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Responses to Reviewer #1:

1. This paper presents methods to estimate the time-varying parameter based on dy-
namic programming. The authors attempt to combine multiple methods including SSC
and ENKF. However, the highlight of this paper is no very clear, which should be refined.
Reply: Thank you for reviewing our manuscript and for the professional comments. The
highlights of this paper are refined as follows: 1. The proposed method combines spilit-
sample calibration (SSC) and ensemble Kalman filter (EnKF) for time-varying param-
eter estimation. Compared to SSC, the proposed method can find a more continuous
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parameter trajectory; compared to EnKF, the proposed method allows parameters to
retain stable for a pre-determined period, instead of varying at every time-step. 2.
The effectiveness of the proposed method is validated with two hydrological models
and two real catchment case studies of different conditions. 3. For the case study
of Xun River basin, the proposed method detects the strongest seasonal signal. The
highlights are elaborated on in the abstract as follows: Although the parameters of hy-
drological models are usually regarded as constant, temporal variations can occur in a
changing environment. Thus, effectively estimating time-varying parameters becomes
a significant challenge. Two methods, include split-sample calibration (SSC) and Data
assimilation, have been used to estimate time-varying parameters. However, SSC is
unable to consider the parameter temporal continuity, while Data assimilation assumes
parameters vary at every time-step. This study proposed a new method that combines
(1) the basic concept of SSC, whereby parameters are assumed to be stable for one
sub-period, and (2) the parameter continuity assumption, i.e., the differences between
parameters in consecutive time steps are small. (Pages 2, Lines 3-7) The highlights
are also elaborated in the conclusions as follows: 1. The proposed method with a suit-
able length not only produces better simulation performance, but also ensures more
accurate parameter estimates than SSC and EnKF in the synthetic experiment using
the TMWB model with two parameters. The impact of sub-period lengths on the per-
formance of SSC-DP is significant when the known parameters vary sinusoidally. 2.
The proposed method can be used to deal with complex hydrological models involv-
ing a large number of parameters, demonstrated by the synthetic experiment using
the Xinanjiang model with 15 parameters. A sensitivity analysis was performed to
reduce the probable computational cost and improve the efficiency of identifying the
time-varying parameters. 3. The proposed method has the potential to detect the rela-
tionship between the time-varying parameters and dynamic catchment characteristics.
For example, SSC-DP produced the best simulation performance in the case study
of the Wuding River basin and detects that parameters reflecting soil water capacity
and impervious areas changed significantly after 1972, reflecting the soil and water
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conservation projects carried out from 1958-2000. Additionally, SSC-DP detects the
strongest seasonal signal in the case study of Xun River basin, indicating the distinct
impacts of seasonal climate variability. (Pages 33, Lines 925-941)

2. The fundamental assumption that the individual parameters may not response to
the catchment dynamics due to the linear or nonlinear correlations between parame-
ters (Bardossy, 2007). The effects of identifiability of parameters on this research are
suggested to be investigated. Reply: We agree with the reviewer that the hydrological
model parameters should be treated as parameter vectors instead of independent in-
dividual values (Bardossy 2007). The identifiability of parameters is considered in this
study: (1) Parameters are not treated as individuals, but multiple parameters are iden-
tified simultaneously. For the two-parameter monthly water balance (TMWB) model,
parameters C and SC are estimated simultaneously. While for the Xinanjiang model,
the sensitive parameters are calibrated at the same time. (2) By generating a large
number of parameter sets as candidates in each sub-period, the proposed method
takes into account the parameter equifinality, while the traditional SSC method only
takes the optimal parameter set.

3. The non-stationary change in catchment characteristics may not be predicted. Lots
of uncertainty factors would prevent the estimation of future scenarios in catchments.
Reply: This study focuses on methods to identify time-varying parameters, and the
future research is considered to relate time-varying parameters and available infor-
mation, such as number of dams and population. Then the time-varying parameters’
function can be derived to predict future streamflow under the changing environment.

4. How to generally estimate the stable period, such as decades, years or months, con-
sidering catchment characteristics? It is vital for the method in this study. The impact of
sub-period lengths on the performance of SSC-DP is significant. Reply: Determination
of the stable period considers 3 factors: 1. Temporal scale of climate change or human
activities. The Wudinghe River basin is taken as a case study. Since 1960s, the soil
and water conservation measures were carried out in this basin to reduce the highly
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erodible loess, such as tree plantation, reservoir construction and land terracing. The
human activities lead to a durative and long-term change in the catchment characteris-
tic. Hence, the yearly sub-period is considered. 2. Seasonality. The Xun River basin is
taken as a case study. Contrary to the Wudinghe River basin, the relationship between
precipitation and runoff of the Xun River basin is rarely affected by human activities
during 1991-2001. However, its significant seasonal dynamics can be observed and
has been studied in literature (Lan et al. 2020, Lan et al. 2018). In order to diagnose
the seasonality, the stable period of 3-month is considered. 3. The simulation accu-
racy. The length should not be too long to capture the variations in physical processes,
while it should be long enough to reduce the uncertainty of calibration. Based on the
results of the synthetic experiments, it is suggested that the length should be as long
as possible without degrading the simulation performance significantly. For example,
in the synthetic experiment with the TMWB maodel, if the difference between the NSE
values of 6-SSC-DP and 3-SSC-DP is small, the preferred length is six months. The
determination of the sub-period length has been described in discussion as follows: It
is suggested that the determination of the sub-period length considers three factors: (1)
The temporal scale of climate change or human activities. For example, the Wudinghe
River basin is taken as a case study. The soil and water conservation measures lead to
a durative and long-term change in the catchment characteristic since 1960s. Due to
this, the yearly sub-period is preferred. (2) The seasonality. Contrary to the Wudinghe
River basin, the relationship between precipitation and runoff of the Xun River basin is
rarely affected by human activities during 1991-2001. However, its significant seasonal
dynamics can be observed and has been studied in literature (Lan et al. 2020, Lan et
al. 2018). In order to diagnose the seasonality, the stable period of 3-month is adopted.
(3) The simulation accuracy. The length should be neither too long nor too short so as
to increase the reliability of the calibration while guaranteeing that variations in real
processes are captured. Thus, given that the time scale of the variations is unknown,
the proposed SSC-DP can be used with different split-sample lengths. It is suggested
that the length should be as long as possible without degrading the simulation perfor-
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mance significantly. For example, in the synthetic experiment with the TMWB model,
if the difference between the NSE values of 6-SSC-DP and 3-SSC-DP is small, the
preferred length is 6-month. (Page 31~32, Lines 881~905)

5. The two lumped models were chosen in this study. The number of parameters is
different. The sensitivity analysis was further performed to reduce the dimension of pa-
rameters in the Xinanjiang model. Hence, the purpose of choosing two different lumped
models should be discussed. Reply: Two lumped models are chosen to evaluate the
applicability of the proposed method to hydrological models with different number of
parameters. Furthermore, the parameters of the TMWB model have been identified by
EnKF in the work of Deng et al. (2016), but the parameters of the Xinanjiang model are
scarcely recognized as time-variant. Hence, the use of the TMWB model is benefit for
comparison. The purpose of choosing two different lumped models has been added
as follows: There are two important differences between the TMWB and Xinanjiang
models: (1) the TMWB model has two parameters, while the Xinanjiang model has fif-
teen parameters; (2) TMWB is a monthly rainfall-runoff model, whereas the Xinanjiang
model can run on hourly or daily step sizes. (Page 9, Lines 178~181)

6. The titles cannot show the logic framework of the research. The flowchart is sug-
gested to be used to illustrate the framework in this study. The introduction of the
manuscript is suggested to present in the appendix. Reply: To avoid confusion, the
title of the Section 3, i.e., “Data and study area”, is replaced by “Synthetic experiment
and real catchment case study”. A flowchart describing the framework of the research
is added in Fig.1. The introduction of the methodologies is presented as follows: In this
section, a SSC-DP method is proposed to identify the time-varying parameters of hy-
drological models. The two hydrological models considered in this study are the TMWB
and Xinanjiang models. Their concepts and differences are presented in Sect. 2.1. A
sensitivity analysis is employed to focus efforts on parameters important to calibration
and avoid prohibitive computational cost, as outlined in Sect. 2.2. Three time-varying
parameter estimation methods (SSC, SSC-DP, and data assimilation) are presented
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in Sect. 2.3. The SSC and data assimilation are provided for comparisons with the
SSC-DP. Finally, to evaluate the performance of the time-varying parameter estimation
methods, six evaluation criteria are selected and formulated in Sect. 2.4. The flowchart
of the methodologies is shown in Fig. 1. (Pages 7, Lines 136-145)

7. The sensitive hydrograph phases of model performance criteria, i.e., RMSE, R2 and
NSE are peaks and discharge dynamics, flood peak, and discharge dynamics (Pfan-
nerstill et al., 2014). Three metrics have strong correlations. The results as shown in
Figure 5 needs furthermore discussion. Reply: Thanks for the comment. This com-
ment involves three aspects: (1) Three metrics are used to evaluate the streamflow
simulations. NSE coefficient, and two evaluation metrics have been added: relative er-
ror (RE) and the NSE on logarithm of streamflow (NSEIn). In the revised paper, these
evaluation metrics are described as follows: The streamflow simulations given by the
proposed method are verified using the NSE, relative error (RE) and NSE on logarithm
of streamflow (NSEIn) (Hock, 1999). RE evaluates the error of the total volume of
streamflow, while NSE and NSEIn evaluate the agreement between the hydrograph of
observations and simulations. NSE is more sensitive to high flows, but NSEIn focuses
more on low flows. Higher values of NSE, NSEIn and lower values of RE indicate bet-
ter streamflow simulations. To see the equations of NSE, RE and NSElIn, please refer
to the supplement.(Pages 15~16, Lines 324-333) Description of the evaluation results
has been added in Revised Manuscript as follows: iCY For results of the synthetic ex-
periment with the TMWB model Figure 6(a) presents the runoff simulation performance
for various scenarios. In scenario 1, the NSE values of the three SSC-DP methods
are all higher than that of EnKF. The results of NSEIn show no significant differences
among various methods. For scenarios 2, 4, and 6, where true parameters have lin-
ear trends, the 6-SSC-DP and 12-SSC-DP are superior to the EnKF and 3-SSC-DP
in terms of NSE and NSEIn. In scenario3, where the true parameters have periodic
variations and change every month, the NSE and NSEIn values of 6-SSC-DP and
12-SSC-DP decrease significantly, because the assumed sub-period length is longer
than the time-scale of actual variations. Similarly, in scenario 5, 12-SSC-DP performs
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worst for NSE and NSEIn, but 6-SSC-DP performs best. In scenario 7 and 8, both
6-SSC-DP and 12-SSC-DP perform better than EnKF. According to the evaluations of
NSE and NSEIn, the SSC-DP offers improved accuracy than the EnKF if the proper
length is chosen. Another advantage of the SSC-DP is the low RE. For all scenarios,
the SSC-DP methods significantly outperform for RE compared with EnKF. Among the
SSC-DP methods, the RE of 3-SSC-DP is the smallest. (Page 22, Lines 492~506)
iCY For results of the synthetic experiment with the Xinanjiang model The simulated
streamflow and identification of time-varying parameters was compared across four
methods: 1-SSC, SSC-EnKF, 1-SSC-DP, and 2-SSC-DP. The simulation performance
is summarized in Figure 9(a). For all scenarios, the NSE of 2-SSC-DP is the lowest,
but it performs better for low flows. The SSC-EnKF produces the highest RE in sce-
narios 2, 3 and 4, indicating the problem of simulating water balance. The SSC and
1-SSC-DP perform well for all scenarios in terms of NSE, RE and NSEIn. Wherein, the
SSC performs better than the 1-SSC-DP with regard to RE, while 1-SSC-DP is slightly
superior to SSC in scenario 3 with higher NSEIn. (Page 24, Lines 560~566) iCY For
results of case study in Wuding River basin The simulation performance is presented
in Figure 12. The values of the NSEs are relatively low, it is because the streamflow in
dry regions is difficult to simulate. It can be seen that the 12-SSC-DP gives the best
simulation results among different methods with the highest NSE, NSEIn and low RE.
Although the 12-SSC produces relatively high NSE, but it performs worst simulations
for low flows. The SSC-EnKF has relative high NSEIn, but the RE of it is the largest.
Overall, the 12-SSC-DP significantly improve the simulation performance of the Xinan-
jlang model in the Wuding River basin. (Page 26, Lines 706~713) iCY For results of
case study in Xun River basin The simulation performance is presented in Figure 15.
All methods performed well, with NSE values of 92.5 %, 93.0 %, 95.0 %, and 94.8
% for the conventional method, 3-SSC-EnKF, 3-SSC, and 3-SSC-DP, respectively. 3-
SSC and 3-SSC-DP also perform well for NSEIn compared with 3-SSC-EnKF and the
conventional method. However, as regards to RE, the values are 0.0007 and 0.0324
for 3-SSC-DP and 3-SSC-DP, respectively. It indicated that the 3-SSC-DP can better
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simulate water balance than the 3-SSC in the Xun River basin. (Page 28~29, Lines
785~806) (2) Three metrics are used to evaluate the parameter estimations. The esti-
mated parameters are evaluated by the RMSE (Alvisi et al., 2006), MARE (Khalil et al.,
2001) and R2 (Kim et al., 2007). RMSE and MARE quantifies the accuracy of the esti-
mated parameters, but RMSE is more sensitive to high values than MARE. R2 records
the overall agreement between the true and estimated parameters. Smaller values of
RMSE, MARE and higher values of R2 indicate stronger parameter identification ability.
To see the equations of RMSE, MARE and R2, please refer to the supplement. (Pages
16-17, Lines 334-345) Description of the evaluation results has been added in Revised
Manuscript as follows: iCY For results of the synthetic experiment with the TMWB
model Figures 6 (b) and (c) focuses on the ability of the four methods to identify time-
varying parameters. It can be seen that the RMSE and MARE values of the 3-SSC-DP
are larger than those of other methods in most cases. That is because the sub-period
length that serves as a calibration period for MCMC is too short (i.e., three months)
that the estimated parameters are associated with higher uncertainties. Regarding the
synthetic true parameters are a constant value (scenario 1), 12-SSC-DP gives the best
performance with the lowest RMSE, MARE and highest R2. The observations and
estimated parameters are presented in Figure 7 (b). It shows that the estimated pa-
rameters obtained by EnKF vary at every time step, resulting in larger deviations from
the observations than 6-SSC-DP and 12-SSC-DP. When the synthetic true parameters
vary linearly (scenarios 2, 4, and 6), 12-SSC-DP produces best estimations in compar-
ison with EnKF, 3-SSC-DP, and 6-SSC-DP. The performances of 6-SSC-DP and EnKF
are similar. When the synthetic true parameters vary sinusoidally from month to month,
EnKF gives the best estimations in scenario 3. The poor performances of 6-SSC-DP
and 12-SSC-DP can be explained by the sub-period length being much longer than the
actual one. When the parameters vary periodically at six-month intervals (scenario 5),
6-SSC-DP yields the best performance with the lowest RMSE, MARE and highest R2.
The differences of estimation performances among 3-SSC-DP, 12-SSC-DP and EnKF
are small. The estimated parameters for scenario 5 have been plotted in Fig. 7(a).
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Although 3-SSC-DP and 12-SSC-DP have different lengths of sub-periods, they can
also detect the correct seasonal signal of the parameters. For the annual variation in
parameters (scenario 7), 12-SSC-DP and 6-SSC-DP produce better results than EnKF.
Similar results can be seen in scenario 8 where C has a combined variation from year
to year. In summary, the results indicate that the SSC-DP with a suitable length can es-
timate more accurate parameters than EnKF. (Pages 22~24, Lines 507-546) iCY For
results of the synthetic experiment with the Xinanjiang model Figures 9(b) and (c) com-
pares the time-varying parameter estimation performance among the four methods. In
scenarios 1 and 2, 2-SSC-DP produces the lowst RMSE, MARE and R2, followed by
the 1-SSC-DP. The 1-SSC-DP is slightly superior to the 1-SSC and significantly out-
performs the SSC-EnKF for the two scenarios. When the synthetic true parameters
vary sinusoidally from month to month (scenario 3), the estimated parameters are plot-
ted in Fig. 10. It can be seen that 1-SSC-DP successfully detects seasonal signal in
every parameter. The SSC-EnKF performs well for R2, but it has high MARE. Although
the average MARE of the SSC and 2-SSC-DP are lower than that of SSC-EnKF, the
R2 of them are relatively low. Therein, form Fig. 10, the estimated parameters by
the 1-SSC fluctuate generally periodically, but the variations are dramatic, resulting in
lowest R2 for ClI, KI, KG and NK. The estimated parameters of the 2-SSC-DP fluctu-
ate more slowly, but the sub-period length is too long. In scenario 4, 1-SSC performs
better than the SSC-EnKF and 2-SSC-DP, but is still slightly inferior to the 1-SSC-DP.
Overall, the 1-SSC-DP achieves higher-quality and more robust parameter estimations
performances than the other methods. (Pages 24, Lines 652-666) (3) The figure 5 is
replaced by Figure 6 in the Revised Manuscript. The results as shown in Figure 6 have
been presented in the reply (2) of R1-C7.

8. The streamflow, climate and underlying surface conditions in the two study areas

were not analyzed in this study. However, it is critical to the estimation of time-varying

parameters. Reply: Figure 5 has been modified. The details of the Wuding River basin

have been added as follows: As illustrated in Fig. 5(a), the station furthest downstream,

Baijiachuan, drains an area of 29,662 km2 (98 % of the total basin) and records the
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daily runoff data. The data of the daily precipitation and streamflow in the Wuding River
basin were obtained from the local Hydrology and Water Resources Bureau of China,
the quality of which has been checked by the official authorities, and there are no gaps
among these data for all the hydrological stations. It can be seen from Fig. 5(c) that the
annual streamflow in the Wudinghe River basin has a distinct decreasing trend, while
seasonal variations are not significant, but the annual precipitation and pan evaporation
generally have no trend, suggesting the impacts of human activities on rainfall-runoff
relationships. (Pages 19~20, Lines 429-440)

The details of the Wuding River basin have been added as follows: As illustrated in Fig.
5(a), the station furthest downstream, Baijiachuan, drains an area of 29,662 km2 (98 %
of the total basin) and records the daily runoff data. The data of the daily precipitation
and streamflow in the Wuding River basin were obtained from the local Hydrology and
Water Resources Bureau of China, the quality of which has been checked by the official
authorities, and there are no gaps among these data for all the hydrological stations. It
can be seen from Fig. 5(c) that the annual streamflow in the Wudinghe River basin has
a distinct decreasing trend, while seasonal variations are not significant, but the annual
precipitation and pan evaporation generally have no trend, suggesting the impacts of
human activities on rainfall-runoff relationships. (Pages 19~20, Lines 429-440) The
details of the Xun River basin have been added as follows: It can be observed from
Fig. 5(d) that no trend is found in annual precipitation, pan evaporation and streamflow,
suggesting that the relationship between precipitation and runoff of the Xun River basin
is rarely affected by human activities during 1991-2001. However, there exhibits strong
seasonal patterns in these three climatic and hydrological variables, suggesting that
seasonal variations in hydrological parameters should be considered. (Pages 21, Lines
472-477)

9. In lines 175-176, the assumption that the continuity condition aims to minimize
the difference between the estimated parameters for sub-periods i and i+1 unreason-
able. The differences between two consecutive sub-periods represent the time-varying
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changes of the catchment. The continuity conditions for enhancing the model perfor-
mance should focus on the model structure, such as state variables. Reply: Thanks
for the comment. The main hypothesis of parameter continuity is justified as follows:
1. The hypothesis of parameter continuity can be found in the model prediction pro-
cess of the ensemble Kalman filter (EnKF). Therein, the values of the parameters at
the time step t+1 are forecasted by perturbing those of parameters from the time step
t. To see the equation, please refer to the supplement.In the equation,there is a white
noise following a Gaussian distribution with zero mean and specified covariance of
,R_t, which is very small. That is, the fluctuations between parameters of adjacent
sub-periods can be little. 2. Some conceptual hydrological parameters reflect the
catchment characteristics, such as soil water storage capacity in the Xinanjiang model.
While climate change and human activities exert influence on catchment characteris-
tics, the soil water storage capacity can hardly change dramatically in a very quick time,
such as an hour. Hence, it is reasonable to consider parameter continuity in estimating
time-varying parameters. This point has been added in the Revised Manuscript as fol-
lows: Some conceptual hydrological parameters reflect the catchment characteristics.
While climate change and human activities exert influence on these catchment charac-
teristics, they can hardly change dramatically in a very quick time, such the soil water
storage capacity. (Pages 5, Lines 89-92)

10. Minor comment. The resolution of Figure 5 is low and information is not presented.
Reply: The Figure 5 is replaced by Figure 6 in the Revised Manuscript to be easier to
read.

Bardossy, A. (2007) Calibration of hydrological model parameters for ungauged
catchments. Hydrology and Earth System Sciences 11(2), 703-710. Lan, T., Lin, K.,
Xu, C.-Y., Tan, X. and Chen, X. (2020) Dynamics of hydrological-model parameters:
mechanisms, problems and solutions. Hydrology and Earth System Sciences 24(3),
1347-1366. Lan, T, Lin, K.R., Liu, Z.Y,, He, Y.H., Xu, C.Y., Zhang, H.B. and Chen,
X.H. (2018) A Clustering Preprocessing Framework for the Subannual Calibration of
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a Hydrological Model Considering Climate-Land Surface Variations. Water resources
research 54(0). Deng, C., Liu, P, Guo, S, Li, Z. and Wang, D. (2016) Identification of
hydrological model parameter variation using ensemble Kalman filter. Hydrology and
Earth System Sciences 20(12), 4949-4961.

Please also note the supplement to this comment:
https://hess.copernicus.org/preprints/hess-2019-639/hess-2019-639-AC1-
supplement.pdf

Interactive comment on Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-
639, 2019.
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Fig. 1. Figure 1 The flowchart of the methodologies
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Fig. 2. Figure 6 Comparison between the EnKF and SSC-DP methods for (a) streamflow
simulation and identification of (b) parameter C and (c) parameter SC.
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Fig. 3. Figure 9 Comparison among the SSC, SSC-EnKF and SSC-DP methods for (a) stream-
flow simulation and parameter identification in terms of (b) RMSE, (c) MARE and (d) R2.
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Fig. 5. Figure 15 Simulation performance for streamflow in the Xun River basin.
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Fig. 6. Figure 5 Location of (a) Wuding River basin and (b) Xun River basin. The plots (c)
and (d) show the average yearly and monthly variations of precipitation, pan evaporation and
streamflow in the Wuding
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