the data availability of measurement records are suggested in 

Table S2, Figure S3 and Figure S4, and additional results can be found in a previous study (Bae et al., 2013). The simulated 

monthly mean runoff obtained from the VIC model using observational meteorological input data shows a high temporal 

correlation with the observed pattern for 6 basins (see Figure S3), and the range of correlation coefficients over the 20 basins 

is 0.58~0.97 (see Table S2). To evaluate the accuracy of the VIC model, we also consider other quantitative statistics, such as 245 

the model efficiency (ME), root-mean-square error (RMSE), and volume error (VE), as shown in Table S2. In general, 

simulated runoff qualitatively and quantitatively simulates the measured runoff. Figure S4 presents the scatter plot and box-

whisker diagram of measured and simulated monthly maximum runoff in the 20 basins. The assumptions used in parameter 
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estimation and runoff analysis at the continental scale may impact the uncertainty in simulating monthly maximum runoff (see 

Figure S4a and Figure S4b), especially in capturing extreme runoff periods. Because it is inherently more difficult to simulate 250 

long-term mean runoff extremes using a hydrologic model, uncertainty exists between the simulated and measured extreme 

runoff data. Although simulated monthly maximum runoff (denoted as SIM) tends to underestimate the measured values 

(denoted as OBS), SIM commonly reproduces the OBS in terms of the interquartile range (see Figure S4b) and the biases 

compared to the variation range of OBS (see Figure S4c). The results can aid in understanding runoff features when 

observational data are not available, even though the results are limited when simulating realistic runoff. 255 

2.6 Extreme indices 

Fixed-threshold indices are needed as extreme indices for the purpose of comparing changes in hydroclimatic extremes among 

different climate regions under target global warming conditions. We selected four extreme temperature indices, six extreme 

precipitation indices, and three extreme runoff indices for extreme climate and runoff analyses (Table 4). The extreme indices 

used in this study are widely accepted for extreme analyses (Dosio and Fischer, 2018). For the changes in temperature extremes, 260 

the numbers of tropical days (TR), frost days (FD), warm nights (TN90P), and cold nights (TN10P) are calculated using daily 

minimum temperature data during the reference period and two future periods for each selected GCM, as shown in Table 3. 

The numbers of summer days (SU), ice days (ID), warm days (TX90P), and cold days (TX10P) are calculated by daily 

maximum temperature data. The extreme indices associated with daily precipitation are very wet day precipitation (P95), 

extreme wet day precipitation (P99), annual maximum precipitation (PX1D), and maximum precipitation over 2, 3, and 5 265 

consecutive days (PX2D, PX3D, and PX5D, respectively). Finally, the variables associated with extreme runoff, as suggested 

by Nandintsetseg et al. (2007), are the minimum consecutive 7-day and 30-day runoff (DWF07 and DWF30, respectively) and 

the annual maximum runoff (MDF). Table 4 provides detailed information on the extreme indices used in this study. 

 

3 Results 270 

3.1 Classification of climate zones and validation of the reference simulation 

The climate zones over the Asian monsoon region in this study are classified based on long-term (30-year; 1976-2005) 

observation datasets (i.e., precipitation from APHRODITE; minimum and maximum temperatures from the University of 

Washington). Figure 1 shows the classified climate zones obtained by applying Köppen’s climate classification method. The 

study domain (i.e., the Asian monsoon region) is divided into twelve climate zones. The tropical climate zone (A) encompasses 275 

the low latitudes of Indonesia, Malaysia, the Philippines, and Thailand (Aw), the northwestern parts of India and Myanmar 

(Am; located between Af and Aw), and the northern parts of Indonesia, India, Vietnam, Thailand, and Myanmar (Aw; located 

between 9° N and 25° N). The arid climate zone (B) includes northwestern China and some parts of Mongolia, India, Pakistan, 

and Afghanistan (BS), as well as northern China, southern Mongolia, Pakistan, and Kazakhstan (BW). The warm temperature 

climate zone (C) appears in central and northern India and some parts of Afghanistan (Cs); the southern and eastern parts of 280 

China, the northern parts of India, Vietnam, Thailand, and Myanmar, and the southern part of South Korea (Cw); and most of 

southeastern China, the coastal region of South Korea, and the southern part of Japan (Cf). The cold climate zone (D) spreads 

over the northern part of Afghanistan (Ds), northeastern China, and most of the inland region at high latitudes (Dw and Df) 

above 38° N. The tundra climate zone (ET) appears on the Tibetan Plateau and the Himalayas. The largest number of grid 

points in the Asian monsoon region are in zone D, followed by zones B, C, A, and E, and the ratio for each region is listed in 285 

Table 1. 

Prior to the assessment of the influence of global warming on the hydroclimatic extremes in the Asian monsoon region based 

on the GCM projections, the bias-corrected GCMs are validated to determine whether GCM simulations can adequately 
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represent the historical climatological characteristics noted in the observed changes. Precipitation data are obtained from the 

MME of multiple GCMs and APHRODITE at the grid points in the study area (see Figure 1) for a long-term period (1950-290 

2005). Hereinafter, the results based on the MME of the selected five GCMs and from APHRODITE are referred to as MME 

and OBS, respectively. 

Figure 3 depicts the spatial distributions of the climatological annual mean precipitation (hereafter referred to as PANN) and 

the climatological annual maximum precipitation (hereafter referred to as PX1D) of the OBS and MME (1976-2005). The 

percentage bias (hereafter referred to as BIAS) between the OBS and MME is calculated to examine the quantitative error in 295 

the MME. The MME properly captures both the spatial pattern and the magnitude of PANN and PX1D (Figure 3a, b). The 

relatively large magnitude of bias in PANN (PX1D) is shown in the region with low PANN (PX1D). Despite the similarity in 

the PX1D values between the OBS and MME, the MME shows a tendency to slightly overestimate the OBS PX1D for 

Southeast Asia and Southeast China (within a PX1D range of 45-90 mm/day), as presented in Figure 3b. Although there is a 

deficiency between the OBS and MME precipitation values, the MME, which is derived from the bias-corrected GCMs, 300 

reflects the OBS characteristics of both PANN and PX1D. The validation results of the MME compared with the OBS for the 

minimum (and maximum) temperature are illustrated in Figure S5. The MME outputs of the minimum and maximum 

temperatures are very similar to the OBS temperature patterns. In addition, the simulated runoff based on the MME and OBS 

are compared due to the lack of measured runoff data (Figure S6). The MME results show reasonable historical simulations 

with implications for the reliability of the climatological and hydrological responses to the climate forcing derived from the 305 

MME. 

3.2 Future projections of temperature extremes under 1.5 and 2.0 °C of warming 

We examine the future changes in temperature extracted from the MME according to global warming. We calculate the changes 

in the extreme temperature indices under two global warming scenarios on the basis of a relative concept, that is, the difference 

between the reference period (REF) and each target condition (+1.5 °C and +2.0 °C). We identify the regions with absolute 310 

intermodel agreement in the change signals, which shows a high degree of consistency among the results from the different 

GCMs. 

Figure 4 shows the relative changes in the cold extreme indices (FD, ID) and warm extreme indices (SU, TR), which are 

derived from the MME between the warming conditions (i.e., 1.5 and 2.0 °C) under RCP4.5 and REF over Asia. In total, 

consistent patterns are observed for the temperature changes with decreasing change patterns for the cold extreme indices (FD, 315 

ID) and increasing change patterns for the warm extreme indices (SU, TR), with 5 out of 5 model agreements under both 1.5 

and 2.0 °C warming conditions. The change patterns in the temperature extreme indices over Asia are amplified under 2.0 °C 

of warming compared with those under 1.5 °C of warming, as was suggested in a previous study (e.g., Chevuturi et al., 2018; 

Sui et al., 2018). In particular, the cold extreme indices (FD, ID) exhibit large decreases in the mid-latitude region (above 25° 

N) compared to the low-latitude region (below 25° N). Moreover, tropical nights (TR) show large increases in the low-latitude 320 

region (below 25° N). An increase in summer days (SU) is dominant in most regions except for the low-latitude region (below 

25° N). However, some indices show no changes in some areas because the changes in the extreme temperature indices are 

estimated based on fixed-threshold criteria (Dong et al., 2018). For example, the low-latitude regions (below 25° N; A zones) 

with high maximum and minimum temperatures do not present changes in either the cold extreme indices (Figure 4a, b) or the 

warm extreme indices (Figure 4d). On the other hand, the ET zone and high-latitude region (above 40° N) with low 325 

temperatures do not show changes in SU or TR, respectively (Figure 4c, d) because in this region, even though the global mean 

temperature is increased by 1.5 °C (2.0 °C) compared to PI levels, the daily temperatures on some days are not sufficiently 

large to reach the criterion of warm extreme indices (i.e., TN exceeding 20 °C). These features (e.g., change patterns and 

spatial distributions) are shown in the results under RCP8.5 (related figure not suggested here). 
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Figure 5 shows the area-averaged changes in the cold and warm extreme indices derived from the results under RCP4.5 shown 330 

in Figure 4 (and under RCP8.5); these area-averaged values are derived from the values averaged over all grid points included 

in each classified climate zone. The change in FD over Asia represents the largest decrease of approximately -10.0 days at 

1.5 °C of warming and -14.1 days at 2.0 °C of warming under the two RCPs. The change in ID also decreases by approximately 

-6.4 days at 1.5 °C of warming and -9.0 days at 2.0 °C of warming under the two RCPs. A large reduction in both FD and ID 

is detected in the cold climate zones (Ds, Dw, and Df) and polar climate zones (ET) with lower temperature records than the 335 

other climate zones. In contrast, the change in TR over Asia represents the largest increase of approximately 13.6 days (15.0 

days) at 1.5 °C of warming and 20.6 days at 2.0 °C of warming under the two RCPs. Similarly, the change in SU is an increase 

of approximately 11.2 days at 1.5 °C of warming and 15.7 days at 2.0 °C of warming under the two RCPs. While the difference 

in the value of the results from the RCPs is the largest (i.e., approximately 1.4 days) in TR, it is similar in the other temperature 

extremes (i.e., FD, ID and SU). The large magnitudes of change in TR and in both TR and SU are found in the tropical zones 340 

(Af, Am, and Aw) and in the warm temperature climate zones (Cs, Cw, and Cf), respectively. In general, larger changes in the 

cold and warm extreme indices under 1.5 °C warming compared to the REF period are found under RCP8.5 relative to RCP4.5. 

Relatively small differences in these changes are found between RCP4.5 and RCP8.5 for the 2.0 °C warming condition. 

Understanding the change behavior of the daily temperature is necessary for detecting a linkage to extreme temperature events. 

We calculate the relative changes in the frequency of both daily maximum and daily minimum temperatures between individual 345 

warming conditions (1.5 and 2.0 °C) and the REF period based on the initial percentile range (e.g., 10th, 50th, and 90th 

percentile values in the REF period). Figure 6 presents the distributions of the low-percentile and high-percentile temperatures 

relative to the changes in whole temperature events under 1.5 and 2.0 °C of warming over Asia, with 5 out of 5 model 

agreements. In all climate zones, increased high-percentile temperatures (above the 50th percentile) frequently occur at the 

expense of reduced low-percentile temperatures (below the 50th percentile) under a warmer climate. In addition, this trend is 350 

clear in the exceedance of extremes (e.g., below the 10th percentile or above the 90th percentile). Warm days (TX90P) over 

Asia are projected to increase by 27.4 % under 2.0 °C of warming and by 18.7 % under 1.5 °C of warming for the two RCPs. 

Moreover, warm nights (TN90P) are projected to increase by 33.0 % under 2.0 °C of warming and by 23.6 % under 1.5 °C of 

warming under the two RCPs. The rate of warm days (TX90P) increase and warm nights (TN90P) increase are higher under 

RCP8.5 compared to RCP4.5. Conversely, cold days (TX10P) are projected to decrease by -7.4 % above PI levels on average 355 

in Asia at 2.0 °C of warming and by -6.1 % at 1.5 °C of warming under the two RCPs. Cold nights (TN10P) are projected to 

decrease by -8.3 % under 2.0 °C of warming and by -7.1 % under 1.5 °C of warming under the two RCPs. The rate of cold 

days (TX10P) decrease and cold nights (TN10P) decrease are slightly steeper under RCP8.5 than under RCP4.5. A large 

disparity between RCP4.5 and RCP8.5 is found in the change patterns of TX90P above the 50th percentile compared to TN90P. 

Overall, these change features in TN are more intense than those in TX (Figure 6a, c), which agrees with previous findings 360 

(IPCC, 2018). 

However, changes in temperature under global warming are associated with latitude rather than regional climate characteristics 

(Dong et al., 2018). The TX90P (TN90P) change patterns derived from the MME are related to the area-averaged latitude in 

each climate zone (Figure 6b, d). The negative relationship between TX90P (TN90P) and the area-averaged latitude indicates 

that marked increases in the extreme hottest temperatures (e.g., exceeding the 90th percentile of daily maximum and daily 365 

minimum temperatures; TX90P and TN90) occur more frequently in low-latitude regions. Among the 12 climate zones, the 

largest changes in both TX and TN are observed in tropical climate zones (Af, Am, and Aw). These results imply that tropical 

climate regions (which exhibit the lowest interannual temperature variability) are very sensitive to warm temperatures, as was 

demonstrated in the IPCC (2018). This robust behavior is more prevalent in TN90P because its sensitivity to an increasing 

global temperature is higher than that of TX90P. Overall, global warming above PI levels affects strong changes in the 370 

distributions of the maximum and minimum temperatures (TX and TN) on a daily time scale, and the projected changes trend 

toward an enhancement at high-percentile temperatures compared to the REF period regardless of the climate characteristics, 



10 

 

especially under RCP8.5 compared to RCP4.5, which may in turn lead to increased risks of heatwaves as well as temperature-

based seasonal cycle changes. 

3.3 Future projections of precipitation extremes under 1.5 and 2.0 °C of warming 375 

Anthropogenic forcings have been attributed to the intensification of regional precipitation extremes (e.g., O’Gorman, 2015; 

Weber et al., 2018; Guo et al., 2016). Here, we examine future changes in precipitation from the MME of the five GCMs under 

two global warming scenarios (i.e., 1.5 and 2.0 °C). The regions with 100 % and 80 % intermodel agreement on the change 

patterns are identified and employed for the analyses in sections 3.3 and 3.4 to provide robust future change patterns. 

Under the two selected RCPs (i.e., RCP4.5 and RCP8.5), Figure 7 displays the relative changes in the extreme precipitation 380 

indices (very wet day precipitation and extreme wet day precipitation; P95 and P99, respectively) with regard to its amount, 

frequency and intensity under 1.5 and 2.0 °C of warming in comparison to the REF period, indicating that global warming 

tends to intensify the amount, frequency and intensity of extreme precipitation over Asia. Overall, consistent increases in both 

very wet day precipitation (P95) and extreme wet day precipitation (P99) under 1.5 and 2.0 °C conditions are detected in most 

of the climate zones. In particular, the increasing change patterns of both P95 and P99 at 2.0 °C of warming are stronger than 385 

those at 1.5 °C of warming (Figure 7a, b, c). In most regions, the changes in P99 are larger and more robust with regard to the 

total amount, frequency and intensity than those in P95. The largest difference between P95 and P99 is the alteration in the 

intensity, while the magnitudes of change are the lowest in terms of the intensities of both P95 and P99 rather than the total 

amount or frequency, the robustness of the intensity change is the highest. Compared to changes in extreme temperature indices, 

small differences between the two selected RCPs are found for P95 and P99 in terms of the total amount, frequency, and 390 

intensity. 

Figure 8a and Figure S7a present the spatial distributions of the change in the annual maximum precipitation (PX1D) under 

1.5 and 2.0 °C of warming based on RCP4.5 and RCP8.5, respectively, in comparison with that under the REF period; a 

consistent increasing pattern is found for PX1D (except for several grids that showed reduced changes under both 1.5 and 

2.0 °C conditions). As the globe warms under RCP4.5, the intensity of extreme precipitation consistently increases in most 395 

regions of Asia (93.1 % of the whole domain at 1.5 °C of warming and 96.8 % of the whole domain at 2.0 °C of warming). As 

shown in Figure 8a, the increasing patterns over the study area become more apparent and robust (with 4 out of 5 model 

agreements) under 2.0 °C than under 1.5 °C of warming. This finding implies an intensification of extreme precipitation. Most 

of the grids exhibiting an increasing pattern in PX1D over Asia are likely to show increases in 2, 3, and 5 consecutive days of 

maximum precipitation (PX2D, PX3D, and PX5D) under both 1.5 and 2.0 °C of warming in comparison to the REF period. 400 

The spatial distributions of the change patterns in PX2D, PX3D, and PX5D are similar to those of PX1D under both 1.5 and 

2.0 °C (Figure 8b and Figure S7b). Under both RCPs, the pattern correlation coefficient (PCC) values between PX1D and 

PX2D, PX3D, and PX5D are 0.89, 0.83, and 0.73, respectively. In addition, the PCC differences between 1.5 and 2.0 °C of 

warming are not robust in all cases. As shown by these PCC results, the change pattern of PX1D is highly correlated with the 

change patterns of the other indices (i.e., PX2D, PX3D, and PX5D) in terms of the spatial distribution. These results describe 405 

the intensification of extreme precipitation with similar spatial behaviors under warmer climate conditions. 

Figure 9 presents the area-averaged changes in annual mean precipitation (PANN) and PX1D compared to the REF period 

under 1.5 and 2.0 °C warming conditions based on RCP4.5 (RCP8.5). The changes in PX1D are greater than the changes in 

PANN in most climate zones except Bs and Bw (shown in Figure 8a and Figure S7a) under both RCP4.5 and RCP8.5. An 

increase in PANN under global warming based on the two RCPs compared with the REF period ranges from 0.1 % to 10.7 % 410 

at 1.5 °C of warming and from 11.7 % to 11.9 % at 2.0 °C of warming. Similarly, under the two RCPs, PX1D is projected to 

significantly increase from 5.7 % to 11.2 % under 1.5 °C of warming and from 8.0 % to 15.2 % under 2.0 °C of warming. 

Namely, warming of 2.0 °C results in higher precipitation than warming of 1.5 °C in terms of both the PANN and PX1D 

irrespective of RCP scenarios. Under warmer climate environments, PX1D is expected to increase in all climate zones with a 

https://en.dict.naver.com/#/entry/enko/aa0792bb282f49d89b666ad6583010d6
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high level of robustness compared to PANN. Hence, global warming will lead to adverse influences on the risk of flooding 415 

over Asia due to increased high-intensity precipitation events, especially under 2.0 °C of warming. 

3.4 Future projections of runoff extremes under 1.5 and 2.0 °C of warming 

In this section, we examine the future changes in runoff based on the VIC simulations, which are fed with the five individual 

GCMs. Figure 10 (Figure S8) indicates the spatial distributions of the changes in the high and low runoff extreme indices over 

Asia based on the 1.5 and 2.0 °C warming scenarios under RCP4.5 (RCP8.5). The consistent patterns (with 4 out of 5 model 420 

agreements) reflect an increase in the annual maximum runoff (MDF) across most regions (except for several grids under the 

2.0 °C warming condition). This result implies intensified extremely high runoff, which may increase the risk of flooding. In 

contrast, the low runoff indices (minimum consecutive 7-day and 30-day runoff; DWF07 and DWF30, respectively) exhibit 

different change patterns in different regions under 1.5 and 2.0 °C warming conditions throughout Asia. As warming intensifies, 

increases in both DWF07 and DWF30 become more dominant than decreases in both DWF07 and DWF30 over Asia. However, 425 

as indicated by the regions highlighted green and yellow in Figure 10 (Figure S8), some regions (the Cf and Bw zones) show 

consistent decreasing patterns for both the 1.5 and 2.0 °C warming conditions. Under RCP8.5, the decreasing signal of DWF07 

(DWF30) is additionally shown in Af zones (e.g., highlighted purple region in Figure S8). As the temperature increases, these 

regions are likely to be susceptible to changes in DWF07 and DWF30. Because precipitation patterns are converted into runoff 

features (Kim et al., 2020), changes in the spatial distributions and increasing (or decreasing) patterns of the runoff indices are 430 

highly similar to the changes in the precipitation indices, especially the change patterns of annual maximum precipitation 

(PX1D) and high runoff indices (MDF). 

Figure 11 presents the area-averaged annual mean runoff (hereafter referred to as RANN) and high runoff indices (MDF) 

compared to the REF period under the 1.5 and 2.0 °C warming conditions based on RCP4.5 and RCP8.5. Changes in the annual 

mean runoff (RANN) increase in all climate zones under global warming compared with the REF period, and the change 435 

pattern of MDF also increases in most of the climate zones except the Ds zone, which shows a large variation among the five 

GCMs. The magnitude of the change in MDF over Asia is projected to be greater than that in the REF period, especially under 

the 2.0 °C warming condition compared to the 1.5 °C warming condition, in the majority of the climate zones (i.e., all A, C, 

and E zones, the Bw zone, and the Ds zone). Warming of 2.0 °C causes a sharp increase in runoff in terms of both RANN and 

MDF compared with warming of 1.5 °C, which implies the intensification of runoff with global warming. As with changes in 440 

precipitation, an increase in MDF over all climate zones shows a considerable degree of robustness compared to RANN at 

both 1.5 and 2.0 °C of warming. Warming over Asia will aggravate the management of water resources due to these challenging 

situations, for example, an increase in MDF and a large spatial disparity of changes between DWF07 and DWF30. 

4 Discussion and conclusions 

As suggested by the IPCC, anthropogenic influences have likely affected the global climate system, and such effects increase 445 

the likelihood of intensified extreme climate events (e.g., heatwaves, precipitation, flooding, and droughts) worldwide (IPCC, 

2013; 2018). An extreme climate event is a phenomenon that occurs at a level above (or below) a threshold defined by a normal 

range within a given region for each variable. In addition, the extrema are closely related to the climate features of certain 

regions. Therefore, to minimize the damage from climate disasters under global temperature increases of 1.5 and 2.0 °C above 

PI levels, it is important to analyze regional changes in both long-term climate patterns and climate extremes (Kharin et al., 450 

2018; Dong et al., 2018). 

Figure 12 presents the relative changes (%) in the average and extreme hydroclimatic indices under a further 0.5 °C increase 

in temperature from the difference in the global mean temperature in each climate zone between the 1.5 and 2.0 °C warming 

scenarios for RCPs (i.e., RCP4.5 for Figure 12a and RCP8.5 for Figure 12b). Based on both RCP4.5 and RCP8.5, all the 
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changes in the individual hydroclimatic extremes except for the runoff indices (MDF, DWF07, and DWF30) exhibit similar 455 

change signals in all the climate zones under an extra 0.5 °C of warming. However, the influence of an additional increase of 

0.5 °C of warming on the hydroclimatic extremes shows diverse change patterns and magnitudes with regard to different 

regions and types of extreme climate indices. Temperature extremes present the same change signals (e.g., an increase or a 

decrease) with a high degree of robustness over all climate zones. As the globe warms, changes in the warm extreme indices 

(e.g., SU, TR, TX90P, and TN90P) exhibit an increasing trend over most climate zones, except for SU and TR in the Af and 460 

ET zones. On the other hand, the cold extreme indices (e.g., FD, ID, TX10P, and TN10P) have a distinct tendency to increase 

across Asia. Large increases in the extreme warm indices are observed in arid climates (BS and BW) and cold climates (Ds, 

Dw and Df), whereas they are projected to decrease considerably in warm temperate climates (Cs, Cw and Cf). Furthermore, 

the changes in the extreme precipitation indices (e.g., P95, P99, PX1D, PX2D, PX3D, and PX5D) exhibit large increasing 

patterns compared to PANN with an extra 0.5 °C of warming. The change in MDF is similar to that in PX1D because the 465 

change patterns of precipitation influence those of runoff. These results represent an increase in the risks of runoff and flooding 

in most climate zones over Asia. The changes in the Cs and Ds zones with dry summer features show somewhat greater 

variability than the other climate zones in terms of both the average and the extreme precipitation (and runoff) indices under a 

climate environment characterized by an extra 0.5 °C of warming. In general, in comparison with those of MDF, the change 

patterns of the low runoff indices (DWF07 and DWF30) show relatively less robust patterns, especially in terms of the lower 470 

magnitude of change and decreasing change patterns (e.g., MacDonald et al., 2018). Although the future projections of low 

runoff contain levels of uncertainty due to variations among the individual GCMs, the Cf and Bw zones are likely to face 

challenges in coping with low runoff under global warming (Figure 10 for RCP4.5 and Figure S8 for RCP8.5). 

However, zones D and E are highly susceptible to an extra 0.5 °C of warming. These regions show robust changes in 

temperature extremes, high-precipitation extremes and high-runoff extremes, as depicted in Figure 12. Under RCP4.5 475 

(RCP8.5), the area-averaged cold extremes in this region are expected to decrease by -4.0 % (-2.8 %) in FD and -6.8 % (-

5.2 %) in ID, while the area-averaged warm extremes are projected to vastly increase by 57.2 % (50.8 %) in SU and 80.8 % 

(68.3 %) in TR. Similarly, the high-precipitation extremes are projected to increase by approximately 3.3~3.6 % (1.1~1.9 %) 

for PX1D, PX2D, PX3D, and PX5D and approximately 10.5 % (5.6 %) and 18.7 % (9.8 %) for P95 and P99, respectively. 

Consequently, the high-runoff extremes (i.e., MDF) are expected to increase by 3.4 % (0.3 %) under RCP4.5 (RCP8.5), which 480 

is likely to result in a risk of more intensified flooding. In contrast, the changes in the low-runoff extremes (DWF07 and 

DWF30) show low robust change signals in these regions as a result of small changes under a further 0.5 °C of global warming 

and substantial uncertainty in the GCM projections; this finding agrees with previous results (e.g., Chen et al., 2017; Donnelly 

et al., 2017; Marx et al., 2018). However, the change behavior in the hydroclimatic extremes (except for the low-runoff 

extremes) tends to be amplified at 2.0 °C of warming compared with 1.5 °C of warming regardless of the RCP. Although 485 

substantial changes in the characteristics of the various extreme indices are found under RCP8.5, the small differences in these 

change patterns between the two selected RCPs are evidenced by the large changes under the 1.5 °C warming condition in 

comparison to RCP4.5. More importantly, under RCP8.5, global warming is likely to occur faster, and the degree of warming 

is much higher (e.g., above 3.0 °C of global warming) compared to RCP4.5. Our results imply the necessity for mitigation to 

alleviate the negative impacts of anthropogenic warming and to reduce the increased risk of hydroclimatic extremes under a 490 

far warmer climate. 

Next, we focus on the changes in hydroclimatic extremes across diverse climate zones over Asia in response to warming 

scenarios of 1.5 and 2.0 °C under two emission forcings (RCP4.5 and RCP8.5) above the PI level. Five CMIP5 GCMs are 

selected considering their performance in the historical simulations. The central years and 30-year periods reaching warming 

targets of 1.5 and 2.0 °C are identified based on the individual GCMs. After removing systematic biases, five GCMs are used 495 

as meteorological forcings for the VIC distributed hydrological model, and the simulated surface runoff is converted into area-

averaged runoff according to each climate zone. Future changes in various extreme indices (e.g., temperature, precipitation, 
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runoff-related indices) are calculated by applying the relative concept to the differences between the individual warming 

conditions (1.5 and 2.0 °C) and the REF period. Our focus is to estimate and compare the change patterns of the extreme 

temperature, precipitation, and runoff indices among the various climate zones under 1.5 and 2.0 °C of global warming. 500 

In all climate zones, an extra 0.5 °C of global warming has a considerable influence on the changes in hydroclimatic extremes. 

The changes in temperature indices show the strongest robustness over Asia (with 5 out 5 model agreements) and project a 

greater increase in high-percentile maximum and minimum temperatures. Although there is great uncertainty in the 

precipitation and runoff projections, the high-precipitation and high-runoff extremes show increasing patterns with a high level 

of robustness. 505 

This finding supports the concept that global warming leads to an intensified hydrological response, such as an increase in 

high-precipitation extremes (e.g., Trenberth, 1999; Giorgi et al., 2014; Im et al., 2017; Kim et al., 2020). Consequently, 

consistent with the change patterns of precipitation extremes, high-runoff extremes under warmer conditions are likely to 

increase the risks of water-related disasters in most climate zones of Asia. Our findings are generally consistent with previous 

studies that have suggested likely increases in high-runoff extremes under warmer climate conditions above PI levels (e.g., 510 

MacDonald et al., 2018; Jacob et al., 2018; Paltan et al., 2018; Kim et al., 2020). Finally, although these behaviors are taken 

from a limited number of GCMs, our CMIP5 MME-derived findings reveal accelerated extremes compared to the long-term 

mean. Since hydroclimatic sensitivity differs based on regional climate characteristics, understanding the change behaviors of 

hydroclimatic extremes is clearly required at the regional scale. As shown in Figure 12, the unique regional responses (with 

high significance measured by the intermodal agreement level) of an extra 0.5 °C of global warming reveal the need for 515 

different adaptive measures to expected hydroclimatic extremes. Although the vulnerability of temperature extremes will be 

increased in all climate zones over Asia, the frequencies of summer days and tropical nights are increased by 10 % and 20 %, 

respectively, in cold climate regions (D zones) under extra global warming. This temperature-related risk is likely to increase 

the adverse effects on human health, such as heat-related illnesses. Regarding precipitation extremes, adaptation for intensified 

heavy rainfall in terms of both frequency and intensity will be needed in most climate zones except for some climate regions 520 

with dry summer features (e.g., BW, Cs, and Ds). Changes in heavy rainfall amplify the risks associated with flood extremes 

and consequently flood damage (e.g., loss of life and economic losses). The daily maximum runoff, which is related to flood 

hazards, will be increased by 4~8 % in zones Cw, Cf, Dw, and ET. Therefore, both structural (e.g., flood-adaptive design for 

hydraulic structures) and nonstructural measures (e.g., flood forecasts and measurements) are needed for flood risk 

management in these regions. Although the potential impacts of low-runoff extremes (e.g., minimum consecutive 7-day and 525 

30-day runoff) show low significance in all classified climate zones under extra global warming, the low-runoff extremes are 

amplified by more than 10 % at 2.0 °C of global warming compared to 1.5 °C of global warming in the western parts of India 

and the high latitudes (above 40° N), thus increasing the risk of water supply issues for drinking and irrigation as well as 

drought conditions. As the global temperature increases, regional climate change impacts hydroclimatic conditions and related 

aspects (e.g., human health, water supply, water-related disasters, hydraulic structures). These results suggest positive benefits 530 

of 0.5 °C less warming in terms of hydroclimate extremes and the necessity of adaptive regional planning. 
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https://en.wikipedia.org/wiki/Death
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Figure 1: Study domain, climate zone classifications, and the 10,977 grid points of the VIC model used for the analyses in this study. 

National boundaries are delineated by black lines. The 12 climate zones are based on the Köppen climate zone method and are 

denoted by individual colors. 735 
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Figure 2: Flowchart of the entire procedure used in this study. 
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 740 

 

Figure 3: Spatial distributions of the (a) annual mean precipitation (PANN) and (b) annual maximum precipitation (PX1D) for the 

historical period (1976-2005) in the Asian monsoon region derived from observations (OBS) and the MME of bias-corrected 

outputs from the five GCMs. BIAS (i.e., the 3rd column in each row) represents the percentage bias in PANN (PX1D) between 

OBS and MME. 745 
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Figure 4: Spatial distributions of the MME for four extreme climate indices (FD, ID, SU, and TR) over the study domain. The 

relative changes in the numbers of (a) frost days (FD), (b) ice days (ID), (c) summer days (SU), and (d) tropical nights (TR) for 750 
1.5 °C and 2.0 °C of global warming under RCP4.5 are compared with those of the reference period (REF). 
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Figure 5: Changes in the extreme temperature indices (a) related to the coldest days (FD: frost days and ID: ice days) and (b) related 

to the hottest days (SU: summer days and TR: tropical nights) derived from the MME for the 12 climate zones. 755 
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Figure 6: Relative changes in the (a, c) maximum temperature (TX) and (b, d) minimum temperature (TN) according to four 

percentile ranges under 1.5 and 2.0 °C of global warming compared with the reference period (REF). (e, g) The relationship 

between the average latitude of each climate zone and the relative change in the 90th percentile of the maximum temperature 760 
(TX90P) under global warming. (f, h) The relationship between the average latitude of each climate zone and the relative change 

in the 90th percentile of the minimum temperature (TN90P) under global warming. Each circle in (e-h) denotes a representative 

value for an individual climate zone. The solid (dashed) line in (e-h) represents the regression relationship between two variables 

with the coefficient of determination (R2) under 1.5 °C (2.0 °C) of global warming. 

  765 
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Figure 7: Relative changes in the (a) total amount, (b) frequency, and (c) intensity of the extreme precipitation indices (P95: very 

wet day precipitation, P99: extreme wet day precipitation) for the 12 climate zones derived from the MME of the five GCMs under 

1.5 °C and 2.0 °C of global warming compared to the reference period (REF). Green circles (gray circles) denote 100 % (over 

80 %) intermodel agreement. 770 
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Figure 8: (a) Relative changes in the annual maximum precipitation (PX1D) derived from the MME of the five GCMs under 1.5 °C 

and 2.0 °C of global warming forced by RCP4.5 compared to the reference period (REF). (b) Scatter plot for a comparison of the 775 
relative changes between the maximum precipitation over 2, 3, and 5 consecutive days (PX2D, PX3D, and PX5D, respectively) 

and the annual maximum precipitation (PX1D) derived from the MME over the Asian monsoon region. Each blue diamond 

(orange circle) in (b) indicates the relationship between the variable on the x-axis and the variable on the y-axis for an individual 

grid value within the region under 1.5 °C (2.0 °C) of global warming. 

 780 
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Figure 9: Relative changes in the annual mean precipitation (PANN) and annual maximum precipitation (PX1D) for the 12 climate 

zones derived from the MME of the five GCMs under 1.5 °C and 2.0 °C of global warming compared to the reference period 

(REF). Green circles (gray circles) denote 100 % (over 80 %) intermodel agreement. 785 
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Figure 10: Spatial distributions of the MME for three extreme climate indices (MDF, DWF07, and DWF30) under RCP4.5 over the 

study domain. Relative changes in the (a) annual maximum runoff (MDF), (b) consecutive 7-day minimum runoff (DWF07), and 

(c) consecutive 30-day minimum runoff (DWF30) under 1.5 °C and 2.0 °C of global warming compared to the reference period 790 
(REF). The green (i.e., located in the Cf zone) and yellow (i.e., located in the Bw zone) rectangles indicate the locations of regions 

susceptible to DWF07 and DWF30 under global warming. 
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Figure 11: Relative changes in the (a) annual mean runoff (RANN) and (b) annual maximum runoff (MDF) for the 12 climate zones 795 
derived from the MME of the five GCMs under 1.5 °C and 2.0 °C of global warming compared to the reference period (REF). 

Green circles (gray circles) denote 100 % (over 80 %) intermodel agreement. 
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Figure 12: Plots of the percentage changes (%) in the climate extreme indices in response to additional warming of 0.5 °C in the 800 
climate zones over Asia under (a) RCP4.5 and (b) RCP8.5, where ‘*’ and ‘**’ represent significance at the 80 and 100 % levels, 

respectively. 
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Table 1: Climate zones classified according to the Köppen climate classification method using temperature and precipitation 805 

(Tmin(max): monthly averaged minimum (maximum) temperature, Pmin: monthly averaged minimum precipitation, PANN: 

annual averaged precipitation, Psmin(smax): minimum (maximum) precipitation in the summer season, and Pwmin(wmax): 

minimum (maximum) precipitation in the winter season). 

Type Description Criterion Ratio of Area (%) 

A Tropical climates Tmin ≥ +18 °C 17.2 

Af Rainforest Pmin ≥ 60 mm 5.8 

Am Monsoon Not(Af) & Pmin ≥ 100-PANN/25 1.7 

Aw Savannah Not(Af) & Pmin < 100-PANN/25 9.7 

B Arid climates PANN <  10Pth 22.1 

BS Steppe climate PANN > 5Pth 4.6 

BW Desert climate PANN ≤ 5Pth 17.5 

C Warm temperate climates -3 °C <  Tmin <  +18 °C 19.4 

Cs Warm temperate climate with dry summer 
Psmin <  Pwmin & 

Pwmax > 3Psmin & Psmin < 40 mm 
2.1 

Cw Warm temperate climate with dry winter Pwmin < Psmin & Psmax > 10Pwmin 10.5 

Cf Warm temperate climate without dry season Neither Cs nor Cw 6.7 

D Cold climates Tmin ≤ -3 °C 36.3 

Ds Cold climate with dry summer 
Psmin < Pwmin & 

Pwmax > 3Psmin & Psmin < 40 mm 
1.8 

Dw Cold climate with dry winter Pwmin <  Psmin & Psmax > 10Pwmin 19.7 

Df Cold climate without dry season Neither Ds nor Dw 14.8 

E Polar climates Tmax < +10 °C 5.1 

ET Tundra climate 0 °C ≤ Tmax < +10 °C 5.1 

EF Frost climate Tmax < 0 °C - 
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Table 2: List of the five selected GCMs used in this study. 810 

 

 

 

 

 815 

 

 

 

  

No. GCM 
Resolution 

(Lon.×Lat.) 
Institute Nation 

1 bcc-csm1-1-m 1.125° × 1.125° BCC China 

2 CanESM2 2.8125° × 2.8125° CCCma Canada 

3 CMCC-CMS 1.875° × 1.875° CMCC Italy 

4 CNRM-CM5 1.40625° × 1.40625° CNRM-CERFACS France 

5 NorESM1-M 2.5°× 1.875° NCC Norway 
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Table 3: Central years (corresponding periods) of the individual GCMs with global warming of 0.48 °C, 1.5 °C, and 2.0 °C under 820 

the RCP4.5 and RCP8.5 scenarios. 

 

  

No. GCM 
Reference period 

(0.48 °C) 

RCP4.5 scenario RCP8.5 scenario 

Future period 

(1.5 °C) 

Future period 

(2.0 °C) 

Future period 

(1.5 °C) 

Future period 

(2.0 °C) 

1 bcc-csm1-1-m 1973 (1959-1988) 2013 (2006-2035) 2039 (2025-2054) 2012 (2006-2035) 2030 (2016-2045) 

2 CanESM2 1983 (1969-1998) 2016 (2006-2035) 2031 (2017-2046) 2012 (2006-2035) 2026 (2012-2041) 

3 CMCC-CMS 1996 (1982-2011) 2034 (2020-2049) 2052 (2038-2067) 2030 (2016-2045) 2040 (2026-2055) 

4 CNRM-CM5 1988 (1974-2003) 2035 (2021-2050) 2056 (2042-2071) 2029 (2015-2044) 2043 (2029-2058) 

5 NorESM1-M 1991 (1977-2006) 2041 (2027-2056) 2075 (2061-2090) 2033 (2019-2048) 2048 (2034-2063) 
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Table 4: Definitions of the hydroclimatic extreme indices using minimum temperature (denoted by TN), maximum temperature 

(denoted by TX), precipitation (denoted by PR), and runoff data, where ‘i’ and ‘j’ represent the month and year, respectively. 825 

Index name (label) Index definition Unit 
Source of 

indices 

Tropical nights (TR) The number of days when TNij > 20 °C Days 

Minimum 

temperature 

Frost days (FD) The number of days when TNij < 0 °C Days 

Warm nights (TN90P) 
The number of days when TNij > TNref90; here, TNref90 is the calendar day 90th 

percentile centered on a 5-day window for the reference period of individual GCMs 
Days 

Cold nights (TN10P) 
The number of days when TNij < TNref10; here, TNref10 is the calendar day 10th 

percentile centered on a 5-day window for the reference period of individual GCMs 
Days 

Summer days (SU) The number of days when TXij > 25 °C Days 

Maximum 

temperature 

Ice days (ID) The number of days when TXij < 0 °C Days 

Warm days (TX90P) 
The number of days when TXij > TXref90; here, TXref90 is the calendar day 90th 

percentile centered on a 5-day window for the reference period of individual GCMs 
Days 

Cold days (TX10P) 
The number of days when TXij < TXref10; here, TXref10 is the calendar day 10th 

percentile centered on a 5-day window for the reference period of individual GCMs 
Days 

Very wet day 

precipitation (P95) 

The total precipitation when PRij exceeds the 95th percentile of the wet day 

precipitation in the reference period of individual GCMs 
Mm 

Precipitation 

Extreme wet day 

precipitation (P99) 

The total precipitation when PRij exceeds the 99th percentile of the wet day 

precipitation in the reference period of individual GCMs 
Mm 

Annual maximum 

precipitation (PX1D) 
The maximum 1-day precipitation Mm 

Maximum 2-day 

precipitation (PX2D) 
The maximum consecutive 2-day precipitation Mm 

Maximum 3-day 

precipitation (PX3D) 
The maximum consecutive 3-day precipitation Mm 

Maximum 5-day 

precipitation (PX5D) 
The maximum consecutive 5-day precipitation Mm 

Minimum 7-day runoff 

(DWF07) 
The minimum consecutive 7-day runoff Mm 

Runoff 
Minimum 30-day 

runoff (DWF30) 
The minimum consecutive 30-day runoff Mm 

Annual maximum 

runoff (MDF) 
The maximum daily runoff Mm 

 

 


