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Abstract. We apply the hydrologic landscapes (HL) concept to assess the hydrologic vulnerability of the western 26 

United States (U.S.) to projected climate conditions. Our goal is to understand the potential impacts of hydrologic 27 

vulnerability for stakeholder-defined interests across large geographic areas. The basic assumption of the HL approach 28 

is that catchments that share similar physical and climatic characteristics are expected to have similar hydrologic 29 

characteristics. We use the Hydrologic Landscape vulnerability approach (HLVA) to map the HLVA index (an 30 

assessment of climate vulnerability) by integrating the HL approach into a retrospective analysis of historical data to 31 

assess variability in future climate projections and hydrology, which includes temperature, precipitation, potential 32 

evapotranspiration, snow accumulation, climatic moisture, surplus water, and seasonality of water surplus. Projections 33 

that are beyond two-standard deviations of the historical decadal average contribute to the HLVA index for each 34 

metric. Separating vulnerability into these seven separate metrics allows stakeholders and/or water resource managers 35 

to have a more specific understanding of the potential impacts of future conditions. We also apply this approach to 36 

examine case studies for particular locations. The case studies (Mt. Hood, Willamette Valley, and Napa-Sonoma 37 

Valley) are important to the ski and wine industries and illustrate how our approach might be used by specific 38 

stakeholders. The resulting vulnerability maps show that temperature and potential evapotranspiration are consistently 39 

projected to have high vulnerability indices for the western U.S. Precipitation vulnerability is not as spatially uniform 40 

as temperature. The highest elevation areas with snow are projected to experience significant changes in snow 41 

accumulation. The seasonality vulnerability map shows that specific mountainous areas in the West are most prone to 42 

changes in seasonality, whereas many transitional terrains are moderately susceptible. This paper illustrates how HL 43 

and the HLVA can help assess climatic and hydrologic vulnerability across large spatial scales. By combining the HL 44 

concept and HLVA, resource managers could consider future climate conditions in their decisions about managing 45 

important economic and conservation resources.  46 

1 Introduction 47 

A stable and predictable water supply is imperative for food security, ecosystem sustainability, economic stability, 48 

and even national security (National Intelligence Council, 2012), and is related the threats of increased flooding, 49 

droughts, wildfire, and more extreme temperatures (Mancosu et al., 2015; Mekonnen and Hoekstra, 2016). The 50 

recognition of the potential socio-ecological threats of climate change on the water supply is a critically important 51 

topic, and the development of planning tools that identify vulnerabilities to these systems could help decision-makers 52 

assess the risks of environmental changes imposed by climate as well as other contemporary risks (e.g., population 53 

growth and habitat conversion) (Glick et al., 2011; Lawler et al., 2010). Climatic and hydrologic change will not 54 

impact stakeholders equally across sectors, thus the specific concerns and adaptation strategies of different industries 55 

threatened by those risks will vary. The hydrologic landscapes vulnerability assessment described herein provides a 56 

relatively simple approach for assessing hydrologic vulnerability based upon inferences of hydrologic behavior (using 57 

hydrologic landscapes) in response to climatic impacts. This approach can be applied across large geographic regions 58 

and can potentially benefit numerous sectors, including environmental, economic, and other ecosystem services. 59 
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Numerous studies have examined projected changes in climate and hydrology on regional and national scales that 60 

included the western United States (U.S.). The Fourth National Climate Assessment is a comprehensive resource for 61 

climate-related research in the U.S. (U.S. Global Change Research Program (USGCRP), 2018). Nolin and Daly (2006) 62 

mapped climate-related risk to snow-dominated areas and ski areas in the Pacific Northwest (PNW, which includes 63 

Washington, Oregon, and Idaho). Mote et al. (2005) compared the spatial patterns of snow water equivalent 64 

observations to model simulations in the western U.S. Brown and Mote (2009) examined projected changes in snow 65 

water equivalent globally based on 14 model projections. Barnett et al. (2005) identified potential climate-driven water 66 

supply deficits in snow-dominated areas around the globe, although rising water demands have been found to greatly 67 

outweigh potential climate impacts on future (year 2025) water supply (Vorosmarty et al., 2000). McAfee (2013) 68 

examined projected changes in potential evapotranspiration (PET, calculated using numerous methods) and found 69 

regional analyses to be more inconsistent than studies across the conterminous U.S., which indicated sensitivities to 70 

the methods used. Hill et al. (2013, 2014) predicted thermal vulnerability of streams and river ecosystems to climate 71 

across the U.S., while Battin et al. (2007) found that salmon habitat in snow-dominated streams was more vulnerable 72 

than habitat in lowland streams. The analyses of Nijssen et al. (2001) on hydrologic sensitivity of rivers globally 73 

found: 1) ubiquitous warming, with greatest warming in winter months at higher latitudes, 2) more precipitation with 74 

high variability, 3) early to mid-spring snowmelt caused increased spring streamflow peak in coldest basins, decreased 75 

spring runoff and increased winter runoff in transitional basins, 4) tropical or mid-latitude basins had decreased annual 76 

runoff, and 5) high latitude basins had increased annual streamflow. While snow-fed streams in the western US seem 77 

less likely to change flow regimes, perennial and intermittent, rain-fed streams are more likely to change in flow 78 

regime (Dhungel et al., 2016). In response to droughts of the recent past, Mann and Gleick (2015) highlight the strong 79 

correlation between very hot years and very dry years; thus as temperatures increase at the upper extreme, precipitation 80 

is becoming more scarce. A study by Cook et al. (2015) found a growing risk of unprecedented drought in the western 81 

U.S. based on temperature projections and no clear pattern in future precipitation.  82 

“Vulnerability” has been defined in many ways, depending upon discipline and application (Adger, 2006; Füssel, 83 

2007). Vulnerability assessments often integrate exposure, sensitivity, and adaptive capacity to stressors (Adger, 2006; 84 

Füssel, 2007; Füssel and Klein, 2006; IPCC, 2014). Researchers have studied vulnerability at varying scales across 85 

numerous regions for a diversity of stakeholders, and they tend to focus on the most relevant metrics for their particular 86 

application (Farley et al., 2011; Glick et al., 2011; IPCC, 2014; Nolin and Daly, 2006; U.S. Global Change Research 87 

Program, 2011; Watson et al., 2013). Yet, better products and services are needed to enable local communities to plan 88 

for and respond to hydrologic change, which includes services that improve understanding, observing, forecasting, 89 

and warning about significant hydrologic events (Tansel, 2013). Glick et al. (2011) and Lawler et al. (2010) both 90 

emphasize the importance to managers of understanding the potential impacts of climate on the resources that they 91 

manage. 92 

There have been many efforts to assess hydrologic vulnerability related to specific stakeholders, ecosystems, or 93 

locations. For example, Vӧrӧsmarty et al. (2000) examined the vulnerability of global water resources to changes in 94 
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climate and population growth. Hill et al. (2014) assessed stream temperature vulnerability to climate for sites across 95 

the U.S. In another example, Winter (2000) suggested that the vulnerability of wetlands to changes in climate depends 96 

upon their position within the hydrologic landscape.  97 

There are opportunities to build upon previous efforts to map hydrologic vulnerability across large geographic areas, 98 

while creating tools that stakeholders may use to understand the potential impacts for their asset of interest in specific 99 

watersheds. Winter (2001) described the concept of classifying the physical landscape and climatic properties of large 100 

landscape units based on hydrologic landscapes (HL). Surface and ground water availability in watersheds is impacted 101 

by differences in geology, terrain, soils, seasonal temperature patterns, precipitation magnitude, and precipitation 102 

timing (Tague et al., 2013; Winter, 2001) and are not uniform across regions (Hamlet, 2011; Jung and Chang, 2012; 103 

Tague and Grant, 2004). Catchments that share similar key physical and climatic characteristics are expected to have 104 

similar hydrologic characteristics; i.e., surface and ground water interactions, deposition, timing, and accumulation of 105 

precipitation, surface runoff patterns, and groundwater flow (Nolin, 2011; Thompson and Wallace, 2001).  106 

The HL concept has been applied to the U.S. using a clustering method (Wolock et al., 2004) to develop twenty non-107 

contiguous regions, which were much larger than the catchment scale. Since that effort, modified approaches have not 108 

used clustering approaches, but have used catchment-based classification in Oregon (Leibowitz et al., 2014; Patil et 109 

al., 2014; Wigington et al., 2013), Nevada (Maurer et al., 2004), the PNW (Comeleo et al., 2014; Leibowitz et al., 110 

2016), and Bristol Bay, Alaska (Todd et al., 2017). In applying the HL approach in Oregon and the PNW, the clustering 111 

approach was abandoned for a conceptual approach based upon important factors known to contribute to hydrologic 112 

flow (Wigington et al., 2013), where two climatic factors and three landscape characteristics were categorized for each 113 

catchment; the resulting classification allows the estimation of catchment-scale hydrologic behavior across large 114 

spatial scales. The approach shows promise in predicting seasonal and monthly hydrologic patterns (Leibowitz et al., 115 

2014). Leibowitz et al. (2014) adapted the classification system applied by Wigington et al. (2013) to illustrate the 116 

applicability of HLs at the watershed scale for representing normal (1971-2000) monthly average streamflow in three 117 

case study watersheds in Oregon. They used climate projections (2041-2070) to estimate hydrologic behavior of 118 

watersheds relative to 1971-2000. Leibowitz et al. (2016) expanded the approach and applied the HL classification to 119 

Oregon, Washington, and Idaho. The more recent studies using the hydrologic landscape classification approach have 120 

been applied at a watershed scale (Patil et al. 2014, Leibowitz et al. 2016, Todd et al. 2017).  121 

A number of tactics have been used to investigate the influence of climate on hydrologic behavior (Luce and Holden, 122 

2009; Safeeq et al., 2014; Vano et al., 2015). To extend the work previously completed from HL-based climate 123 

projections, we assess hydrologic vulnerability at the catchment scale by integrating the HL approach into an analysis 124 

of climatic variability. Our hydrologic landscape vulnerability approach (HLVA) provides spatially continuous, 125 

application-specific estimates of climatic vulnerability (maps of the HLVA indices). One of the benefits of the HLVA 126 

is to place recent and projected environmental changes in the context of available historic data. In the HLVA, we use 127 

proxies for the three components of vulnerability: a) historic climate data and their derivatives as proxies for sensitivity 128 

(the sensitivity of a particular system to each variable); b) climate projections as proxies for exposure (the future 129 
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projected condition increases or decreases a system’s exposure to a change); and c) qualitative considerations of 130 

ecosystems, stakeholders, or industries as proxies for adaptive capacity (the presence of a system in a location is 131 

indicative that the system has historically had sufficient adaptive capacity to exist in that area). Using HLVA, we 132 

examine vulnerability to changes in temperature, precipitation, potential evapotranspiration, snow accumulation, 133 

surplus water, climatic moisture, and seasonality of the water surplus. This method highlights areas that are projected 134 

to experience deviations from historic conditions to understand the patterns in magnitude, timing, and type of 135 

precipitation and the quantity and seasonality of available water at a catchment scale. These estimates of hydrologic 136 

vulnerability could offer important insight into the potential resilience of socially and economically valuable locations 137 

and stakeholders in an area. 138 

We assess the hydrologic vulnerability of socially and economically valuable locations by applying the HL concept 139 

using climatic projections in the western U.S. We analyzed the output from the HL analyses to address three research 140 

objectives: 1) develop an index of vulnerability based on climate; 2) map areas that are projected to be more vulnerable 141 

to environmental change; and 3) determine the vulnerability indices for socially and economically valuable locations, 142 

including three example case studies for regional industries that are economically important in the region. By 143 

integrating the concept of hydrologic landscape classification, hydrologic vulnerability, and climatic impacts, this 144 

study lays the groundwork for making spatially explicit generalizations about the hydrologic vulnerability of socially 145 

and economically valuable locations across large landscapes. 146 

2 Methods 147 

2.1 Study Area 148 

The study area includes the states of Washington, Oregon, Idaho, California, Nevada, and Arizona in the western U.S. 149 

(Fig. 1). These states extend across a wide range of climates and diverse physiographic settings. The lowest elevation 150 

across the six states is 85 m below sea level (Death Valley, California), while the highest elevation is 4421 m above 151 

sea level (Mt. Whitney, California) [U.S.G.S. National Elevation Dataset available at: 152 

https://nationalmap.gov/elevation.html]. The Sierra-Nevada Mountains are oriented in a north-south direction near the 153 

eastern border of California and transition to the Cascade mountain range that is oriented north-south through Oregon 154 

and Washington (US Topo Quadrangles available at: https://nationalmap.gov/ustopo). There are numerous other 155 

mountain ranges in the other states as well. The Sierra-Nevada and Cascade mountain ranges generate orographic 156 

effects that cause upwind areas to the west to have greater precipitation relative to the downwind, eastern regions 157 

(Dettinger et al., 2004; Siler et al., 2013). High elevation areas receive most of their precipitation as snow (Brekke et 158 

al., 2009; Mote et al., 2005), while lowland and coastal areas receive predominantly rain (Brekke et al., 2009; Mock, 159 

1996), but much of the study area receives a balance of snow and rain. The topographic differences drive precipitation 160 

patterns across the area and cause differences in the total annual precipitation or the seasonality of maximum 161 

precipitation (Mock, 1996). In the arid southwest, summer monsoons deliver most of the annual precipitation , whereas 162 

in the PNW, winter rains and snows prevail (Mock, 1996). However, the western U.S. is regularly affected by 163 
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atmospheric rivers that deliver large quantities of rain or snow over short periods (Dettinger, 2011; Hidalgo et al., 164 

2009). The seasonal variability of surface air temperature varies widely across the study area. Portions of each state 165 

are classified as deserts with summer maximum temperatures regularly exceeding 40°C (NOAA State Climate 166 

Extremes Committee, 2016). Each state has also recorded temperatures less than -40°C (NOAA State Climate 167 

Extremes Committee, 2016). Some areas have mild climates with little seasonal variation in temperature (Daly, 168 

2016b). Geology in the study area varies from high permeability sedimentary deposits or relatively recent volcanic 169 

deposits, to low permeability igneous metamorphic and sedimentary formations and older volcanics (Comeleo et al., 170 

2014; Stratton et al., 2016). 171 

2.2 Hydrologic landscape classification 172 

Assessment units (AUs) are aggregations of NHDPlusV2 catchments (McKay et al., 2012) that were grouped to have 173 

a target area of 80 km2, as described in Leibowitz et al. (2016). In this study, the same assessment units used in 174 

Leibowitz et al. 2016 study have been used and their method applied to the expanded six state study region to delineate 175 

29,097 assessment units for the study's expanded 6 state study region. For this analysis, we retain an AU if its centroid 176 

was located within the boundary of our project area or if the AU extended across an international boundary. All AU 177 

polygons are clipped to the international boundary of the U.S. These conditions allow us to avoid edge effects at 178 

international and state borders by avoiding overlapping AUs at state boundaries and analyzing the HLs up to all 179 

international borders.  180 

Building upon Winter’s (2001) approach and the Wolock et al. (2004) clustering approach, Wigington et al. (2013) 181 

developed their simple conceptual HL classification based on climatic and physical characteristics of the physical 182 

watershed. They combined five indices related to hydrologic flow (Fig. 2a) to characterize the major drivers that 183 

control the magnitude and timing of water movement through the landscape and into the groundwater or stream 184 

network: (1) climate, which describes the overall water availability, (2) seasonality of water surplus, which is the 185 

season when the maximum excess of water is available to infiltrate into the soil or flow as surficial runoff, (3) 186 

subsurface permeability, (4) terrain, and (5) surface permeability. Note that Wigington et al. (2013) referred to 187 

subsurface and surface permeability as aquifer and soil permeability, respectively. The five HL indices, described in 188 

more detail below (Sections 2.2.1 through 2.2.5), are concatenated into a 5-character HL code (e.g., WsLMH, SwHTH, 189 

or DfHfL) that characterizes an AU. 190 

Leibowitz et al. (2016) modified the Wigington et al. (2013) approach by including: the use of assessment units based 191 

on National Hydrography Dataset Plus V2 catchments, a modified snowmelt model that was validated over a broader 192 

area, a subsurface permeability index that does not require pre-existing aquifer permeability maps, and a surface 193 

permeability threshold based on objective criteria. Using this modified method (herein described as the modified 194 

Wigington et al. (2013) approach), they developed an HL map of the PNW. Here, we used the modified Wigington et 195 

al. (2013) approach to develop an HL classification of California, Nevada, and Arizona. This was then combined with 196 

the PNW map (Leibowitz et al., 2016) to create an HL map of the study area.  197 
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2.2.1 Climate 198 

The Wigington et al. (2013) approach derived the climate index from the Feddema Moisture Index (FMI) (Feddema, 199 

2005): 200 

𝐹𝐹𝐹𝐹𝐹𝐹 =  �
1 − 𝑃𝑃𝑃𝑃𝑃𝑃

𝑃𝑃
    𝑖𝑖𝑖𝑖 𝑃𝑃 ≥ 𝑃𝑃𝑃𝑃𝑃𝑃

𝑃𝑃
𝑃𝑃𝑃𝑃𝑃𝑃

− 1    𝑖𝑖𝑖𝑖 𝑃𝑃 < 𝑃𝑃𝑃𝑃𝑃𝑃
    (1) 201 

where FMI (Eq. (1)) values range from -1.0 (arid) to 1.0 (very wet). P is the mean precipitation (mm) over a 30-year 202 

period, which is derived from climate data described in Section 2.3, and PET is the potential evapotranspiration (mm) 203 

calculated using the Hamon (1961) method, that utilizes mean daily temperature, daytime length (calculated based on 204 

latitude), and a calibration coefficient. The range of FMI values was the basis for defining a climate index consisting 205 

of six classes: arid (A; -1.0 ≤ FMI < -0.66), semiarid (S; -0.66 ≤ FMI < -0.33), dry (D; -0.33 ≤ FMI < 0.0), moist (M; 206 

0.0 ≤ FMI < 0.33), wet (W; 0.33 ≤ FMI < 0.66), and very wet (V; 0.66 ≤ FMI < 1.0) (Wigington et al., 2013). FMI 207 

was calculated from regional precipitation rasters (described in Section 2.3) for each period of interest. The FMI value 208 

was then averaged over each AU. 209 

2.2.2 Seasonality 210 

We used the Leibowitz et al. (2016) approach to develop a seasonality index that identifies the season of the maximum 211 

monthly average snowpack-corrected surplus water (S’m):  212 

𝑆𝑆𝑚𝑚′ = 𝑆𝑆𝑚𝑚 −  𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑚𝑚∗  213 

 𝑆𝑆𝑚𝑚′ = (𝑃𝑃𝑚𝑚 −  𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚) −  (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚∗ − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚−1
∗ )  (2) 214 

where S’m (Eq. (2)) is the average snowpack-corrected water surplus (mm) for month m, Sm is monthly water surplus 215 

(P - PET), and Pm and PETm are monthly precipitation and monthly PET, respectively. PACKm
* is a monthly bias-216 

corrected snowpack value (in mm of snow water equivalent, or SWE) restricted to values greater than zero, based on 217 

the Leibowitz et al. (2016) modifications to the Leibowitz et al. (2012) snowpack model. Note that 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑚𝑚∗ can have 218 

negative values, which represents snow melt. For each month, S’m was calculated for the regional raster, before 219 

identifying the month of maximum S’m for the majority of pixels in each AU. The month of maximum S’m was used 220 

to identify the season of maximum S’m based upon four seasonality classes: fall (f; October–December), winter (w; 221 

January–March), spring (s; April–June), and summer (u; July–September). The PNW analysis by Leibowitz et al. 222 

(2016) only included two seasonality classes; summer seasonality did not occur, while fall and winter were combined 223 

into a winter class, since this represented the PNW’s wet season. For this analysis, winter and fall were separated and 224 

all four seasonality classes were used, because fall and winter are distinct seasons in other parts of the nation. 225 

2.2.3 Subsurface permeability 226 
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Leibowitz et al. (2016) utilized the Comeleo (2014) aquifer permeability dataset. We applied a similar approach to the 227 

Stratton et al. (2016) aquifer permeability datasets, which is herein referred to as subsurface permeability. Each dataset 228 

classifies the subsurface permeability into high (H) and low permeability (L) classes, which are assigned with a 229 

threshold of 8.5 x 10-2 m day-1 hydraulic conductivity. Using these data, we analyzed the subsurface permeability of 230 

each AU by identifying the subsurface permeability class for the majority of pixels within each AU in California, 231 

Nevada, and Arizona.  232 

2.2.4 Terrain 233 

To classify terrain, we used the same approach as Wigington et al. (2013). We analyzed a 30 m Digital Elevation 234 

Model to classify the landscape based upon the topographic characteristics of each AU. “Mountainous” (M) areas had 235 

AUs with <10 % of the area identified as flat (< 1 % slope) and greater than 300 m of total relief. AUs with more than 236 

50 % area having < 1 % slope were classified as “flat” (F). All other AUs were identified as “transitional” (T). 237 

2.2.5 Surface permeability 238 

For surface permeability, the Leibowitz et al. (2016) HL approach utilized the STATSGO soil permeability raster 239 

developed by Pennsylvania State University Center for Environmental Informatics (www.cei.psu.edu) for the top 10 240 

cm of soil (Miller and White, 1998) in the conterminous U.S. The STATSGO soils database was selected because of 241 

its complete coverage of the conterminous U.S., despite SSURGO’s higher spatial resolution, yet incomplete coverage 242 

of the study area. Leibowitz et al. (2016) identified whether the majority of each AU had high (H; >1.52 cm/hr) or 243 

low (L; ≤ 1.52 cm h-1) soil permeability. We applied the same approach to classify surface permeability of each AU 244 

into two classes throughout the region. 245 

2.3 Climate analyses 246 

2.3.1 Climate normal (1971–2000) 247 

The climate normal was defined as the 1971-2000 period to align with the Leibowitz et al. (2016) study. Average 248 

monthly precipitation and mean temperature were acquired from Parameter-elevation Regressions on Independent 249 

Slopes Model (PRISM; Daly, 2016b) data for our normal climatic period at a resolution of approximately 400 m. The 250 

PRISM Climate Mapping Program is an ongoing effort to produce detailed, spatial climate datasets (Daly, 2016a; 251 

Daly et al., 2000). PRISM uses point measurements of climate data and a digital elevation model to map climate across 252 

the U.S. from 1895–present, including regions impacted by high mountains, rain shadows, temperature inversions, 253 

coastal regions, and associated complex meso-scale climate processes. Using ArcGIS (ESRI, 2016), the data were 254 

clipped to the project boundary and used to calculate the average for seven metrics: monthly temperature (°C), 255 

precipitation (mm), PET (mm), surplus water (mm), snow water equivalent (mm), the FMI climate index (unitless), 256 

and seasonality of water surplus (unitless). Each metric is an input to or products of the HL classification process. 257 

2.3.2 Historical climate analyses (1901–2010) 258 

Unlike the 1971-2000 monthly precipitation and temperature data, a time series of gridded monthly historical climate 259 

data at a spatial resolution of 400 m was not available without paying a fee. However, daily PRISM data were freely 260 
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available at 4 km resolution, so we used these to develop the historical climate analyses for the 1901–2010 period. 261 

These gridded data for daily mean temperature and precipitation were clipped to the project boundary and averaged 262 

for each month over each decade (i.e., 1901–1910, 1911–1920, etc.). The data were then statistically downscaled to 263 

400 m using the delta method (Hijmans et al., 2005; Ramirez-Villegas and Jarvis, 2010) to match the spatial and 264 

temporal resolution of the climate normal data (using the 400 m resolution, monthly PRISM climate normal for 1971–265 

2000 period as the high resolution dataset). We acknowledge the inaccuracies and uncertainty imposed in the 266 

temperature and precipitation datasets by applying the downscaling functions to the original climate projections. While 267 

the 400m data clearly have greater resolution and less error than the 4km data, these data were to be aggregated to 268 

assessment units with a mean area of 56 km2. In practice, the larger 4km resolution of the downscaled historical 269 

analysis should still be appropriate for the scale of the assessment units, thus the trade-offs were deemed acceptable 270 

and preferable for characterizing the hydrology and climate for these analyses with no additional budget requirements.  271 

Based on the approaches described, the downscaled data were used to calculate the average monthly PET, surplus 272 

water, snow water equivalent, FMI, and seasonality of water surplus for each decade (Fig. 2b). Summary figures were 273 

generated from this data depicting spatial distribution of climate and seasonality for each decade across the project 274 

area. These data were compared to the climate normals using spatially continuous time series analyses (Fig. S1). 275 

 2.3.3 Future climate analyses (2041–2070) 276 

In order to explore the potential range of modeled climatic response for the study area, we selected ten climate model 277 

projections from the full ensemble of World Climate Research Programme’s Coupled Model Intercomparison Project 278 

phase 5 multi-model ensemble climate dataset projections (WCRP CMIP5; http://cmip-pcmdi.llnl.gov/cmip5; Taylor 279 

et al., 2012). These models are based on the Representative Concentration Pathway (RCP) 8.5 emissions scenario, 280 

which assumes the highest rate of emissions into the 21st century and most closely relates to conditions observed to 281 

date (Schwalm et al., 2020). To reduce the complexity of the analyses, we used only this one emissions scenario. To 282 

select the specific model simulations to use in this study, we used the U.S. Environmental Protection Agency’s (EPA) 283 

LASSO tool (lasso.epa.gov; U.S. EPA, 2020) to generate a scatterplot comparing future temperature and precipitation 284 

change for the different CMIP5 models over the project area. Using the scatterplot and the approach described by U.S. 285 

EPA (2020), we subjectively selected ten models that spanned the entire range of predicted climatic responses of the 286 

full ensemble in a distributed manner (Fig. 3), including drier, wetter, colder, and warmer responses. Average monthly 287 

precipitation and temperature for the ten projections (Table 1) were acquired from the monthly Bias-Correction and 288 

Spatial Disaggregation (BCSD) archive (Bureau of Reclamation, 2014) for the 2041–2070 period. These data were 289 

clipped to the project boundary and resampled to a 400 m grid using a bilinear approach (ESRI ArcGIS v10.4) to 290 

match the resolution and spatial extent of the climate data. The average monthly PET, surplus water, snow water 291 

equivalent, FMI, and seasonality of water surplus were calculated from the future climate data for each assessment 292 

unit. Example figures were generated that illustrate the spatial distribution of the differences in FMI (Fig. S1 and S2) 293 

and seasonality of water surplus (Fig. S3 and S4) from the normal period for each climate projection (Fig. 2c). 294 

2.4 Mapping vulnerability indices 295 
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As discussed in the introduction, vulnerability can be measured by assessing the exposure, sensitivity, and adaptive 296 

capacity of a system to change (Adger, 2006; Füssel, 2007; Füssel and Klein, 2006; IPCC, 2014). Hydrology and 297 

climate are primary forcing factors for ecosystems (Nelson, 2005) and are critical to certain industries and stakeholders 298 

in particular areas, and thus analyses of historic variation in hydrology and climate in an area can serve as proxies for 299 

the historical sensitivity of those systems to environmental change. Likewise, we used future climate projections as a 300 

proxy for exposure. Projections that fell outside of historic observations were assumed to be associated with increased 301 

exposure to the forcing factors for environmental change, which include hydrology and climate. In terms of adaptive 302 

capacity, we assumed that the systems present in a location are adapted to the historic variability in conditions. We 303 

also assumed that the systems would become stressed by conditions far outside of those previously experienced. 304 

Further, we suggest that the greater the number of future climate projections that exceed or fall far below the historic 305 

range, the more vulnerable a system will be with respect to climate-induced changes. Thus, HLVA places projected 306 

environmental changes in the context of historic trends. The HLVA assesses vulnerability to changes in temperature, 307 

precipitation, potential evapotranspiration, surplus water, snow accumulation, climatic moisture, and seasonality of 308 

the water surplus by identifying areas that are projected to experience future deviations from historic conditions (Fig. 309 

2e). 310 

The ten future climate projections (for the 2041–2070 period) were compared to the decadal averaged data from 1901–311 

2010 for each AU. We calculated the historical standard deviation of each metric for each AU within the project area. 312 

For each metric, we assume that any projection within two-standard deviations of the historical climate values does 313 

not contribute to an increase in vulnerability, whereas projections outside of that range increase the vulnerability. We 314 

then define vulnerability for a given metric as the number of the ten projections that are outside of the historical two-315 

standard deviation threshold. Thus, the HLVA index assesses the likelihood that a given metric will exceed a two-316 

standard deviation threshold from the decadal mean under future climate scenarios. Because individual models exceed 317 

the threshold of two standard deviations from the mean in both the higher and lower directions, there is not a unique 318 

direction of change associated with the vulnerability index. Thus, the vulnerability index, as defined, does not convey 319 

information about projected direction of change. A vulnerability index of ten indicates that all ten climate projections 320 

were beyond two-standard deviations from the historical mean and that the area is expected to experience projected 321 

conditions that it is not adapted to. The least vulnerable areas will have an index of zero, which indicates that all future 322 

climate projections fell within the two-standard deviation threshold to which systems are adapted to. The use of 323 

standard deviations is not an appropriate threshold metric for seasonality, because it is a categorical variable. For the 324 

seasonality metric, any projected seasonality value that has not been observed decadally between 1900 and 2010 325 

increases the seasonality vulnerability index. For example, consider an AU that had predominantly experienced spring 326 

seasonality, with the occasional fall seasonality, and that 7 of 10 climate models project fall seasonality and 3 of 10 327 

models predict winter seasonality for 2041–2070. Since winter seasonality was not observed for any decade between 328 

1900 and 2010, the three predictions for winter seasonality would contribute to a vulnerability index of three for 329 

seasonality in that case. Finally, we analyzed the dominant HL code by area of the most vulnerable AUs (those having 330 
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a vulnerability index greater than seven on a scale of ten) for each metric in order to gain insight about the dominant 331 

HL characteristics that relate to hydrologic vulnerability.  332 

2.5 Locational time series analyses 333 

Forty-five locations (Fig. 1 and Table 2) were selected for potential applications of the HL approach to demonstrate 334 

the method’s relevance to potential water resource stakeholders to identify areas where we thought results could be of 335 

use to land managers. Specific sites were selected subjectively so that we could examine representative climate impacts 336 

at sites that may be of general interest. These sites include cities, national parks, mountains, national forests, and areas 337 

with hydrologically sensitive economic interests. AUs were used to represent a geographic feature if its centroid was 338 

located within the geographic boundary of a location of interest. The location boundary was defined by merging these 339 

AUs into a single polygon. For instance, the Great Basin National Park (GBNP) was covered by a single AU, rather 340 

than numerous AUs because the centroid of only one AU was within the park boundary, whereas all other AU centroids 341 

were located outside of the GBNP boundary. The time series for the decadal averages for each of the climate-related 342 

HL metrics were analyzed for the AUs associated with each location. Decadal averages were plotted at the decadal 343 

midpoint for each 10-year period from 1901 to 2010. In addition, the 1971–2000 normal average for each variable 344 

and ten climate projections (2041–2070) were also plotted. The HLVA was then used to determine the mean 345 

vulnerability index and the dominant HL code for the AUs associated with each location (Fig. 2d). 346 

3 Results 347 

3.1 Hydrologic landscape summary 348 

Table 3 shows the percent coverage of the HL categories for the six states. Thirty percent of the region is mountainous 349 

(elevation relief of AU > 300 m and < 10 % of AU area has slope < 1 %) and 7 % is flat (AUs with more than 50 % 350 

area having < 1 % slope). The remaining area is classified as transitional. According to the soil permeability dataset 351 

(Miller and White, 1998) produced from the STATSGO soils database (Soil Survey Staff, 2016), 98 % of the surface 352 

soils (defined as the top 10 cm) are highly permeable (> 4.23 µm s-1). Stratton et al. (2016) and Comeleo et al. (2014) 353 

classified the subsurface permeability of the six-state region as 60 % high permeability and 40 % low permeability. 354 

During the 1971–2000 climate normal period, most of the area has the highest monthly water availability (seasonality) 355 

during the winter (63 %), followed by 24 % of the area showing fall seasonality, 13 % having spring seasonality, with 356 

only 1 % experiencing summer seasonality. In addition, 30 % of the area is classified as having a moist, wet, or very 357 

wet climate, while 70 % is dry, semi-arid or arid. The HL maps for the study area are included in the appendix (Fig. 358 

A1). HL maps for the remainder of the conterminous U.S. are also available and are included as supplemental material 359 

(Fig. S6; although subsurface permeability maps are not available for all of the lower 48 states).  360 

3.2 Climate Vulnerability analyses 361 

Using the analyses of historic and future climate, the vulnerability indices were mapped for all seven metrics 362 

(examples are provided for FMI and seasonality in the supplemental materials). The vulnerability maps (Fig. 4) 363 

identify areas that are subject to extreme future climatic and hydrologic variability (similar vulnerability maps for the 364 

conterminous U.S. are included in the supplemental materials (Fig. S6)). Note that while it is possible to evaluate 365 
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direction of change (greater or less than two standard deviations) for the projection of an individual climate model, 366 

the vulnerability index is the integration of ten individual models. Therefore, it is possible for individual models to 367 

exceed the threshold of two standard deviations from the mean in either the higher or lower directions; thus there is 368 

not a unique direction of change associated with our vulnerability index as it has been defined.  369 

All climate projections indicate that temperature will change almost ubiquitously across the Pacific west, indicating 370 

uniformly high vulnerability. However, changes in precipitation are much more spatially variable. The cold deserts 371 

and Mediterranean California Ecoregions (Ecoregion level 2) have higher vulnerability, i.e., are more consistently 372 

projected to experience changes in precipitation than has been observed since 1901 on a decadal basis. In contrast, 373 

major portions of Arizona, Washington, Oregon, and California have areas with low vulnerability to change with 374 

respect to precipitation. The PET vulnerability map is similar to the temperature vulnerability map, which is not 375 

surprising since the Hamon (1961) method of calculating monthly PET uses temperature as the major input. The April 376 

1 snow accumulation (snow water equivalent) vulnerability map shows high vulnerability in many mountainous areas 377 

throughout the west. This seems to indicate that snow accumulation will change, particularly in transitional areas, 378 

compared to the most snow prone areas of the West. S’ is a measure of available water (excess water available for soil 379 

infiltration or overland flow). The map for S’ suggests that the Warm Desert and Marine West Coast Forest Ecoregions 380 

are more likely to experience substantial changes in available water (i.e., high vulnerability) in the future. The FMI is 381 

calculated from the ratio of PET and precipitation per Eq. (1). The FMI vulnerability map indicates that the Level 2 382 

western Cordillera Ecoregion through northern Idaho (Fig. 1), a band of western Cordillera running north and south 383 

through west of central Washington and Oregon (which includes portions of the Cascade Range), and portions of the 384 

cold desert ecoregions in southeastern Washington and northwestern Arizona (Fig. 1) are more likely to see substantial 385 

changes to the FMI. The regional time series analyses (below) provide more information about whether those areas 386 

are expected to become wetter or drier. The seasonality vulnerability map identifies AUs that are likely to have changes 387 

in seasonality. Portions of the western Cordillera Ecoregion (Fig. 1; which includes the Sierra-Nevada Mountains in 388 

California, the Cascade Mountains in Washington and Oregon, and transitional terrain in Idaho) are projected to be 389 

more vulnerable to changes in seasonality. Otherwise, large portions of the study area are not projected to be 390 

vulnerable to changes for seasonality.  391 

3.2.1 Vulnerability of hydrologic landscapes 392 

Table 4 summarizes an analysis of the HL classifications of the most vulnerable AUs for each metric. For example, 393 

75 % of the AUs identified as vulnerable for snow accumulation were classified as dry, moist, or wet, therefore very 394 

wet, semi-arid, and arid AUs are less likely to be vulnerable to changes in snow accumulation. Likewise, 76 % of AUs 395 

vulnerable to changes in seasonality had a spring seasonality during the 1971–2000 normal period. The physical 396 

properties represented by the dominant HL classes in Table 4 could help determine how various climate vulnerabilities 397 

are ultimately expressed. For example, vulnerability to changes in snow or FMI mostly occur in regions with wetter 398 

climates (Moist, Wet, or Very Wet climate), with fall or spring Seasonality, in areas with low subsurface permeability. 399 

This could result in increased precipitation, with quicker runoff in areas that currently have delayed release of water. 400 
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Similarly, areas vulnerable to changes in surface runoff are arid landscapes with winter seasonality and highly 401 

permeable subsurface parent materials. This means that these changes in runoff could have a large impact on 402 

subsurface recharge and, ultimately, baseflow. 403 

3.2.2 Case studies & locational time series 404 

Hydrologic vulnerability analyses have been performed for a total of 45 exposure areas of ecological, economic, or 405 

social significance (Fig. 1 and Table 2; see Appendix A (Fig. A2)). The vulnerability index for each location is also 406 

listed in Table 2 for each metric. Three case study locations that are of economic interest are explored in detail and 407 

include Mt. Hood (Site #7), Willamette Valley (Site #9), Napa-Sonoma Valley (Site #28). During the normal period, 408 

61 % of the 1867 km2 Napa-Sonoma Valley had an MwHMH HL classification, thus much of the area was classified 409 

as having a moist climate with winter seasonality, high subsurface permeability, mountain terrain, and high surface 410 

permeability. Eighty-three percent of the 1234 km2 Willamette Valley AUs had an HL code of WfHTH during the 411 

normal period. Overall, the Willamette Valley had a wet climate, dominated by fall seasonality, high subsurface 412 

permeability, transitional terrain, and high surface permeability. Table 2 indicates that 81 % of the 834 km2 area 413 

analyzed for Mt. Hood had an HL code of VsHMH (very wet climate with spring seasonality, high subsurface 414 

permeability, mountainous terrain, and high surface permeability). 415 

Figure 5 depicts line graphs of the historic and projected changes for the three case study locations (Mt. Hood (Site 416 

#7), Willamette Valley (Site #9), Napa-Sonoma Valley (Site #28)). The number in the lower left corner of each graph 417 

in Fig. 5 indicates the vulnerability index for the specific metric and location. For instance, precipitation at Mt. Hood 418 

has a vulnerability index of ‘3’, which indicates that three of the climate projections exceed the threshold of two-419 

standard deviations from the historic mean.  420 

The time series in Fig. 5 (and Fig. A2) illustrate the trend in average decadal temperature, precipitation, SWE, PET, 421 

S’, climate, and seasonality of water surplus. Note that each future (2041–2070) climate projection is represented by 422 

a single data point that characterizes the 2041 – 2070 30-year range and is connected in Fig. 5 to the 2001–2010 423 

decade with a dotted red line. Additional figures for 42 other locations are provided in Appendix A (Fig. A2). Each 424 

of the three example case studies is predicted to be warmer in the 2041–2070 future climate projections. Further, these 425 

projected temperatures are almost always outside of the historic (1901–2010) temperature range, and so all locations 426 

have high vulnerability with respect to future temperatures. None of the three case studies show a strong trend relating 427 

to future precipitation projections. Mt. Hood appears to exhibit increasing precipitation since 1901, but there is no 428 

evidence that the projected increases in precipitation are outside of historic behavior, and so the site has low 429 

vulnerability for that metric. Napa-Sonoma and the Willamette Valley have low vulnerability for change in snow, 430 

while Mt. Hood has high vulnerability for April 1 snow water equivalent in the 2041–2070 period. PET is calculated 431 

directly from temperature and so its vulnerability is strongly correlated to temperature. There are no obvious trends in 432 

S’ for the future projections in the three case studies; vulnerability of these sites for S’ is low to moderate. The FMI 433 

projections for Napa-Sonoma Valley, the Willamette Valley, and Mt. Hood are outside of two-standard deviations of 434 

historical trends in three to four out of ten of the projections (Table 2). In terms of seasonality, the vulnerability index 435 
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is equal to zero in the Willamette and Napa-Sonoma Valleys. For Mt. Hood, vulnerability is low, with all of the future 436 

climate projections indicating that there will no longer be spring seasonality (the predominant historical season for 437 

runoff). Only three climate models suggest that decadal seasonality would transition to winter seasonality, which has 438 

not occurred since at least 1901. 439 

4 Discussion 440 

4.1 Analyses of Retrospective and Projected Climate and Hydrologic Vulnerability 441 

Vulnerability maps (Fig. 4) were developed to facilitate long-term planning for stakeholders for assessing their risk to 442 

climatic impacts. It is possible that ecosystems, businesses, and communities in areas mapped as vulnerable may 443 

struggle to adapt to stresses imposed by future environmental conditions. As mentioned previously, the vulnerability 444 

index offers no information about the directions of change projected by the ten different models. Further, the RCP 8.5 445 

pathway was selected because it most closely resembles observed conditions (Schwalm et al., 2020). 446 

The consistently projected high temperature vulnerability could lead to problems related to heat stress (e.g., human-447 

related physical and mental health issues), urban heat islands (particularly in areas with little tree cover), and other 448 

temperature related problems (USGCRP, 2018). PET vulnerability would be problematic for agricultural systems, 449 

forest disease, and sectors that are drought sensitive (USGCRP, 2018). Precipitation vulnerability maps are important 450 

in specific areas with regards to flooding, landslides, and drought sensitivities. The vulnerability maps for snow 451 

accumulation and S’ (surplus water available for runoff or infiltration) show that the areas mapped as most vulnerable 452 

for the two metrics are almost reversed, other than central Idaho and the coastal areas of California, Oregon, and 453 

Washington. According to the snow vulnerability map, it appears that most areas that receive large amounts of snow 454 

are projected to experience significant changes in future snow accumulation. In a related study on snow cover, Nolin 455 

and Daly (2006) found that the areas with the warmest winter temperatures are most at risk of having no snow cover 456 

in the future. Areas vulnerable for snow could impact not only the ski industry, but also water supply and streamflows, 457 

while the surplus water availability (S’) vulnerability metric relates more directly to streamflow and flooding. Most 458 

of the study area is not vulnerable to changes in FMI (Fig. 4), which is an assessment of overall water availability, 459 

although some areas are (the Willamette Valley in Oregon, east of Puget Sound in Washington, and the northern 460 

panhandle in Idaho appear to be more vulnerable). The vulnerability map for seasonality (Fig. 4) shows that portions 461 

of the Western Cordillera (Fig. 1) including the high Sierra-Nevada mountains in California, the Cascade mountains 462 

in Oregon and Washington, and the mountainous areas in Idaho), have higher vulnerability indices, which indicates 463 

susceptibility regarding water supply, flooding, and streamflows. 464 

Our retrospective analysis of PRISM time series data provided an understanding of environmental conditions since 465 

1901. We are aware of few that have used retrospective analyses to inform their mapping efforts (Deviney et al., 2006; 466 

Kim et al., 2011; O’Brien et al., 2004), but are not aware of studies that have mapped resource vulnerability at a large 467 

scale using such data. Our definition of vulnerability is based on agreement of climate models leading to conditions 468 

that are outside of historic ranges. Our hypothesis is that systems having future climate conditions outside of the 469 

historic range will not have the capacity to adapt to future conditions, and therefore are vulnerable. The vulnerability 470 
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issue is complicated by the fact that these vulnerability maps (Fig. 4) do not show how downstream areas could be 471 

impacted by these changes.  472 

These vulnerability factors may be of interest to resource managers and decision makers, some of who might consider 473 

high vulnerability for a single metric to be problematic. Yet for others, the additive or multiplicative impacts of 474 

numerous vulnerabilities may be of greater concern. For example, urban areas might be more impacted when 475 

vulnerable to multiple metrics, whereas PET vulnerability could be detrimental to agricultural or forested areas. 476 

Similarly, changes in seasonality from a snow dominated system to rain could have profound implications across 477 

many sectors. 478 

For this analysis, the 30-year normal climate conditions were compared to decadal climate conditions since 1901. In 479 

addition, the 30-year normals for future projections (2041-2070) were compared to the historic range of decadal 480 

climate data. While comparing 30-year normals in a decadal analysis might appear to be a discrepancy in the analysis, 481 

the intention was to conservatively quantify vulnerability indices. Thirty-year normals exhibit less variability than 482 

decadal averages or annual averages. By comparing decadal averages to the 30-year future climate normals, we are 483 

not treating past data the same as future climate projections. However, the resulting vulnerability conclusions are 484 

conservative, because if we had used decadal projections for future climate data, variability in the range of output 485 

would have increased and our vulnerability indices could have increased for all parameters. 486 

4.2 Hydrologic Response and Hydrologic Landscape Classification 487 

The HL Class for an AU can provide insight into its hydrological response, given changes in the quantity (FMI) or 488 

timing of surplus water (seasonality) on a landscape. Yet these factors only account for a portion of the water balance. 489 

However, when moisture is available as surface runoff, it may infiltrate into the ground or act as surface runoff, 490 

depending on the HL surface permeability class. Water may enter and flow through the subsurface layers (depending 491 

on the HL subsurface permeability) towards a stream channel. If the water was directed as surface or subsurface runoff, 492 

it may be transported more quickly in the downhill direction and into a stream channel depending upon the HL terrain 493 

class, which governs steepness. As it relates to streamflow, the unique combination of the five HL characteristics 494 

(climate, seasonality, surface permeability, subsurface permeability, and terrain) allows for the hydrologic response 495 

to be assessed relative to changes in temperature and climate (Leibowitz et al., 2014; Patil et al., 2014). At its most 496 

coarse application as it relates to this study, the transition from spring to winter seasonality for the Mt. Hood case 497 

study would result in a shorter ski season with snow conditions that could be less ideal for winter sports. However, 498 

this transition would also have many downstream impacts that could include flooding or habitat impacts. The HL 499 

approach could also be used to determine any relationships between HL characteristics and hydrologic vulnerability, 500 

while case studies can show how the HLVA could be useful.  501 

4.3 Case studies 502 
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Case studies are useful for illustrating how future climate conditions may impact important economic and conservation 503 

resources. It is necessary for a stakeholder to understand the parameters most important to their ecosystem, industry, 504 

or resource of interest, so that they can utilize location specific information about their potential climatic impacts 505 

(Glick et al., 2011; Lawler et al., 2010). In Fig. 5, case study examples (Mt. Hood (Site #7), Willamette Valley (Site 506 

#9), Napa-Sonoma Valley (Site #28)) demonstrate how the HLVA can assist in understanding how climate can impact 507 

important local water resources. 508 

The wine and ski industries are important stakeholders in the western U.S. that may experience impacts from 509 

hydrological changes. The Napa-Sonoma and Willamette Valleys are known for their vineyards and associated 510 

wineries. Regarding their HL characteristics, they differ in their FMI class (Willamette is wet, whereas, Napa-Sonoma 511 

is moist) and their seasonality (Willamette has a fall seasonality, while Napa-Sonoma has a winter seasonality). Due 512 

to the importance of the pinot noir varietals in the Willamette Valley (Olen and Skinkis, 2018) and its temperature 513 

sensitivity (Burakowski and Magnusson, 2012; Jones et al., 2010), local viticulturalists are likely more concerned with 514 

changes in temperature than FMI. The Napa-Sonoma region is recognized for a variety of grape cultivars (Elliott-Fisk, 515 

1993) that are less sensitive to temperature fluctuations (Jones et al., 2010). Both the Willamette Valley and Napa-516 

Sonoma have temperature vulnerability indices of ten out of ten, and both have FMI vulnerability indices of three out 517 

of ten (Fig. 5). These indices suggest that both locations are projected to have future temperatures that are different 518 

than historic temperatures. However, the Willamette Valley pinot noir grapes are more sensitive to temperature than 519 

in the Napa and Sonoma Valleys. In addition, while both locations have the same FMI vulnerability indices, Fig. 5 520 

illustrates that FMI projections for Napa-Sonoma are much more variable than for the Willamette Valley. Thus, there 521 

is more uncertainty in the modeled water availability for Napa-Sonoma. These results suggest that a vintner growing 522 

warm temperature grapes in the Willamette Valley may have more confidence in their investments relative to a vintner 523 

in Napa-Sonoma, where there is more uncertainty regarding long-term water availability.  524 

The skiing industry is economically important, and the impact between a high and low snowfall year for the State of 525 

Oregon is $38.1 million, while California is estimated to lose more than $75 million in low snow years (Burakowski 526 

and Magnusson, 2012). Mt. Hood is known for its winter snow sports and tourism and would be impacted differently 527 

by the seven metrics than the Willamette and Napa-Sonoma case studies (Fig. 5). Thus, resource managers and 528 

business leaders at Mt. Hood are likely more concerned about snow accumulation in their watershed than those in the 529 

wine and grape industries (although grape grower’s ability to irrigate may be impacted by snow accumulation in the 530 

region). According to our analyses, Mt. Hood is generally characterized by having a spring seasonality and has a snow 531 

vulnerability index of seven out of a maximum of ten. Also, the analysis of HL seasonality suggests some chance of 532 

a shorter ski season due to the risk of spring runoff occurring earlier and imposing on the winter season. Even though 533 

these conditions have occurred in the past (Fig. 5), this may be much more deleterious to the economics of the future 534 

ski industry than it was in the 1900s, because it contributed much less to the historic economy (for additional examples 535 

refer to Appendix A2).  536 
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5 Summary and conclusions 537 

The hydrologic landscapes (HL) concept is useful for gaining a better understanding of hydrologic behavior at the 538 

assessment unit and watershed scales across large geographic regions. By applying the HL concept to climatic and 539 

vulnerability analyses, we provide a planning approach that allows resource managers to determine how vulnerable 540 

they are to changes associated with climate that are important for a particular industry or application. Assessment of 541 

expected hydrologic response based upon physical and climatic characteristics has the potential to offer further insight 542 

into the idiosyncrasies of the nature of the threats faced by a stakeholder or industry across large geographic areas. 543 

This will allow them to make informed decisions about the risk imposed by potential changes that could affect their 544 

long-term planning efforts. The methodology also allows stakeholders to focus on specific areas of interest, which 545 

provides the flexibility necessary for the information to be relevant across applications and sectors. By applying the 546 

modified Wigington et al. (2013) approach across the western U.S., resource managers will be able to base 547 

management decisions on assessments of climatic impacts of water resource vulnerability. 548 
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12 Figures 760 

 761 

Figure 1. Study area showing map with the six states of WA, OR, ID, CA, NV, and AZ. Also shown are the seven EPA Level 762 
II Ecoregions (https://www.epa.gov/eco-research/ecoregions-north-america) and 45 locations identified by numbered 763 
circles with three case study locations in black circles (Table 2). State boundaries are indicated by black dashed lines. 764 
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 765 

Figure 2. Mapping of hydrologic vulnerability. A) Hydrologic landscape map is developed for six western states using 1971-766 
2000 normals for climate (Feddema Moisture Index; FMI) and seasonality, along with surface permeability, terrain, and 767 
subsurface permeability geophysical data. B) Historical decadal analysis is run from 1901 through 2010 for each of seven 768 
metrics: monthly temperature, precipitation, potential evapotranspiration, surplus water, snow water equivalent, FMI 769 
(shown), and seasonality. C) Future predicted behavior is estimated for each of the seven metrics, based on ten climate 770 
model projections (FMI shown). D) Vulnerability is then defined as the number of climate projections that lie outside of the 771 
historical two standard deviation threshold (example for FMI from Napa-Sonoma shown). E) Vulnerability values are then 772 
mapped for each metric across the six-state study area (FMI shown). 773 
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774 
Figure 3. Scatterplot showing the range of mean temperature and precipitation projections for the 2041–2070 climate 775 
models across the study area. The circled data points identify the climate projections used in our analyses. Climate models 776 
are enumerated using the key to the right of the scatterplot. Subscripts denote the realization number of each unique 777 
projection. Legend colors are used to improve legibility where scatterplot symbols overlap. 778 

  779 
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 780 

Figure 4. Vulnerability indices for temperature, precipitation, potential evapotranspiration, snow water equivalent (April 781 
1), S’ (available water), Feddema Moisture Index, and seasonality. The least vulnerable locations are those projected to be 782 
within two-standard deviations of the historic (1901–2010) mean in all ten climate models.   783 
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 784 

Figure 5. Time series of average decadal temperature, precipitation, snow (April 1 snow water equivalent (mm)), potential 785 
evapotranspiration (PET), climate (FMI), seasonality, and available water (S') for three specific locations in the western 786 
U.S. For the climate / FMI figures, the FMI values range from 1 to -1 (primary y-axis on the left), whereas the categorical 787 
version of the index ranges from arid to very wet (secondary y-axis on the right). Dotted black line represents the 1971–788 
2000 base period; the dashed red line connects the 2001–2010 value to the 2041–2070 climate projections for each of the 789 
ten models. The gray shaded area represents the range of model projections. The number in lower left indicates the 790 
vulnerability index for the metric and location depicted in the associated graph.   791 
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13 Tables 792 

Table 1. CMIP5 Climate model summary for 2041–2070 precipitation and temperature data (Bureau of Reclamation, 2014). 793 

WCRP CMIP5 Climate Model 
Model 

abbreviated 
name 

Model 
realization 
used herein 

Abbreviated name 
used in Figure 3 
for realization 

Canadian Earth System Model  CanESM2 r5i1p1 CanESM2 

Community Climate System Model  CCSM4 r1i1p1 CCSM4 

Community Climate System Model CCSM4 r4i1p1 CCSM4-R4 

Community Earth System Model  CESM1 r3i1p1 CESM1 

Commonwealth Scientific and 
Industrial Research Organisation 
Mark 3.6  

CSIRO-Mk3-
6-0 

r5i1p1 CSIRO 

Geophysical Fluid Dynamics 
Laboratory Coupled Climate Model  

GFDL-CM3 r1i1p1 GFDL 

Hadley Global Environment Model  HadGEM2-AO r1i1p1 HadGem 

Institute for Numerical Mathematics 
Climate Model  

INM-CM4 r1i1p1 inmcm4 

Model for Interdisciplinary Research 
on Climate  

MIROC-ESM r1i1p1 MIROC 

Meteorological Research Institute  MRI-CGCM3 r1i1p1 MRI-CGCM3 

794 
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Table 2. Summary table for 45 study locations (sorted by decreasing latitude) providing numeric ID from Fig. 1, total analysis area, dominant HL class (representing 795 
climate, seasonality, subsurface permeability, terrain, and surface permeability), percent area represented by dominant HL class, latitude and longitude of the center point 796 
of the area, and vulnerability indices for temperature, precipitation, potential evapotranspiration (PET), surplus water (S’), snow water equivalent (snow), Feddema 797 
Moisture Index (FMI), and seasonality. 798 

Site 
# Name 

Area 
(km2) 

Dominant 
HL Class* 

% 
Dominant 

Area 

Coordinates Vulnerability Index 

Lat. Long. Temp. 
Pre
cip. PET S' Snow FMI Seasonality 

1 Bellingham 212 WfLTH 99 % 48.77 -122.45 10 5 10 1 0 9 0 

2 Spokane 592 DfHTH 80 % 47.64 -117.43 10 6 10 7 10 3 1 

3 Seattle 669 WfLTH 78 % 47.60 -122.25 10 4 10 1 0 5 2 

4 Mt Rainier 718 VsLMH 76 % 46.85 -121.79 10 4 10 2 7 4 2 

5 Yakima 438 SfHTH 86 % 46.63 -120.60 10 3 10 6 0 0 0 

6 Portland 932 WfHTH 67 % 45.53 -122.66 10 3 10 2 0 6 0 

7 Mt. Hood 834 VsHMH 81 % 45.37 -121.70 10 3 10 3 7 4 3 

8 Umatilla NF 2,147 MsLMH 29 % 44.87 -118.70 10 6 10 3 6 3 4 

9 Willamette 1,234 WfHTH 83 % 44.84 -123.14 10 3 10 2 0 4 0 

10 Challis NF 4,348 WsLMH 74 % 44.55 -114.75 10 6 10 0 3 2 0 

11 Bend 948 SfHTH 68 % 44.21 -121.26 10 4 10 8 0 3 0 

12 Eugene 523 WfHFH 64 % 44.10 -123.15 10 3 10 1 0 2 0 

13 Boise 594 SwHTH 51 % 43.61 -116.24 10 8 10 8 0 2 0 

14 Malheur NWR 1,355 SwHFH 69 % 43.27 -119.04 10 6 10 7 0 2 0 

15 Crater Lake 1,721 WsHTH 45 % 42.98 -122.08 10 3 10 2 9 3 10 
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Site 
# Name 

Area 
(km2) 

Dominant 
HL Class* 

% 
Dominant 

Area 

Coordinates Vulnerability Index 

Lat. Long. Temp. 
Pre
cip. PET S' Snow FMI Seasonality 

16 Pocatello 349 DwHTH 45 % 42.88 -112.43 10 7 10 7 0 1 0 

17 Siskiyou NF 926 VwLMH 100 % 42.36 -124.29 10 2 10 0 0 2 0 

18 Medford 375 DfLTH 60 % 42.34 -122.89 10 1 10 5 0 2 0 

19 Six Rivers 1,527 VwLMH 100 % 41.63 -123.79 10 2 10 2 0 4 0 

20 Mt Shasta 956 WwHMH 49 % 41.36 -122.23 10 1 10 2 0 3 0 

21 Ruby Mtn 1,132 DfLTH 44 % 40.68 -115.31 10 6 10 5 9 4 0 

22 
Arcata-Humboldt 

Co 2,511 WwLMH 63 % 40.62 -124.01 10 3 10 2 0 3 0 

23 Redding 478 MwHTH 59 % 40.56 -122.38 10 2 10 2 0 2 0 

24 Battle Mtn 902 SwLMH 75 % 40.09 -116.71 10 6 10 7 0 4 0 

25 Reno 382 SwHTH 40 % 39.54 -119.80 10 4 10 7 0 3 0 

26 Great Basin NP 38 MsLMH 100 % 39.01 -114.26 10 4 10 5 0 4 1 

27 Sacramento 855 SwHFH 88 % 38.57 -121.39 10 6 10 7 0 3 0 

28 Napa-Sonoma 1,867 MwHTH 61 % 38.37 -122.53 10 6 10 5 0 3 0 

29 Yosemite NP 2,455 VsLMH 44 % 37.93 -119.55 10 4 10 4 9 3 0 

30 San Francisco Bay 3,356 DwHMH 19 % 37.44 -122.29 10 6 10 5 0 5 0 

31 Sierra NF 5,349 WwLMH 31 % 37.17 -119.05 10 4 10 4 0 2 0 

32 High Sierras 2,239 WsLMH 32 % 37.15 -118.81 10 2 10 4 1 2 0 
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Site 
# Name 

Area 
(km2) 

Dominant 
HL Class* 

% 
Dominant 

Area 

Coordinates Vulnerability Index 

Lat. Long. Temp. 
Pre
cip. PET S' Snow FMI Seasonality 

33 Nevada Test Site 3,121 AwHMH 67 % 36.96 -116.22 10 5 10 10 0 4 0 

34 Fresno 1,393 AwHFH 100 % 36.74 -119.91 10 5 10 8 0 4 0 

35 Death Valley NP 7,862 AwHMH 50 % 36.45 -117.03 10 5 10 10 0 5 0 

36 Las Vegas 977 AwHTH 65 % 36.23 -115.26 10 4 10 10 0 4 0 

37 Grand Canyon NP 3,475 SwHMH 28 % 36.22 -112.11 10 4 10 10 0 6 0 

38 San Luis Obispo 2,653 DwLMH 98 % 35.36 -120.63 10 4 10 4 0 4 0 

39 Bakersfield 3,399 AwHFH 96 % 35.33 -119.14 10 4 10 9 0 4 0 

40 Flagstaff 365 DwHMH 51 % 35.19 -111.60 10 3 10 4 0 4 0 

41 Joshua Tree NP 2,599 AwLMH 68 % 33.92 -115.99 10 5 10 7 0 5 0 

42 White Mtns 4,855 WfLMH 23 % 33.87 -109.53 10 4 10 3 0 3 0 

43 Phoenix 2,304 AwHFH 63 % 33.52 -112.11 10 3 10 10 0 2 1 

44 San Diego 1,276 SwLMH 37 % 32.90 -117.06 10 4 10 6 0 4 0 

45 Tucson 1,838 AwHTH 62 % 32.19 -110.95 10 3 10 9 0 1 2 

*Climate class (1st letter):  V=very wet; W=wet; M=moist; D=dry; S=semiarid; A=arid 799 

Seasonality class (2nd letter):  f=fall; w= winter; s=spring; u=summer 800 

Subsurface permeability class (3rd letter):  L=low; H=high 801 

Terrain class (4th letter):  M=mountain; T=transitional; F=flat 802 

Surface permeability class (5th letter):  L=low; H=high803 



 

Table 3. Percent of area of each HL category and classification within the six-state region (1971–2000) 804 

Category Classification Area (%) 

Climate Arid 21 % 

Semi-arid 34 % 

Dry 15 % 

Moist 9 % 

Wet 14 % 

Very wet 7 % 

Season Spring (AMJ1) 13 % 

Summer (JAS2) 1 % 

Fall (OND3) 24 % 

Winter (JFM4) 63 % 

Subsurface 
Permeability 

Low 40 % 

High 60 % 

Terrain 

 

Flat 7 % 

Transitional 63 % 

Mountain 30 % 

Surface Permeability Low 2 % 

High 98 % 

1AMJ: April, May, and June 805 

2JAS: July, August, and September 806 

3OND: October, November, and December 807 

4JFM: January, February, and March  808 



 

Table 4. Hydrologic landscape characteristics of assessment units identified as vulnerable (having a vulnerability index 809 
greater than 7 on a scale of 10) for each metric. 810 

  
% Assessment units that share HL classification 

  
Climate1 Seasonality2 

Subsurface 
Permeability3 Terrain4 

Surface 
permeability3 

V
ul

ne
ra

bi
lit

y 
Pa

ra
m

et
er

 

Temperature 
70 
% D, S, or A 

87 
% f or w 60 % H 

93 
% 

M or 
T 98 % H 

Precipitation 
72 
% D or S 

79 
% f or w 71 % H 

97 
% 

M or 
T 98 % H 

PET 
70 
% D, S, or A 

87 
% f or w 60 % H 

93 
% 

M or 
T 98 % H 

Surplus water 
(S’) 

92 
% A or S 

79 
% w 75 % H 

87 
% 

M or 
T 99 % H 

Snow water 
equivalent 
(SWE) 

75 
% 

D, M, or 
W 

87 
% f or s 53 % L 

82 
% M 100 % H 

FMI 
71 
% V or W 

65 
% f  75 % L 

75 
% M 100 % H 

Seasonality 
75 
% W or M 

76 
% s 51 % H 

83 
% M 99 % H 

1A=arid, S=semiarid, D=dry, M=moist, W=wet 811 

2f=fall, w=winter, s=spring 812 

3L=low, H=high 813 

4T=transitional, M=mountainous 814 

815 



 

Appendix A 816 

 817 

Figure A1. Component Hydrologic Landscape maps of Washington, Idaho, Oregon, California, Nevada, and Arizona were 818 
used in the analysis of the HLVA indices [(a) Subsurface Permeability, (b) Seasonality of precipitation surplus, (c). Surface 819 
permeability, (d) Climate, and (e) Terrain]. Notes: The seasonality map for the PNW has been updated from the original 820 
Leibowitz et al. 2016 HL map, as we separated their winter seasonality into two seasons (winter and fall).   821 



 

Figure A2 822 

Time series of average decadal temperature, precipitation, snow (April 1 snow water equivalent), potential 823 
evapotranspiration (PET), climate (FMI), seasonality, and available water (S') for 45 specific locations in the western U.S. 824 
For the climate / FMI figures, the FMI values range from 1 to -1 (primary y-axis on the left), whereas the categorical version 825 
of the index ranges from arid to very wet (secondary y-axis on the right). Dotted black line represents the 1971–2000 base 826 
period; the dashed red line connects the 2001–2010 value to the 2041–2070 climate projections for each of the ten models. 827 
The gray shaded area represents the range of model projections. The number in lower left indicates the HLVA vulnerability 828 
index for the metric and location depicted in the associated graph. Note that Oregon, Washington, and Idaho locations are 829 
displayed first in alphabetical order and are followed by those of California, Nevada, and Arizona. 830 
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