[bookmark: _GoBack]Dear Editor and Reviewers:

First, we would like to thank the editor and reviewers for their helpful comments and suggestions, which improved the quality of our manuscript. We agree with most of the concerns raised by the reviewers and have therefore modified the manuscript according to the reviewers' comments and suggestions. Newly added and modified text is highlighted in yellow in the revised manuscript, and our point-by-point responses to the reviewers’ comments are provided below. We hope that the revised manuscript is now suitable for publication in Hydrology and Earth System Sciences.

Reply to Reviewer (#2)’s Comments:
 
The manuscript presents an analysis of likely changes in future temperature, precipitation, and runoff extremes over different climatic regions of Asia. Climate projections are obtained from a suite of climate models and a hydrologic model is used to translate climate to runoff. While the manuscript addresses a topic of relevance to the journal, it has several major shortcomings that prohibit readers from interpreting the results and gauging their reliability. These are listed below: 
► We appreciate the reviewer’s feedback and helpful comments. Kindly find our detailed response to each comment below.

1. Novelty: There are several studies that discuss the consequences of 1.5 °C and 2.0 °C global warming on hydrology of river basins across the globe. A number of such analyses are cited in the paper but some significant research is not discussed. For example Betts et al. (2018) discuss the difference between the two global warming levels in terms of hydrologic extremes as well as food security. Similarly, Doll et al. (2018) employ two hydrologic models and an ensemble of bias corrected climate models to understand how freshwater related hazards are likely to change across the globe under the two warming levels. A number of similar studies can be found. The authors need to justify how their analysis adds value to this literature. A statistical analysis of expected changes is useful but these numbers need to be eventually translated into variables that have direct impact on society (such as food availability, flood hazard, etc.). Perhaps the authors can provide some policy relevant insights to the readers, for example, by suggesting how the adaptive measures will vary across different climate regions. 
► We fully agree with your valuable suggestion. As the reviewer suggested, we have added the related text in “Section 4. Discussion and conclusions” to provide an in-depth survey of relevant research on hydroclimatic responses to global warming and to emphasize the meaningful contribution of this manuscript to the literature. We suggested the needs of different adaptive measures based on unique regional responses, especially those of the hydroclimatic extremes, to an additional 0.5 °C of global warming. We clarified these points in an organized way in manuscript.
: As shown in Table 5, the unique regional responses (with high significance measured by intermodal agreement level) on an extra 0.5 °C of global warming reveal the needs of different adaptive measures for expected hydroclimatic extremes. Although the vulnerability of temperature extremes will be increased in all the climate zones over Asia, the frequency of summer day and tropical night is highly increased by 10 % and 20 % cold climate regions (D zones) under extra global warming. And, this temperature-related risk is likely to increase the adverse effects on human health, such as heat-related illnesses. For the precipitation extremes, the adaptation for intensified heavy rainfall in terms of its frequency and intensity will be needed in most climate zones except for some climate regions with dry summer features (e.g., BW, Cs and Ds). Changes in heavy rainfall amplify the risk related flood extremes, and consequently flood damages (e.g., loss of life, economic losses). The flood hazard related daily maximum runoff will be increased by 4~8 % in the Cw, Cf, Dw and ET zones, therefore both structural (e.g., flood-adaptive design for hydraulic structures) and non-structural measures (e.g., flood forecast and measurements) are considered for flood risk management in this regions. Although the potential impacts of low extreme runoff (e.g., minimum consecutive 7-day and 30-day runoff) show the low significance level in all classified climate zones under extra global warming, the low extreme runoff are amplified more than 10% at 2.0 °C of global warming compared to 1.5 °C of global warming in the western parts of India and high-latitude region (above 40° N), which cause increase the risk of water supply for drinking and irrigation and drought. As the global temperature increases, the regional climate change has an impact on the hydroclimatic conditions and on the related areas (e.g., human health, water supply, water-related disasters, hydraulic structures). These results suggest positive benefits of half a degree less warming in terms of the hydroclimate extremes and the necessity of adaptive regional planning.

Table 5: Plots of the percentage changes (%) in the climate extreme indices in response to additional warming of 0.5 °C in the climate zones over Asia, where ‘*’ and ‘**’ represent significance at the 80 and 100 % agreement levels, respectively.
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2. Methodology: There are a number of issues here:
- a. Climate data: the analysis involves a number of steps and the text is a little hard to follow in this regard. For example, to select the five GCMs, a comparison with a multimodel mean is carried out (Page 3, line 117). But why are GCMs selected on the basis of their performance w.r.t the ensemble mean? Why not directly compare the individual GCM performance with the observed data and select those that best represent the observed climate in the Asia region? It is later revealed that a bias-correction is also carried out on the climate data. Was this bias correction carried out before or after the shortlisting of the five GCMs? Overall, the sequence of methods is unclear and many methodological choices are not defended well in the text. Maybe a flowchart to guide the readers through the main steps will help. 
► We directly evaluated the performance of each individual GCM with the observed data and selected those that best represent the observed climate in Asia. However, to select the GCMs carefully under the assumption that the MME is similar to the observed data compared with each GCM (Xu et al., 2020; Tegegne et al., 2020), the lower-performing GCMs with relatively poor statistics compared with the MME are screened. Then, only the best-performing GCMs with better MME values are selected, and the MME is used only as a means of ranking the GCM. It is difficult to determine the lower-performing GCMs without a comparison between the individual GCMs and MME values because the comparison between each GCM and the observed data does not provide the information needed to exclude the GCMs. We have clarified this point in the revised manuscript.
: The spatial correlation coefficient (SCC) and root mean square error (RMSE) between the historical simulation field derived from each GCM and the observed field are calculated for each of the twelve relevant variables over the Asian monsoon region, as these statistics are commonly used to examine the performance of GCMs in the simulation of observed spatial climate features (IPCC, 2013; McSweeney et al., 2015). Next, we apply the MME-based scoring rule for the section of GCMs (Nyunt et al., 2012) to exclude low-performing GCMs and select only the best-performing GCMs by using a relative concept because the scoring rule based on the observed data does not provide the information needed to screen the GCMs. Therefore, the individual GCM statistics (i.e., the SCC and RMSE) are judged by comparison with the MME statistic. The value of MME statistics are considered as criteria to give a score to each GCM under the assumption that the MME is similar to the observed data compared with the output from only one GCM (Xu et al., 2020; Tegegne et al., 2020).
► For the second comment, bias correction method is carried out after selected the five GCMs. Raw GCM outputs are commonly used for GCM performance evaluations because GCM outputs are necessarily fitted to the observations after a bias correction. We added an explanation of this in the revised manuscript.
: The five of the raw GCMs of the Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et al., 2012) are selected by applying a unique evaluation procedure (Kim et al., 2020). Then, a reference 30-year period and two future 30-year periods of individual GCM projections are defined under warming targets of 0.48, 1.5 and 2.0 °C above PI levels (1861-1890) based on a time sampling method. Then, these daily forcing data (e.g., precipitation, maximum temperature and minimum temperature variables) are extracted the five selected GCM projections, and then statistically bias-corrected using the quantile mapping method. And, bias-corrected GCMs are used as meteorological forcings to run the variable infiltration capacity (VIC) hydrological model.
► For the final comments, we clarified all these points and modified the manuscript (section 2.1~section 2.6) with a flowchart (Figure 2) to guide the readers through the main steps.
: 2.3 Methodology
Figure 2 represents the flowchart of entire procedure used in the study. To simulate the climate during both historical and future periods, climate projections forced by a historical and a representative concentration pathway (RCP) 4.5 scenario are selected. The five of the raw GCMs of the Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et al., 2012) are selected by applying a unique evaluation procedure (Kim et al., 2020). Then, a reference 30-year period and two future 30-year periods of individual GCM projections are defined under warming targets of 0.48, 1.5 and 2.0 °C above PI levels (1861-1890) based on a time sampling method. Then, these daily forcing data (e.g., precipitation, maximum temperature and minimum temperature variables) are extracted the five selected GCM projections, and then statistically bias-corrected using the quantile mapping method. And, bias-corrected GCMs are used as meteorological forcings to run the variable infiltration capacity (VIC) hydrological model. The future changes in the hydroclimatic mean and extremes corresponding to the conditions at warming targets of 1.5 and 2.0 °C are spatially analyzed according to the identified subregions based on climate zones. We focus on the hydroclimatic extreme responses to temperature, precipitation, and runoff variations under global warming targets (i.e., 1.5 and 2.0 °C) using extreme indices. More detailed description of each procedure is suggested in section 2.4, section 2.5 and section 2.6.
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Figure 2: The flowchart of entire procedure used in the study 


- b. Hydrologic model and runoff projections: the variable infiltration capacity model is a commonly used model to obtain continental to global scale runoff projections. However, many studies limit their analysis to understanding patterns in mean annual runoff. In this study, however, the focus is on runoff extremes, which are inherently harder to capture than a long-term mean value. However, the calibration and validation of the model are not included in the main manuscript. A regionalization approach is used to transfer parameters from gauged to ungauged sites, but how successful was this? It is important to show that the model with the regionalization scheme can capture the observed hydrologic extremes in the past. Only then, we can have some confidence regarding the reliability of the projections in the future.
► Thank you for this comment. We understand the concern raised by the reviewer. Of course, it is inherently harder to simulate long-term mean runoff extremes using a hydrologic model. However, the results can aid in understanding runoff features when observed data are not available, even though the results are limited when simulating realistic runoff extremes. We added validation of simulated extreme runoff by comparing measured extreme runoff (suggested in Table S3) and the limitation when discussing the simulation of runoff extremes using the VIC model (line 225-240).
: To evaluate the reliability of runoff results, the simulated mean and extreme runoff data are validated by comparing with measured data (see the  In this study, the simulated runoff is driven by observational meteorological forcings for the historical period (1950-2005) to compare the historical runoff records obtained from the Global Runoff Data Centre (GRDC). Some parameter validation results for the VIC model in six river basins (Figure S1) considering the data availability of measurement records are shown in Table S2, Table S3 and Figure S4, and additional results can be found in a previous study (Bae et al., 2013). In general, the monthly mean runoff obtained from VIC model using observational meteorological input data qualitatively and quantitatively simulates the measured runoff (Table S2 and Figure S4), indicating high temporal correlation with the observed pattern (the range of correlation coefficient at the 6 basins = 0.58~0.93). To evaluate the accuracy of the VIC model, we also consider the quantitative statistics such as model efficiency (ME), root mean square error (RMSE), volume error (VE) as shown in Table S2. The assumption used in parameter estimation and runoff analysis at the continental scale may impact the uncertainty in simulating the runoff, especially in capturing the extreme runoff. Because it is inherently harder to simulate long-term mean runoff extremes using a hydrologic model, the level of uncertainty exist between simulated and measured extreme runoff data (the range of relative error at the 6 basins = -33.1~20.8%). The results can aid in understanding runoff features when observed data are not available, even though the results are limited when simulating realistic runoff. Overall, the validation results suggest that the VIC model is able to simulate mean and extreme runoff adequately.

Table S3. Statistical results of the VIC model validation for the maximum runoff in the selected basins in this study. Individual value of maximum runoff obtained from the time seriesdatasets (e.g., measured runoff, simulated runoff) used in Figure S4.  
	No.
	Basin
	Maximum runoff (mm)
	Relative error (%)

	
	
	Measured value
	Simulated value
	

	1
	Tone
	302.4
	249.0
	-17.7

	2
	Yodo
	333.9
	299.8
	-10.2

	3
	Gan Jiang
	314.5
	268.1
	-14.8

	4
	Han Shui
	283.0
	282.4
	-0.2

	5
	Muar
	405.3
	271.3
	-33.1

	6
	Ganges
	173.5
	209.6
	20.8



► We added a detailed description of the applied regionalization scheme and showed the scheme in the supporting information. 
: We apply the hydrological regionalization method by transferring parameters obtained from gauged regions to ungauged regions based on the assumption that two basins with analogous climate features (e.g., based on the climate zone classification) exhibit similar hydrological responses. For runoff simulations at the global scale, Nijssen et al. (2001) obtained the parameters for an ungauged basin from the estimated parameters of a gauged basin with the same temperature and precipitation features. Xie et al. (2007) and Bae et al. (2013) employed the same approach leveraging climatological similarity according to Köppen’s climate classification method and suggested the applicability of this method over China and Asia, respectively. In this study, both gauged basins and ungauged basins are divided into one of the climate zones to apply the hydrological regionalization method. We examine the optimal parameters for individual climate zone that effectively simulates the runoff among the estimated parameter sets obtained from all the gauged basins within each climate zone. The optimal parameters of each climate zone are then transferred to the ungauged basins belonging to the same climate zone. In our previous study, the regionalization results were verified by assuming that some gauged basins are considered ungauged basins (Bae et al., 2013), and the results support the adaptability and applicability of the VIC model to simulate the runoff throughout our study area.
► For the final comments, we added detailed description of the validation results for VIC model including the validation of simulated extreme runoff in comparison with measured extreme runoff  (suggested in Table S3 and line 225-240; (see response to first comment No. 2b)

- c. Choice of extreme indices: The choice of indices for precipitation and runoff seem counter-intuitive. The precipitation indices focus on only high precipitation events while the runoff indices focus on both high and low events. Why not include precipitation extremes that involve minimum or very low precipitation?
► We understand the concern raised by the reviewer. We set all daily precipitation amounts below 1.0 mm/day in the simulations to zero because GCMs tend to produce too little precipitation (<1 mm/day). Therefore, we did not include an analysis of the minimum or very low precipitation indices. In addition, for low precipitation extremes, although there is a duration-based concept (such as the dry spell length, which was suggested by the Expert Team on Climate Change Detection and Indices (ETCCDI)), this concept does not exactly match with low runoff events.

- d. Selection of time periods: A time sampling method is used to identify the time period of analysis for various GCMs. The authors arrive at single time period for each GCM warming level. This suggests that a spatially aggregated value of climate indices was used to identify the time periods. However, the analysis focuses on different climate regions and it is possible that each climate region reaches a global warming level in different time periods. Why was this spatial heterogeneity ignored? The same applies on the bias correction methodology, which could have been applied on each homogeneous climate region one by one. On a similar note, the climate zone classification results are presented in Line 206 onwards. Is this classification carried out using observed data or GCM data? How sensitive is the classification to the choice of climate data?
► Thank you for this comment. Of course, it is possible that each climate region does not present the same regional temperature increase as that occurring at the global scale. Therefore, globally aggregated warming targets do not necessarily mean that they can be universally acceptable because an increase in the global mean temperature does not translate into regional and local impacts in a straightforward manner (Knutti et al., 2015). In this regard, it is necessary to identify regionally emerging challenges faced by global warming targets because global warming levels above the preindustrial level are a global concept that is defined based on the globally aggregated mean temperature rather than the regional mean temperature. Based on these issues, we assessed the different regional hydroclimatic extreme climatic responses to global warming in this study.
► For the second comment, statistical bias correction (e.g., quantile mapping) methods adjust the simulated climate outputs by fitting the observed climate features. In general, the bias correction method is performed for each grid cell (or each point) data corresponding the gridded GCM outputs and observed data with the grid system. Therefore, we apply the quantile mapping method for each grid cell within the study domain.
► The climate classification is carried out using observed data for a long-term historical period (1976-2005). We clarify this point in the revised manuscript as follows:
: The climate zones over the Asian monsoon region in this study are classified based on long-term (30-year; 1976-2005) observation datasets (i.e., precipitation from APHRODITE; minimum and maximum temperatures from the University of Washington).
► For the final comment, the substantial differences exist among the individual observation datasets due to the analysis methodology such as the quality control of input data and spatial/temporal interpolation used in producing these simulated datasets. Therefore, the observation datasets after the data quality management process (e.g., quality control, homogeneity testing) show similar spatial features though partly with biases (Tanarhte et al., 2012). Therefore, the classification of climate zone depends on the applied climate data (e.g., data sources, data periods). For instance, a level of uncertainty in the areas occupied by different Koppen climate type is smaller than 1% using the different period historical dataset (Kalvová et al., 2003).
Kalvová, J., Halenka, T., Bezpalcová, K. et al.: Köppen Climate Types in Observed and Simulated Climates, Studia Geophysica et Geodaetica 47, 185–202, 2003
Tanarhte, M., Hadjinicolaou, P. and Lelieveld, J.: Intercomparison of temperature and precipitation data sets based on observations in the Mediterranean and the Middle, Journal of Geophysical Research, 117, 1-12, 2012

- e. Choice of scenarios: it is not clear why RCP4.5 was chosen for the analysis when RCP6.0 and RCP8.5 are equally relevant.
► Thank you for this comment. We have clarified the reason why we selected RCP4.5 as below:
: Since the RCP4.5 scenario is based on a medium-low GHG emission pathway, the global warming process under RCP4.5 is relatively slow, and the adverse effect is less than that under pathways with higher GHG emissions (e.g., RCP6.0 and RCP8.5). However, many studies have suggested that the global warming climate under RCP4.5 exerts impacts on hydroclimatic phenomena (Chen et al., 2017; Donnelly et al., 2017; Kim et al., 2020). In this regard, the results based on RCP4.5 can provide useful information for distinguishing the impacts of global warming on hydroclimatic extremes from those expected under the “business-as-usual” scenario. This implies the need for minimum mitigation strategies as well as adaptation plans according to the global warming induced by GHG emissions, even those under the relatively low-impact RCP scenario (e.g., RCP4.5).

3. Presentation: Overall, the manuscript can gain from improvement in language. In addition, the figure clarity can be improved. The figure captions are not very descriptive and it is hard to follow what is on the figures without carefully reading the main text. Please explain all symbols and abbreviations used in the figures in the caption itself.
► The English grammar and expression have been polished by a professional agency.
► We upgraded the figures to high quality (600 dpi).
► We have thoroughly reviewed and modified the figure captions (including all symbols and abbreviations). 
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