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Technical note: The beneficial role of a natural permeable layer on
slope stabilization by drainage trenches
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Abstract. Slope stabilization through drainage trenches is a classic approach in geotechnical engineering. Considering the
low hydraulic conductivity of the soils in which this measure is usually adopted, a major constraint to the use of trenches is
the time required to obtain a significant pore pressure decrease, here called “time lag”. In fact, especially when the slope
safety factor is small, the use of drainage trenches may be a chancy approach due to the probability that slope deformations
will damage the system well before it will become fully operative.

However, this paper shows that the presence of persistent permeable natural soil layers can provide a significant benefit by
increasing drainage efficiency and reducing time lag. As a matter of fact, any permeable layer that is intercepted by trenches
may operate as part of the global hydraulic system, reducing the drainage paths.

A simplified approach to design a drainage system accounting for the presence of a persistent permeable layer is proposed.
This approach, which can exploit solutions available in literature for parallel drainage trenches, has been validated by

numerical analyses.

1 Introduction

The stabilization of deep landslides in clay is one of the greatest challenges to engineers due to the high cost and the
unreliability of many structural solutions. Often, the only available approach is by deep drainage, which can lead to some
shear strength increase through a generalized pore pressure decrease. Available solutions (Hutchinson, 1977; Bromhead,
1984; Stanic, 1985; Desideri et al., 1997; Pun and Urciuoli, 2008; Urciuoli and Pirone, 2013) concern the case of deep
parallel trenches (and of deeper drainage panels as well), which is dealt with also in this paper, and the case of tubular drains
in a homogeneous soil.

Considering the fine-grained nature of the soil, a major constraint to slope stabilization by draining trenches is the long time
required to obtain a significant pore pressure decrease (time lag). Especially when the slope is characterised by a small safety
factor or is subjected to slow movements (Urciuoli, 1998), the use of draining trenches is in fact problematic due to the
probability that slope deformations will damage the system well before it will become fully operative thus vanishing its
potential effectiveness. However, as higher is the depth of trenches (or of drainage panels) as higher the probability that

these intercept even thin soil layers of higher hydraulic conductivity at an intermediate depth between the ground surface and
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the slip surface. This would be a lucky chance since the incorporation of such layers in the drainage system may play a
highly beneficial role on both the time to attain the final steady-state condition, and the system efficiency.

The scope of this paper is just examining the influence on the drainage system, of a pre-existing permeable soil layer parallel
to the ground surface.

2 The basic model

The solutions presented below are based on the following assumptions:

- the groundwater flow is two-dimensional;

- each soil layer is homogeneous, isotropic and is characterized by a linear elastic constitutive law;

- total stresses are constant during the consolidation process (this allows to uncouple the analysis of the hydraulic and
of the mechanical soil response).

The governing equation of the problem (i.e. soil consolidation induced by the draining elements) is the following:

he — 2P (hyy + hyy) =0, 1)

_ U 2D _ _ KE
whereh = { + ywand G = 2(1+v)(1-2V)¥

The technical literature reports solutions concerning the case of parallel draining trenches and of tubular drains in
homogeneous soils, which are generally presented in the form of dimensionless design charts, providing the average

efficiency, E(¢,T), along the slip surface I":

= (0,1")—' t,I'
E(t,T) = 4en-ueh u(o;)( ), )

In Eq. (2), u(0,T) is the initial pore pressure on the slip surface, T, and @(t,I") is the average pore pressure at time t
modified by the draining elements; w(0,T)is generally assumed to be hydrostatic. During the consolidation phase, pore
pressures decrease towards the minimum steady-state value (oo, I"), which is attained at time t—oo when the efficiency
E (o0, T) reaches the highest value.

The available solutions for parallel trenches, featured by a thickness Ho and a width b, consider the soil volume between the
two axes of symmetry, which respectively coincide with the middle of a trench and the centreline between two adjacent
trenches (Fig. 1a). This volume is delimited by the ground surface and by an impermeable bottom surface located at the
distance H from the ground surface. The ground and bottom surfaces are both horizontal: the slope angle is indeed assumed
to play a negligible role on the hydraulic process (Aloi et al., 2019). The slip surfaceT'is a horizontal plane as well, located at
depth D. In this paper it is assumed to be coincident with the base of trenches (D=Hy).

A key hypothesis, which strongly affects the solution, is the presence of a permanent film of water at the ground surface
(Burghignoli and Desideri, 1987; D’Acunto and Urciuoli, 2006; D’Acunto et al., 2007; D’Acunto and Urciuoli, 2010).
However, due to local formation of water ponding and saturation of vertical cracks in the ground, often this is not far from

the truth, at least during the wet season. Based on this assumption, the pore pressure decrease is uniquely due to rotation of
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the flow lines towards the drainage trenches. Pore pressures in the zone between parallel trenches are then at any time less
than hydrostatic (Fig. 1b). In contrast, beyond the bottom of trenches, the upward direction of the flow lines leads to a pore
pressure distribution higher than hydrostatic. It is just for this reason that the drains should always reach a depth close to the

slip surface.

~ . s " .
‘s hydrostatic distribution
N

=
hydrostatic distribution  (-b/2; H)

c) d)
Figure 1: (a) Schematic representation of the case at hand. (b) Flow lines and equipotential lines in homogeneous soil; piezometric
heads along the vertical axes at the middle of the trench, at the centreline between two adjacent trenches and on the horizontal

plane at depth of trench bottom. (c) Scheme with an intermediate permeable layer; (d) equivalent scheme with a water film at the
depth of the uppermost boundary of layer d .

3 Influence of a permeable layer located at an intermediate depth between ground and slip surface
3.1 Time of consolidation

As outlined above, the presence of one or more persistent permeable layers in the soil body to be stabilized (a not unlikely
situation in deep clay deposits to be stabilised with draining panels) may play a highly beneficial role on time lag and

effectiveness of the drainage system.



The influence of a layer parallel to the ground surface, here indicated as the “draining layer d”, featured by a thickness Hq as
in Fig. 1c, has been investigated by FEM analyses using the code SEEP® (GEO-SLOPE Int. Ltd., 2012). The cases

examined in this paper are indicated in Tab. 1; the results of the analyses have been elaborated in a dimensionless form.

80
Table 1: Examined cases studied with FEM.
Soil properties Geometry
Numerical analyses K Kd/K 2] E v Ho s/Ho b/Ho H/Ho
by SEEP/W (mfs) ; - (kPa) - (m) - -
1,23 0.16
Homogenous soil model 45,6 1,15,25
Hg=0 107, 10°° - 0.5 | 15000 | 0.3 | 10,20,30 0.16
H:=0.25Hy | 107,107 10,100, 0.5 15000 0.3 10,20,30 1,2,3 0.16 1
1000,10000 45,6 '
Stratified  soil
model H;=0.50H, | 107,10° | 10,100, 0.5 | 15000 | 0.3 | 10,20,30 1,23 0.16 1,15,25
Hg= 0.025 Ho 1000,10000 456 '
H:=0.75Hq | 107, 107 10,100, 0.5 15000 0.3 10,20,30 1,2,3 0.16 1
1000,10000 45,6 '
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The data show that the presence of the permeable layer allows to significantly shorten the time lag, here represented by the

time factor, Tqo, corresponding to an efficiency E (tqo, I') = 90%:

c2D¢
Ty = szgo- 3)
0

The value of ty in Eq. (3) has been obtained by a numerical integration of Eq. (1), being the time at which E(t,I") = 0.90 (see
Eq. (2)).
Figures 2a and 2b, which report some results concerning the horizontal plane located at depth D = Ho, suggest quite a rapid

attainment of E = 90%, which is a crucial issue of the design. For significant values of trench spacing in the practice (i.e.
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s/Ho<3), the following considerations may be drawn: i) for Hi/Ho = 0.75 and Ky¢/K = 100 (Fig. 2a), the dimensionless time Ty
ranges between one half and one third of the value that would be obtained in the absence of the draining layer; ii) for Ko/K=
1000 (Fig. 2b), T significantly decreases with depth of the layer d (for Hi/Ho= 0.75, it drops to about 20% of the value
obtainable in homogenous soils).
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Figure 2: Results of the FEM analyses (assuming H = Ho). Dimensionless time, Too, as a function of trench spacing and of (a) Ka/K
ratio for Hi/Ho = 0.75 and (b) H1/Ho ratio for Ka/K =1000. Average steady-state efficiency as a function of trench spacing and (c)
Ka/K ratio for Hi/Ho = 0.75; (d) Hi/Ho ratio for Ka/K =1000. (€) Dimensionless pore pressure over the lowermost boundary of layer
d, ud/(ywHa), as a function of x/(s’/2) and s/Ho, for Ka/K = 1000 and Hi/Ho =0.75. (f) Values of sa/Ho as a function of Kd¢/K and Hi/Ho.
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3.2 Steady state condition

The presence of a permeable layer allows to obtain higher values of E (o, T"), and sooner than in homogeneous soils. Some
significant data are provided:
i) in Fig. 2c, showing the steady-state efficiency for Hi/Ho= 0.75 reported as a function of the ratio Ko/K and of
trench spacing; as shown, as higher is the hydraulic conductivity of the draining layer as higher the efficiency
(as an example, for K¢/K=1000 and s/Ho = 3 it practically doubles); a major effect of layer d is in fact diversion
of a significant part of water coming from the ground surface towards the trench thus strongly reducing water
flow towards the slip surface;
i) in Fig. 2d, showing the efficiency for Ks/K=1000 reported as a function of depth of layer d and trench spacing;
the figure shows that it increases as the dimensionless distance, Hi/Ho, increases; the effect of layer d is a
strong pore pressure reduction at depth Hi; as a consequence, pore pressure decrease, due to the action of layer
d, increases with its depth;
iii) in Fig. 2e, showing the non-dimensional pore pressure distribution, ug, along the lower boundary of the
draining layer d plotted as a function of trench spacing for Hi/Ho= 0.75 and K¢/K=1000; near the trench
boundary, the pressure head is less than Hg, hence, a free water surface forms in the layer d (here water can

move towards the trench only below this surface where pore pressures are positive).

3.2.1A simplified approach to predict the steady-state condition

In the following, a simplified model for the optimization of the design is briefly described. A very efficient working
condition is achieved if, at the centreline between two adjacent trenches, the atmospheric pressure is attained at the

uppermost point of layer d.

The first step in the design of the drainage system is just creating the conditions for full layer activation. This is obtained

when the spacing, s, of trenches is equal to the value sq, according to the following expression:

Sd Hg Hy Kg

Ho

The values of s¢/Ho in Eq. (4) have been obtained from the results of the numerical integration of Eq. (1). These have been
reported in Figure 2f, which shows the dependency of sq/Ho on K¢/K and Hi/Ho, having fixed Ha/Ho.

In case of full activation of layer d, the response of the entire draining system may be analysed by a simplified approach.
Since the fluid pressure at the uppermost boundary of the layer d is equal to the atmospheric pressure (or to a small suction
especially near the trench boundary), a water film may be fictitiously assumed at the same depth (Fig. 1d). This obviously
leads to a generalized pore pressure decrease in the lowermost soil. In the following, any parameter referred to this fictitious

condition will be indicated with the apex*.



Table 2: Comparison among steady-state efficiency values computed by Eq. (8), E(«), and FEM analyses, E(o0)rem

(A= |E(°°)FEM—E(°°)

() %). Only results obtained for fully drained activation are reported (s< sa).
®)FEM

E()rem
Hi/Ho=0.50 | E(c0) | Kg/K=10 | 4% | Kg/K=100 | A% | KgK=1000| A% [ Ko/K=10000 [ A%
s/Ho=1 0.766 0.780 1.73 0.783 2.10 0.783 2.10
s/Ho=1.5 0.697 0.697 0.00 0.699 0.28
s/Ho=2 0.642 0.646 0.54 0.651 1.30
s/Ho=3 0.594 Draining layer not fully activated 0.601 1.08
s/Ho=4 0.570 0.576 0.95
s/Ho=5 0.556 0.559 0.53
s/Ho=6 0.546
E(w) E(o0)rem
H1/Ho=0.75 KdK=10 | 4% | Ko/K=100 | 4% | Ko/K=1000 | A% | Ko/K=10000 | A%
s/Ho=1 0.821 0.833 1.41 0.834 1.50
s/Ho=1.5 0.797 0.803 0.71 0.807 1.20
s/Ho=2 0.785 0.795 1.22
s/Ho=3 0.773 Draining layer not fully activated 0.782 111
s/Ho=4 0.767 0.774 0.83
s/Ho=5 0.764 0.768 0.52
s/Ho=6 0.761
135
The values of %i* (o0, T") and E* (o0, I") may be obtained from the well known dimensionless solutions for the case of parallel
trenches in homogeneous soil, as a function of spacing (see to the simplified scheme in Fig. 1d). The steady-state efficiency
is
B (o0, ) = 00D ©)
140 thus
@' (0, I') =u*(0,I)(1 — E*(0,T)) = ¥ (D — H)(1 — E* (o0, I)). (6)
It is worth to notice that
(oo, ') = u*(e0, 1) ()
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and

u(0,r)—u*(oo,I)
u(o,r) '

E(o,I) = (8)
The values obtained from Eq. (8), through the value of #%*(co, ") provided by mentioned solutions, have been compared to
those obtained by FEM (Tab. 2). The good agreement allows validating the proposed method. It is worth to mention that the

solid lines in Figs. 2c and 2d for Hy=0 are just those that are reported in the design charts.

4 Conclusions and final considerations

The scope of this paper is to demonstrate that the presence of soil layers of higher permeability, a not unlikely condition in
some deep landslides in clay, may be exploited to improve the efficiency of systems of drainage trenches for slope
stabilization. Once established the depth of trenches, which should reach the slip surface, the selection of a proper spacing
may create a hydraulic system in which such layers can work as additional drains. The problem has been examined for the
case that a unique permeable layer is present at an elevation higher than the bottom of trenches.

The results of numerical analyses show that it significantly speeds up the consolidation process triggered by drainages,
leading also to a higher steady efficiency of the system. However, as mentioned in the Introduction, in many practical cases
the critical aspect of the design concerns the time requested to achieve an adequate effective stress and safety factor increase.
In these cases, trench spacing should be established looking essentially at the Tgo value.

If pore pressures in the draining layer do not exceed the atmospheric pressure, a hydraulic disconnection forms between the
two parts of the landslide body respectively located above and below the layer. In such a way, the water film which is
normally assumed at the ground surface ideally moves to the depth of the draining layer. This simple consideration allows to
employ the design charts available for the design of drainage trenches in homogeneous soils in the equivalent scheme
characterised by groundwater level located at the depth of the draining layer, in order to calculate the final system efficiency.
It is worth to mention that the hydraulic continuity of layer d is a fundamental condition for the design. Considering the
variability and the unpredictability of many natural situations, proper investigations to check the validity of such an
assumption are then warmly recommended. In particular, the adoption of such a stabilization measure should be always
managed through the “observational method”, i.e. by monitoring the system response in order to i) check the validity of the
design and ii) to adopt proper modifications to it due to unexpected or neglected factors. The installation of piezometers is an
obvious measure to check in real-time the efficiency of the drainage system (especially during the critical rainy season). The
piezometers should be installed both in proximity of the slip surface (near and far from the trenches) and, if possible

depending on thickness, in the permeable layer. This will allow to verify the full activation of the permeable layer.
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List of symbols

b width of the trench

cZP 2D coefficient of consolidation

d draining layer

D depth of the slip surface

E Young modulus of the soil

Et,T) average efficiency of the draining trenches at time t along the sliding surface I’

E(o, T average steady-state efficiency of the draining trenches along the sliding surface I"

E*(00,T) average steady-state efficiency of the draining trenches along the sliding surface I' according to the

simplified approach (full activation of layer d)

K unit weight of water
r slip surface
total head
h; first derivative of total head h with respect to time t
Ry second derivative of total head h with respect to abscissa x
vy second derivative of total head h with respect to ordinate y
H depth of the permeable bottom surface
Ho depth of the base of trench
Hi depth of the draining layer d
Hg thickness of the draining layer d
K coefficient of hydraulic conductivity
Kgd coefficient of hydraulic conductivity of the draining layer d
0 soil moisture
S spacing between trenches
Sd spacing between trenches creating the conditions for full activation of the draining layer d
s’ distance between the boundaries of the trenches
v Poisson ratio of the soil
t time

10


https://www.scopus.com/record/display.uri?eid=2-s2.0-0032470365&origin=resultslist&sort=plf-f&src=s&st1=Urciuoli&st2=G.&nlo=1&nlr=20&nls=afprfnm-t&affilName=Naples&sid=e02347ee952b302560de385966a25119&sot=anl&sdt=aut&sl=40&s=AU-ID%28%22Urciuoli%2c+Gianfranco%22+7004674488%29&relpos=48&citeCnt=14&searchTerm=

too dimensional time corresponding to E(t, I') = 90%

Too dimensionless time factor for E(t, I') = 90%

u pore pressure

Ug pore pressure at the base of the draining layer d

u(0,T) initial pore pressure (time t=0) on the slip surface T'

u*(0,T) initial pore pressure (time t=0) on the slip surface I" according to the simplified approach (full activation of

the draining layer d)

u(t,T) average pore pressure at time t on the slip surface I", modified by drainage trenches
(oo, T) average steady-state pore pressure on the slip surface I', modified by drainage trenches
u*(oo,I) average steady-state pore pressure on the slip surface I, modified by drainage trenches according to the

simplified approach (full activation of the draining layer d)

¢ elevation head
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