May 12, 2020

Hydrology and Earth System Sciences (HESS)

Dear Editor,

In the revision of the manuscript entitled: “Predicting discharge capacity of vegetated
compound channels: uncertainty and identifiability of 1D process-based models” we in-
cluded all reviewers remarks, according to the previously posted responses. Please find
the manuscript with marked changes attached.

Following reviewers remarks, we have rewritten the introduction section to make it more
clear. We also improved the literature review to provide a better positioning of our study
in the state-of-art. We hope, that the revised methodology section provides a better
explanation of the concept of our study. We also developed the analysis of results and
discussion of outcomes. The conclusion points should be now better grounded.

In addition to changes, we indicated in our responses to reviewers, we introduced follow-
ing, important modifications:

1. We found a mistake in the code for the PTLM model. Instead of using a hydraulic
radius in the term % of Equation 12, we used as in the original formulation, the
water depth % In the result it was necessary to recompute all PTLM cases.

2. As we indicated in our response, we use an uninformative parameter ranges for a
priori parameter distributions, but within physical bands. It appeared, that we
used wrong ranges for several parameters:

e (C* used in the GTLM, STLM and PTLM, instead od 0.08 — 1 it is now
0.01 — 0.2;

o A;/A, and A;/Ap, used in the GTLM, instead of 0 — 3.2 and 0 — 0.16 it is now
0 — 30 for both;

e (Cpa for PTLM, instead of 0.01 — 0.4 it is now 0.01 — 100
3. New calculations were performed with larger number of Monte Carlo simulations,

as we also performed more detailed investigations of the solution convergence.

Because of new simulations and also reviewers remarks, all figures were recomputed.
Please, note that due to technical limitations of Latexdiff tool, changes in figures were
not presented in the document with registered changes.

Yours sincerely

Authors
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Abstract. Despite the development of advanced process-based methods for estimating the discharge capacity of vegetated river
channels, most of the practical one-dimensional modeling is based on a relatively simple divided channel method (DCM) with
the Manning “s-flow resistance formula. This study is motivated by the need to improve the reliability of modeling in practical
applications while acknowledging the limitations on the availability of data on vegetation distributions-and-densities-properties
and related parameters required by the process-based methods. We investigate whether the advanced methods can be applied
to modeling vegetated compound channels by identifying the missing characteristics as parameters through the formulation of
an inverse problem. We-developed-a-new-probabilistic-approach-for-comparing-six-Six models of channel discharge capacity
are compared in respect of their uncertainty, with-the-using a probabilistic approach. The model with the lowest tneertainty

econstdered-estimated uncertainty in explaining differences between computed and observed values is considered as the most
favorable. Calculations were performed for flume and field settings varying in floodplain vegetation submergence, density, and

flexibility, and in hydraulic conditions. The output uncertainty, estimated on the basis of a quasi-Bayes-Bayes approach, was
analyzed for a varying number of observation points, demonstrating the significance of the parameter equifinality. The results
showed that very reliable predictions with low uncertainties can be obtained for process-based methods with a large number
of parameters. The equifinality affects the parameter identification but not the uncertainty of a model. The best performance
for sparse, unsubmergedemergent, rigid vegetation was obtained with the Mertens method and for dense, flexible vegeta-
tion with the-generatized-a simplified two-layer method eombined-while a generalized two-layer model with a description
of the flexibility-induced reconfiguration. We found that the process-based-methods are superior when-applied for vegetative
seplant flexibility
was the most universally applicable to different vegetative conditions. In many cases, the Manning-based DCM performed
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1 Introduction

Compound channels consisting of a main channel and vegetated floodplains are commonly observed both in natural and en-
gineered settings. For instance, vegetated compound (two-stage) channels have been recently proposed as an environmentally
preferable alternative to conventional dredging in flood and agricultural water management (e.g. Véstild and Jarveld, 2011).
Such a nature-based solution (NBS) is expected to allow combining the technical needs, e.g. flow conveyance and channel bed
stability, and the environmental requirements, e.g. improved water quality and biodiversity (Rowinski et al., 2018)-—Reliable-,

but requires reliable predictions on the discharge capacityin-s

by-. Herein, the difficulty results from the
complex cross-sectional geometry and the composite roughness resulting from regions-parts of channel with highly different

flow resistance. Floodplain vegetation is the main factor complicating the predictions and-causing-aneertainty,-particularly in
small to medium-sized channels where up to 90 pe%eeﬁ%mof the flow resistance can be caused by plants (e.g. Vistild
et al. 2016) i i

increase of computing power, two- and even three-dimensional models are gaining popularity in flood assessments (Teng et al., 2017; Liu et

. In practice, one-dimensional models, on which the present study focuses, still play an important role, especially in tasks

requiring long term or large spatial scale simulations (e.g. Yu et al., 2019; Chaudhary et al., 2019). In one-dimensional flow

W s the most w1dely used technique for predlctm g the discharge capacity in-compound-channels-in-one-dimensional

tn—of compound channels is the Divided Channel
Method (DCM) with the Manning formula, defined in 1960 (Posey, 1967). In this approach flow is computed separatel

channel zones with differing flow resistance, usually the main channel and floodplains. The kinematic-effectresulting-from
the-momentum exchange between areas of different-—veloeities—is—taken—into-account-through-the higher and lower stream
velocity, the so called kinematic effect, is represented by rough imaginary walls GSeHm—}964—KubfaleeFal—29¥9b—a}at the
irfoces (Sllin, 1964 Kubras k. 20138, ) Despite the

of the DCM (Myers, 1978; Fread, 1989; Soong and DePue, 1996; Pasche, 2007), the Manning formula is presently the basis

for the majority of practical models for flood hazard assessments, design of hydraulic structures or-water-management—

water management (Shields et al., 2017).
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improve the reliability of practical discharge capacity estimation in vegetated channels, the key vegetation properties controllin
the reach-scale flow resistance should be incorporated into the calculations (e.g. Yen, 2002; Luhar and Nepf, 2013). One of the

most sophisticated model of the channel capacity sheuld-can be attributed to Shiono and Knight (1991), who on the basis of

a turbulent flow theory, derived equations for depth averaged velocities in the cross-section plane. Accompanied with an addi-
tional drag term, the method was successfully used to model flow in a channel with composite roughness consisting of vegetated
and non-vegetated zones (Kalinewskaet-al-2020)(e.g.
- However, for a typical practical case, the Shiono and Knight (1991) model is too complex, requiring much of modelers efforts,
especially in presence of efficient two-dimensional solutions.
Other—seientifie—effortsfocused-on—devetoping—mere-Several approaches providing a physically-based deseription—of—the
interactions-between-flow-and-vegetation—One-characterization of vegetation and the flow-vegetation interactions are available
for straightforward 1D discharge capacity assessments in small-to-medium-sized vegetated channels. In these models, vegetation.
can be represented as rigid or flexible, interacting with water stream as submerged and emergent (Shields et al., 2017). There are

many methods explaining each of these types of vegetation and a comprehensive review can be found in Aberle and Jarveld (2013)
. Some of the most i i < . . .

deseription-ofrecognized methods include e.g. those developed by Pasche (1984) and simplified by Mertens (1989) to describe
the flow in zones with unsubmerged (emergent) Vegetatlon%ekmema&eeﬁfeeﬁ%ﬁmtdafedwﬁhﬁfeughﬂmgmary%a%

who presented empirical relationships for Manning roughness coefficients and vegetation parameters; by Klopstra et al. (1996)

who derived an process-based model for rigid, submerged vegetation; by Jarveld (2004) who provided a process-based approach

for emergent rigid and flexible vegetationtha
feﬂ%faﬂee«‘la}eﬂefre%al—%a—A—%fatg{ﬁefwafé by Baptist et al. (2007) who introduced a two- layer fﬂethedﬂ%%pfepe%ed

The-most-obvieus—reasen—why-the-model for rigid vegetation; and by Luhar and Nepf (2013) who developed a two-layer
model for submerged vegetation. Despite the recent developments of these process-based methodsare-unpoputarforinpractical

there is a lack of knowledge in whether the state-of-the-art methods with a significant
number of parameters are reliable in common practical applications characterized by insufficient information on vegetative
roperties and related model parameters.

Zhang et al., 2018; Abril and Knight, 2004; Zinke et al., 2011; Tang and Knight, -

by Arcement and Schneider (1989)
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An important drawback of vegetation models for hydraulic resistance, from the practical point of view, is that they require
much more data than traditional methods. For example with the DCM, in terms of roughness, the river cross-section can be

usually characterized using three values of the Manning coefficient, for the main channel and two floodplains. The vegetation
models would require specific data on vegetationplant features, such as density, spacing, shape or species, and leaf area indices.

An exception may.
be channel design assignments, where it is possible to assume a future character of a plant cover after an intended intervention,
necessary data on vegetation can be obtained through field surveys, which noticeable increase costs of a model application. A

more effective determination of vegetation features might be remote sensing and many studies were devoted to the use of

these techniques in floodrouting. For example Casas et al. (2010); Forzieri et al. (2010); Abu-Aly et al. (2014); Wolski et al. (2018

2

investigated the use or airborne laser scanning for determining vegetation classes, that corresponds to hydraulic features. The
obtained values of plant properties are however affected by a strong uncertainty, resulting from classification itself, but also

eneralization and variation within a class, as demonstrated by Straatsma and Huthoff (2011). Forzieri et al. (2012) argued, that

airborne laser scanning itself is not suitable to measure plant characteristics, without extensive field reference data. Therefore
. Antonarakis et al., 2009; Jalonen and Jarvel4, 2014; Jaloner

more recent attempts focused on application of Terrestrial Laser Scanning (e.

. However still, the use of the remote sensing data in vegetation models, requires extensive field measurements, to establish a
link between obtained data and hydraulic properties.

as-Aforementioned Straatsma and Huthoff (2011) study showed, that even with field measurements of vegetation properties
eneralization of acquired parameters is rather unavoidable, especially when dealing with larger areas. The obtained in the
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of-thetr—distributions—field values characterizing vegetation, have to be attributed to a spatial unit, representing usually a
vegetation class. On the one hand, together with the nonlinear form of the vegetation resistance models it introduces significant

values and model parameters, which instead of representing physical quantities, should reflect their lumped hydraulic effect.
Such quantities are of course immeasurable and depend on the structure of the flow model. In still scarce studies where
floodrouting is analyzed with the use of vegetation roughness models, some researchers tend considering plant properties
as model parameters that should be calibrated, i.e. identified in the respect of observations. So, to treat them similarly to
Manning coefficients, which are usually determined in this way, by adjusting their values, to obtain an agreement between
computed and observed e.g. water levels, stream velocities or flow rates — by solving the inverse problem through calibration

.g. Khatibi et al., 1997; Marcinkowski et al., 2018, 2019; Yu et al., 2019). The example is given by Dalledonne et al. (2019)
who identified vegetation parameters describing e.g. stem diameters, their heights, drag coefficients and a leaf area index in the

—flow model. Berends et al. (2019) directly addressed the
roblem of parameter identifiability of vegetation roughness models, also using two-dimensional model. It seems, that when
vegetation resistance methods become more popular in practical codes for floodrouting, this approach will become more

common,

vegetation roughness models, rises at least four implications:

1. Is it possible to identify models for vegetation roughness on the basis of the inverse task? The problem using-the Bayes

eompared—to—arises from the larger number of parameters in vegetation roughness models, comparing to traditional



160 approaches, based e.g. on the Manning formula, The problem was well demonstrated by Werner et al. (2003), who
investigated the uncertainty and sensitivity of a hybrid two/one-dimensional model for a varying number of parameters
used to describe a channel and floodplain roughness. Analyzing the parameter identification using a probabilistic approach,
they showed, that with increasing number of parameters, the obtained parameter distributions become less specific,
suggesting the same level of probability over a wide range of values. Moreover, the obtained parameter distributions

165 were different from values suggested in literature. Although, the Werner et al. (2005) study did not account for vegetation
roughness models, the same effect was observed in the case of these methods by Berends et al. (2019) and Kiczko et al. (2017).
- This leads to the second point.

2. Is it reasonable to apply process-based vegetation roughness models if the identification of their parameters results in
values differing from the real values measured at the field (Werner et al., 2005; Kiczko et al., 2017; Berends et al., 2019)
170 ? Such a calibration procedure rises an impression of using process-based methods as data-driven, black-box models,
common e.g. in rating curve assessments (Kiang et al., 2018). From this perspective, the “explieit™approaches-process-based
methods, with other than measured parameters act as functions with large number of parameters, comparing to traditional
approaches like the Manning based DCM. The effect can be probably mitigated by applying constrains on the parameter
values to ensure that they are within their physical bands. With additional information on channel vegetation, using
175 e.g. remote sensing or land use maps, it might be possible to restrict their variability ranges further. The advantage of
process-based approaches might come form the physical interpretability of their parameters. For instance, too large stem
diameters of plants are easier to spot than too high values of Manning roughness coefficients. However, still there is a
lack of evidence, if it is beneficial applying process-based models, instead of pure data-driven approaches.

3. The choice of the vegetation roughness model, e.g. for rigid or flexible vegetation, depends on the type of vegetation
180 present in the channel. Is it then possible to choose an appropriate model without knowledge on the plant type? This issue
should be considered in respect of the point 3, by analyzing if it is possible to choose an appropriate model structure by

solving the inverse problem.

4. Are the process-based models beneficial compared to e.g. the DCM:-based Manning approach when there is a need
to extrapolate to higher flows? This is an issue well recognized in hydrolo Kuczera and Mroczkowski, 1998), that
185 identification of simpler models is much more straightforward, but because process-based models incorporate casual
interrelationships, they provide better basis for the extrapolation. It is of a special importance in flood assessments,
where the calibrated models need to be extrapolated to higher flood flows.

The overall goal of this-the present paper is to eompare-the-uncertainty,parameter-identifiability-investigate the implications
of the use of 1D state-of-the-art process-based methods in discharge capacity estimation of small-to-medium-sized vegetated
190 compound channels. These common practical applications are typically characterized by insufficient data on vegetative properties

so that models are identified in terms of the inverse problem. We compare the model identifiability, uncertainty, and physical
interpretation of the parameters of discharge capacity methods characterized with different levels of parameterization. This



vegetation—The following methods were investigated: Manning based DCM, Pasche (Pasche-and-Reuvé;1985)(Pasche, 1984)
195 and Mertens (1989) methods designed for emergent rigid vegetation, and three versions of the two-layer model proposed by
Luhar and Nepf (2013) as modified by Vistild and Jérveld (2018), designed for flexible submerged or emergent vegetation.
All models were applied to vegetation conditions differing in relative submergence (covering both submerged and emergent
conditions) and density, as motivated by real cases where it is possible that e.g. a “rigid™"rigid” vegetation model is applied for
flexible vegetation because of a lack of information on the vegetation properties. Parameter identification was conditioned on
200 water depths instead of discharges to make the problem more similar to practical cases, tike-such as flood assessments, where a

model outcome is usually the water level. It is out of the scope of the paper to provide a summary of all the-available methods.

2 Methods

205 the-presentstudy:

vi-This section provides an
overall description of the applied methodology. The analysis is performed with process-based approaches for vegetation
roughness, including Pasche (Pasche, 1984) and Mertens (1989) models for rigid emergent vegetation (section 2.2.2) and

210 flexible vegetation models based on the two-layer assumption of Luhar and Nepf (2013), generalized by Vistild and Jarveld (2018, sections

- Computations were performed for steady state conditions, by applying vegetation roughness model for water levels in a
channel cross section.

Two experimental data sets collected from vegetated compound channels were used: flume measurements with rigid vegetation
(Koziol, 2010; Koziot, 2013, section 2.3.1) and field measurements with natural mostly grassy vegetation at Ritobacken brook

Vistild et al.,

215 2016, section 2.3.2). The process-based models of vegetation roughness were compared with the traditional

220  purpose of the identification task it was necessary to assume, that parameters are constant and for that reason, the experimental
data was divided into sets, where vegetation features were constant as possible. Therefore, the model identification for the field
data was performed separately for each season.

Similarly to Werner et al. (2005) and Berends et al. (2018), the parameter identification problem is defined in the probabilistic
manner, on the basis of Bayesian estimation (section 2.1). The adapted assumption is that the methods can be compared in

225 terms of pa




Other

parameters i identification

Q H

Vegetation MODEL 3
characteristics >

inputs

(a)

Vegetation characteristics

and other parameters identification

Q H
— > MODEL L

inputs

(b)

Figure 1. Two ways to define the parameter identification problem for process-based methods of channel discharge: (a) traditional approach,
b) adapted in the present study.

Ho)—For-instance;in-real-applieations detatled-information-on-assessed uncertainty: i.e,, the more appropriate the method
is, the lower is the uncertainty of its predictions. At this point it should be noted that with a such problem statement the
goal is the model identification, rather than parameter identification (Mantovan and Todini, 2000), as without knowledge on
true parameter values, only measures for model outputs are used in the calibration process. The model identifiability in a

230  probabilistic manner is understood as the ability to determine the parameter distribution that explains the model uncertainty in
relation to observations. An effort was made to ensure that uncertainty analysis is objective and repeatable, despite different
assumptions on initial @ priori parameter distributions for each method.

The identification was performed for a different number of observations, similarly to hydrological studies of Her and Chaubey (2015); He

. For calibration the points of rating curves were used, the effect of different possible combinations of observations in identification
235 . . . . . .. .

was calibrated for a set of five lower flows, but also for a set of five higher and mixed ones. To address the issue of usin
simpler and more complex, process-based methods-as-parameters-models for extrapolation of the rating curve, a special focus
was made on predictions of maximum flows with a model identified using only lower flows.

240 2.1 Parameter identification and uncertainty analysis

River assessments using one-dimensional models with DCM, based on the Manning formula, are usually performed without
detailed knowledge on vegetation properties. The Manning roughness coefficients are considered as model parameters, identified
in the inverse problem, where their values are adjusted to ensure satisfactory fit between model outputs and observations



e.2. computed and measured water depths H at given discharge (). The vegetation roughness models provide a relationshi

245 between plant features and the water flow. Vegetation characteristics, that can be obtained by field measurements or e.g.
design assumptions, are considered as a model input. In discharge calculations, the use of such models can be illustrated with
Figure la, where vegetation properties are one of model inputs. It is still necessary, to specify remaining parameters, like
roughness coefficients for bed or drag coefficients for plants. The present study investigates the approach given in Figure 1b,

where also vegetation characteristics in vegetation roughness models are considered as model parameters, that have to be iden-
250 tified:

without a knowledge on channel vegetation. This makes the application of vegetation roughness models, similar to the wa
how Manning based approaches are used. From the practical point of view, the difference, apart the model structure, comes

from the number of parameters -
255 applicability-of-a-method-—

The-parameter-identification-that have to be identified.

In the probabilistic parameter identification approach, parameters are assumed to be random variables explaining the model
uncertainty Werner et al. (2005); Berends et al. (2019). The model identification is performed along with the uncertainty analysis
and consists in a determination of parameter distributions, that translates using the model to probabilistic distributions of model

260 outputs, here water depths H. The results of parameter identification and uncertainty estimation are usually presented in a form

of confidence intervals for model outputs and parameter marginal distributions. The problem was defined on the basis of
Bayes estimation using using Generalized Likelihood Uncertainty Estimation (GLUE) approach (Beven and Binley, 1992;

Romanowicz and Beven, 2006);-based-en-. Parameters distributions, are obtained using the Bayes formula:

L(H/9)P(0)
P(6/H) = [L(H/0)P(6)do M

265 where 0 stands for parameters, H water levelsdepths, P (0) epriori a priori parameter distribution, P (0/H) apoesteriori

a posteriori parameter distribution, L (H/#) likelihood function. The equation is solved using Monte Carlo sampling of
arameters within the adapted a prior distributions P (6) and model simulations for given flow rates

and-the-shape-The choice of the likelihood function —In-that-ease;-as-in-L (/{/0) depends on the assumptions of the character

270 of model errors. In the present study ;-

+—it was assumed that models are unbiased and errors between computed and observed water levels ¢ are independent and
275 normally distributed ¢ ~ N (0, 02), where o2 is unknown variance. The relationship between observed water levels H and the
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computed H for a given flow rate () and parameters ¢ can be given as follows:

= 1(Q.0)+¢ @

The error ¢ explains all discrepancies between the model and observations, so as well the measurement and model uncertainty.
Therefore the performed uncertainty analysis accounts for the total uncertainty. When comparing different models for the same

observation set, the measurement uncertainty is constant and differences results from the model uncertainty. For independent

and normally distributed errors 1996; Romanowicz and Beven, 2006

the likelihood function is given by (Romanowicz et al.,

' 3
V2ro? Ko 20 3)

is usually estimated using model residuals (Romanowicz and Beven, 2006; Stedinger et al., 2008). In the present study, the
o2 is determined on the basis of observations, by ensuring that they appropriate share is enclosed in confidence intervals
Blasone et al., 2008) of modeled water depths H. The optimization problem is defined in terms of scaling factor x eoefficient-

inrespeet-of-observations—In-the present study-the-shape-eoefficientfor the variance of model residuals o2, used commonly in
GLUE:
20 = o @

The variance of model residuals o2 is calculated using the Monte Carlo sample Romanowicz and Beven (2006):

1 & .
2 __ . ..
o2 = var (m > ‘H g ) )

10



The purpose of Equation 4 is to provide an initial guess on o2, The r (Equation-3)-was-scaling factor is computed on the basis

of minimization task:

11 -
305 K = argmin <6/<L+ pff—z J(H) ) (6)
" LR
X 0 if H,e[H™ H™
J(Hi): i € [ ] o
1 else

where H*, H" denote lower and upper quantile (g7, qu) of the calculated water levels from the a posteriori distribution
(Equation 1), obtained with the likelihood function (Equation 3); p stands for confidence interval, defined as: p = qu — qr.. In
the present study 95% confidence intervals (p = 0.95) were used, with g, = 0.025 and gy = 0.975. € is a small number as a

310 penalty for too wide confidence intervals of water levels /. The minimum of the function given with Equation 6 should be the
smallest value of x for which the last term in Eg-Equation 6 equals zero:

11 .
p———> " (H) <0 ®)
nm*
— =1
This is true when exactly #-p - m observations fall within the confidence intervals. For p = 0.95 and relatively small observation
sets of #~10-m ~ 10 in the present study, minimum is found when all observations are enclosed by intervals. In such a case,
315 the sum term in Equation 8 is equal to 1 and the difference becomes negative. The procedure given with Equations 6-8 allows
for determining the minimal value of o2 (Equations 2 and 3) sufficient to explain model uncertainty in respect of observations. It
should be noted, that for a poor model and/or inappropriate variability ranges of tts—pa%ametersg/\p\ggg pvavrgrvn;cvtgrvglvsvtrvllnggggys

such a solution might not exist.

320 poermodel-asolutionfulfillingthe-constraints-of Eq—The term given with Equation 8 was therefore a criterion for the model
identifiability. The model was considered identifiable, if the Equation 8 mtgh%ﬂe%eﬂskw&hiﬁpafafﬁefeﬁfaﬂge&fha%eaﬁbe

foragivendata-set-was fulfilled.
The assumption of a priori parameter distributions P (0) have a significant effect on the a posteriori solution (Freni and Mannina, 2010;
325 . In the present study to obtain objective uncertainty estimates for a different methods and parameters it was decided to apply.
uninformative and relatively wide a prior distributions, assuming no knowledge on channel vegetation, maintaining however
hysically interpretable ranges (Table 1). The parameter ranges of uniform distribution were chosen to ensure that the high
probability region is enclosed by the Monte Carlo sample. The span of this region links with confidence intervals comprising
93% of the a posteriori distribution, so it was assumed that the sample should be noticeably larger. It was obtained by testing,
330 ifitis possible to make confidence intervals wider by increasing the  coefficient determined using Equations 6-8. This way it
was possible to check, if confidence intervals are not directly affected by the span of the Monte Carlo sample. When confidence
intervals were insensitive to increasing value of it was necessary to extend ranges of a priori parameter distributions, It should

be noted, that it was necessary only in the case of unsuitable models, where condition given by Equation 8 was usually not
fulfilled.

11
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It is acknowledged that the parameter identification and associated uncertainty depend on the size of the observation data set.

To address this issue, the parameteridentifieation-(Eg—model identification (Equation 1) was performed for a varying number
m of observation pointsy——t———2-where N-stands-for the-total-size-of a-data-set; H, H and corresponding flow rates

as the input. The m included values form 1 to the total number of available observations M: m =1,..., M. The

calculations inelude-included all possible combinations of observations with the given #-m i.e. m—?he—te%dlril Dy

The number of all combinations is then 2—42" — 1, excluding the empty set (1 = 0). Such an approach allows eliminating

the effect of non-representative observation samples. The method was discussed previously by Kiczko et al. (2017).

Remaining-ebservation—points—N—mn-Observation points not used for identification M —m act as a verification set. In this

analysis, both the proportion of verification points that falls within estimated confidence intervals and the width of confidence
intervals are used as measures of model performance. The more narrow the confidence bands and the less observation points
falling outside them, the better a model is. On the opposite, a less adequate model requires larger spread of the solution, to
enclose observations, as it wrongly explains their variability. Because the different combinations of #-m points resulted in
multiple uncertainty estimates, the results were presented in terms of statistical moments, as a function of #m. For a detailed
description of results box-plots were used, where the median is given as a horizontal line within a box, that spans over 25%
and 75% quantile, whiskers indicate the result extent, excluding extreme values given with cross marks.
As it was mentioned before, it should be noted that by applying the Bayesian concept, the objective is the model identification
see comment of Mantovan and Todini, 2006). Parameter variability is used to describe the uncertainty, specifically with the

Equation 2 the error ¢ . This comes from the form of the inverse problem, where likelihood measures depends only on measured

model outputs, here water depths and it is possible that parameters that are different from real ones, but provide a good model
fit, are considered as likely (Werner et al., 2005; Kiczko et al., 2017; Berends et al., 2019). To demonstrate this effect and to
discus possible implications the obtained marginal a posteriori distributions of parameters P (6/H) were compared with
values obtained by direct measurements in analyzed case studies. A special focus was given on extrapolation capabilities of
vegetation models with parameters determined on the basis of the inverse problem, assuming a lack of the knowledge on
The Latin Hypercube Sampling (Budiman, 2017) was applied to improve performance of the Monte Carlo technique. The
size of the Monte Carlo sample (72, Table 1) was determined in each case by trial and error, to satisfy the convergence of
the solution. As the criterion for the convergence the difference of estimated average water depth was used. The number of
simulation was considered as sufficient, when difference in subsequent ensembles stabilized bellow 107° - 10~ % m._

2.2 Discharge capacity formulas
2.2.1 Divided Channel Method
In the DCM approach (Posey, 1967), the channel cross section is divided in flow zones of similar hydraulic conditions, typically

the main channel and floodplain. The interactions between the zones of significantly different mean velocities are reproduced

12
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with a rough imaginary wall, applied to the zone with the higher velocity, i.e. the main channel. In the present study, the rough-
ness of the interface was assumed to equal the roughness of the channel banks next to the interface. Parameters of the method
are the roughness coefficients for each flow zone. In the present study, DCM was based on the Manning formula, with the

common approach of having separate Manning coefficients for the main channel (n.), and left (nr,) and right floodplain (np).

The parameter bands with m,,,. Monte Carlo sample sizes are provided in Table 1 separately for flume and field experiments.
For flume data sets calculations were performed for a symmetric channel, which allowed to reduce the number of parameters
as the same values were used for the left and right floodplain.

2.2.2 Pasche and Mertens methods

A brief concept of the Pasche method is provided by Pasche-and-Rouvé-(1985)-Pasche (1984); Pasche and Rouvé (1985) and a

detailed description of the algorithm used herein is provided in Koziot et al. (2004). The model describes the discharge capacity
of the compound cross section with rigid vegetation, derived for steady flow conditions. Similarly to DCM, the model divides
the compound cross-section into regions of the main channel and floodplains, dominated by bottom and vegetation roughness,
respectively. It accounts additionally for the transition region between these two main zones. As in the DCM, the interactions
between the main channel and floodplains are modeled using an imaginary rough wall. For the resistance of the imaginary
wall, bed and also vegetation stems the Darcy-Weisbach formula is used.

The Darcy-Weisbach friction coefficients are determined using a set of semi-empirical equations for each zone and the
imaginary wall, including transitional regions. The method explains the extent of the transition region within the vegetated
region, affected by the higher flow velocity of the unvegetated main channel. The flow in the main channel depends on the
apparent resistance of the imaginary wall. There is no general expression for the span of the transition region in the main
channel, and it has to be established for each case.

Velocities in the flow zones and transitional regions are interrelated by the apparent resistance. Equations describing these
dependencies have an implicit form that requires iterative methods for solving, so that the Pasche method has a very complex
numerical solution. Mertens (1989) attempted to improve the numerical efficiency of the Pasche concept by simplifying most of
the demanding implicit formulas to less accurate but explicit ones, reducing the number of terms requiring iterative numerical
solving.

In the Pasche and Mertens methods, a detailed parametrization of the channel, including plant properties, surface roughness
and the extent of the interaction zone in the main channel, is used. Assuming that the modeler has only knowledge on the
geometry of the cross-section, the following parameters have to be identified: a, a,, longitudinal and horizontal spacing of
plant stems; d,, average diameter of the stems; k, k. roughness height of the floodplain and the main channel bed; b;;;/B.
ratio of the interaction region width in the main channel (b;;) to the main channel width (B.). Assuming that the channel is
symmetric, the total number of parameters is six. Modeling different properties of vegetation on left (subscript L) and right

(subscript R) floodplains (@, 1.:0z, R, @2, 1:02 R, dp,1.:dpP,R, kf 1 ks r) increases the number of parameters up to ten.
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2.2.3 Generalized and Simplified Two-Layer Model

In the present study, the two layer model of Luhar and Nepf (2013), generalized by Vistild and Jéirveld (2018) for more
complex cross-sections is considered as the state-of-art approach for submerged vegetation. This Generalized Two-Layer Model
(GTLM) is based on the momentum balance with drag coefficients at the interfaces between vegetated and unvegetated areas of
the channel cross section. Generalization proposed to the original model (Luhar and Nepf, 2013) by Vistild and Jarveld (2018)
consists in replacing-assuming a non-rectangular cross-section, so that the channel width is replaced by the wetted perimeter
(P) and water depth by the hydraulic radius (R).

The channel discharge capacity is computed on the basis of equations for mean velocities in the unvegetated (up) and

vegetated (u,,) parts of the cross section (Vistild and Jirveld, 2018):

ug  [2P(1—-Bx)]"? ©
(gSR)/2 | C* (Lo + Ly)
971/2
Uy _ | 2PBx + C*Ly (ug) (10)
(gSR)/2 CpaPRBx

where ¢ is the gravitational constant, .S energy slope, uj = i dimensionless velocity in unvegetated zone, C* the drag

coefficient for shear stresses at the channel bed and at the interface between vegetated and unvegetated zones, L; and L,
wetted lengths of the unvegetated channel margin and of the interface between vegetated and vegetated zones, respectively.
Bx denotes the vegetative blockage factor in the cross section, defined as the vegetated flow area divided by a total flow area.
Physically, the drag coefficients for bed and the vegetation zone interface may take separate values. Following Luhar and Nepf
(2013); Vastild and Jarveld (2018), it was herein assumed that the same value of C* can be used for both regions.

Cqa is the vegetative drag per unit water volume, expressed conventionally as the product of a drag coefficient C; and
the frontal projected plant area per unit water volume a, assuming that plants are rigid simple-shaped objects. To account for
the presence of foliage and the flexibility of the plants inducing bending and streamlining, the vegetative drag per unit water

volume can be parameterized as (Vistild and Jarveld, 2018)

XF A Xs A
CDa:CDX,F( c > L 4 Cpys (uc) == 1D
Ux,F B ux

where u¢ is a characteristic approach velocity, taken here as equal to the velocity in a vegetation layer: uc = u,. Ag denotes
total frontal projected areas of the plant stems and A, the total one sided leaf area per unit ground area Ag. Cp, s and Cp, r
represent constant coefficients for the drag of stems and foliage, respectively. The effect of streamlining and reconfiguration on
the drag is described using exponents x s and x r, for stems and foliage, respectively. ux r and ux, g are reference velocities
needed for determining the drag and reconfiguration coefficients.

Equations 9 and 11 implicitly depend on each other and require numerical solving. In the conservative approach vegetation
parameters have to be known (Figure 1 a). The blockage factor Bx requires knowledge on the vegetation distribution and/or

A

height in the cross section. £ and z‘—g ratios characterizing the plant structure can be measured or typical values for a certain
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430 plant communities can be adopted. Drag coefficients Cp, s, Cp, r and reconfiguration exponents xg and xr, along with
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their reference velocities (ux r and ux, g), are factors specific for plant species or plant type-specifie-factors-type and can be
determined on the basis of laboratory measurements. Their values have been published for common plant species (Vastilda and

Jarveld, 2014; Jalonen and Jarveld, 2015; Vastild and Jarveld, 2018).
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Figure 2. Parametrization of the blockage factor Bx, the cross section for Ritobacken Brook (Vistild and Jérveld, 2014

For channel flows with dense vegetation for which over 80 percent of the discharge is conveyed in the unvegetated regions,
the GTLM approach can be simplified by assuming that discharge in the vegetation layer is negligible with respect to the total
discharge: u, ~ 0 m/s (Luhar and Nepf, 2013; Viistili et al., 2016). The remaining Equation 9 does not require numerical

solving. In the present study the above approach is referred as Simplified Two-Layer Model (STLM). It has to be noted

AR AANIANAANAANAANAANANANR
that with this approach, up to 20% of the discharge is neglected, depending on the density and cross-sectional blockage of
vegetation. By neglecting the Equation 10, the STLM requires five and GTLM nine parameters.

Parameters of GTLM and STLM, resulting from Equation 9 are the drag coefficient for shear stresses C'* and Blockage
Factor Bx. Bx depends on the area occupied by the vegetation in the cross section. It changes with the water level and therefore
should not be represented as a constant value but rather derived-on-the-basis-of-as the vegetaion share in the cross section and
vegetation-geometrie-propertiesarea in the function of the depth. In the present study, to obtain a general parametrization, Bx
was described in terms of left-right extents I;, /Ly, [r/Lr and the height hy,hp of vegetation. L, Ly stand for the cross
section width en-from the left and right side; respeetivelybank, respectively, to the lowest elevation in the main channel. [z, and
Iz denote vegetation extents, from banks towards the main channel (Figure 2). 11,/ L1, provides-information-ofis the vegetation

extent on the left side, starting form the top of the left bank towards the channel middle point: O stands for clean bank, while
1 means that the vegetation cover extends over entire left side. Same-The same applies for Ir/L g, where it is assumed that

vegetation zones starts from the top of the right bank. The vertical range of the vegetation in the cross section is obtained by
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adding hy, or hg to the value of the ground elevation. The adopted parametrization for Bx was verified with field estimates
for Ritobacken Brook (Vistild and Jiarveld, 2018) and allowed to obtain a fit with the linear correlation coefficient of 0.88.

It should be noted, that by parameterizing the Blockage Factor, the parameter identification task is much more complicated
than in the conventional approaches. In the DCM the vegetation extent is equivalent to the division into main channel and
floodplains, which is known on the basis of the cross sectional geometry. Here, for GTLM and STLM it was considered as a

part of the parameter identification problem.

2.2.4 Practical Two-Layer Model

Luhar-and-Nepf(2043)-propesed- Luhar and Nepf (2013) derived a formula for the Manning coefficient n +for shallow channels

h

lined with vegetation, where the blockage factor can be approximated as Bx =~ ++:

1 -1
1/2 1 1 3 2
g _(9SR)z 2 _h 2 2 h
K (KR1/6‘> v “|\&) U"r) T\ acoan | \& (12

where h stands for the vegetation height and K =1 m!/3s~! to ensure correct dimensions of the equation. Theformulais
. . h

Nl

7r—In the presented

form of the equation-Equation (12), following Viistild and Jérveld (2018), the water depth H was

replaced with the hydraulic radius R.
Theuhar-and Nepf2013)fermula—t2Equation (12) has a convenient form to be easily applied in practical cases, where
usually the Manning equation is used. In the present study, this approach is called the Practical Two-Layer Model (PTLM) as

it requires less parameters influenced by vegetation. In the present study this approach is named Practical Two-Layer Model
(PTLM) and applied as a three-parameter-onethree-parameter model, with the drag coefficient C*, average vegetation height h

in the cross section and C'pa.
2.3 Case studies

The analyses were conducted for a flume data set (Koziol, 2010) and a field data set (Vistild et al., 2016) collected from
vegetated compound channels, interpreted herein as 5 distinct case studies, as detailed below. To our knowledge, the field
cases are one of the most thorough characterizations on the dependency between vegetation properties and discharge capacity
in natural compound channels, including spatially-averaged values for vegetation height, blockage factor, and frontal area
density in different seasons and flow conditions. The flume cases are representative of typical experimental arrangements

where vegetation is simulated by rigid cylindrical elements at a uniform spacing.
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2.3.1 Flume experiments:

The experiments were conducted at the Warsaw University of Life Sciences (WULS-SGGW) using a physical model of
a compound channel with rigid cylinders simulating vegetation. A detailed description of the dataset can be i.e. found in

The modeled channel was straight, 16 mm long with the compeound-trapezoidal-eross—section——2-10-m—wide-slope of
s=15-10"" The cross section was trapezoidal and wide for 2.10 m (Figure 3). The main channel bottom was made of smooth
concrete with the estimated roughness height #s=-5-+6="snk, = 5-10_° m. Floodplain vegetation was simulated with rigid

d,, = 0.008 m and spacing a, = a,, = 0.1m. There were

two experimental variants of vegetation layout and floodplain roughness. In the first one (1) the floodplain bottom was made of

cylinders of a diameter ;=

the same smooth concrete as the main channel, with a single row of vegetation present also on channel bank (Figure 3a). In the
second one (2), vegetation was constrained on the floodplain by removing the channel bank stems while floodplain surfaces
were made rougher using a layer of terrazzo concrete of the grain size of 0.5 to +-em-1 cm (Figure 3b).

Experiments were performed for steady and uniform-flow-eonditions-quasi-uniform flow conditions (Kubrak et al., 2019a, b)

. The water surface was kept parallel to-the-bed-using-a-using a pressure gauge, measuring the differences in depths at cross
sections located 4.8 and 12 m from the flume inflow and a weir localized at the flume-outflow. Water discharge was measured

using a circular weir and water levels were recorded in the middle of the channel.

The data set, used in the present study, consisted of discharge and water level observations (Appendix Al) within the range
of: 0.037-8-860-m3/5-0.060 m? /s (mean velocities: 0.2-0.4 #/sm/s) and 0.2 - 8-3-mrespeetively-0.3 m, respectively what
includes only overbank flows. The number of observation point in the first variant was nine (=9 = 9) and in the second
one ten (N-=-10)=M = 10). The uncertainty calculations were performed for a symmetric channel, which allowed to reduce
the number of parameters, as the same values were used for the left and right floodplain.

2.3.2 Ritobacken field experiment

The field data with seasonally and annually varying vegetation was obtained from an 11 s-m wide compound channel,
Ritobacken Brook (Finland, Figure 4), w1 i i
WMM@WWWWM
(Vastild et al. (2016)). Measurement series with vegetated floodplain flows (Appendix A2), were available for three seasons,
with the number of observations given in brackets: Spring 2011 (NM-=6M = 6), Autumn 2011 (N-=+2M = 12) and Spring
2012 (N=1+bH=M
woody vegetation covered 10% of the total wetted ground area.

The respective mean floodplain vegetation heights were ir—=9—em47-ermrand-24-erm-h = 9 cm, 47 cm and 24 cm while
the vegetative blockage factor ranged at Bx = 0.13 — 0.53. The taller vegetation in Sprmg 2012 compared to Sprmg 2011

= 11). Vegetation consisted mainly of different grassy species, with both stems and foliage, while sparse

was explained by the fa
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Figure 3. Laboratory channel cross section (dimensions in cm); 1 - rigid cylinders simulating vegetation; 2 - wooden strips supporting

vegetation (Koziol, 2010); a) case 1; b) case 2.

ongoing succession phase after the floodplain excavation. Vegetation was submerged under all examined flows in Spring 2011
and under 42% and 64% of the flows in Autumn 2011 and Spring 2012, respectively.

The Manning-coefficient-of-thenarrow—main—<channel-as-ebtainedfrom-h

The-discharge capacity at different flow conditions was obtained from water level data recorded at 5-15 min-min intervals
with pressure transducers at the upstream and downstream ends of a 190m- m long test reach. The discharge was obtained

from a rating curve determined for a culvert at the downstream end of the test reach. The stream is free flowing and there are

no hydraulic structures affecting the flow or water levels at the investigated discharges. Flow conditions were gradually varied

and therefore the energy slope S was used instead of the bed slope in determining the flow resistance.
At floodplain flows, discharge and floodplain water depth ranged at 0.19 - 1.59 #%/s-m?/s and 0.10 - 8:6720.67 m,

respectively, with cross-sectional mean velocities of 0.11 - 0.30 m/s—Flew-cenditions-were-non-uniform;-and-in-computations
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525

the-measured-energy-grade-slope-was-tised—m /s, The Manning coefficient of the narrow main channel as obtained from highest

flows not inundating the floodplain was n = 0.08 —0.12 m~1/3

some aquatic vegetation.

s due to irregular main channel geometry, woody debris and

The calculations in the present study were performed for the channel geometry and water depths, averaged over 190 m of

the stream reach.
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,_Bank | Floodplain ,channel  Bank |
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Figure 4. Ritobacken channel cross section (a) and a photography, Autumn 2011 (b)
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2.0.1 Analysis of the numerical results

535 The numerical results were analyzed from three-four perspectives: (1) identifiability of the model for the given vegetation

conditions; (2) width of estimated confidence intervals as a function of the number of the observation points; (3) representation

of high flows with models identified for low overbank flows; (4) the physical interpretation of the obtained parameter values.

540

: - = 3-The obtained parameter distributions were compared with real measured values, as
in Berends et al. (2019), but using several vegetation roughness models. This way, it was possible to analyze the problem

of parameter identifiability. In the second step, the applicability of models, which parameters differ from real values, was
545  discussed.

550

The obtained uncertainty
estimates of computed water levels allowed to compare the efficiency of each model in explaining the rating curve. The same
output was used to measure the selectivity of models, when applied for inappropriate case, e.g.modeling of the rigid vegetation
with the model for flexible vegetation. It should be expected, that the solution for the model used for the inappropriate type of

555  the vegetation, should be characterized with the relatively high uncertainty.

2.1 Computational-output-and-general-ebservations

The obtained results were also compared with other studies on the vegetation model identification and uncertainty estimation
like already mentioned studies of Werner et al. (2005); Dalledonne et al. (2019); Berends et al. (2019), but also Warmink et al. (2013
who compare the uncertainty of a two-dimensional model for chosen methods of bed and vegetation resistance.
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Figure 5. Exemplary rating curves for m = 5, Ritobacken case study with-r—=-5(Spring 2012): (a) GTLM, (b) STLM, (c) PTLM; the flume
data set, case 2with-n—=-+4: (d) Pasche, (e) Mertens, (f) DCM. Confidence intervals and the median of the probabilistic solution are given
with dashed lines, red line denotes the best simulation in the Monte Carlo ensemble. Observation points used for parameter identification are

marked with squares (LJ), while verification data points are marked with circles (o) .
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Figure 6. GTLM results for Ritobacken case study, Autumn20++Spring 2012: (a) Averaged relative confidence widths W as a function of
observation set size #-m used for model identification; (b) Ratie-Percentage of verification points enclosed by the confidence intervals (+
100% denotes all points within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the

result extent, cross marks are for extreme values)

3 Results

3.1 Computational output and general observations

The basic output of the computations which included Monte Carlo simulations using channel discharge models and parameter
identification on the basis of Equations 1-7, were rating curves. They were derived with a different number of observation
points #-mn for the parameter identification, for all possible combinations (see Section 2+2.1).

Exemplary curves are presented to highlight some general observations (Figure 5). We show chosen solutions for a—given
aumber-m = 5 of observation points used in the parameter identification, #—=-5-for the two-layer approaches (GTLM, STLM,
PTLM in FigureSa-5¢ 5a-c) developed for dense, submerged vegetation corresponding to the Ritobacken case study and
#—-4-for the Pasche, Mertens and Manning based DCM models for rigid unsubmerged-emergent vegetation correspond-
ing to the flume conditions (Figure 5d-5fd-f). In this example, chosen to provide a background for the analysis on extrapolation
capabilities of models (Section 3.3), the parameters for discharge curves were identified at fow-lower overbank flows, while
the verification was conducted for high-flows;—which-highest flows. This represents the common practical way of using hy-

draulic models to assess flood hazard at flows higher than the ones the models were calibrated with. In terms of parameter
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Figure 7. Pasche results for the flume data set, case 2: (a) Averaged relative confidence widths W as a function of observation set size #-1m
used for model identification; (b) Ratie-Percentage of verification points enclosed by confidence intervals (+-100% denotes all points within
intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent, cross marks are for

extreme values)

identification results are considered as successful, as all #~m observation points were enclosed by the confidence intervals.
Except STEM-and-DEM-models;-meost-of-the DCM model in the flume case study (Figure 5f), all the remaining points, i.e.
the verification set with N—s#-peints;-M — m points, given in Figure 5 as circles (o), are enclosed, indicating a good quality
of the solutions. For the STEM-and-DCM (Figure Sb-and-5f) the points used in the model identification are within confidence
intervals (the condition given by Equation 8), but the verification points are outside retwithstanding-the-much-wider-despite
the wide confidence intervals. In-the-case-of DEM;thereasoniss-The reason is that for the flume data with rigid vegetation, the

Manning formula with constant values of roughness coefficients is unable to correctly reproduce the rating curve and fulfill the

Along with the probabilistic solution, Figure 5 presents a deterministic solution obtained as a computed rating curve with the

highest value of likelihood measure (Equation 3). The deterministic solution often deviates from the median of the probabilistic

one, as in the case of the Pasehe-medelH5aGTLM and STLM (Figure 5a-b).
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Figure 8. Manning based DCM results for the flume data set, case 2: (a) Averaged relative confidence widths W as a function of observation
set size #-m used for model identification; (b) Ratie-Percentage of verification points enclosed by confidence intervals (+-100% denotes all
points within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent, cross

marks are for extreme values)

On the basis of the rating curves computed for each combination of #-m observation points, it is possible to analyze the

estimated average widths of confidence intervals as-in a function of 1 observation points used in the identification. In-the

1 <~ H* —H
o lm ; median (H)Zl (13)
o HIE—gU . .
whereH U —and-H9—" —i— i where H" and H/" stands for the estimates of lower and upper confidence intervals for

7

calculated water level, normalized for each ¢ point of the rating curve by the median of the probabilistic solution for the i-th

m ar, ay
. . . . . . HL _ [
oint: median (H),. From m rating curve points a mean value is computed with the term -+ i

- for all possible

i=1
combinations of m observations in the full set of the size M. In the last step, mean values of confidence intervals widths were

again averaged over sets where model was identified using m observations.
Chosen results on the influence of the number of identification-datapeints-observations used for identification on the widths

of the confidence intervals and the ratio-percentage of verification points included within the intervals are provided in Figures
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Figure 9. Portion of observation points within 95% confidence intervals for Pasche method in function of observation points used in parameter

identification, presented in a form of box-plots; results for the unsuitable data set for the Pasche method of Ritobacken, Spring 2012.

6-8. In Figure 6 for GTLM applied for Ritobacken case study for Autamn201-and-alse-Spring 2012 and also in the Figure

9 with the Pasche model used for the flume data set in case 1 it can be noticed that: (1) the relative confidence interval widths
(Figures 6a, 7a) are high for a small #~m as a result of the parametereguifinalityill-posed inverse problem, i.e., the number
of observations is insufficient for the unequivocal model identification; (2) with additional data points, the solution converges

by reducing the span of intervals but also its variability due to different combination of observation points; (3) the width of
confidence intervals for the full data set #—=-2>-m = M in both cases is below 5%; (4) the confidence intervals estimated for
a low number of observations (#n—~<-4m < 4) have poor predictive performance, as most of the observations in the verification
sets fall outside (Figure-Figures 6b, 7b); (5) in both cases for #—=>4-m > 4 more than 50% of the verification set is enclosed
with the estimated confidence intervals. Figure 8 shows an example of a model with a poor performance, indicating the model’s
inadequacy to the given case. The confidence intervals are extending with #-m (Figure 8a), which for #>4-allews-te-enclese
m > 4 allows enclosing most of the verification set (Figure 8b).

3.2 Model identifiability

The model identifiability is understood here as the ability to determine the parameter a posteriori distribution that explains the
model uncertainty in relation to observations (see Section 2.1). This is satisfied by meeting the constraint given in Equation 8,
as for cases presented in Figure 5. The criterion of Eg—Equation 8 might be fulfilled even for a poor model by extending the
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parameter variability ranges (22-and-22Table 1), specified with a priori distribution P (¢). The only limitation could be the
physical meaning of the parameters.

Figure 9 shows exemplary results for a model that could not be identified for a given dataset. Values of J (Equation 7) were
computed for observation points used in the parameter identification and averaged in respect of the-ensemble-count-ntheir
count m. This model was unable to correctly reproduce the rating curve over the whole Monte Carlo ensemble of parameters.

The computed water levels did not follow the observed shape of the rating curve and as a result it was not possible to find such

a solution of Equation 1 where identification data points would be enclosed by the confidence intervals (Equation 8). Only

iven with Equation 8 was fulfilled only for m = 1 , but not for all points, as indicated with the single red cross in Figure 9. This
indicates that not all observed water levels were covered by the Monte Carlo sample of computed water levelsdid-notecover-that

point. With an increasing number of #m, the number of observation points enclosed by the confidence intervals depends on
the combination of observation points. Some beneficial effects allow to fulfill the constraint given with Equation 8, such as an
extreme value of 1 for #=-6-1m = 6 whereas others enclose only a small share of observations. For #=N—=14m = M =11,
there is a single solution, in which about 60% observations were enclosed by confidence intervals. For an identifiable model,
Figure 9 would consist of single horizontal lines between 0.95 and 1, indicating fulfillment of the constraint of Eg—Equation 8
for all simulations.

The Pasche and Mertens models applied to the Ritobacken case study were not identifiable even with relatively large vari-
ability ranges of the parameters (Figure 9). This is likely explained by the fact that these methods were developed for rigid
unsubmerged-emergent vegetation whereas the Ritobacken had immerse-mostly dense submerged flexible vegetation. The

Spring 2011 and Spring 2012 but not in Autumn 2011. This result is likely explained by the fact that the assumption of
Byx &~  noticeably overestimates By in compound channels with unvegetated main channel and high floodplain vegetation

By applying large parameters variability for the GTLM and PTLM models, it was possible to meet Equation 8 for the flume
case study although these methods were not originally designed for such unstbmerged-and-rigic-emergent vegetation. The
STLM model failed for the Ritobacken-Spring20 ase-with-sparse;- lew-vegetation-with-h=9-em;-and-for beth-flume-eases:
Fer-flume experiments, the-STEMikely-did-net-werk-likely because the assumption that >80% of flow should be conveyed in

the non-vegetated zones was not fulfillfulfilled. The rest of the models, including DCM for all cases, were identifiable.

3.3 Widths of confidence intervals and quality of uncertainty estimation

To compare the performance of the applied identifiable discharge prediction methods, we show bar plots of average valaes
for-the-ratio-percentage of verification set points enclosed by confidence intervals and their relative widths as a function of
observation points used in the model identification #-m (Figures 10-14). The averaged values correspond to the mean values of

the box-plots in Figures 6-8.
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Figure 10. Ratio-Percentage of verification set (AW+—+) — m) enclosed by confidence intervals and average width of confidence intervals

for different number of data points for model identification (#m); flume data set, case 1.
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Figure 11. Ratio-Percentage of verification set (A—+) — m) enclosed by confidence intervals and average width of confidence intervals

for different number of data points for model identification (#m); flume data set, case 2.
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100.0 66.7 33.3 0 0.1 0.2
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Figure 12. Ratio-Percentage of verification set (A%—) — m) enclosed by confidence intervals and average width of confidence intervals

for different number of data points for model identification (#1m); results shown for the identifiable models for Ritobacken, Spring 2011.
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Figure 13. Ratio-Percentage of verification set (A%—) — m) enclosed by confidence intervals and average width of confidence intervals

for different number of data points for model identification (#1m); results shown for the identifiable models for Ritobacken, Autumn 2011.
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Figure 14. Ratio-Percentage of verification set (A%—) — m) enclosed by confidence intervals and average width of confidence intervals

for different number of data points for model identification (#1m); results shown for the identifiable models for Ritobacken, Spring 2012.
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DCM DCM
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(d)
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Figure 15. Percentage of verification points for higher flows enclosed within confidence intervals obtained with models identified for five
m = 5) lower flows (note, that only overbank flows were considered):

a) Flume experiment, case 1, (M = 9); (b) Flume experiment, case
2, (M = 10); (c¢) Ritobacken, Spring 2011, )M = 6); (d) Ritobacken, Autumn 2011, (M = 12); (e) Ritobacken, Spring 2012, (M = 11).
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The values presented in Figurest 10-14 j-are averaged over all uncertainty estimates at a given number of observations #m.

Therefore, for #=-"N—=%tm = M — 1, where there was always only one verification point, the ratio-percentage for verification
points can be any value between 6—+0 — 100%, not only 0 or +—Averaged-100%. An averaged ratio of verification points
enclosed within confidence intervals, together with their relative width W, should be considered as a two criteria measure on
how well the obtained model reproduces the discharge curve. Narrow confidence intervals indicate that the model uncertainty,
estimated using #-m observations, is small. The ratio-percentage of observations from the verification set enclosed within these

intervals informs how the estimated uncertainty is representative for other data sets than these used for identification. A-lew

ratio-The low percentage suggests that the probabilistie-term—inecerreetlyprediets—the-model uncertainty for the verification

set is incorrectly predicted. Therefore, narrow confidence intervals for small #ntmbersresuttingin-smalt-ratios~mn numbers,
enclosing small amount of observations should be considered as unsuccessful, as the uncertainty analysis appears to be too

optimistic. On the other hand, for larger #m, good ratios might be obtained with very wide confidence intervals, indicating a
poor model. The best solution is that one, which has the narrowest confidence intervals with satisfactory ratio-percentage of
verification set enclosed within it. We interpret the results by analyzing those both criteria together.

Widths of confidence intervals in a function of the number m of observation points used in the model identification
Figures 10-14), allows for a qualitative analysis of the uncertaint
confidence intervals, and their spread for the small observation number 7 = 1 should be attributed to the ill-posed inverse
problem. Additional data points allow to narrow confidence intervals and reduce their spread, The number of observations m
at which the widths of confidence intervals stabilizes, in some cases obtaining minimal values, suggests the point where the
effect of ill-posed inverse problem becomes less significant source of uncertainty for computed water levels. In these qualitative
analyses, its effect cannot be excluded, but rather should be considered less important.

General investigations of discharge models in respect of obtaining confidence intervals were supplemented with the analysis
on their extrapolation capabilities for higher flows. Figures 10-14 present averaged outcomes for models identified using all
possible combinations of 1 observations. This includes sets with only low or high but also mixed flow rates (note, that only.
overbank flows are considered). In Figure 5 widths of confidence intervals and percentage of the enclosed verification set are
presented for models identified only for the lowest 1 = 5 flow rates. The number of 1 = 5 observations used for the model

identification was chosen arbitrary, following the impressions that this size is sufficient to minimize the uncertainty due to
=5

resulting from the insufficient data for calibration. Wide

insufficient number of observation for the model identification (ill-posed inverse problem) and for all case studies with m

a reasonable number (M — m) of observations for verification was available.

3.3.1 Flume data set, case 1

For the flume data in the case 1 (Figure 10), with rigid-high vegetation in floodplains and also channel banks, the best results

were obtained with the Mertens method. It is characterized with the narrowest confidence intervals 1, having a good predictive
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performance. Confidence intervals for #—=>+m > 1 were below 5% and for #>-3-m > 3 they already enclosed more than 50%
of the verification points. Almost similar performance was found for the DCM method, with slightly wider confidence intervals.

Surprisingly, both methods outperformed the Pasche model that is a very similar approach to the Mertens method, but with
a much more detailed description of the vegetation induced resistance. Estimated confidence intervals width-was-widths were
about three times larger than for the Mertens method and DCM, but enclosing a similar number of verification points. The
reason could be the susceptibility of the Pasche method to numerical instabilities. Because of vegetation present on the channel
banks, the floodplain region was extended above geometrical channel banks. This introduces discontinuity to the hydraulic
radius in floodplains, as water levels slightly exceed geometrical banks. Probably, this might lead to numerical instability of

implicit formulas used in the Pasche method, but not present in the Mertens method. GTLM and PTLM confidence intervals

WeEre 4a

targestratio-of the verifieation points beeause-of wide similar to the Pasche, but enclosed even more observations than Mertens.
However, confidence intervals for Mertens are almost three times narrower and this method should be considered as the most

Figure 15a, presents the results for models identified using the lowest mn = 5 flow rates. The Mertens model with the smallest
estimated uncertainty was capable explaining the rating curve for all verification points. Other models. except the DCM,

allowed to enclosed whole verification set, but with much wider confidence intervals.

3.3.2 Flume data set, case 2

For the flume case 2 (Figure 11), both the Pasche and Mertens methods appear to be the most appropriateeffective. Estimated
widths of confidence intervals do not exceed 4-5% for #=>14m > 1 and fell bellow 2-31-2% for a sufficient number of observa-
tions (#—=>-5m > 5). The predictive skills of the identified models are high, with around 70% of the verification set enclosed by
the confidence intervals at i m > 4. GTLM
has a similar uncertainty performance as DCM while PTLM has-slightly-worse performance—For-al-these-three-modelsprovides

noticeably much more narrow uncertainty estimates. For GTLM and DCM, the final confidence widths for #—=-/-are-about
20m = M are about 15% and for PTLM 5%. Because of their larger extent, the estimated intervals enclose slightly larger num-

ber of verification points than with the Pasche and Mertens methods. The DCM has 8-three times wider confidence intervals
than for flume case 1. The main difference between the flume cases 1 and 2 was the rough floodplain surface with the grain
sizes of 0.5-1 cm for the case 2 compared to the smooth floodplain of case 1 s-indicating that the PEM-D_was not able to
perform reliably for the combination of rough surface and emergent vegetation.

Figure (11) highlights the specific dependency of DCM, GTLM and PTLM on #n. For a small number of data points for a
model identification at #—=-+tm = 1, confidence widths are high, because of the parameter-equifinatity-effeetill-posed inverse
problem. With additional points, the equifinality-effect is reduced, and for #—=2-m = 2 the confidence interval widths are at
their smallest but with poor predictive skills. With increasing #-m the uncertainty estimates are corrected by additional data

points. The same pattern is present but less noticeably for the Pasche and Mertens methods and for the other cases.
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As in general output, Pasche and Mertens models provided the best results, when identified for m = 5 lower flows (Figure 15b).
Their confidence intervals, more narrow for Mertens model, enclosed 100% of verification set. Performances of the Manning
based DCM are here poor, as despite relatively wide confidence intervals, it appeared impossible to explain any of verification
points. In Figure 5d-f rating curves for Pasche, Mertens and Manning based DCM were presented for this specific calibration

case.
3.3.3 Ritobacken, Spring 2011 case

The Spring 2011 case study refers to flow conditions with poorly developed vegetation +-one year after the floodplain excava-
tion. These conditions with low vegetation having a mean relative submergence (floodplain water depth divided by vegetation
height) of 3.3 is-are reflected in the computational output (Figures-Figure 12), with process-based methods for vegetation

resistance characterized with a relatively poor fit.

mefhedeJH:M—haéﬁwghghﬂyLAll three two layer models (GTLM, STLM and PTLM) have very similar performances
but with noticeably wider confidence intervals than

WMWMWMMMWW&%&%%M%MWW
sedof 12% to 3%. The percentage of enclosed verification points
w&mmmmwmwm
the case of the Figure 15¢ presenting the extrapolation capabilities of the methods. Widths of confidence intervals of two-layer

iven in Figure 12 and enclose all verification point (note, for Spring 2011

models are similar to averaged values at m = 5,

M = 6). DCM’s narrow confidence intervals were unable to enclose the verification points.

3.3.4 Ritobacken, Autumn 2011 and Spring 2012 cases

Ritobacken Autumn 2011 and Spring 2012 case studies reflect flow—econditions—in—a—channel-oftwo-phases—of—vegetation
developmentthe influence of seasonal differences of vegetation on the flow conditions. In Autumn 2011 vegetation was higher

and denser than before and at the beginning of the growing season in Spring 2012. This can be seen in the performance of

the applied discharge methods. For the fully Vegetated conditions of Autumn 2011 (Figure 13), all the 4-identified methods

enclosed over 70% of the observations at #

10-%-more-verificationpointsenelosed—For4%) when all data was used for model identification. STLM had slightly lower
ercentage of enclosed verification points, comparing to DCM with also very narrow confidence intervals and GTLM with

somewhat wider ones. For the Autumn 2011, g

for-n—=-"Nwere-about-5%;so-just-slightly-higher-thanfer-it was not possible to identify the PTLM.
For the Spring 2012 (Figure 14), alb-metheds-DCM, STLM and GTLM have almost equal confidence widths and ratios

of enclosed verification points while PTLM has very wide confidence intervals. The overall measures are similar to those
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from Autumn 2011, At->-5-STEMhad-aThe confidence widths for DCM, GTLM and STLM are about 3% and for m > 5

and more than 70% of points fall within confidence intervals. PTLM has slightly higher ratio of verification data enclosed,
compared to the other methods-

fallwithin-confidenee-intervals, because of notably wider confidence intervals of 8-9%.

In the calibration case with the lowest m = 5 flow rates, for Autumn 2011 (Figure 15d), a high explanation of the rating
curye was obtained with the STLM and Manning DCM. Poorer results for Autumn 2011 set were obtained for the GTLM. with
low percentage of verification points enclosed. For Spring 2012 all two layer models (GTLM, PTLM and STLM) and also the
Manning DCM allowed obtaining a very good explanation of the rating curve, when identified for the lowest m = 5 flow rates
(Figure 15¢). The rating curves of the GTLM, STLM and PTLM in this calibration case for Spring 2012 were presented in

3.4 Physical interpretation of identified parameters

A posteriori parameters distributions P (0/H) can be presented in a form of marginal Cumulative Distribution Functions
(CDE). The CDE is plotted over the sampled parameter range, given in Table 1. The shape of the marignal CDF indicates the
likelihood of given parameter values. The linear dependency would mean that all values are equally likely in respect of the
likelihood function (Equation 3). On the other hand, a strong CDF skewness characterizes regions of a high probability and
larger model sensitivity on the parameter. The a posteriori marginal CDF of parameters were presented for four vegetation
roughness models: Pasche, Mertens, GTLM and STLM. Parameters of Pasche and GTEM;for-their-mostrepresentative-cases:
the flume experiment; Mertens models (Figure 16), were given for the flume case 2and-, where both models explained the rating.
curve very well. GTLM and STLM parameter estimates (Figures 17-18) were compared for the Ritobacken Autumn 2011 5
respeetively—tn-both-and Spring 2012 sets, as both models were found here appropriate and additionally, it was possible to

analyze the seasonal vegetative differences on parameter estimates (see Section 3.3.4). In all cases, solutions for all observation
points #—=-"~N-m = M were used.

of-extent-parameterstr/+rFigure 16 the CDF for Pasche parameters for the flume case 2 is given with black lines and green
lines for Mertens. Measured values of parameters are provided with blue lines. The steep shape of the CDF for the Pasche a
indicates a strong model sensitivity on the parameter and that the values above ~ 0.3 m are unlikely. For the Mertens model,

 distributionP{(#/H)-of parameters#-a similar
effect, but with smoother CDF is present for both a, and a.. The differences in the case of these particular parameters comes
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Figure 16. Marginal a posteriori distributions of Pasche (black lines) and Mertens (green lines) models parameters, identified using m = M
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Figure 18. Marginal a posteriori distributions of GFEM-STLM model parameters, identified using #—=--m = M observation points for-in
the Ritobacken Autamn-26+tcase study; dashed-black lines —eonfidenee-intervats-stand for Autumn 2011 set and median-of-a-probabilistie
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he-model, restricting values of
a,, due to lack of a numerical convergence. For both Models (Figure 16) b By, appears to be a sensitive parameter, while
the response for remaining parameters is more uniform.

The strongest discrepancies between measured and identified values of parameters of Pasche and Mertens models (Figure
16) are present for the stem diameter d,, and longitudinal stem spacing a,. A median (at CDF 0.5) of the probabilistic solution

and-also-the-best-medel-fit-for d,, is close to 0.04 m, while the real diameter was 0.008 m. In the case of a, it is 0.6 m for

Pasche and 0.25 m for Mertens to 0.1 m. This has a clear physical sense, as in terms of the model identification, small stem
diameters d,, at dense spacing with small a,, were equivalent to larger d,, and smaller a,. This finding is supported, by much

smaller discrepancies in other parameters. It should be noted, that the measured parameter values provide a fit close to the best

one in a deterministic sense (Kiczko et al., 2017).

In Figure 17 results for the GTLM model identified for the Ritobacken Autumn 2011 ease-(black lines) and Spring 2012
(green lines) are provided. It can be seen that in both cases, the identified values of the parameterization for flexible vegetation
(Equation 11) had a fairly narrow distribution for the reconfiguration ()-and-drag-ecoeffieient{GpzY) of the foliageand-stem,
which fell close to the values observed for willows and other woody species (e.g. Vistild and Jarveld, 2018). Wide—ranges

39



800

805

810

oo
g !
'I
0.9 | ;/j ]
/
— j B
Eo08} o '
T II
!' o
0.7 ’.’ O ]
I
I o
0.6 SUEE—
0 0.2 0.4
BX

Figure 19. Blockage factor Bx measured in the field and determined as an inverse solution of GTLM for Ritobacken Autumn 2011 (a) and
Spring 2012 (b) case study; squares denote measured values, dashed lines — confidence intervals and median of a probabilistic solution, red

line — the best simulation in the Monte Carlo ensemble.

parameters it can be noticed, that for the Autumn 2011 set, the CDF's have a step-shape, clearly indicating more likely regions.
For example, the most probable values of the steam reconfiguration coefficient yg for Autumn 2011, are very close to the
observed ones. The same applies t0 C'ng. s and Cpg. . In all these cases, CDFs suggests also other highly probable regions,
different from expected ones, e.g. for x5 also values close to 0.3, were considered as very likely. The effect, also seen clearly.
for As/Ap. AL/Ap, C*werenotably larger-than-the-experimentatly derived-, U, g, by, and hp is an example of parameter
equifinality. Distributions obtained for the Spring 2012 set are much more uniform, without values that can be considered as
highly probable.

Similar to the Pasche method, not all distributions follow the expected values. The CDE for C vakie(~0:034—06-08;

astild teh : i identified-in Autumn 2011 shows notably larger values than
experimentally derived (C* ~ 0.034 — 0.08, Vistili et al., 2016). For Spring 2012 C* values are much closer to the expected
ones, but it is hard to find an explanation of the differences when Autumn 2011 case is considered, other than the effect of
ill-posed inverse problem, where water depths are insufficient for identification of this parameter.

Wider ranges for the vegetation heights h, extents I/ and frontal projected areas of stems As /Ap and leafs Ar/Ap and
Eptreompared-to-in the Spring 2012 set, may be associated with lower vegetation roughness in that period (Vistild et al., 2016)
- The solution providing a good representation of water depths might be obtained for different combinations of these parameters,
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such as too small h with too large [/ L. Higher autumn flow resistance, resulting in a different shape of the rating curve, appeared
to be more restrictive for these parameters.

Parameters of the mes

A—-STLM are given
in Figure 18. As in this approach flow in the vegetation layer is neglected, it includes less parameters than GTLM; [} /L,

hp used for parametrization of the blockage factor Bx. i
using-values-of 7 The obtained CDFs are very similar to those for the GTLM (Figure 17). As previously, parameters of
the Autumn 2011 are much better defined. Again a noticeable shift in C can be observed for Autumn 2011, Such a good
agreement between obtained parameters for GTLM and STLM, together with very similar uncertainty estimates (Figures
13-14) suggests that flow within vegetation layer was not significant for the shape of the discharge curve under the analyzed
conditions. Otherwise, the shape of GTLM CDFs would be noticeably different as a result of interactions with parameters

characterizing flow in vegetation layer.
Studies of Vistild and Jarveld (2018

of model identification through calculating confidence intervals for modeled By on the basis of identified parameters ;. /Ly,

rovided estimates on the blockage factor By, which allow comparison to the results

funetion-of-the-water-depth—lt-ecan-beneteds-that-h,_and hy for Autumn 2011 and Spring 2012 (Figure 19). The confidence
intervals for the Bx are wide —Fhe-and the observed values are shifted from the median of a probabilistic solution towards 6-6
quantile-0.9 quantile. The noticeable under-estimation of the Bx by the model identification likely decreases the performance
of GTLM for the field case, since under partly vegetated conditions the cross-sectional vegetative blockage has been found
the most important property in determining the flow resistance (e.g. (Green, 2005), (Luhar and Nepf, 2013). A large spread of

values for Bx ;with very small variation of water levels for that solution (Figure 13) ;-suggest a moderate model sensitivity on

Bx, affected by interactions with other parameters.

4 Discussion

The present study is according to our knowledge the first one, where different discharge capacity methods were compared
in the-respect of their uncertainty, estimated along with model parameters, using probabilistic formulation of the problem of

the parameter identification. I-sheuld-be-noted-that-The noticeable focus was made to ensure that the uncertainty analysis

was objective and repeatable;-whieh i. The novelty of

the proposed approach includes the analysis of obtained confidence widths, together with the ratio-percentage of independent
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observations explained by them, with respect ef-to the number of observations used in the model identification. The results

2018; Romanowicz and Kiczko, 2016), that

confirm previous findings of (Kiczko and Mirostaw-Swi tek, 2018; Kiczko et al.,

rating curves. This obvious behavior of nonlinear models highlights the needs for such uncertainty analyses.

Our results show that the number of parameters is—ret-seems not to be a factor precluding the use-of-a—given—method
for-predicting-the-channel-disehargeidentifiability of vegetation roughness models. It was possible to identify a model with
more than ten parameters (i.e. GTLM accompanied with a parameterization of complex reconfiguring vegetation), almost

as well as three-parameter-three-parameter ones (DCM). Parameter-equifinality-influenced-In the most cases, the ill-posed
inverse problem appears affecting the uncertainty estimates only when the number of observation points was very small,

independent of the number of parameters. Widths of confidence intervals stabilized close to the final extent at about three-

uneertatnty-estimates—Thus;restltsshow-the-advantages-of The process-based methods-in-the-case-of parametrization-over
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are-two-dimensionat-modelsmethods have more parameters, than the required number of observations. necessary for the
identification. This suggests the ill-posed problem, but might be explained with alow model sensitivity to groups of parameters,
seen in the marginal CDF of the a posteriori parameter distributions (Figures 16-18) and in the result the model fit depends
on only several parameters. The observations are however different for the field case with the most developed vegetation,
Ritobacken in Autumn 2011, where the uncertainty estimated for the GTLM, with the largest number of parameters, falls
below levels obtained for the DCM only for the full set of observations used for the model identification. In this case the
GTLM was found very sensitive on parameters characterizing flow in the vegetation layer (Section 3.4) and a noticeably larger

number of observations was necessary to restrict variability of parameters.
The-Our findings indicated that the performance of a model depends on its adequacy for the given vegetative and flow

conditions. For unsubmerged-emergent sparse rigid vegetation, the most reliable method was the Mertens model with mostly
explicit formulas. Because of a simpler numerical form than in the Pasche method, the Mertens method was less vulnerable to

numerical instabilities, which probably affected the outcomes of the Pasche uncertainty estimation. In the case of dense flexible

mostly grassy vegetation typically observed on natural floodplains (Figure 4), the most reliable performance with respect to
uncertainty estimates was obtained with the simplified two-layer approaches-GTEM-and-PTEM-that-were-performed-well-for

both-dense-submerged-and-emergent-vegetation-approach (STLM), which neglects the flow in the vegetation layer (Figures
12-14).

two layer model (GTLM) also provided a reasonable representation of the rating curve for flexible vegetation, although with
higher estimated uncertainty, probably because of a larger number of parameters, For all cases, except Ritobacken Spring 2011
with the least developed vegetation, the best performing process-based method produced narrower confidence intervals than
the DCM, when the models were identified with all observation points. Further, for the field conditions, the predictions of
the validation dataset were notably better with the vegetation-was-high-(Figure+3)-appearing-to-be-process-based models
compared to DCM when the number of data points used for model identification was low (2-4) while the confidence intervals
were reasonable for practical applications.

An important aspect when comparing the different methods is their general applicability for different channel conditions.
Despite the larger number of parameters, the process-based methods were less generally applicable than the Manning based
DCM approach, which could be identified and thus applied in all cases. Pasche and Mertens methods were only applicable
for the sparse rigid emergent flume vegetation, for which they were derived. By contrast, the two-layer approaches GTML
and PTML, although it was possible to identify them, had a less favorable performance when applied to the flume vegetation
(Figure 3). Further, our findings appeared to confirm that the the STLM is strict about the assumption that less than 20% of
the flow is conveyed within vegetation (Section 3.2). The STLM could not be identified for the flume conditions with sparse
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920 of the Manning coefficient were quite good except for flume case 2, indicating that the process-based methods are expected
to perform better and more reliably than DCM when several important sources of flow resistance, such as rough floodplain
surface and sparse emergent vegetation are present, These methodological findings suggest that it could be possible to choose
an appropriate method on the basis of its goodness-of-fit measures and uncertainty estimates.
For practical channel design or flood inundation estimation cases, the capability to extend the model calibrated with observations
925 atlow flows to high flows is crucial. Of the six models, none provided good extrapolation results under all tested cases. GTLM
was the most reliable model as it performed reasonably in four of five cases, and thus across a wide range of vegetative
conditions (Figure 15). The GTLM parameterized at low flows reliably-predicted-the-waterlevels-during-high-discharges;
inetuding-the-successfully predicted the more rapid increase in discharge at water levels exceeding vegetation height (Figure
Sa)—AdtheughEq-, but the extrapolation was not successful in Autumn 2011, For instance, the DCM was in two of the five
930  cases unable to reliably predict the water levels at higher discharges when optimized based on observations at lower discharges
(Figure 15). The overestimation of channel flows (Figure 5f) is a known feature of the DCM with constant Manning coefficients,
as it does not account for the momentum transfer between the main channel and floodplains (Myers, 1978).
The GTLM was in this paper amended with a vegetation parameterization (Equation 11) that describes the influence of the

lant streamlining and reconfiguration on flow resistance. Although Equation 11 has been developed for woody vegetation,
935 it was applicable to the predominantly grassed vegetation at the field site. Field surveys indicated that much of the plants

consisted of a main stem and more flexible leaves, eonceptionatly—similar-in-strueture-conceptually similar in behaviour to
foliated woody vegetation. Eg-Equation 11 describes the drag from stem and leaves and allows to set different values for the
flexibility-induced reconfiguration for the stem and foliage. By setting the reconfiguration parameters to 0, the model can be
used for rigid vegetation, which might explain the applicability of the model in flume cases with rigid vegetation.

940  ltshouldbenoted that the results for Further justification of the wide applicability of the two layer modelling concept is not
concept allow for a better representation of the transition from the submerged to emergent flows, in which case the PEM-with

the-cross-sectional vegetative blockage and the bulk flow resistance typically start to decrease. Obtained CDF of a posteriori
945  parameters distributions for STLM and GTLM suggest that this effect might be important. For the Autumn 2011 case, with
well developed vegetation, the most probable solution included moderated vegetation heights and larger extents (hy, and g,
Figure 17), which ensures that transition from submerged to emerged vegetation is present. On the other hand, this effect was

not observed for other cases.
Put together, our various analyses show the advantages of the more complex process-based methods; butwasapphicable in-all
950 these-cases—Based-on-the results;-the- methods over the Manning-based DCM. The results agree with Dalledonne et al. (2019)
» Who obtained the best uncertainty estimates for the more complex models. Besides being applicable to flood water level
estimation, the described process-based models allow predicting the influence of different channel management scenarios on
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water levels. The methods are expected to be helpful

in planning common practical management measures for vegetated compound channels, such as rough-floodplain-surface-and
vegetative drag;are-presentcutting of the floodplain and bank vegetation as well as maintaining the channel through dredging.
the main channel or lowering the floodplain. Improved reliability of the discharge capacity estimates may help in decreasing
unnecessary, environmentally disruptive management actions, and allow to plan more sustainable alternatives, such as partial

Autamn-20H-Figure13)We found that the differences between the one-dimensional methods were notably larger than for
the study of Dalledonne et al. (2019) focusing on a two dimensional model. Further, the Warmink et al. (2013) study did not
consider the choice of the flow resistance parametrization method as crucial. The presently investigated flume and field cases
had a notable portion of the cross-section covered by the floodplain vegetation, with Manning’s n ranging at 0.017-0.150
m~"/3, Thus, our results indicate that the choice of the resistance formula is important for cases where vegetative resistance
dominates. On the other hand, one-dimensional models may be more sensitive to uncertainty related to the identification of the

resistance parameters than are two-dimensional models.

the-formulation-of-the-inverse-problem—(Figure—1-b)-important issue is the physical in

obtained-parameters—

“parameters obtained by the model identification. As expected, on the basis of previous studies of
Werner et al. (2005); Berends et al. (2019) the obtained values, showed in a form of CDF of marginal a posteriori distributions
in Figures 16-18 differs from measured ones. This results from the parameter equifinality. One of the reasons might be
insufficient observation sets used in model identification. The likelihood function, conditioned only on water levels is not
capable to restrict variability of parameters in more complex vegetation roughness models. It can be seen in the shape of the
marginal CDF of parameters, presented in Figures 16-18, suggesting small sensitivity of the model on given parameters, except
only the Ritobecken Autumn 2011 case. Their variability can be probably reduced by additional data sources, as discussed in
hydrological studies of Her and Chaubey (2015); Her and Seong (2018). For channel flows it could be velocity measurements
used e.g by Berends et al. (2019) for model identification. It should be however noted, that in practical assignments on a flood
hazard, such data is rarely available. The other reason of parameter equifinality and therefore discrepancies with measured
values of parameters are parameter interactions. The shift in a given parameter is compensated by others, e.g. the large stem

diameter d, observed for Pasche and Mertens
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statt—The-applieation-of-models, comes along with too large spacing of plants a, and a.. Such an effect is probably present
in all process-based methods-models, identified in terms of an inverse problem.

The inability to specify parameters of process-based methods by model identification is an argument against such an
approach, already signalized by Werner et al. (2005). Moreover, with parameters different form real values, the use of these
complex models, rises an impression of black-box modeling, as the identification goal is only to obtain a satisfactory fit
and uncertainty estimate. With outcomes of the present study, it is hard to address this problem directly, as it would require
comparing process based methods with a pure data-based model. However, the overall impression is that, the application of
models with numerous parameters seems to be inseparably connected with the problem of the equifinality. Similar-behavior-was

reported-A similar behavior is known e.g. for the Shiono-Knight model by Knight et al. (2007). The-parameter-equifinality-as

—Overatl-the-Tor vegetation-roughness models, it will apply not only in the cases, where parameters are identified purely
in_terms of the inverse task, but also when available measurements of vegetation properties are uncertain and have to be
generalized over larger areas (Straatsma and Huthoff, 2011). In such cases it will always be necessary to find values characterizing
rather hydraulic conditions than true vegetation features, The difference is that even with a very uncertain data, the identification
problem will be limited to relatively narrow parameter ranges.

The parameter identification is expected to result in more physically realistic values if at least some of the required vegetation

properties or the channel bed roughness can be directly measured and used as the input(seeFigure—+a—)—, For instance, the

vegetation extents of the two-layer models (Figure 2) are straightforward to obtain at the field, or vegetation can be assumed to
cover all channel perimeter above the bankfull level. Typical heights of grassy floodplain vegetation in a given geographical area
can be obtained through remote sensing coupled with information on channel geometry, and these values may be extrapolated
to other sites where such information is not available.

Process-based models introduce however physical constrains, providing, as mentioned before, better basis for extrapolation,
than purely data driven approaches and in this study better than a simpler model. In most of analyzed here cases, vegetation
roughness models, when applied for vegetation conditions they were originally developed for, provided better predictions of
higher flow than the Manning based DCM (Figure 15). Also some advantages of using the process-based models, even without
knowledge on parameters, might be their clear physical interpretation, comparing for example with Manning coefficients.
Nonphysical stem diameters are_more obvious to large values of the Manning coefficient. A modeler aware of parameter
interactions can decide, if e.g. given discrepancies in vegetation characteristics are important in an analyzed case.

Discharge formulas analyzed in the study are usually only a part of the one-dimensional model. The uncertainty of such
models depends also on additional elements, like spatial variability of resistance and simplification of the channel geometry. It
should be also noted, that the investigated cases had a fairly regular cross-section and homogeneous vegetation. Therefore, care
should be taken when attempting to generalize the presented findings to all one-dimensional approaches. In complex real-world
cases, it might be beneficial to include several discharge formulas through an ensemble approach, which is also used in other

fields, such as climate modeling.
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5 Conclusions

1025

This study investigated the application of advanced process-based
methods for the study-are summarized-as followsdischarge capacity estimation of vegetated compound channels in practical
cases with limited information on the vegetation properties. We compared five process-based methods with a physically-based
vegetation characterization to the conventional Manning-based divided channel method (DCM), focusing on their uncertainty.
The developed probabilistic approach and the used data covering a range of conditions on floodplain vegetation submergence,

1030 density, flexibility, and flow hydraulics, allowed to draw the following conclusions:

1. The numerical-experiments—calculations showed that it is possible to identify parameters—of-process-based methods
ineluding-models with a large number of parameters on the basis of the inverse problem with narrow-tuneertainty-bands—

1035 compared to the Manning-based DCM.

3. The uncertainty related to the parameterequifinality-is-ill-posed inverse problem, resulting from the insufficient number
of observations, is in the most cases noticeable only when a small number (< 3 — 4) of observations is used in parameter
identifieation—the model identification. However, in the cases where the shape of the rating curve is more sensitive to
model parameters, the results suggest that methods with more parameters have wider uncertainty bands when identified

1040 with small number of observations.

4. ?he—p&fafﬂefefsebfamed—fhfeugh—theﬁdemrﬁe&&eﬂﬂiffefThe model identification resulted in some parameters differin,

from their measured physical values,

affeet-the-uneertainty-of-a-medelraising doubts on the physical interpretation of obtained models.

5. Despite unreal values of parameters, the process-based models for vegetation roughness revealed good extrapolation
1045 capabilities to high floodplain flows, when identified using only low floodplain flows.

6. Uncertainty estimates clearly indicate the applicability of a given model to the analyzed case. Unsuitable models, e.g.
those developed for non-submerged vegetation but applied to submerged vegetation, have relatively wide uncertainty

estimates or lack a probabilistic solution.

7. The best results in terms of the lowest uncertainty estimates were obtained with the Mertens method for the unsubmergedemergent,
1050 ri gld vegetation case. For the dense flexible vegetation, the generalized- M two-layer method (GTEM)-aceompanied

STLM) neglecting the flow
in the vegetation layer, had the most reliable performance across different eonditionsseasons, functioning under sub-

merged and emeregentemergent conditions. The generalized two-layer model (GTLM), of the process-based approaches
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amended with a vegetation parameterization describing the flexibility and reconfiguration of the plants was the most

1055 universally applicable to different vegetative conditions. In most cases, the Manning-based-Manning-based DCM had
also satisfactory performance, but was not capable to be extrapolated to high floodplain flows when calibrated with only
low floodplain flows.

8. An open issue is the generalizability of the obtained results to spatially distributed one-dimensional models.

9. The proposed approach with the novelty of comparing different models in terms of their uncertainty along with the

1060 quality of the uncertainty estimation might be useful in other similar studies.
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Appendix A: Measurement data used in computations
Al Flume experiments

A2 Ritobacken field experiment
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Table 1. Parameter variability ranges (uniform P () distribution) for Ritobacken and flume experiments, numerals in parameter symbols are
used to distinguish properties on left (1) and right (1) channel side.

Ritobacken data Flume data
Model Parameter ors Min. Value  Max. Valye  mime Min, Value  Max. Value
DCM g [m~ 3] 2.5-10* 0012 0.15_ 2.5-10* 0012 0.06_
n2, ng [m~'/3s] 0.012 0.15_ 0.012 0.12
dplm]. 0.004 0.100 0.004 0072
Pasche and .0 [m] 5. 10t 0,001 09 5 10t 005 09
Mertens
@z, ] 0.00L 09. 005 09
Ktp1oKng [0 0.005 009 0005 009
bii/ B I~ 0333 1 0333 1
Caer =] 0.09 0.2 0.001 _ L5
Cazs =] 0.82 1.03 0.001 L5
GTLM xel=] 10° -1.21 097 5-101  _121 097
xsl=l 032 02 032 02
Ay (2] 0 30 0 30
AslAe =] 9 30 0 30
Cll= 001 020 001 0.20
le/Lile/Lr = 9 1 0 1
By ] 9 VALK 0 03,
STLM o8 5.100 Q0L 020 25.100 Q0L 0:20
le/Lrsle/Lr ] 0 1 0 1
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Table A1. Measured water depth H and flow rate Q for quasi-uniform flow conditions in flume experiments with constant slope s = 5- 10~*
Koziol, 2010; Koziot, 2013; Koziot and Kubrak, 2015

Case 1 Case 2
Y He Qe | Ham Qi
110470 0018 | 0209 0039
20477 0019 | 0212 0039
310483 001|025 0042
410495 0023|0238 0045
3 0.211 0.026 0.244 0.048
6 0.225 0.030 0.255 0.050
7 0.243 0.035 0.262 0.053
8 0.270 0.041 0.274 0.056
9 | 0289 0046 | 0282 0058
10 0284 0059

Table A2. Cross-section for the Ritobacken brook (Vistild and Jarveld, 2018

Station (m) | 020 035 040 0.60 080 120 200 220 240 340 500 640 660  7.00

AN AT AL AT A ARG A AR A A AR

Elevation (m)

AT AL AT AT AR AR A AT AR A AR

Station (m) | 720 740 7.60 780 800 840 860 880 9.00 9.60 980 1000 1020

AN AT AT AR L AL AR AL AR A A AR AR

Elevation (m)

RO AR AL AR AL AR AL AR AR A AR

Obtained form field surveys 2010-2012 for 190 m river reach and averaged to obtain a single cross-section; number of measurement points were reduced using the algorithm of

Recursive Douglas-Peucker Polyline Simplification (Schwanghart, 2010), with the tolerance of 0.01 m
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Table A3. Data for the Ritobacken case study, used in calculations: water depth H, flow rate (), energy grade slope .9, inundated vegetation

height h,, ;n4q. and Blockage factor By (Vistild and Jarveld, 2018); Water depths H were obtained by averaging upstream and downstream
Case | No. Ham Q5. S()  Duswea(m) Bx(-)
Spring 2011 2 0628, 0% M Q.086 0.182
6 0841 102 60:10° 0086 0130
Autumn 2011 ¢ 838, 03 M Q3% 0327
o L071 1218 17.07% 0535 0478
12 14 139% 17070 0552 0476
1 055 0257  15:100% 0.096 0.271
2 0.606 0.333 15.107% 0.135 0.332
3 0.629 0.402 15.107% 0.153 0.351
4 0.700 0.521 14.107°% 0.201 0.379
5 0743 0.635  14-10°° 0.218 0.375
Spring 2012 6 0.796 0.735 121077 0.233 0.362
7 0834 0872  13:107° 0.236 0.342
9 094 1218 13:10° 0236 0285
1000997 139 14:107% 0236 0264
11047 1587 14:007% 0236 0246
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Appendix B: Box-plots for analyzed methods and cases
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Figure B1. DCM Manning results for the flume case 1, (a) Averaged relative confidence widths W as a function of observation set size #
m used for model identification; (b) Ratio-Percentage of verification points enclosed by the confidence intervals (+-100% denotes all points

within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent, cross marks

are for extreme values)
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Figure B2. Pasche results for the flume case 1, (a) Averaged relative confidence widths W as a function of observation set size #-m used
for model identification; (b) Ratie-Percentage of verification points enclosed by the confidence intervals (%%denotes all points within

intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent, cross marks are for

extreme values)
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Figure B3. Mertens results for the flume case 1, (a) Averaged relative confidence widths W' as a function of observation set size #-m used
for model identification; (b) Ratie-Percentage of verification points enclosed by the confidence intervals (-100% denotes all points within

intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent, cross marks are for

extreme values)
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Figure B4. GTLM results for the flume case 1, (a) Averaged relative confidence widths W as a function of observation set size #-m used
for model identification; (b) Ratie-Percentage of verification points enclosed by the confidence intervals (%%denotes all points within

intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent, cross marks are for

extreme values)
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Figure BS. PTLM results for the flume case 1, (a) Averaged relative confidence widths W' as a function of observation set size #-m used
for model identification; (b) Ratie-Percentage of verification points enclosed by the confidence intervals (-100% denotes all points within

intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent, cross marks are for

extreme values)
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Figure B6. DCM Manning results for the flume case 1, (a) Averaged relative confidence widths W as a function of observation set size #
m used for model identification; (b) Ratie-Percentage of verification points enclosed by the confidence intervals (-100% denotes all points
within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent, cross marks

are for extreme values)
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Figure B7. Pasche results for the flume case 1, (a) Averaged relative confidence widths W as a function of observation set size #-m used
for model identification; (b) Ratie-Percentage of verification points enclosed by the confidence intervals (-100% denotes all points within
intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent, cross marks are for

extreme values)
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Figure B8. Mertens results for the flume case 1, (a) Averaged relative confidence widths W as a function of observation set size #-m used
for model identification; (b) Ratie-Percentage of verification points enclosed by the confidence intervals (%%denotes all points within
intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent, cross marks are for

extreme values)
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Figure B9. GTLM results for the flume case 1, (a) Averaged relative confidence widths W as a function of observation set size #-m used
for model identification; (b) Ratie-Percentage of verification points enclosed by the confidence intervals (-100% denotes all points within
intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent, cross marks are for

extreme values)
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Figure B10. PTLM results for the flume case 1, (a) Averaged relative confidence widths W as a function of observation set size #-m used

for model identification; (b) Ratie-Percentage of verification points enclosed by the confidence intervals (%%denotes all points within

intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent, cross marks are for

extreme values)
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Figure B11. Manning DCM results for Ritobacken case study, Spring 2011, (a) Averaged relative confidence widths W as a function of

observation set size #-m _used for model identification; (b) Ratie-Percentage of verification points enclosed by the confidence intervals (+

100% denotes all points within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the

result extent, cross marks are for extreme values)
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Figure B12. GTLM results for Ritobacken case study, Spring 2011, (a) Averaged relative confidence widths W as a function of observation
set size #-m used for model identification; (b) Ratie-Percentage of verification points enclosed by the confidence intervals (%%denotes
all points within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent,

cross marks are for extreme values)
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Figure B13. STLM results for Ritobacken case study, Spring 2011, (a) Averaged relative confidence widths W as a function of observation
set size #-m used for model identification; (b) Ratie-Percentage of verification points enclosed by the confidence intervals (+-100% denotes
all points within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent,

cross marks are for extreme values)

64



0.6 F
100 | .= —
05} }
80 |
1
0.4}
60 |
Z 03} R L ]
I \
02} ] 40 L1
I
04 | - = — 20 [ + \ \
. @%? + Lo
0 L= 0 I N
1 2 3 4 5 6 1 2 3 4 5 6
m m

Figure B14. PTLM results for Ritobacken case study, Spring 2011, (a) Averaged relative confidence widths W as a function of observation
set size #-m used for model identification; (b) Ratie-Percentage of verification points enclosed by the confidence intervals (%%denotes

all points within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent,

cross marks are for extreme values)
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Figure B15. Manning DCM results for Ritobacken case study, Autumn 2011, (a) Averaged relative confidence widths W as a function of
observation set size #-m _used for model identification; (b) Ratie-Percentage of verification points enclosed by the confidence intervals (+
100% denotes all points within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the

result extent, cross marks are for extreme values)
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Figure B16. GTLM results for Ritobacken case study, Autumn 2011, (a) Averaged relative confidence widths W as a function of observation
set size #-m used for model identification; (b) Ratie-Percentage of verification points enclosed by the confidence intervals (hlg%denotes
all points within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent,

cross marks are for extreme values)
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Figure B17. STLM results for Ritobacken case study, Autumn 2011, (a) Averaged relative confidence widths W as a function of observation
set size #-m used for model identification; (b) Ratie-Percentage of verification points enclosed by the confidence intervals (3-100% denotes
all points within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent,

cross marks are for extreme values)
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Figure B18. Manning DCM results for Ritobacken case study, Spring 2012, (a) Averaged relative confidence widths W as a function of

observation set size #-m used for model identification; (b) Ratie-Percentage of verification points enclosed by the confidence intervals (+

100% denotes all points within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the

result extent, cross marks are for extreme values)
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Figure B19. GTLM results for Ritobacken case study, Spring 2012, (a) Averaged relative confidence widths W as a function of observation

set size #-m used for model identification; (b) Ratie-Percentage of verification points enclosed by the confidence intervals (+-100% denotes

all points within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent,

cross marks are for extreme values)
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Figure B20. STLM results for Ritobacken case study, Spring 2012, (a) Averaged relative confidence widths I as a function of observation
set size #-m used for model identification; (b) Ratie-Percentage of verification points enclosed by the confidence intervals (%%denotes
all points within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent,

cross marks are for extreme values)
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Figure B21. PTLM results for Ritobacken case study, Spring 2012, (a) Averaged relative confidence widths W as a function of observation
set size #-m used for model identification; (b) Ratie-Percentage of verification points enclosed by the confidence intervals (+-100% denotes
all points within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent,

cross marks are for extreme values)
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