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Dear Editor,

In the revision of the manuscript entitled: “Predicting discharge capacity of vegetated
compound channels: uncertainty and identifiability of 1D process-based models” we in-
cluded all reviewers remarks, according to the previously posted responses. Please find
the manuscript with marked changes attached.

Following reviewers remarks, we have rewritten the introduction section to make it more
clear. We also improved the literature review to provide a better positioning of our study
in the state-of-art. We hope, that the revised methodology section provides a better
explanation of the concept of our study. We also developed the analysis of results and
discussion of outcomes. The conclusion points should be now better grounded.

In addition to changes, we indicated in our responses to reviewers, we introduced follow-
ing, important modifications:

1. We found a mistake in the code for the PTLM model. Instead of using a hydraulic
radius in the term h

R of Equation 12, we used as in the original formulation, the

water depth h
H . In the result it was necessary to recompute all PTLM cases.

2. As we indicated in our response, we use an uninformative parameter ranges for a
priori parameter distributions, but within physical bands. It appeared, that we
used wrong ranges for several parameters:

• C∗, used in the GTLM, STLM and PTLM, instead od 0.08 − 1 it is now
0.01 − 0.2;

• Al/Ab and Al/Ab, used in the GTLM, instead of 0− 3.2 and 0− 0.16 it is now
0 − 30 for both;

• CDa for PTLM, instead of 0.01 − 0.4 it is now 0.01 − 100

3. New calculations were performed with larger number of Monte Carlo simulations,
as we also performed more detailed investigations of the solution convergence.

Because of new simulations and also reviewers remarks, all figures were recomputed.
Please, note that due to technical limitations of Latexdiff tool, changes in figures were
not presented in the document with registered changes.

Yours sincerely
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Abstract. Despite the development of advanced process-based methods for estimating the discharge capacity of vegetated river

channels, most of the practical one-dimensional modeling is based on a relatively simple divided channel method (DCM) with

the Manning ’s flow resistance formula. This study is motivated by the need to improve the reliability of modeling in practical

applications while acknowledging the limitations on the availability of data on vegetation distributions and densities
::::::::
properties

:::
and

::::::
related

:::::::::
parameters

:
required by the process-based methods. We investigate whether the advanced methods can be applied5

to modeling vegetated compound channels by identifying the missing characteristics as parameters through the formulation of

an inverse problem. We developed a new probabilistic approach for comparing six
:::
Six models of channel discharge capacity

::
are

:::::::::
compared

:
in respect of their uncertainty, with the

::::
using

::
a

::::::::::
probabilistic

:::::::::
approach.

:::
The

:
model with the lowest uncertainty

considered
::::::::
estimated

::::::::::
uncertainty

::
in

:::::::::
explaining

:::::::::
differences

:::::::
between

:::::::::
computed

:::
and

::::::::
observed

::::::
values

::
is

:::::::::
considered

::
as

:
the most

favorable. Calculations were performed for flume and field settings varying in floodplain vegetation submergence, density, and10

flexibility, and in hydraulic conditions. The output uncertainty, estimated on the basis of a quasi-Bayes
:::::
Bayes approach, was

analyzed for a varying number of observation points, demonstrating the significance of the parameter equifinality. The results

showed that very reliable predictions with low uncertainties can be obtained for process-based methods with a large number

of parameters. The equifinality affects the parameter identification but not the uncertainty of a model. The best performance

for sparse, unsubmerged
::::::::
emergent, rigid vegetation was obtained with the Mertens method and for dense, flexible vegeta-15

tion with the generalized
:
a
:::::::::
simplified

:
two-layer method combined

:::::
while

:
a
::::::::::
generalized

:::::::::
two-layer

:::::
model

:
with a description

of the flexibility-induced reconfiguration. We found that the process-based methods are superior when applied for vegetative

conditionsthey were developed for while the Manning based DCM seems to be the most flexible technique
::::
plant

:::::::::
flexibility

:::
was

:::
the

:::::
most

:::::::::
universally

:::::::::
applicable

::
to
::::::::

different
:::::::::
vegetative

:::::::::
conditions.

:::
In

:::::
many

:::::
cases,

:::
the

:::::::::::::
Manning-based

::::::
DCM

:::::::::
performed

::::::::::
satisfactorily

:::
but

:::::
could

:::
not

:::
be

::::::
reliably

:::::::::::
extrapolated

::
to

:::::
higher

:::::
flows.20
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1 Introduction

Compound channels consisting of a main channel and vegetated floodplains are commonly observed both in natural and en-

gineered settings. For instance, vegetated compound (two-stage) channels have been recently proposed as an environmentally

preferable alternative to conventional dredging in flood and agricultural water management (e.g. Västilä and Järvelä, 2011).25

Such
:
a
:
nature-based solution (NBS)

::
is

:::::::
expected

::
to

:
allow combining the technical needs, e.g. flow conveyance and

::::::
channel

::::
bed

stability, and the environmental requirements, e.g. improved water quality and biodiversity (Rowiński et al., 2018). Reliable
:
,

:::
but

::::::
requires

:::::::
reliable predictions on the discharge capacityin such complex channels are required e. g. for river restoration, flood

analyses, and for implementation of nature-based solutions. Predictions on the discharge capacity using the conventionally

applied methods (e.g. Posey, 1967) can be underpinned by high uncertainties caused by
:
.
::::::
Herein,

:::
the

::::::::
difficulty

:::::
results

:::::
from the30

complex cross-sectional geometry and the composite roughness resulting from regions
:::
parts

:::
of

::::::
channel

:
with highly different

flow resistance. Floodplain vegetation is the main factor complicating the predictions and causing uncertainty, particularly in

small to medium-sized channels where up to 90 per cent
:::::
percent

:
of the flow resistance can be caused by plants (e.g. Västilä

et al., 2016). Thus, there are needs to analyze the benefits and limitations of using more advanced state-of-the-art methods for

describing the influence of floodplain vegetation in practical engineering applications.35

Since its formulation in 1960, the Divided Channel Method (DCM, Posey, 1967) with the Manning formula is
::::
With

:::
an

:::::::
increase

::
of

:::::::::
computing

:::::
power,

::::
two-

::::
and

::::
even

::::::::::::::
three-dimensional

:::::::
models

::
are

:::::::
gaining

::::::::
popularity

::
in
:::::
flood

::::::::::
assessments

::::::::::::::::::::::::::::
(Teng et al., 2017; Liu et al., 2019)

:
.
::
In

:::::::
practice,

::::::::::::::
one-dimensional

:::::::
models,

:::
on

::::::
which

:::
the

::::::
present

:::::
study

::::::::
focuses,

:::
still

:::::
play

::
an

:::::::::
important

::::
role,

:::::::::
especially

::
in

:::::
tasks

:::::::
requiring

:::::
long

::::
term

::
or

:::::
large

::::::
spatial

:::::
scale

:::::::::
simulations

:::::::::::::::::::::::::::::::::::::
(e.g. Yu et al., 2019; Chaudhary et al., 2019).

:::
In

::::::::::::::
one-dimensional

::::
flow

::::::
routing

::::::
models the most widely used technique for predicting the discharge capacity in compound channels in one-dimensional40

flow routing models. This simple approach explains the flow separately in
::
of

:::::::::
compound

::::::::
channels

::
is

:::
the

:::::::
Divided

::::::::
Channel

::::::
Method

:::::::
(DCM)

::::
with

:::
the

::::::::
Manning

:::::::
formula,

:::::::
defined

::
in

:::::
1960

::::::::::::
(Posey, 1967).

::
In
::::

this
::::::::
approach

::::
flow

::
is
:::::::::
computed

:::::::::
separately

::
in

::::::
channel

:
zones with differing flow resistance, usually the main channel and floodplains. The kinematic effect resulting from

the momentum exchange between areas of different velocities is taken into account through
:::
the

::::::
higher

:::
and

::::::
lower

::::::
stream

:::::::
velocity,

:::
the

::
so

::::::
called

::::::::
kinematic

::::::
effect,

::
is

::::::::::
represented

::
by

:
rough imaginary walls (Sellin, 1964; Kubrak et al., 2019b, a)

::
at

:::
the45

::::::::
interfaces

:::::::::::::::::::::::::::::::
(Sellin, 1964; Kubrak et al., 2019a, b). Despite the development of more advanced methods, providing often much

more detailed and physically based description of channel flow resistance, DCM is till this day found in
::::::::::
well-known

:::::::::
limitations

::
of

:::
the

:::::
DCM

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Myers, 1978; Fread, 1989; Soong and DePue, 1996; Pasche, 2007),

:::
the

::::::::
Manning

:::::::
formula

::
is

::::::::
presently

:::
the

:::::
basis

::
for

:
the majority of practical models for flood hazard assessments, design of hydraulic structures or water management .

The limitations of the DCM are well-known. As it does not account for the momentum transfer between the main channel50

and floodplains, it overestimates main channel flows and as a result the total discharge (Myers, 1978). Furthermore, values of

the Manning coefficients, used to parameterize flow resistance, depend on the flow rate (Fread, 1989; Soong and DePue, 1996)

. It should be noted, that this relationship can be amplified with inadequacy of a flow model, as mentioned by Yen (1999).
:::
and

::::
water

:::::::::::
management

:::::::::::::::::
(Shields et al., 2017)

:
.
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A number of studies were devoted developing a more process-based description of channel flows (Yen, 2002). The attempts55

includes either, flow processes itself or interactions with obstacles, mostly in a form of vegetation. In the first category,
::
To

:::::::
improve

::
the

:::::::::
reliability

::
of

:::::::
practical

::::::::
discharge

:::::::
capacity

:::::::::
estimation

::
in

::::::::
vegetated

:::::::
channels,

:::
the

::::
key

::::::::
vegetation

:::::::::
properties

:::::::::
controlling

::
the

::::::::::
reach-scale

::::
flow

::::::::
resistance

::::::
should

::
be

:::::::::::
incorporated

:::
into

:::
the

::::::::::
calculations

::::::::::::::::::::::::::::::::
(e.g. Yen, 2002; Luhar and Nepf, 2013)

:
.
::::
One

::
of the

most sophisticated model of the channel capacity should
:::
can

:
be attributed to Shiono and Knight (1991), who on the basis of

a turbulent flow theory, derived equations for depth averaged velocities in the cross-section plane. Accompanied with an addi-60

tional drag term, the method was successfully used to model flow in a channel with composite roughness consisting of vegetated

and non-vegetated zones (Kalinowska et al., 2020).
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Zhang et al., 2018; Abril and Knight, 2004; Zinke et al., 2011; Tang and Knight, 2008; Kalinowska et al., 2020)

:
.
::::::::
However,

::
for

::
a

:::::
typical

::::::::
practical

::::
case,

:::
the

::::::::::::::::::::::
Shiono and Knight (1991)

:::::
model

::
is

::
too

::::::::
complex,

::::::::
requiring

:::::
much

::
of

::::::::
modelers

::::::
efforts,

::::::::
especially

::
in

::::::::
presence

::
of

:::::::
efficient

::::::::::::::
two-dimensional

::::::::
solutions.

Other scientific effortsfocused on developing more
::::::
Several

::::::::::
approaches

::::::::
providing

::
a
:
physically-based description of the65

interactions between flow and vegetation. One
:::::::::::::
characterization

::
of

:::::::::
vegetation

:::
and

:::
the

:::::::::::::
flow-vegetation

::::::::::
interactions

:::
are

::::::::
available

::
for

:::::::::::::
straightforward

:::
1D

::::::::
discharge

:::::::
capacity

::::::::::
assessments

::
in

:::::::::::::::::::
small-to-medium-sized

::::::::
vegetated

::::::::
channels.

::
In

::::
these

:::::::
models,

:::::::::
vegetation

:::
can

::
be

::::::::::
represented

::
as

::::
rigid

::
or

:::::::
flexible,

:::::::::
interacting

::::
with

::::
water

::::::
stream

::
as

:::::::::
submerged

::::
and

:::::::
emergent

:::::::::::::::::
(Shields et al., 2017)

:
.
:::::
There

:::
are

::::
many

::::::::
methods

::::::::
explaining

::::
each

::
of

:::::
these

:::::
types

::
of

::::::::
vegetation

::::
and

:
a
::::::::::::
comprehensive

::::::
review

:::
can

::
be

:::::
found

::
in

:::::::::::::::::::::
Aberle and Järvelä (2013)

:
.
:::::
Some of the most important methods was given by Pasche (Pasche and Rouvé, 1985).It is based on the detailed physical70

description of
:::::::::
recognized

:::::::
methods

:::::::
include

:::
e.g.

:::::
those

::::::::
developed

:::
by

::::::::::::
Pasche (1984)

:::
and

::::::::
simplified

:::
by

:::::::::::::
Mertens (1989)

::
to

:::::::
describe

the flow in zones with unsubmerged (emergent) vegetation. The kinematic effect is simulated with a rough imaginary wall, as

in the DCM. Here however the wall friction depends implicitly on the flow velocities in the main channel and vegetated areas.

In the original form the Pasche method consists of several implicit equations making it hard to implement. Simplified version

of the method was proposed by Mertens (1989).75

Recent progress in the modeling of compound channels aimed at developing methods for submerged
:
,
::
by

:::::::::::::::::::::::::::
Arcement and Schneider (1989)

:::
who

:::::::::
presented

:::::::
empirical

:::::::::::
relationships

:::
for

:::::::
Manning

:::::::::
roughness

::::::::::
coefficients

:::
and

:::::::::
vegetation

:::::::::
parameters;

:::
by

::::::::::::::::::
Klopstra et al. (1996)

:::
who

:::::::
derived

::
an

::::::::::::
process-based

:::::
model

:::
for

::::
rigid,

:::::::::
submerged

::::::::::
vegetation;

::
by

::::::::::::
Järvelä (2004)

::::
who

:::::::
provided

::
a

:::::::::::
process-based

::::::::
approach

::
for

::::::::
emergent

:::::
rigid and flexible vegetationthat undergoes marked streamlining and reconfiguration, reducing the apparent flow

resistance Jalonen et al. (2015). A straightforward ;
:::
by

:::::::::::::::::
Baptist et al. (2007)

:::
who

:::::::::
introduced

::
a two-layer method was proposed80

by Luhar and Nepf (2013) while attempts to generalize the approach and provide basis for its parametrization are made by e.g.

Västilä and Järvelä (2014); Jalonen and Järvelä (2015); Västilä and Järvelä (2018).

The most obvious reason why the
:::::
model

:::
for

::::
rigid

::::::::::
vegetation;

:::
and

:::
by

::::::::::::::::::::
Luhar and Nepf (2013)

:::
who

:::::::::
developed

:
a
:::::::::

two-layer

:::::
model

:::
for

:::::::::
submerged

:::::::::
vegetation.

:::::::
Despite

:::
the

:::::
recent

:::::::::::
developments

::
of

:::::
these process-based methodsare unpopular for in practical

applications is their complexity. More detailed representation of the flow processes increases the amount of necessary information85

on channel properties. Methods like Pasche and Rouvé (1985) or Luhar and Nepf (2013) as well as the state-of-the-art vegetation

description Västilä and Järvelä (2018) ,
:::::
there

::
is

:
a
::::
lack

::
of

::::::::::
knowledge

::
in

:::::::
whether

:::
the

::::::::::::
state-of-the-art

:::::::
methods

::::
with

::
a
:::::::::
significant

::::::
number

::
of

::::::::::
parameters

:::
are

:::::::
reliable

::
in

::::::::
common

:::::::
practical

:::::::::::
applications

:::::::::::
characterized

:::
by

:::::::::
insufficient

::::::::::
information

:::
on

:::::::::
vegetative

::::::::
properties

:::
and

::::::
related

::::::
model

::::::::::
parameters.
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::
An

:::::::::
important

::::::::
drawback

::
of

:::::::::
vegetation

:::::::
models

::
for

:::::::::
hydraulic

::::::::
resistance,

:::::
from

:::
the

:::::::
practical

:::::
point

::
of

:::::
view,

::
is

::::
that

:::
they

:::::::
require90

::::
much

:::::
more

::::
data

::::
than

:::::::::
traditional

::::::::
methods.

:::
For

::::::::
example

::::
with

:::
the

::::::
DCM,

::
in

:::::
terms

::
of

:::::::::
roughness,

:::
the

:::::
river

:::::::::::
cross-section

:::
can

:::
be

::::::
usually

:::::::::::
characterized

:::::
using

::::
three

::::::
values

::
of

:::
the

::::::::
Manning

:::::::::
coefficient,

:::
for

:::
the

:::::
main

::::::
channel

::::
and

:::
two

::::::::::
floodplains.

::::
The

:::::::::
vegetation

::::::
models

:::::
would

:
require specific data on vegetation

::::
plant

::::::
features, such as density, spacing, shape or species, and leaf area indices.

In practical assessments for tens of kilometers long river reaches, such information is not readily available. With these practical

limitations, the use of a roughness coefficient lumping all effects, such as the Manning coefficient, can be
::
An

:::::::::
exception

::::
may95

::
be

:::::::
channel

:::::
design

:::::::::::
assignments,

:::::
where

::
it
::
is

:::::::
possible

::
to

::::::
assume

:
a
::::::
future

:::::::
character

:::
of

:
a
::::
plant

:::::
cover

::::
after

:::
an

:::::::
intended

:::::::::::
intervention,

::::::::
necessary

::::
data

::
on

:::::::::
vegetation

:::
can

:::
be

:::::::
obtained

:::::::
through

::::
field

:::::::
surveys,

:::::
which

:::::::::
noticeable

:::::::
increase

:::::
costs

::
of

:
a
::::::
model

::::::::::
application.

::
A

::::::::
promising

::::
way

:::
for a reasonable solution (i.e. Marcinkowski et al., 2018, 2019).

The second, also important argument for simpler methods is that the roughness coefficients are often treated as “catch all

parameters”. It is a common practical approach of using the resistance parameters for adjusting the model fit to observations.100

In the result such parameters are often used beyond their physical interpretation, as disused by Yen (1999) in the response to

Khatibi et al. (1997). Fr instance, higher or lower values of the Manning coefficient compared to the physical interpretation of

the roughness could be used when bathymetric datado not account for the true complexity of the river geometry. One of such

examples is the modeling of steep-pool reaches with multiple sub- supercritical flow transitions by using very high values of

roughness (Reid and Hickin, 2008).105

::::
more

::::::::
effective

:::::::::::
determination

:::
of

::::::::
vegetation

:::::::
features

::::::
might

::
be

::::::
remote

:::::::
sensing

:::
and

:::::
many

:::::::
studies

::::
were

:::::::
devoted

::
to

:::
the

:::
use

:::
of

::::
these

:::::::::
techniques

::
in

:::::::::::
floodrouting.

:::
For

:::::::
example

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Casas et al. (2010); Forzieri et al. (2010); Abu-Aly et al. (2014); Wolski et al. (2018)

::::::::::
investigated

:::
the

:::
use

::
or

:::::::
airborne

:::::
laser

:::::::
scanning

:::
for

::::::::::
determining

:::::::::
vegetation

:::::::
classes,

:::
that

::::::::::
corresponds

:::
to

::::::::
hydraulic

:::::::
features.

::::
The

:::::::
obtained

::::::
values

::
of

:::::
plant

::::::::
properties

:::
are

::::::::
however

:::::::
affected

::
by

::
a
:::::
strong

::::::::::
uncertainty,

::::::::
resulting

:::::
from

:::::::::::
classification

:::::
itself,

:::
but

::::
also

:::::::::::
generalization

::::
and

:::::::
variation

::::::
within

:
a
:::::
class,

::
as

:::::::::::
demonstrated

::
by

:::::::::::::::::::::::::
Straatsma and Huthoff (2011).

:::::::::::::::::
Forzieri et al. (2012)

::::::
argued,

::::
that110

:::::::
airborne

::::
laser

::::::::
scanning

::::
itself

::
is

:::
not

:::::::
suitable

::
to

:::::::
measure

:::::
plant

::::::::::::
characteristics,

:::::::
without

::::::::
extensive

::::
field

::::::::
reference

::::
data.

:::::::::
Therefore

::::
more

:::::
recent

::::::::
attempts

::::::
focused

:::
on

:::::::::
application

::
of

::::::::
Terrestrial

:::::
Laser

::::::::
Scanning

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Antonarakis et al., 2009; Jalonen and Järvelä, 2014; Jalonen et al., 2015; Kałuza et al., 2018)

:
.
:::::::
However

::::
still,

:::
the

::::
use

::
of

:::
the

::::::
remote

::::::
sensing

::::
data

::
in
:::::::::
vegetation

:::::::
models,

:::::::
requires

::::::::
extensive

::::
field

:::::::::::::
measurements,

::
to

:::::::
establish

::
a

:::
link

:::::::
between

::::::::
obtained

:::
data

::::
and

::::::::
hydraulic

:::::::::
properties.

Despite the recent developments of process-based methods for modeling vegetated flows, there is a lack of knowledge in115

whether the state-of-the-art methods with a significant number of parameters are reliable in common practical applications

characterized by insufficient data on channel and vegetative properties. Any method can be widely applied only if all its

parameters can be identified as the solution to the inverse problem – a parameter calibration. This leads to an old dilemma,

where a simple model with limited number of parameters is compared with a complex one with more parameters (Kuczera and Mroczkowski, 1998)

. The answer can be given in terms of the models predictive uncertainty. The better method is the one which for the same120

number of data points has a lower predictive uncertainty(Her and Chaubey, 2015; Her and Seong, 2018). As one of the first

works, this paper evaluates the uncertainty of chosen state-of-art methods for predicting the discharge capacity (understood

as
:::::::::::::
Aforementioned

:::::::::::::::::::::::::
Straatsma and Huthoff (2011)

:::::
study

:::::::
showed,

::::
that

::::
even

::::
with

::::
field

::::::::::::
measurements

:::
of

:::::::::
vegetation

:::::::::
properties,

:::::::::::
generalization

:::
of

:::::::
acquired

::::::::::
parameters

::
is

:::::
rather

:::::::::::
unavoidable,

:::::::::
especially

:::::
when

::::::
dealing

::::
with

::::::
larger

:::::
areas.

::::
The

:::::::
obtained

:::
in the

4



dependency between water level and discharge) in vegetated compound channels, comparing to the Manning DCM (Posey, 1967)125

. We have limited the scope to one-dimensional models, which despite development of two-dimensional ones, are still a

practical solution for long river reaches. Most of previous studies on the channel discharge capacity were performed neglecting

the problem of the parameter identification and associated uncertainty (Helmiö, 2002, 2005).

The first study that addressed the problem of the uncertainty associated with the parametrization of floodplain roughness

was Warmink et al. (2013) who compare the uncertainty of a 2D model for chosen methods of bed and vegetation resistance.130

The uncertainty analysis had an “explicit” form, as it was assumed that uncertainty sources were parameterized in a sense

of their distributions
:::
field

::::::
values

::::::::::::
characterizing

::::::::::
vegetation,

:::::
have

::
to

:::
be

::::::::
attributed

::
to
::

a
::::::

spatial
:::::

unit,
::::::::::
representing

:::::::
usually

::
a

::::::::
vegetation

:::::
class.

:::
On

:::
the

:::
one

:::::
hand,

:::::::
together

::::
with

:::
the

::::::::
nonlinear

::::
form

::
of

:::
the

:::::::::
vegetation

::::::::
resistance

:::::::
models

:
it
:::::::::
introduces

:::::::::
significant

:::::::::
uncertainty. Outcomes confirmed that the uncertainty related to the vegetation and bed forms roughness is one of the most

important sources of the uncertainty in flood routing. Interestingly from the point of the present study, Warmink et al. (2013)135

did not find a choice of a resistance formula as an important uncertainty factor.By contrast, Zinke et al. (2011) concluded that

for morphological modelling that the uncertainty is mainly related to
::
On

:::
the

::::::
other,

:
it
::::::::

weakens
:::
the

::::
link

:::::::
between

:::::::::
measured

:::::
values

::::
and

:::::
model

::::::::::
parameters,

:::::
which

:::::::
instead

::
of

::::::::::
representing

::::::::
physical

:::::::::
quantities,

::::::
should

:::::
reflect

::::
their

:::::::
lumped

::::::::
hydraulic

::::::
effect.

::::
Such

:::::::::
quantities

:::
are

::
of

::::::
course

::::::::::::
immeasurable

::::
and

:::::::
depend

::
on

::::
the

:::::::
structure

:::
of

:::
the

::::
flow

:::::::
model.

::
In

::::
still

::::::
scarce

::::::
studies

::::::
where

::::::::::
floodrouting

::
is

::::::::
analyzed

::::
with

:::
the

::::
use

::
of

:::::::::
vegetation

:::::::::
roughness

:::::::
models,

:::::
some

::::::::::
researchers

::::
tend

::::::::::
considering

:::::
plant

:::::::::
properties140

::
as

:::::
model

::::::::::
parameters

::::
that

::::::
should

::
be

::::::::::
calibrated,

:::
i.e.

::::::::
identified

::
in
::::

the
::::::
respect

::
of
::::::::::::

observations.
:::
So,

::
to
:::::

treat
:::::
them

:::::::
similarly

:::
to

:::::::
Manning

:::::::::::
coefficients,

:::::
which

:::
are

:::::::
usually

:::::::::
determined

:::
in

:::
this

:::::
way,

::
by

::::::::
adjusting

:::::
their

::::::
values,

::
to

::::::
obtain

::
an

:::::::::
agreement

::::::::
between

::::::::
computed

:::
and

::::::::
observed

::::
e.g.

::::
water

::::::
levels,

::::::
stream

::::::::
velocities

::
or

:::::
flow

::::
rates

:
–
:::
by

::::::
solving

:::
the

:::::::
inverse

:::::::
problem

:::::::
through

:::::::::
calibration

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Khatibi et al., 1997; Marcinkowski et al., 2018, 2019; Yu et al., 2019).

::::
The

:::::::
example

::
is

:::::
given

::
by

:::::::::::::::::::::
Dalledonne et al. (2019)

:::
who

::::::::
identified

:::::::::
vegetation

:::::::::
parameters

:::::::::
describing

::::
e.g.

::::
stem

:::::::::
diameters,

::::
their

::::::
heights,

::::
drag

::::::::::
coefficients

:::
and

::
a
:::
leaf

::::
area

:::::
index

::
in the145

vegetation parameterization.

A similar approach, in terms of “explicit” uncertainty assessment was presented by Dalledonne et al. (2019), who compared

several methods for vegetationinduced resistance, including: Pasche (Pasche and Rouvé, 1985) and Järvelä Järvelä (2004) in

a two-dimensional model.Here however, in terms of uncertainty, there were noticeable differences between the analyzed

techniques, with the Järvelä approach found the most favorable.
:::
flow

::::::
model.

:::::::::::::::::::
Berends et al. (2019)

::::::
directly

::::::::
addressed

::::
the150

:::::::
problem

::
of

:::::::::
parameter

:::::::::::
identifiability

::
of

:::::::::
vegetation

:::::::::
roughness

:::::::
models,

:::
also

:::::
using

::::::::::::::
two-dimensional

::::::
model.

::
It
::::::
seems,

::::
that

:::::
when

::::::::
vegetation

:::::::::
resistance

::::::::
methods

:::::::
become

::::
more

:::::::
popular

:::
in

:::::::
practical

::::::
codes

:::
for

:::::::::::
floodrouting,

::::
this

::::::::
approach

::::
will

:::::::
become

:::::
more

::::::::
common.

:

In the study uncertainty is represented using the implicit method of of Generalized Likelihood Uncertainty Analysis (GLUE, Beven and Binley, 1992, 2014)

. As shapes of parameter distributions are estimated through an inverse
:::::::::
Performing

:::::
model

::::::::::
calibration

:::::
using

:::::::::
parameters

:::
of155

::::::::
vegetation

:::::::::
roughness

:::::::
models,

::::
rises

::
at

::::
least

::::
four

:::::::::::
implications:

1.
:
Is
::
it
:::::::
possible

::
to

:::::::
identify

::::::
models

:::
for

:::::::::
vegetation

:::::::::
roughness

::
on

:::
the

:::::
basis

::
of

:::
the

::::::
inverse

:::::
task?

:::
The

:
problem using the Bayes

theorem, our results have the benefit that they are less affected by the initial assumption on the parameter variability

compared to
:::::
arises

::::
from

:::
the

::::::
larger

:::::::
number

::
of

::::::::::
parameters

::
in

:::::::::
vegetation

:::::::::
roughness

:::::::
models,

:::::::::
comparing

:::
to

:::::::::
traditional

5



:::::::::
approaches,

::::::
based

::::
e.g.

::
on

::::
the

::::::::
Manning

:::::::
formula.

::::
The

::::::::
problem

::::
was

::::
well

:::::::::::
demonstrated

:::
by

:::::::::::::::::
Werner et al. (2005),

:::::
who160

::::::::::
investigated

:::
the

:::::::::
uncertainty

::::
and

::::::::
sensitivity

::
of

::
a
::::::
hybrid

:::::::::::::::::
two/one-dimensional

::::::
model

::
for

::
a
:::::::
varying

::::::
number

::
of

::::::::::
parameters

::::
used

::
to

:::::::
describe

:
a
:::::::
channel

:::
and

::::::::
floodplain

:::::::::
roughness.

:::::::::
Analyzing

:::
the

::::::::
parameter

:::::::::::
identification

:::::
using

:
a
::::::::::
probabilistic

:::::::::
approach,

:::
they

::::::::
showed,

::::
that

::::
with

:::::::::
increasing

:::::::
number

::
of

::::::::::
parameters,

:::
the

::::::::
obtained

:::::::::
parameter

:::::::::::
distributions

:::::::
become

:::
less

::::::::
specific,

:::::::::
suggesting

:::
the

::::
same

:::::
level

::
of

::::::::::
probability

::::
over

::
a

::::
wide

:::::
range

:::
of

::::::
values.

:::::::::
Moreover,

:::
the

:::::::
obtained

:::::::::
parameter

:::::::::::
distributions

::::
were

:::::::
different

::::
from

::::::
values

::::::::
suggested

::
in

::::::::
literature.

:::::::::
Although,

:::
the

::::::::::::::::
Werner et al. (2005)

:::::
study

:::
did

:::
not

::::::
account

:::
for

:::::::::
vegetation165

::::::::
roughness

:::::::
models,

:::
the

::::
same

:::::
effect

:::
was

::::::::
observed

::
in

:::
the

::::
case

::
of

::::
these

:::::::
methods

:::
by

:::::::::::::::::
Berends et al. (2019)

:::
and

:::::::::::::::::
Kiczko et al. (2017)

:
.
::::
This

::::
leads

::
to

:::
the

::::::
second

:::::
point.

:

2.
:
Is
::

it
:::::::::
reasonable

:::
to

:::::
apply

:::::::::::
process-based

:::::::::
vegetation

:::::::::
roughness

:::::::
models

:
if
:::

the
::::::::::::

identification
::
of

::::
their

::::::::::
parameters

::::::
results

::
in

:::::
values

:::::::
differing

:::::
from

:::
the

:::
real

::::::
values

::::::::
measured

::
at

:::
the

::::
field

::::::::::::::::::::::::::::::::::::::::::::::::::
(Werner et al., 2005; Kiczko et al., 2017; Berends et al., 2019)

:
?
:::::
Such

:
a
:::::::::
calibration

:::::::::
procedure

::::
rises

:::
an

:::::::::
impression

::
of

:::::
using

::::::::::::
process-based

::::::::
methods

::
as

::::::::::
data-driven,

:::::::::
black-box

:::::::
models,170

:::::::
common

:::
e.g.

::
in

:::::
rating

:::::
curve

::::::::::
assessments

::::::::::::::::
(Kiang et al., 2018)

:
.
::::
From

::::
this

:::::::::
perspective,

:
the “explicit” approaches.

:::::::::::
process-based

:::::::
methods,

::::
with

:::::
other

::::
than

::::::::
measured

:::::::::
parameters

:::
act

::
as

::::::::
functions

::::
with

::::
large

::::::
number

::
of
::::::::::
parameters,

:::::::::
comparing

::
to

:::::::::
traditional

:::::::::
approaches

:::
like

:::
the

::::::::
Manning

:::::
based

::::::
DCM.

:::
The

:::::
effect

:::
can

:::
be

:::::::
probably

::::::::
mitigated

:::
by

:::::::
applying

:::::::::
constrains

::
on

:::
the

:::::::::
parameter

:::::
values

::
to

::::::
ensure

::::
that

::::
they

:::
are

::::::
within

:::::
their

:::::::
physical

::::::
bands.

:::::
With

::::::::
additional

::::::::::
information

:::
on

:::::::
channel

::::::::::
vegetation,

:::::
using

:::
e.g.

::::::
remote

:::::::
sensing

::
or

::::
land

:::
use

::::::
maps,

:
it
::::::
might

::
be

:::::::
possible

:::
to

::::::
restrict

::::
their

:::::::::
variability

::::::
ranges

::::::
further.

::::
The

::::::::
advantage

:::
of175

:::::::::::
process-based

::::::::::
approaches

:::::
might

:::::
come

::::
form

:::
the

:::::::
physical

::::::::::::
interpretability

::
of

:::::
their

:::::::::
parameters.

::::
For

:::::::
instance,

:::
too

::::
large

:::::
stem

::::::::
diameters

::
of

:::::
plants

:::
are

::::::
easier

::
to

::::
spot

::::
than

:::
too

::::
high

::::::
values

::
of

::::::::
Manning

:::::::::
roughness

::::::::::
coefficients.

::::::::
However,

::::
still

::::
there

::
is
::
a

:::
lack

::
of
:::::::::
evidence,

:
if
::
it

::
is

::::::::
beneficial

:::::::
applying

::::::::::::
process-based

:::::::
models,

::::::
instead

::
of

::::
pure

::::::::::
data-driven

::::::::::
approaches.

3.
:::
The

::::::
choice

::
of

:::
the

:::::::::
vegetation

:::::::::
roughness

::::::
model,

::::
e.g.

:::
for

::::
rigid

::
or

:::::::
flexible

:::::::::
vegetation,

::::::::
depends

::
on

:::
the

::::
type

:::
of

:::::::::
vegetation

::::::
present

::
in

:::
the

:::::::
channel.

::
Is

:
it
::::
then

:::::::
possible

::
to

::::::
choose

::
an

::::::::::
appropriate

:::::
model

:::::::
without

:::::::::
knowledge

::
on

:::
the

:::::
plant

::::
type?

::::
This

:::::
issue180

:::::
should

:::
be

:::::::::
considered

::
in

::::::
respect

::
of

:::
the

:::::
point

::
3,

::
by

:::::::::
analyzing

:
if
::
it
::
is

:::::::
possible

::
to

::::::
choose

:::
an

:::::::::
appropriate

::::::
model

:::::::
structure

:::
by

::::::
solving

:::
the

::::::
inverse

::::::::
problem.

4.
:::
Are

:::
the

::::::::::::
process-based

:::::::
models

::::::::
beneficial

:::::::::
compared

::
to

::::
e.g.

:::
the

:::::::::::
DCM-based

::::::::
Manning

::::::::
approach

:::::
when

::::
there

:::
is

:
a
:::::
need

::
to

:::::::::
extrapolate

::
to

::::::
higher

::::::
flows?

::::
This

::
is
:::
an

::::
issue

:::::
well

:::::::::
recognized

::
in

:::::::::
hydrology

:::::::::::::::::::::::::::::
(Kuczera and Mroczkowski, 1998),

::::
that

:::::::::::
identification

::
of

:::::::
simpler

::::::
models

::
is

:::::
much

:::::
more

::::::::::::::
straightforward,

:::
but

:::::::
because

::::::::::::
process-based

::::::
models

::::::::::
incorporate

::::::
casual185

::::::::::::::
interrelationships,

:::::
they

::::::
provide

::::::
better

::::
basis

::::
for

:::
the

:::::::::::
extrapolation.

::
It
:::

is
::
of

::
a

::::::
special

::::::::::
importance

::
in

:::::
flood

:::::::::::
assessments,

:::::
where

:::
the

::::::::
calibrated

::::::
models

:::::
need

::
to

::
be

:::::::::::
extrapolated

::
to

:::::
higher

:::::
flood

:::::
flows.

:

The overall goal of this
::
the

:::::::
present paper is to compare the uncertainty, parameter identifiability

::::::::
investigate

:::
the

:::::::::::
implications

::
of

:::
the

:::
use

::
of

:::
1D

:::::::::::::
state-of-the-art

:::::::::::
process-based

::::::::
methods

::
in

::::::::
discharge

:::::::
capacity

:::::::::
estimation

::
of

::::::::::::::::::::
small-to-medium-sized

::::::::
vegetated

::::::::
compound

::::::::
channels.

:::::
These

::::::::
common

:::::::
practical

::::::::::
applications

:::
are

:::::::
typically

:::::::::::
characterized

:::
by

:::::::::
insufficient

::::
data

::
on

:::::::::
vegetative

:::::::::
properties,190

::
so

:::
that

:::::::
models

:::
are

::::::::
identified

::
in

:::::
terms

::
of

:::
the

::::::
inverse

::::::::
problem.

:::
We

::::::::
compare

:::
the

:::::
model

::::::::::::
identifiability,

::::::::::
uncertainty,

:
and physical

interpretation of the parameters of discharge capacity methods characterized with different levels of parameterization. This
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work focuses on one-dimensional methods for compound channels with a significant share of the flow resistance generated by

vegetation. The following methods were investigated: Manning based DCM, Pasche (Pasche and Rouvé, 1985)
:::::::::::::
(Pasche, 1984)

and Mertens (1989) methods designed for emergent rigid vegetation, and three versions of the two-layer model proposed by195

Luhar and Nepf (2013) as modified by Västilä and Järvelä (2018), designed for flexible submerged
:
or

::::::::
emergent

:
vegetation.

All models were applied to vegetation conditions differing in relative submergence (covering both submerged and emergent

conditions) and density, as motivated by real cases where it is possible that e.g. a “rigid”
::::::
“rigid” vegetation model is applied for

flexible vegetation because of
:
a
:
lack of information on the vegetation properties. Parameter identification was conditioned on

water depths instead of discharges to make the problem more similar to practical cases, like
::::
such

::
as flood assessments, where a200

model outcome is usually the water level. It is out of the scope of the paper to provide a summary of all the available methods.

2 Methods

2.1 Parameter identification and uncertainty analysis

Parameter identification problem for process-based methods of channel discharge: (a) conservative approach, (b) adopted in

the present study.205

There are two approaches for parameter identification (Figure 1) , of which the conservative approach is typically used.

In a typical engineering task, the resistance term is usually poorly recognized and in the DCM
::::
This

::::::
section

::::::::
provides

:::
an

:::::
overall

::::::::::
description

:::
of

:::
the

:::::::
applied

::::::::::::
methodology.

:::
The

::::::::
analysis

::
is

:::::::::
performed

:::::
with

::::::::::::
process-based

:::::::::
approaches

::::
for

:::::::::
vegetation

:::::::::
roughness,

::::::::
including

::::::
Pasche

::::::::::::::
(Pasche, 1984)

:::
and

:::::::::::::
Mertens (1989)

::::::
models

:::
for

:::::
rigid

::::::::
emergent

:::::::::
vegetation

:::::::
(section

::::::
2.2.2)

::::
and

::::::
flexible

:::::::::
vegetation

::::::
models

:::::
based

::
on

:::
the

::::::::
two-layer

:::::::::
assumption

::
of
:::::::::::::::::::
Luhar and Nepf (2013)

:
,
:::::::::
generalized

:::
by

::::::::::::::::::::::::::::::::::::::
Västilä and Järvelä (2018, sections 2.2.3-2.2.4)210

:
.
:::::::::::
Computations

:::::
were

:::::::::
performed

:::
for

::::::
steady

:::::
state

:::::::::
conditions,

:::
by

::::::::
applying

:::::::::
vegetation

::::::::
roughness

::::::
model

:::
for

:::::
water

::::::
levels

::
in

::
a

::::::
channel

:::::
cross

::::::
section.

:

:::
Two

:::::::::::
experimental

::::
data

:::
sets

::::::::
collected

::::
from

::::::::
vegetated

:::::::::
compound

:::::::
channels

:::::
were

::::
used:

:::::
flume

::::::::::::
measurements

::::
with

::::
rigid

:::::::::
vegetation

:::::::::::::::::::::::::::::::::::
(Koziol, 2010; Kozioł, 2013, section 2.3.1)

:::
and

::::
field

::::::::::::
measurements

::::
with

::::::
natural

::::::
mostly

:::::
grassy

:::::::::
vegetation

::
at

::::::::::
Ritobacken

:::::
brook

::::::::::::::::::::::::::::
(Västilä et al., 2016, section 2.3.2).

::::
The

::::::::::::
process-based

::::::
models

:::
of

:::::::::
vegetation

:::::::::
roughness

:::::
were

::::::::
compared

:::::
with

:::
the

:::::::::
traditional215

:::::
DCM

::::
with Manning roughness coefficientsare identified as an inverse solution, ensuring the best possible fit of the modeled

and observed water levels or inundation extents. For the more process-based methods, the conservative approach considers most

of parameters, such as the vegetation properties, as an input. The model identification applies then only to several minor values,

like surface roughness, as illustrated in Figure 1a. Instead of the conservative approach, this study considers additional inputs

::::::
purpose

::
of
:::
the

:::::::::::
identification

::::
task

::
it

:::
was

::::::::
necessary

:::
to

::::::
assume,

::::
that

:::::::::
parameters

:::
are

:::::::
constant

:::
and

:::
for

::::
that

::::::
reason,

:::
the

:::::::::::
experimental220

:::
data

::::
was

::::::
divided

::::
into

::::
sets,

:::::
where

:::::::::
vegetation

:::::::
features

::::
were

:::::::
constant

::
as

::::::::
possible.

:::::::::
Therefore,

:::
the

:::::
model

:::::::::::
identification

:::
for

:::
the

::::
field

:::
data

::::
was

:::::::::
performed

::::::::
separately

:::
for

::::
each

:::::::
season.

:::::::
Similarly

::
to
:::::::::::::::::
Werner et al. (2005)

:::
and

:::::::::::::::::
Berends et al. (2018)

:
,
:::
the

::::::::
parameter

:::::::::::
identification

:::::::
problem

::
is

::::::
defined

::
in

:::
the

::::::::::
probabilistic

::::::
manner,

:::
on

:::
the

:::::
basis

::
of

::::::::
Bayesian

:::::::::
estimation

:::::::
(section

::::
2.1).

::::
The

:::::::
adapted

::::::::::
assumption

::
is

:::
that

::::
the

:::::::
methods

:::
can

:::
be

:::::::::
compared in

terms of parameter identification, which is beneficial for being able to apply the advanced methods despite limited data (Figure225
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Figure 1.
:::
Two

:::::
ways

:
to
:::::
define

:::
the

:::::::
parameter

::::::::::
identification

:::::::
problem

::
for

:::::::::::
process-based

::::::
methods

::
of

::::::
channel

::::::::
discharge:

::
(a)

::::::::
traditional

::::::::
approach,

::
(b)

::::::
adapted

::
in

:::
the

:::::
present

:::::
study.

1b). For instance, in real applications detailed information on
:::::::
assessed

::::::::::
uncertainty:

::::
i.e.,

:::
the

:::::
more

::::::::::
appropriate

:::
the

:::::::
method

::
is,

:::
the

:::::
lower

::
is
::::

the
:::::::::
uncertainty

:::
of

::
its

:::::::::::
predictions.

::
At

::::
this

:::::
point

::
it

::::::
should

::
be

::::::
noted

:::
that

:::::
with

:
a
:::::

such
:::::::
problem

:::::::::
statement

:::
the

:::
goal

::
is
::::

the
:::::
model

::::::::::::
identification,

:::::
rather

::::
than

:::::::::
parameter

:::::::::::
identification

::::::::::::::::::::::::
(Mantovan and Todini, 2006)

:
,
::
as

:::::::
without

:::::::::
knowledge

:::
on

:::
true

:::::::::
parameter

::::::
values,

::::
only

:::::::::
measures

:::
for

:::::
model

:::::::
outputs

:::
are

:::::
used

::
in

:::
the

:::::::::
calibration

::::::::
process.

::::
The

:::::
model

::::::::::::
identifiability

::
in

::
a

::::::::::
probabilistic

::::::
manner

::
is
::::::::::
understood

::
as

:::
the

:::::
ability

::
to
:::::::::
determine

:::
the

::::::::
parameter

::::::::::
distribution

::::
that

:::::::
explains

:::
the

:::::
model

::::::::::
uncertainty

::
in230

::::::
relation

::
to

:::::::::::
observations.

:::
An

:::::
effort

::::
was

:::::
made

::
to

::::::
ensure

::::
that

:::::::::
uncertainty

:::::::
analysis

::
is
::::::::
objective

::::
and

:::::::::
repeatable,

::::::
despite

::::::::
different

::::::::::
assumptions

::
on

::::::
initial

:
a
:::::
priori

::::::::
parameter

::::::::::
distributions

:::
for

::::
each

:::::::
method.

:

:::
The

:::::::::::
identification

::::
was

::::::::
performed

:::
for

:
a
:::::::
different

:::::::
number

::
of

:::::::::::
observations,

:::::::
similarly

::
to

:::::::::::
hydrological

::::::
studies

::
of

:::::::::::::::::::::::::::::::::::::::
Her and Chaubey (2015); Her and Seong (2018)

:
.
:::
For

:::::::::
calibration

::
the

::::::
points

::
of

:::::
rating

:::::
curves

:::::
were

::::
used,

:::
the

:::::
effect

::
of

:::::::
different

:::::::
possible

:::::::::::
combinations

::
of

:::::::::::
observations

::
in

:::::::::::
identification

:::
task

::::
was

::::
also

::::::::::
investigated,

:
e.g. floodplain cover is not readily available, while for the DCM approaches it is sufficient, at most,235

to know if dense vegetation is present or not.Thus, the concept of this study is to consider all additional inputs of the
:::::
model

:::
was

:::::::::
calibrated

:::
for

:
a
:::
set

::
of
::::

five
:::::
lower

::::::
flows,

:::
but

::::
also

:::
for

:
a
:::

set
:::

of
:::
five

::::::
higher

::::
and

:::::
mixed

:::::
ones.

:::
To

:::::::
address

:::
the

::::
issue

:::
of

:::::
using

::::::
simpler

:::
and

:::::
more

::::::::
complex, process-based methods as parameters

::::::
models

:::
for

:::::::::::
extrapolation

::
of

:::
the

:::::
rating

:::::
curve,

::
a
::::::
special

:::::
focus

:::
was

:::::
made

::
on

::::::::::
predictions

::
of

:::::::::
maximum

::::
flows

::::
with

::
a
:::::
model

::::::::
identified

:::::
using

::::
only

:::::
lower

::::::
flows.

2.1
:::::::::
Parameter

:::::::::::
identification

::::
and

::::::::::
uncertainty

::::::::
analysis240

::::
River

:::::::::::
assessments

:::::
using

:::::::::::::
one-dimensional

:::::::
models

::::
with

::::::
DCM,

:::::
based

::
on

:::
the

::::::::
Manning

::::::::
formula,

:::
are

::::::
usually

:::::::::
performed

:::::::
without

::::::
detailed

:::::::::
knowledge

:::
on

::::::::
vegetation

:::::::::
properties.

::::
The

:::::::
Manning

:::::::::
roughness

:::::::::
coefficients

:::
are

:::::::::
considered

::
as

::::::
model

:::::::::
parameters,

::::::::
identified

::
in

:::
the

::::::
inverse

::::::::
problem,

::::::
where

::::
their

::::::
values

:::
are

:::::::
adjusted

:::
to

::::::
ensure

::::::::::
satisfactory

::
fit

:::::::
between

::::::
model

:::::::
outputs

:::
and

::::::::::::
observations,
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:::
e.g.

::::::::
computed

::::
and

::::::::
measured

:::::
water

::::::
depths

:::
H

::
at

:::::
given

::::::::
discharge

:::
Q.

:::
The

:::::::::
vegetation

:::::::::
roughness

::::::
models

:::::::
provide

::
a

::::::::::
relationship

:::::::
between

::::
plant

::::::::
features

:::
and

::::
the

:::::
water

::::
flow.

::::::::::
Vegetation

::::::::::::
characteristics,

::::
that

::::
can

:::
be

:::::::
obtained

:::
by

::::
field

:::::::::::::
measurements

::
or

::::
e.g.245

:::::
design

:::::::::::
assumptions,

:::
are

:::::::::
considered

:::
as

:
a
:::::
model

::::::
input.

::
In

::::::::
discharge

:::::::::::
calculations,

::
the

::::
use

::
of

::::
such

::::::
models

::::
can

::
be

:::::::::
illustrated

::::
with

:::::
Figure

:::
1a,

::::::
where

:::::::::
vegetation

:::::::::
properties

:::
are

:::
one

:::
of

::::::
model

::::::
inputs.

::
It

::
is

:::
still

:::::::::
necessary,

:::
to

::::::
specify

:::::::::
remaining

::::::::::
parameters,

::::
like

::::::::
roughness

::::::::::
coefficients

:::
for

:::
bed

::
or

:::::
drag

:::::::::
coefficients

:::
for

::::::
plants.

::::
The

::::::
present

:::::
study

::::::::::
investigates

:::
the

::::::::
approach

:::::
given

::
in

::::::
Figure

:::
1b,

:::::
where

::::
also

::::::::
vegetation

::::::::::::
characteristics

::
in

:::::::::
vegetation

:::::::::
roughness

::::::
models

:::
are

:::::::::
considered

::
as

:::::
model

::::::::::
parameters,

:
that have to be iden-

tified. Such an approach was previously presented by Kiczko et al. (2017) and revealed that process-based methods of Pasche250

and Mertens can be applied in the same manner as DCM. The technical differencebetween different the methods is just
:
,

::::::
without

::
a

:::::::::
knowledge

:::
on

::::::
channel

::::::::::
vegetation.

::::
This

::::::
makes

:::
the

:::::::::
application

:::
of

:::::::::
vegetation

::::::::
roughness

:::::::
models,

::::::
similar

:::
to

:::
the

::::
way

:::
how

::::::::
Manning

:::::
based

::::::::::
approaches

:::
are

:::::
used.

:::::
From

:::
the

:::::::
practical

:::::
point

::
of

:::::
view,

:::
the

::::::::::
difference,

::::
apart

:::
the

::::::
model

::::::::
structure,

::::::
comes

::::
from the number of parameters . Identifiability of model parameters and the quality of the obtained solution determine then the

applicability of a method.255

The parameter identification
:::
that

::::
have

::
to
:::
be

::::::::
identified.

:

::
In

:::
the

::::::::::
probabilistic

:::::::::
parameter

:::::::::::
identification

::::::::
approach,

:::::::::
parameters

:::
are

::::::::
assumed

::
to

::
be

:::::::
random

:::::::
variables

:::::::::
explaining

:::
the

::::::
model

:::::::::
uncertainty

::::::::::::::::::::::::::::::::::
Werner et al. (2005); Berends et al. (2019)

:
.
:::
The

::::::
model

:::::::::::
identification

:
is
:::::::::
performed

:::::
along

::::
with

:::
the

:::::::::
uncertainty

:::::::
analysis

:::
and

:::::::
consists

::
in

:
a
:::::::::::
determination

:::
of

::::::::
parameter

:::::::::::
distributions,

:::
that

::::::::
translates

:::::
using

:::
the

:::::
model

::
to
:::::::::::
probabilistic

::::::::::
distributions

::
of

::::::
model

::::::
outputs,

::::
here

:::::
water

::::::
depths

:::
H .

:::
The

::::::
results

::
of

::::::::
parameter

:::::::::::
identification

::::
and

:::::::::
uncertainty

:::::::::
estimation

:::
are

::::::
usually

::::::::
presented

::
in

:
a
:::::
form260

::
of

:::::::::
confidence

::::::::
intervals

:::
for

::::::
model

::::::
outputs

::::
and

:::::::::
parameter

:::::::
marginal

::::::::::::
distributions.

::::
The problem was defined

::
on

::::
the

::::
basis

:::
of

:::::
Bayes

:::::::::
estimation

:::::
using

:
using Generalized Likelihood Uncertainty Estimation (GLUE) approach (Beven and Binley, 1992;

Romanowicz and Beven, 2006), based on .
:::::::::
Parameters

:::::::::::
distributions,

:::
are

::::::::
obtained

:::::
using

:::
the Bayes formula:

P (θ/H) =
L(H/θ)P (θ)∫
L(H/θ)P (θ)dθ

(1)

where θ stands for parameters, H water levels
::::::
depths, P (θ) a priori

:
a
:::::
priori parameter distribution, P (θ/H) a posteriori265

:
a
:::::::::
posteriori parameter distribution, L(H/θ) likelihood function.

:::
The

:::::::
equation

:::
is

::::::
solved

:::::
using

::::::
Monte

:::::
Carlo

::::::::
sampling

:::
of

:::::::::
parameters

:::::
within

:::
the

:::::::
adapted

::
a

::::
prior

::::::::::
distributions

::::
P (θ)

::::
and

:::::
model

::::::::::
simulations

:::
for

:::::
given

::::
flow

::::
rates

:::
Q.

In the practical application usually there is no strong theoretical grounds for the assumption of a priori parameter distribution

and the shape
:::
The

:::::
choice

:
of the likelihood function . In that case, as in

:::::::
L(H/θ)

:::::::
depends

::
on

:::
the

:::::::::::
assumptions

::
of

:::
the

::::::::
character

::
of

:::::
model

::::::
errors.

::
In

:
the present study , a uniform/rectangular distribution is usually used. The likelihood function, necessary to270

transform a priori into a posteriori distribution, in the original GLUE approach is used along with selecting so-called behavioral

simulations, above the given level of fit measures. This allows to adjust the variation of the estimated uncertainty. In the present

study the Gauss shaped function was used, where output uncertainty depends on the scaling factor κ (Romanowicz and Beven, 2006)

:
:
it
::::

was
::::::::
assumed

:::
that

:::::::
models

:::
are

::::::::
unbiased

::::
and

:::::
errors

:::::::
between

:::::::::
computed

:::
and

::::::::
observed

:::::
water

::::::
levels

:
ζ
::::

are
::::::::::
independent

::::
and

:::::::
normally

:::::::::
distributed

::::::::::::
ζ ∼N (0, σ2),

::::::
where

::
σ2

::
is

::::::::
unknown

::::::::
variance.

:::
The

::::::::::
relationship

:::::::
between

::::::::
observed

:::::
water

:::::
levels

::
Ĥ

::::
and

:::
the275
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::::::::
computed

::
H

:::
for

:
a
:::::
given

::::
flow

::::
rate

::
Q

:::
and

::::::::::
parameters

:
θ
:::
can

:::
be

:::::
given

::
as

:::::::
follows:

Ĥ =H (Q,θ)+ ζ
::::::::::::::

(2)

:::
The

::::
error

::
ζ
:::::::
explains

:::
all

:::::::::::
discrepancies

:::::::
between

:::
the

:::::
model

::::
and

:::::::::::
observations,

::
so

::
as

::::
well

:::
the

:::::::::::
measurement

:::
and

::::::
model

::::::::::
uncertainty.

::::::::
Therefore

:::
the

:::::::::
performed

:::::::::
uncertainty

:::::::
analysis

:::::::
accounts

:::
for

:::
the

::::
total

::::::::::
uncertainty.

:::::
When

:::::::::
comparing

:::::::
different

:::::::
models

::
for

:::
the

:::::
same

:::::::::
observation

::::
set,

:::
the

:::::::::::
measurement

:::::::::
uncertainty

::
is
:::::::
constant

::::
and

:::::::::
differences

::::::
results

:::::
from

:::
the

:::::
model

::::::::::
uncertainty.

:::
For

:::::::::::
independent280

:::
and

::::::::
normally

:::::::::
distributed

:::::
errors

:
ζ
:::
the

::::::::
likelihood

::::::::
function

:
is
:::::
given

:::
by

:::::::::::::::::::::::::::::::::::::::::::::::
(Romanowicz et al., 1996; Romanowicz and Beven, 2006)

:
:

L(H/θ) =
1√
2πσ2

::::::

exp

−
n∑
i=1

(
Hi− Ĥi

)2
κσ2

−
m∑
i=1

(
Hi− Ĥi

)2
2σ2

:::::::::::::::

 (3)

with n
:
m

:
standing for the number of observation points

::
Ĥi::::

with
:::::::::
discharges

:::
Qi used in the parameter identification, σ2 variation

of model residuals, Ĥ and H observed and calculated water levels, respectively.
:
.
::
It

:::::
should

:::
be

:::::
noted,

::::
that

::::
with

:::
the

:::::::::
likelihood285

:::::::
function

:::::
given

::::
with

:::::::
Equation

::
3
:::
the

:::::::
selection

:::
of

:
a
::::::::
so-called

:::::::::
behavioral

:::
set,

:::::::
common

::
in

::::::
GLUE

::::::::::
approaches,

::
is

:::
not

:::::::::
necessary.

Determining the span of the model uncertainty variance is always an important part of the uncertainty estimation. A good

uncertainty model ensures that a desired number of observationsis enclosed within uncertainty intervals (Blasone et al., 2008)

. This is particularly important in the present study, where different methods are compared in respect of their uncertainty.

Confidence intervals should be sufficiently wide to cover the required number of observations but not wider. This condition290

can be fulfilled with a sufficient variability range of model parameters, specified as a priori distribution P (θ) and appropriate

shape of the likelihood function L(Y/θ) depending here on the
:::
The

:::::::
variance

:::
σ2

::
is

::::::::
unknown

::::
and

::
in

::::::
GLUE

::::::::::
approaches

::
it

:
is
:::::::

usually
::::::::
estimated

:::::
using

::::::
model

::::::::
residuals

:::::::::::::::::::::::::::::::::::::::::::::
(Romanowicz and Beven, 2006; Stedinger et al., 2008).

::
In

::::
the

::::::
present

::::::
study,

:::
the

::
σ2

::
is
::::::::::
determined

:::
on

:::
the

:::::
basis

::
of

:::::::::::
observations,

:::
by

::::::::
ensuring

::::
that

::::
they

::::::::::
appropriate

:::::
share

::
is

:::::::
enclosed

:::
in

:::::::::
confidence

::::::::
intervals

::::::::::::::::::
(Blasone et al., 2008)

:
of

::::::::
modeled

:::::
water

:::::
depths

:::
H .

::::
The

::::::::::
optimization

:::::::
problem

::
is

::::::
defined

::
in
:::::
terms

:::
of

::::::
scaling

:::::
factor κ coefficient.295

Parameter ranges can be usually found by trials-and-errors while the shape of the likelihood function should be determined

in respect of observations. In the present study, the shape coefficient
::
for

:::
the

:::::::
variance

::
of

::::::
model

:::::::
residuals

::::
σ2
r ,

::::
used

:::::::::
commonly

::
in

::::::
GLUE:

2σ2 = κσ2
r

::::::::
(4)300

:::
The

:::::::
variance

:::
of
::::::

model
::::::::
residuals

::
σ2
r::

is
:::::::::
calculated

::::
using

:::
the

::::::
Monte

:::::
Carlo

::::::
sample

::::::::::::::::::::::::::
Romanowicz and Beven (2006)

:
:

σ2
r = var

(
1

m

m∑
i=1

∣∣∣Hi− Ĥi

∣∣∣)
::::::::::::::::::::::::

(5)
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:::
The

:::::::
purpose

::
of

::::::::
Equation

:
4
::
is
::
to

:::::::
provide

::
an

:::::
initial

:::::
guess

:::
on

:::
σ2.

:::
The

:
κ (Equation 3) was

:::::
scaling

::::::
factor

:
is
:
computed on the basis

of minimization task:

κ= argmin
κ

(
εκ+

∣∣∣∣∣p− 1

n

1

m
::

∑
i=1

nm
:
J
(
Ĥi

)∣∣∣∣∣
)

(6)305

J
(
Ĥi

)
=

 0 if Ĥi ∈ [HqL
i ,Hqu

i ]

1 else
(7)

where HqL
i , HqU

i denote lower and upper quantile (qL, qU ) of the calculated water levels from the a posteriori distribution

(Equation 1), obtained with the likelihood function (Equation 3); p stands for confidence interval, defined as: p= qU − qL. In

the present study 95% confidence intervals (p= 0.95) were used, with qL = 0.025 and qU = 0.975. ε is a small number as a

penalty for too wide confidence intervals of water levels H . The minimum of the function
::::
given

::::
with

::::::::
Equation

:
6 should be the310

smallest value of κ for which the last term in Eq.
:::::::
Equation 6 equals zero:

p− 1

n

1

m
::

∑
i=1

nm
:
J
(
Ĥi

)
≤ 0 (8)

This is true when exactly n
::::
p ·m observations fall within the confidence intervals. For p= 0.95 and relatively small observation

sets of n∼ 10
::::::
m∼ 10

:
in the present study, minimum is found when all observations are enclosed by intervals. In such a case,

the sum term
::
in

:::::::
Equation

::
8 is equal to 1 and the difference becomes negative.

:::
The

::::::::
procedure

:::::
given

::::
with

:::::::::
Equations

:::
6-8

::::::
allows315

::
for

::::::::::
determining

:::
the

:::::::
minimal

:::::
value

::
of

:::
σ2

:::::::::
(Equations

:
2
:::
and

::
3)

::::::::
sufficient

::
to

::::::
explain

::::::
model

:::::::::
uncertainty

::
in

::::::
respect

::
of

:::::::::::
observations.

:
It

should be noted, that for a poor model and/or inappropriate variability ranges of its parameters
:
a
:::::
priori

::::::::
parameter

::::::::::
distributions,

such a solution might not exist. Therefore it was necessary to control the solution of the minimization in respect of Equation

8 . If the constraint was not fulfilled, it was necessary to revise assumptions on the a priori parameter distribution P (θ). For a

poor model, a solution fulfilling the constraints of Eq.
:::
The

::::
term

:::::
given

::::
with

::::::::
Equation

:
8
::::
was

::::::::
therefore

:
a
:::::::
criterion

:::
for

:::
the

::::::
model320

:::::::::::
identifiability.

::::
The

::::::
model

:::
was

::::::::::
considered

::::::::::
identifiable,

::
if

:::
the

:::::::
Equation

:
8 might not exist within parameter ranges that can be

interpreted in terms of their physical characteristics. In such case, the model was considered as unidentifiable, i. e. , inadequate

for a given data set.
:::
was

::::::::
fulfilled.

:::
The

::::::::::
assumption

::
of

:
a
:::::
priori

::::::::
parameter

:::::::::::
distributions

:::::
P (θ)

::::
have

:
a
:::::::::
significant

::::
effect

:::
on

:::
the

:
a
::::::::
posteriori

::::::
solution

::::::::::::::::::::::::::::::::::::
(Freni and Mannina, 2010; Tang et al., 2016)

:
.
::
In

:::
the

::::::
present

:::::
study

::
to

::::::
obtain

:::::::
objective

::::::::::
uncertainty

::::::::
estimates

:::
for

:
a
::::::::
different

:::::::
methods

:::
and

::::::::::
parameters

:
it
::::
was

:::::::
decided

::
to

:::::
apply325

:::::::::::
uninformative

::::
and

::::::::
relatively

::::
wide

::
a
::::
prior

:::::::::::
distributions,

::::::::
assuming

::
no

::::::::::
knowledge

::
on

:::::::
channel

:::::::::
vegetation,

::::::::::
maintaining

::::::::
however

::::::::
physically

:::::::::::
interpretable

::::::
ranges

::::::
(Table

::
1).

::::
The

:::::::::
parameter

::::::
ranges

::
of

:::::::
uniform

::::::::::
distribution

::::
were

:::::::
chosen

::
to

::::::
ensure

:::
that

::::
the

::::
high

:::::::::
probability

:::::
region

::
is
::::::::
enclosed

::
by

:::
the

::::::
Monte

:::::
Carlo

:::::::
sample.

::::
The

::::
span

::
of

:::
this

::::::
region

::::
links

:::::
with

:::::::::
confidence

:::::::
intervals

::::::::::
comprising

::::
95%

::
of

:::
the

:
a
:::::::::
posteriori

::::::::::
distribution,

::
so

::
it

:::
was

::::::::
assumed

:::
that

:::
the

::::::
sample

::::::
should

:::
be

:::::::::
noticeably

:::::
larger.

::
It

:::
was

::::::::
obtained

::
by

:::::::
testing,

:
if
::
it

::
is

:::::::
possible

::
to

:::::
make

:::::::::
confidence

:::::::
intervals

:::::
wider

:::
by

::::::::
increasing

:::
the

::
κ

:::::::::
coefficient

:::::::::
determined

:::::
using

:::::::::
Equations

:::
6-8.

::::
This

::::
way

::
it330

:::
was

:::::::
possible

::
to

::::::
check,

:
if
:::::::::
confidence

::::::::
intervals

:::
are

:::
not

::::::
directly

:::::::
affected

::
by

:::
the

::::
span

::
of

:::
the

::::::
Monte

:::::
Carlo

::::::
sample.

::::::
When

:::::::::
confidence

:::::::
intervals

::::
were

:::::::::
insensitive

::
to

:::::::::
increasing

::::
value

::
of
::
κ
::
it

:::
was

::::::::
necessary

::
to

::::::
extend

::::::
ranges

::
of

:
a
:::::
priori

::::::::
parameter

:::::::::::
distributions.

::
It

::::::
should

::
be

:::::
noted,

::::
that

::
it

::::
was

::::::::
necessary

::::
only

::
in

:::
the

:::::
case

::
of

:::::::::
unsuitable

:::::::
models,

:::::
where

::::::::
condition

:::::
given

:::
by

::::::::
Equation

:
8
::::

was
:::::::
usually

:::
not

:::::::
fulfilled.
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It is acknowledged that the parameter identification and associated uncertainty depend on the size of the observation data set.335

To address this issue, the parameter identification (Eq.
:::::
model

:::::::::::
identification

:::::::::
(Equation 1) was performed for a varying number

::
m of observation pointsn= 1, . . . , N , where N stands for the total size of a data set:

::::::::::
Ĥ1, . . . , Ĥm::::

and
::::::::::::
corresponding

:::
flow

:::::
rates

:::::::::
Q1, . . . ,Qm:::

as
:::
the

:::::
input.

:::
The

:::
m

:::::::
included

::::::
values

::::
form

::
1

::
to

:::
the

::::
total

:::::::
number

::
of

:::::::
available

:::::::::::
observations

:::
M :

:::::::::::::
m= 1, . . . , M . The

calculations include
:::::::
included

:
all possible combinations of observations with the given n

:
m

:
i.e. N !

n! (N−n)! . The total
:::::::::

M !
m! (M−m)! .

:::
The

:
number of all combinations is then 2N − 1

::::::
2M − 1, excluding the empty set

::::::
(m= 0). Such an approach allows eliminating340

the effect of non-representative observation samples. The method was discussed previously by Kiczko et al. (2017).

Identification is considered as successful, if all n points used in the model identification are enclosed by confidence intervals.

Remaining observation points N −n
::::::::::
Observation

:::::
points

:::
not

:::::
used

:::
for

:::::::::::
identification

:::::::
M −m act as a verification set. In this

analysis, both the proportion of verification points that falls within estimated confidence intervals and the width of confidence

intervals are used as measures of model performance. The more narrow the confidence bands and the less observation points345

falling outside them, the better a model is. On the opposite, a less adequate model requires larger spread of the solution, to

enclose observations, as it wrongly explains their variability. Because the different combinations of n
::
m

:
points resulted in

multiple uncertainty estimates, the results were presented in terms of statistical moments, as a function of n
::
m. For a detailed

description of results box-plots were used, where the median is given as a horizontal line within a box, that spans over 25%

and 75% quantile, whiskers indicate the result extent, excluding extreme values given with cross marks.350

::
As

::
it

:::
was

:::::::::
mentioned

::::::
before,

::
it

:::::
should

:::
be

::::
noted

::::
that

::
by

::::::::
applying

::
the

::::::::
Bayesian

:::::::
concept,

:::
the

::::::::
objective

::
is

::
the

::::::
model

:::::::::::
identification

:::::::::::::::::::::::::::::::::::::
(see comment of Mantovan and Todini, 2006).

:::::::::
Parameter

:::::::::
variability

::
is

::::
used

::
to

::::::::
describe

:::
the

::::::::::
uncertainty,

:::::::::
specifically

:::::
with

:::
the

:::::::
Equation

::
2

::
the

:::::
error

:
ζ
:
.
::::
This

::::::
comes

::::
from

:::
the

::::
form

::
of

:::
the

::::::
inverse

::::::::
problem,

:::::
where

::::::::
likelihood

::::::::
measures

:::::::
depends

::::
only

:::
on

::::::::
measured

:::::
model

:::::::
outputs,

::::
here

:::::
water

::::::
depths

:::
and

::
it

:
is
:::::::
possible

::::
that

:::::::::
parameters

::::
that

:::
are

:::::::
different

::::
from

::::
real

:::::
ones,

:::
but

::::::
provide

::
a
::::
good

::::::
model

::
fit,

:::
are

::::::::::
considered

::
as

:::::
likely

:::::::::::::::::::::::::::::::::::::::::::::::::::
(Werner et al., 2005; Kiczko et al., 2017; Berends et al., 2019).

:::
To

::::::::::
demonstrate

::::
this

:::::
effect

::::
and

::
to355

:::::
discus

:::::::
possible

:::::::::::
implications

:::
the

::::::::
obtained

::::::::
marginal

::
a

::::::::
posteriori

::::::::::
distributions

:::
of

:::::::::
parameters

::::::::
P (θ/H)

:::::
were

::::::::
compared

:::::
with

:::::
values

::::::::
obtained

::
by

:::::
direct

::::::::::::
measurements

:::
in

:::::::
analyzed

::::
case

:::::::
studies.

::
A

::::::
special

:::::
focus

::::
was

:::::
given

:::
on

:::::::::::
extrapolation

:::::::::
capabilities

:::
of

::::::::
vegetation

:::::::
models

::::
with

::::::::::
parameters

:::::::::
determined

:::
on

:::
the

:::::
basis

::
of

::::
the

::::::
inverse

::::::::
problem,

::::::::
assuming

::
a
::::
lack

::
of

::::
the

:::::::::
knowledge

:::
on

::::::
channel

:::::::::
vegetation

:::::::::
properties.

:::
The

:::::
Latin

:::::::::
Hypercube

:::::::::
Sampling

::::::::::::::
(Budiman, 2017)

:::
was

:::::::
applied

::
to

:::::::
improve

:::::::::::
performance

::
of

:::
the

::::::
Monte

:::::
Carlo

:::::::::
technique.

::::
The360

:::
size

::
of

:::
the

::::::
Monte

:::::
Carlo

::::::
sample

::::::
(mmc,:::::

Table
::
1)
::::

was
::::::::::
determined

::
in

::::
each

::::
case

:::
by

::::
trial

:::
and

:::::
error,

::
to

::::::
satisfy

:::
the

::::::::::
convergence

:::
of

::
the

::::::::
solution.

:::
As

:::
the

:::::::
criterion

:::
for

:::
the

:::::::::::
convergence

:::
the

:::::::::
difference

::
of

::::::::
estimated

:::::::
average

:::::
water

:::::
depth

::::
was

:::::
used.

::::
The

::::::
number

:::
of

::::::::
simulation

::::
was

:::::::::
considered

::
as

:::::::::
sufficient,

:::::
when

::::::::
difference

::
in

::::::::::
subsequent

::::::::
ensembles

:::::::::
stabilized

:::::
bellow

:::::
10−5

:
-
:::::
10−4 m

:
.

2.2 Discharge capacity formulas

2.2.1 Divided Channel Method365

In the DCM approach (Posey, 1967), the channel cross section is divided in flow zones of similar hydraulic conditions, typically

the main channel and floodplain. The interactions between the zones of significantly different mean velocities are reproduced
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with a rough imaginary wall, applied to the zone with the higher velocity, i.e. the main channel. In the present study, the rough-

ness of the interface was assumed to equal the roughness of the channel banks next to the interface. Parameters of the method

are the roughness coefficients for each flow zone. In the present study, DCM was based on the Manning formula, with the370

common approach of having separate Manning coefficients for the main channel (nc), and left (nL) and right floodplain (nR).

:::
The

:::::::::
parameter

:::::
bands

::::
with

::::
mmc::::::

Monte
:::::
Carlo

::::::
sample

:::::
sizes

:::
are

:::::::
provided

::
in
:::::
Table

::
1
:::::::::
separately

::
for

:::::
flume

::::
and

::::
field

:::::::::::
experiments.

:::
For

:::::
flume

::::
data

:::
sets

::::::::::
calculations

:::::
were

:::::::::
performed

::
for

::
a
:::::::::
symmetric

:::::::
channel,

:::::
which

:::::::
allowed

::
to

::::::
reduce

:::
the

:::::::
number

::
of

::::::::::
parameters,

::
as

:::
the

::::
same

::::::
values

::::
were

::::
used

:::
for

:::
the

:::
left

::::
and

::::
right

:::::::::
floodplain.

:

2.2.2 Pasche and Mertens methods375

A brief concept of the Pasche method is provided by Pasche and Rouvé (1985)
:::::::::::::::::::::::::::::::::
Pasche (1984); Pasche and Rouvé (1985) and a

detailed description of the algorithm used herein is provided in Kozioł et al. (2004). The model describes the discharge capacity

of the compound cross section with rigid vegetation, derived for steady flow conditions. Similarly to DCM, the model divides

the compound cross-section into regions of the main channel and floodplains, dominated by bottom and vegetation roughness,

respectively. It accounts additionally for the transition region between these two main zones. As in the DCM, the interactions380

between the main channel and floodplains are modeled using an imaginary rough wall. For the resistance
::
of

:::
the

:::::::::
imaginary

::::
wall,

:::
bed

::::
and

:::
also

:::::::::
vegetation

:::::
stems

:
the Darcy-Weisbach formula is used.

The Darcy-Weisbach friction coefficients are determined using a set of semi-empirical equations for each zone and the

imaginary wall, including transitional regions. The method explains the extent of the transition region within the vegetated

region, affected by the higher flow velocity of the unvegetated main channel. The flow in the main channel depends on the385

apparent resistance of the imaginary wall. There is no general expression for the span of the transition region in the main

channel, and it has to be established for each case.

Velocities in the flow zones and transitional regions are interrelated by the apparent resistance. Equations describing these

dependencies have an implicit form that requires iterative methods for solving, so that the Pasche method has a very complex

numerical solution. Mertens (1989) attempted to improve the numerical efficiency of the Pasche concept by simplifying most of390

the demanding implicit formulas to less accurate but explicit ones, reducing the number of terms requiring iterative numerical

solving.

In the Pasche and Mertens methods, a detailed parametrization of the channel, including plant properties, surface roughness

and the extent of the interaction zone in the main channel, is used. Assuming that the modeler has only knowledge on the

geometry of the cross-section, the following parameters have to be identified: ax, ay , longitudinal and horizontal spacing of395

plant stems; dp average diameter of the stems; kf , kc roughness height of the floodplain and the main channel bed; bIII/Bc

ratio of the interaction region width in the main channel (bIII ) to the main channel width (Bc). Assuming that the channel is

symmetric, the total number of parameters is six. Modeling different properties of vegetation on left (subscript L) and right

(subscript R) floodplains (ax,L:ax,R, az,L:az,R, dp,L:dP,R, kf,L:kf,R) increases the number of parameters up to ten.
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2.2.3 Generalized and Simplified Two-Layer Model400

In the present study, the two layer model of Luhar and Nepf (2013), generalized by Västilä and Järvelä (2018)
::
for

:::::
more

:::::::
complex

:::::::::::
cross-sections

:
is considered as the state-of-art approach for submerged vegetation. This Generalized Two-Layer Model

(GTLM) is based on the momentum balance with drag coefficients at the interfaces between vegetated and unvegetated areas of

the channel cross section. Generalization proposed to the original model (Luhar and Nepf, 2013) by Västilä and Järvelä (2018)

consists in replacing
::::::::
assuming

:
a
:::::::::::::
non-rectangular

::::::::::::
cross-section,

::
so

::::
that the channel width

::
is

:::::::
replaced

:
by the wetted perimeter405

(P ) and water depth by the hydraulic radius (R).

The channel discharge capacity is computed on the basis of equations for mean velocities in the unvegetated (u0) and

vegetated (uv) parts of the cross section (Västilä and Järvelä, 2018):

u0
(gSR)1/2

=

[
2P (1−BX)

C∗ (Lb+Lv)

]1/2
(9)

uv
(gSR)1/2

=

[
2PBX +C∗Lv (u

∗
0)

2

CDaPRBX

]1/2
(10)410

where g is the gravitational constant, S energy slope, u∗0 =
u0

(gSR)1/2
dimensionless velocity in unvegetated zone, C∗ the drag

coefficient for shear stresses at the channel bed and at the interface between vegetated and unvegetated zones, Lb and Lv

wetted lengths of the unvegetated channel margin and of the interface between vegetated and vegetated zones, respectively.

BX denotes the vegetative blockage factor in the cross section, defined as the vegetated flow area divided by a total flow area.

Physically, the drag coefficients for bed and the vegetation zone interface may take separate values. Following Luhar and Nepf415

(2013); Västilä and Järvelä (2018), it was herein assumed that the same value of C∗ can be used for both regions.

Cda is the vegetative drag per unit water volume, expressed conventionally as the product of a drag coefficient Cd and

the frontal projected plant area per unit water volume a, assuming that plants are rigid simple-shaped objects. To account for

the presence of foliage and the flexibility of the plants inducing bending and streamlining, the vegetative drag per unit water

volume can be parameterized as (Västilä and Järvelä, 2018)420

CDa= CDX ,F

(
uC
uX,F

)χF AL
ABh

+CDχS

(
uC
uXS

)χS AS
ABh

(11)

where uC is a characteristic approach velocity, taken here as equal to the velocity in a vegetation layer: uC ≈ uv . AS denotes

total frontal projected areas of the plant stems andAL the total one sided leaf area per unit ground areaAB . CDX ,S and CDX ,F

represent constant coefficients for the drag of stems and foliage, respectively. The effect of streamlining and reconfiguration on

the drag is described using exponents χS and χF , for stems and foliage, respectively. uX,F and uX,S are reference velocities425

needed for determining the drag and reconfiguration coefficients.

Equations 9 and 11 implicitly depend on each other and require numerical solving. In the conservative approach vegetation

parameters have to be known (Figure 1 a). The blockage factor BX requires knowledge on the vegetation distribution and/or

height in the cross section. AS

AB
and AL

AB
ratios characterizing the plant structure can be measured or typical values for a certain
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plant communities can be adopted. Drag coefficients CDX ,S , CDX ,F and reconfiguration exponents χS and χF , along with430

their reference velocities (uX,F and uX,S), are
::::::
factors

::::::
specific

:::
for

:
plant species or plant type-specific factors

::::
type and can be

determined on the basis of laboratory measurements. Their values have been published for common plant species (Västilä and

Järvelä, 2014; Jalonen and Järvelä, 2015; Västilä and Järvelä, 2018).
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Figure 2.
::::::::::::
Parametrization

::
of

::
the

:::::::
blockage

:::::
factor

::::
BX ,

::
the

::::
cross

::::::
section

::
for

:::::::::
Ritobacken

:::::
Brook

::::::::::::::::::::
(Västilä and Järvelä, 2014)

For channel flows with dense vegetation for which over 80 percent of the discharge is conveyed in the unvegetated regions,

the GTLM approach can be simplified by assuming that discharge in the vegetation layer is negligible with respect to the total435

discharge: uv ≈ 0 m/s (Luhar and Nepf, 2013; Västilä et al., 2016). The remaining Equation 9 does not require numerical

solving. In the present study the above approach is referred as Simplified Two-Layer Model (STLM).
::
It

:::
has

::
to
:::

be
::::::
noted,

:::
that

::::
with

::::
this

::::::::
approach,

:::
up

::
to

:::::
20%

::
of

:::
the

::::::::
discharge

::
is
:::::::::
neglected,

:::::::::
depending

:::
on

:::
the

::::::
density

::::
and

::::::::::::
cross-sectional

::::::::
blockage

:::
of

:::::::::
vegetation. By neglecting the Equation 10, the STLM requires five and GTLM nine parameters.

Parameters of GTLM and STLM, resulting from Equation 9 are the drag coefficient for shear stresses C∗ and Blockage440

FactorBX .BX depends on the area occupied by the vegetation in the cross section. It changes with the water level and therefore

should not be represented as a constant value but rather derived on the basis of
:
as

:::
the

:::::::::
vegetaion

::::
share

::
in
:

the cross section and

vegetation geometric properties
::::
area

::
in

:::
the

:::::::
function

::
of

:::
the

:::::
depth. In the present study,

::
to

::::::
obtain

:
a
:::::::
general

:::::::::::::
parametrization,

:
BX

was described in terms of left-right extents lL/LL, lR/LR and the height hL,hR of vegetation. LL, LR stand for the cross

section width on
::::
from the left and right side, respectively

:::::
bank,

::::::::::
respectively,

::
to

:::
the

::::::
lowest

::::::::
elevation

::
in

::
the

:::::
main

:::::::
channel.

::
lL::::

and445

::
lR::::::

denote
::::::::
vegetation

:::::::
extents,

::::
from

:::::
banks

:::::::
towards

:::
the

:::::
main

::::::
channel

:::::::
(Figure

::
2). lL/LL provides information of

:
is

:
the vegetation

extent on the left side, starting form the top of the left bank towards the channel middle point: 0 stands for clean bank, while

1 means that the vegetation cover extends over entire left side. Same
:::
The

::::
same

:
applies for lR/LR, where it is assumed that

vegetation zones starts from the top of the right bank. The vertical range of the vegetation in the cross section is obtained by
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adding hL or hR to the value of the ground elevation.
:::
The

:::::::
adopted

:::::::::::::
parametrization

:::
for

::::
BX::::

was
::::::
verified

:::::
with

::::
field

::::::::
estimates450

::
for

::::::::::
Ritobacken

:::::
Brook

:::::::::::::::::::::::
(Västilä and Järvelä, 2018)

:::
and

:::::::
allowed

::
to

:::::
obtain

::
a

::
fit

::::
with

:::
the

:::::
linear

:::::::::
correlation

:::::::::
coefficient

::
of

::::
0.88.

:

It should be noted, that by parameterizing the Blockage Factor, the parameter identification task is much more complicated

than in the conventional approaches. In the DCM the vegetation extent is equivalent to the division into main channel and

floodplains, which is known on the basis of the cross sectional geometry. Here, for GTLM and STLM it was considered as a

part of the parameter identification problem.455

2.2.4 Practical Two-Layer Model

Luhar and Nepf (2013) proposed
:::::::::::::::::::
Luhar and Nepf (2013)

::::::
derived a formula for the Manning coefficient n :

::
for

:::::::
shallow

:::::::
channels

::::
lined

:::::
with

:::::::::
vegetation,

::::::
where

:::
the

:::::::
blockage

::::::
factor

:::
can

::
be

::::::::::::
approximated

::
as

::::::::
BX ≈ h

H :
:

n

(
g1/2

KR1/6

)
=

(gSR)
1
2

U
=

( 2

C∗

) 1
2
(
1− h

R

) 3
2

+

 2

cDah

2

CDah
:::::

 1
2 (

h

R

)
−1

(12)

where h stands for the vegetation height and K = 1 m1/3s−1 to ensure correct dimensions of the equation. The formula is460

derived for shallow channels, lined with vegetation, where the blockage factor was approximated as BX ≈ h
H . In the presented

form of the equation
:::::::
Equation

:
(12), following Västilä and Järvelä (2014)

:::::::::::::::::::::
Västilä and Järvelä (2018), the water depth H was

replaced with the hydraulic radius R.

The Luhar and Nepf (2013) formula 12
:::::::
Equation

::::
(12)

:
has a convenient form to be easily applied in practical cases, where

usually the Manning equation is used. In the present study,
::::
this

::::::::
approach

:
is
::::::
called

:::
the

:::::::
Practical

::::::::::
Two-Layer

:::::
Model

::::::::
(PTLM)

::
as465

:
it
:::::::
requires

::::
less

:::::::::
parameters

:::::::::
influenced

:::
by

:::::::::
vegetation.

::
In

:::
the

:::::::
present

:::::
study this approach is named Practical Two-Layer Model

(PTLM) and applied as a three parameter one
:::::::::::::
three-parameter

:::::
model, with the drag coefficient C∗, average vegetation height h

in the cross section and CDa.

2.3 Case studies

The analyses were conducted for a flume data set (Koziol, 2010) and a field data set (Västilä et al., 2016) collected from470

vegetated compound channels, interpreted herein as 5 distinct case studies, as detailed below. To our knowledge, the field

cases are one of the most thorough characterizations on the dependency between vegetation properties and discharge capacity

in natural compound channels, including spatially-averaged values for vegetation height, blockage factor, and frontal area

density in different seasons and flow conditions. The flume cases are representative of typical experimental arrangements

where vegetation is simulated by rigid cylindrical elements at a uniform spacing.475
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2.3.1 Flume experiments.

The experiments were conducted at the Warsaw University of Life Sciences (WULS-SGGW) using a physical model of

a compound channel with rigid cylinders simulating vegetation. A detailed description of the dataset can be i.e. found in

Koziol (2010)
::::::::::::::::::::::::::::::::::::::::::::::::::::::
Kozioł and Kubrak (2015); Kozioł (2013); Kubrak et al. (2019a, b).

The modeled channel was straight, 16 m m long with the compound trapezoidal cross section , 2.10m wide
::::
slope

:::
of480

::::::::::
s= 5 · 10−4.

::::
The

::::
cross

:::::::
section

:::
was

:::::::::
trapezoidal

::::
and

::::
wide

:::
for

::::::
2.10 m

:
(Figure 3). The main channel bottom was made of smooth

concrete with the estimated roughness height ks = 5 · 10−5 m
:::::::::::::
ks = 5 · 10−5 m. Floodplain vegetation was simulated with rigid

cylinders of a diameter dp = 0.008m and spacing ax = ay = 0.1m
:::::::::::
dp = 0.008 m

::::
and

::::::
spacing

::::::::::::::
ax = ay = 0.1m. There were

two experimental variants of vegetation layout and floodplain roughness. In the first one (1) the floodplain bottom was made of

the same smooth concrete as the main channel, with a single row of vegetation present also on channel bank (Figure 3a). In the485

second one (2), vegetation was constrained on the floodplain by removing the channel bank stems while floodplain surfaces

were made rougher using a layer of terrazzo concrete of the grain size of 0.5 to 1 cm
::::
1 cm

:
(Figure 3b).

Experiments were performed for steady and uniform flow conditions
:::::::::::
quasi-uniform

::::
flow

:::::::::
conditions

::::::::::::::::::::
(Kubrak et al., 2019a, b)

. The water surface was kept parallel to the bed using a
::::
using

:
a
::::::::

pressure
::::::
gauge,

:::::::::
measuring

:::
the

:::::::::
differences

::
in

::::::
depths

::
at

:::::
cross

::::::
sections

:::::::
located

:::
4.8

:::
and

:::
12 m

::::
from

:::
the

:::::
flume

::::::
inflow

:::
and

::
a weir localized at the flume outflow. Water discharge was measured490

using a circular weir and water levels were recorded in the middle of the channel.

The data set, used in the present study, consisted of discharge and water level observations
:::::::::
(Appendix

:::
A1)

:
within the range

of: 0.037-0.060 m3/s
::::::::::
0.060 m3/s (mean velocities: 0.2-0.4 m/sm/s) and 0.2 - 0.3m, respectively

:::::
0.3 m,

::::::::::
respectively

:::::
what

:::::::
includes

::::
only

::::::::
overbank

:::::
flows. The number of observation point in the first variant was nine (N = 9

:::::
M = 9) and in the second

one ten (N = 10).
::::::::
M = 10).

::::
The

:::::::::
uncertainty

::::::::::
calculations

:::::
were

:::::::::
performed

:::
for

:
a
:::::::::
symmetric

:::::::
channel,

::::::
which

:::::::
allowed

::
to

::::::
reduce495

::
the

:::::::
number

::
of

::::::::::
parameters,

::
as

:::
the

:::::
same

:::::
values

:::::
were

::::
used

:::
for

:::
the

:::
left

:::
and

::::
right

::::::::::
floodplain.

2.3.2 Ritobacken field experiment

The field data
::::
with

:::::::::
seasonally

::::
and

::::::::
annually

::::::
varying

::::::::::
vegetation was obtained from an 11 m m wide compound channel,

Ritobacken Brook (Finland, Figure 4), with seasonally and annually varying vegetation properties. The site and data are

described by Västilä et al. (2016)
:::::
where

:::
the

:::::::::
floodplain

::::
was

::::::::
excavated

:::
on

:::
one

::::
side

:::
of

:::
the

:::::::
existing

:::::::
channel

::
in

::::::::
February

:::::
2010500

:::::::::::::::::
(Västilä et al. (2016)). Measurement series with vegetated floodplain flows

:::::::::
(Appendix

::::
A2), were available for three seasons,

with the number of observations given in brackets: Spring 2011 (N = 6
::::::
M = 6), Autumn 2011 (N = 12

:::::::
M = 12) and Spring

2012 (N = 11).
::::::::
M = 11).

:::::::::
Vegetation

::::::::
consisted

::::::
mainly

:::
of

:::::::
different

::::::
grassy

:::::::
species,

::::
with

::::
both

:::::
stems

:::
and

:::::::
foliage,

:::::
while

::::::
sparse

:::::
woody

:::::::::
vegetation

:::::::
covered

:::::
10%

::
of

:::
the

::::
total

::::::
wetted

::::::
ground

::::
area.

:

The respective mean floodplain vegetation heights were h= 9 cm, 47 cm and 24 cm
:::::::::
h= 9 cm,

::::::
47 cm

:::
and

::::::
24 cm while505

the vegetative blockage factor ranged at BX = 0.13− 0.53. The taller vegetation in Spring 2012 compared to Spring 2011

was explained by the fact that the floodplain was excavated in February 2010 and thus vegetation was under succession phase
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Figure 3. Laboratory channel cross section (dimensions in cm); 1 - rigid cylinders simulating vegetation; 2 - wooden strips supporting

vegetation (Koziol, 2010); a) case 1; b) case 2.

:::::::
ongoing

:::::::::
succession

:::::
phase

::::
after

:::
the

::::::::
floodplain

:::::::::
excavation. Vegetation was submerged under all examined flows in Spring 2011

and under 42% and 64% of the flows in Autumn 2011 and Spring 2012, respectively.

The Manning coefficient of the narrow main channel as obtained from highest flows not inundating the floodplain was510

n= 0.08− 0.12m−1/3s due to irregular main channel geometry, woody debris and some aquatic vegetation. For Autumn

2011 Västilä and Järvelä (2014) estimated values of plant drag coefficients and reconfiguration exponents: Cdx,F = 0.14,

Cdx,S = 0.93, χF = −1.11, χS =−0.26.

The discharge capacity at different flow conditions was obtained from water level data recorded at 5-15 min min intervals

with pressure transducers at the upstream and downstream ends of a 190m
:
m long test reach. The discharge was obtained515

from a rating curve determined for a culvert at the downstream end of the test reach.
:::
The

::::::
stream

:
is
::::

free
:::::::
flowing

:::
and

:::::
there

:::
are

::
no

::::::::
hydraulic

::::::::
structures

::::::::
affecting

:::
the

::::
flow

::
or

:::::
water

:::::
levels

::
at

:::
the

::::::::::
investigated

:::::::::
discharges.

:::::
Flow

::::::::
conditions

:::::
were

::::::::
gradually

::::::
varied,

:::
and

::::::::
therefore

:::
the

:::::
energy

:::::
slope

::
S

::::
was

::::
used

::::::
instead

::
of

:::
the

:::
bed

:::::
slope

::
in

::::::::::
determining

:::
the

::::
flow

:::::::::
resistance.

:

At floodplain flows, discharge and floodplain water depth ranged at 0.19 - 1.59 m3/s m3/s and 0.10 - 0.67m
::::
0.67

:
m,

respectively, with cross-sectional mean velocities of 0.11 - 0.30m/s. Flow conditions were non-uniform, and in computations520
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the measured energy grade slope was used. m/s
:
.
:::
The

::::::::
Manning

:::::::::
coefficient

::
of

:::
the

::::::
narrow

::::
main

:::::::
channel

::
as

:::::::
obtained

:::::
from

::::::
highest

::::
flows

:::
not

::::::::::
inundating

:::
the

::::::::
floodplain

::::
was

:::::::::::::
n= 0.08− 0.12

::
m−1/3s

:::
due

::
to
::::::::

irregular
::::
main

:::::::
channel

:::::::::
geometry,

::::::
woody

:::::
debris

::::
and

::::
some

::::::
aquatic

::::::::::
vegetation.

:::
The

::::::::::
calculations

::
in
:::

the
:::::::

present
:::::
study

::::
were

:::::::::
performed

:::
for

:::
the

:::::::
channel

::::::::
geometry

::::
and

:::::
water

::::::
depths,

::::::::
averaged

::::
over

:::
190

::
m
:::

of

::
the

::::::
stream

::::::
reach.525
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Figure 4. Ritobacken channel cross section (a) and a photography, Autumn 2011 (b)

3 Results

The size of the Monte Carlo sample (nmc) was determined in each case by trial and error, to satisfy the convergence of the

solution. In a similar way, the ranges of parameters for the a priori distributions P (θ) (Equation 1) were determined. It was

done in respect of the parameter physical variability, by ensuring that observations will be enclosed by confidence intervals

(Equation 8). Parameter bands with nmc Monte Carlo sample sizes are provided in Tables ?? and ??, separately for flume and530

Ritobacken field experiments. Parameter ranges were often defined outside bands expected in the nature, to allow fulfilling the
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constrain 8 by as many as possible models. For flume data sets calculations were performed for a symmetric channel , which

allowed to reduce the number of parameters, as the same values were used for the left and right floodplain.

2.0.1
:::::::
Analysis

::
of

::::
the

:::::::::
numerical

::::::
results

The numerical results were analyzed from three
::::
four perspectives: (1) identifiability of the model for the given vegetation535

conditions; (2) width of estimated confidence intervals as a function of the number of the observation points; (3)
::::::::::::
representation

::
of

::::
high

:::::
flows

::::
with

::::::
models

::::::::
identified

:::
for

:::
low

::::::::
overbank

:::::
flows;

:::
(4)

:
the physical interpretation of the obtained parameter values.

Parameter variability ranges (uniform P (θ) distribution) for flume experiments Model Parameter Min. Value Max. Value

n1 [m
−1/3s] 0.012 0.06 n2 [m−1/3s] 0.012 0.12 dp[m] 0.004 0.072 ax [m] 0.05 0.9 az [m] 0.05 0.9 kch [m] 2.5e-05 0.00045

kfp [m] 0.005 0.09 biii/Bfp [−] 0.333 1 Cdx,F 0.001 1.5 Cdx,S [−] 0.001 1.5 χF [−] -1.21 -0.97 χS [−] -0.32 -0.2 Al/Ab [−]540

0 3.2 As/Ab [−] 0 0.16 C∗ [−] 0.001 1.03 l/L [−] 0 1 hv [m] 0 0.3 C∗ 0.08 3.09 l/L [−]0 1 hv [m] 0 2.15 C∗ 0.001

1.5 CDa [−] 0.001 1.03 hv [m] 0 0.3
:::
The

::::::::
obtained

::::::::
parameter

:::::::::::
distributions

:::::
were

::::::::
compared

:::::
with

::::
real

::::::::
measured

::::::
values,

:::
as

::
in

:::::::::::::::::
Berends et al. (2019)

:
,
:::
but

:::::
using

::::::
several

:::::::::
vegetation

:::::::::
roughness

:::::::
models.

::::
This

:::::
way,

::
it

::::
was

:::::::
possible

::
to

:::::::
analyze

:::
the

::::::::
problem

::
of

::::::::
parameter

::::::::::::
identifiability.

:::
In

:::
the

::::::
second

:::::
step,

:::
the

:::::::::::
applicability

::
of

:::::::
models,

::::::
which

:::::::::
parameters

:::::
differ

:::::
from

::::
real

::::::
values,

::::
was

::::::::
discussed.

:
545

Parameter variability ranges (uniform P (θ) distribution) for Ritobacken experiments, numerals in parameter symbols are

used to distinguish properties on left (1) and right (1) channel side. Model Parameter Min. Value Max. Value n1 [m−1/3s]

0.012 0.15 n2 [m−1/3s] 0.012 0.15 n3 [m−1/3s] 0.012 0.15 dp[m] 0.004 0.072 ax1,ax2 [m] 0.05 0.9 az1,az2 [m] 0.05 0.9

kch[m] 2.5e-05 0.00045 kfp1,kfp2 [m] 0.005 0.09 biii/Bfp [−] 0.333 1 Cdx,F [−] 0.09 0.2 Cdx,S [−] 0.82 1.03 χF [−] -1.21

-0.97 χS [−] -0.32 -0.2 Al/Ab [−] 0 3.2 As/Ab [−] 0 0.16 C∗ [−] 0.08 1.03 lL/LL, lR/LR [−] 0 1 hv1,hv2 [m] 0 2.15 C∗550

0.08 3.09 lL/LL, lR/LR [−] 0 1 hv1,hv2 [m] 0 2.15 C∗ 0.01 0.4 CDa [−] 0.08 1.03 hv [m] 0 2.15
:::
The

:::::::
obtained

::::::::::
uncertainty

:::::::
estimates

:::
of

::::::::
computed

:::::
water

:::::
levels

:::::::
allowed

::
to

:::::::
compare

:::
the

:::::::::
efficiency

::
of

::::
each

::::::
model

::
in

:::::::::
explaining

:::
the

:::::
rating

:::::
curve.

::::
The

:::::
same

:::::
output

::::
was

::::
used

::
to

:::::::
measure

:::
the

::::::::
selectivity

:::
of

::::::
models,

:::::
when

::::::
applied

:::
for

:::::::::::
inappropriate

:::::
case,

:::::::::::
e.g.modeling

::
of

:::
the

::::
rigid

:::::::::
vegetation

::::
with

:::
the

:::::
model

:::
for

::::::
flexible

::::::::::
vegetation.

:
It
::::::
should

:::
be

::::::::
expected,

:::
that

:::
the

:::::::
solution

:::
for

:::
the

:::::
model

:::::
used

::
for

:::
the

::::::::::::
inappropriate

::::
type

::
of

::
the

::::::::::
vegetation,

::::::
should

::
be

:::::::::::
characterized

::::
with

:::
the

::::::::
relatively

::::
high

::::::::::
uncertainty.555

2.1 Computational output and general observations

:::
The

::::::::
obtained

:::::
results

:::::
were

:::
also

:::::::::
compared

::::
with

:::::
other

::::::
studies

::
on

:::
the

:::::::::
vegetation

:::::
model

:::::::::::
identification

::::
and

:::::::::
uncertainty

::::::::::
estimation,

:::
like

::::::
already

:::::::::
mentioned

::::::
studies

::
of

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
Werner et al. (2005); Dalledonne et al. (2019); Berends et al. (2019),

:::
but

::::
also

::::::::::::::::::
Warmink et al. (2013)

:
,
:::
who

::::::::
compare

:::
the

:::::::::
uncertainty

::
of

::
a
::::::::::::::
two-dimensional

:::::
model

:::
for

::::::
chosen

:::::::
methods

:::
of

:::
bed

:::
and

:::::::::
vegetation

:::::::::
resistance.

:
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Figure 5. Exemplary rating curves
::
for

::::::
m= 5, Ritobacken case study with n= 5

::::::
(Spring

::::
2012): (a) GTLM, (b) STLM, (c) PTLM; the flume

data set, case 2with n= 4: (d)
:

Pasche, (e) Mertens, (f) DCM. Confidence intervals and the median of the probabilistic solution are given

with dashed lines, red line denotes the best simulation in the Monte Carlo ensemble. Observation points used for parameter identification are

marked with squares (�), while verification data points are marked with circles (◦) .
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Figure 6. GTLM results for Ritobacken case study, Autumn 2011

:::::
Spring

::::
2012: (a) Averaged relative confidence widths W as a function of

observation set size n
:
m

:
used for model identification; (b) Ratio

::::::::
Percentage of verification points enclosed by the confidence intervals (1

::::
100%

:
denotes all points within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the

result extent, cross marks are for extreme values)

3
::::::
Results560

3.1
::::::::::::

Computational
:::::::
output

:::
and

:::::::
general

:::::::::::
observations

The basic output of the computations which included Monte Carlo simulations using channel discharge models and parameter

identification on the basis of Equations 1-7, were rating curves. They were derived with a different number of observation

points n
::
m for the parameter identification, for all possible combinations (see Section 2.1

::
2.1).

Exemplary curves are presented to highlight some general observations (Figure 5). We show chosen solutions for a given565

number
:::::
m= 5 of observation points used in the parameter identification, n= 5 for the two-layer approaches (GTLM, STLM,

PTLM in Figure5a-5c
:::

5a
:
-c) developed for dense, submerged vegetation corresponding to the Ritobacken case study and

n= 4 for the Pasche, Mertens and Manning based DCM models for rigid unsubmerged
:::::::
emergent

:
vegetation correspond-

ing to the flume conditions (Figure 5d-5f
:::
d-f). In this example,

::::::
chosen

::
to

:::::::
provide

:
a
::::::::::
background

:::
for

::
the

:::::::
analysis

:::
on

:::::::::::
extrapolation

:::::::::
capabilities

::
of

:::::::
models

:::::::
(Section

::::
3.3),

:
the parameters for discharge curves were identified at low

::::
lower

::::::::
overbank

:
flows, while570

the verification was conducted for high flows, which
:::::
highest

::::::
flows.

::::
This

:
represents the common practical way of using hy-

draulic models to assess flood hazard at flows higher than the ones the models were calibrated with. In terms of parameter
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Figure 7. Pasche results for the flume data set, case 2: (a) Averaged relative confidence widths W as a function of observation set size n

::
m

used for model identification; (b) Ratio
::::::::
Percentage of verification points enclosed by confidence intervals (1

:::::
100% denotes all points within

intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent, cross marks are for

extreme values)

identification results are considered as successful, as all n
::
m

:
observation points were enclosed by the confidence intervals.

Except STLM and DCM models, most of
::
the

:::::
DCM

::::::
model

::
in

:::
the

:::::
flume

::::
case

:::::
study

:::::::
(Figure

:::
5f),

:::
all the remaining points, i.e.

the verification set with N −n points,
::::::
M −m

::::::
points,

:::::
given

::
in

::::::
Figure

::
5

::
as

::::::
circles

:::
(◦),

:
are enclosed, indicating a good quality575

of the solutions. For the STLM and DCM (Figure 5b and 5f) the points used in the model identification are within confidence

intervals (the condition given by Equation 8), but the verification points are outside notwithstanding the much wider
::::::
despite

::
the

:::::
wide confidence intervals. In the case of DCM, the reason is ,

:::
The

::::::
reason

:
is
:
that for the flume data with rigid vegetation, the

Manning formula with constant values of roughness coefficients is unable to correctly reproduce the rating curve and fulfill the

constraint given by Formula
:::::::
Equation

:
8, which is only possible by extending the confidence intervals. The STLM has narrow580

confidence intervals in the low flow region (identification set), but obtained parameters incorrectly explains water levels at

higher flows.

Along with the probabilistic solution, Figure 5 presents a deterministic solution obtained as a computed rating curve with the

highest value of likelihood measure (Equation 3). The deterministic solution often deviates from the median of the probabilistic

one, as in the case of the Pasche model (5a
::::::
GTLM

:::
and

::::::
STLM

::::::
(Figure

:::::
5a-b).585
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Figure 8. Manning based DCM results for the flume data set, case 2: (a) Averaged relative confidence widths W as a function of observation

set size n
::
m used for model identification; (b) Ratio

::::::::
Percentage

:
of verification points enclosed by confidence intervals (1

::::
100%

:
denotes all

points within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent, cross

marks are for extreme values)

On the basis of the rating curves computed for each combination of n
::
m observation points, it is possible to analyze the

estimated average widths of confidence intervals as
:
in
:

a function of
::
m

:
observation points used in the identification. In the

present study, the
:::
The

::::::::
averaged

:
confidence widths were provided

:::
for

:
a
:::::

given
:::
m

:
in relative sizes as W , normalized by the

median of the probabilistic solutionHM and then averaged over computation points, corresponding to all n observation points:

:
:590

W =mean
m

[
1

m

m∑
i=1

HqL
i −H

qU
i

median(H)i

]
(13)

where HqL and HqU
::::::::::

m H
qL
i −HqU

i

median(H)i ::::
where

:::::
HqL
i :::

and
:::::
HqU
i stands for the estimates of lower and upper confidence intervals for

calculated water level,
::::::::::
normalized

:::
for

::::
each

:
i
:::::
point

::
of

:::
the

:::::
rating

:::::
curve

:::
by

:::
the

::::::
median

:::
of

:::
the

::::::::::
probabilistic

:::::::
solution

:::
for

:::
the

::::
i-th

:::::
point:

:::::::::::
median(H)i.:::::

From
:::
m

:::::
rating

:::::
curve

::::::
points

:
a
:::::
mean

:::::
value

::
is
:::::::::
computed

::::
with

:::
the

::::
term

:::::::::::::::

1
m

m∑
i=1

H
qL
i −HqU

i

median(H)i :::
for

:::
all

:::::::
possible

:::::::::::
combinations

::
of

::
m

:::::::::::
observations

::
in

:::
the

:::
full

:::
set

::
of

:::
the

::::
size

:::
M .

::
In

:::
the

:::
last

::::
step,

:::::
mean

::::::
values

::
of

:::::::::
confidence

:::::::
intervals

::::::
widths

:::::
were595

::::
again

::::::::
averaged

::::
over

:::
sets

::::::
where

:::::
model

::::
was

::::::::
identified

:::::
using

::
m

:::::::::::
observations.

Chosen results on the influence of the number of identification datapoints
::::::::::
observations

:::::
used

::
for

:::::::::::
identification

:
on the widths

of the confidence intervals and the ratio
:::::::::
percentage of verification points included within the intervals are provided in Figures
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Figure 9. Portion of observation points within 95% confidence intervals for Pasche method in function of observation points used in parameter

identification, presented in a form of box-plots; results for the unsuitable data set for the Pasche method of Ritobacken, Spring 2012.

6-8. In Figure 6 for GTLM applied for Ritobacken case study for Autumn 2011 and also
:::::
Spring

::::
2012

::::
and

::::
also

::
in

:::
the

::::::
Figure

:
9
::::
with

:
the Pasche model used for the flume data set in case 1 it can be noticed that: (1) the relative confidence interval widths600

(
::::::
Figures 6a, 7a) are high for a small n

::
m as a result of the parameter equifinality

:::::::
ill-posed

:::::::
inverse

:::::::
problem,

::::
i.e.,

:::
the

:::::::
number

::
of

::::::::::
observations

::
is
::::::::::
insufficient

:::
for

::
the

:::::::::::
unequivocal

:::::
model

:::::::::::
identification; (2) with additional data points, the solution converges

by reducing the span of intervals but also its variability due to different combination of observation points; (3) the width of

confidence intervals for the full data set n=N
::::::
m=M

:
in both cases is below 5%; (4) the confidence intervals estimated for

a low number of observations (n < 4
:::::
m< 4) have poor predictive performance, as most of the observations in the verification605

sets fall outside (Figure
::::::
Figures 6b, 7b); (5) in both cases for n > 4

:::::
m> 4

:
more than 50% of the verification set is enclosed

with the estimated confidence intervals. Figure 8 shows an example of a model with a poor performance, indicating the model’s

inadequacy to the given case. The confidence intervals are extending with n
::
m

:
(Figure 8a), which for n > 4 allows to enclose

:::::
m> 4

::::::
allows

::::::::
enclosing

:
most of the verification set (Figure 8b).

3.2 Model identifiability610

The model identifiability is understood here as the ability to determine the parameter a posteriori distribution that explains the

model uncertainty in relation to observations
::::
(see

::::::
Section

::::
2.1). This is satisfied by meeting the constraint given in Equation 8,

as for cases presented in Figure 5. The criterion of Eq.
:::::::
Equation

:
8 might be fulfilled even for a poor model by extending the
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parameter variability ranges (?? and ??
:::::
Table

:
1), specified with a priori distribution P (θ). The only limitation could be the

physical meaning of the parameters.615

Figure 9 shows exemplary results for a model that could not be identified for a given dataset. Values of J (Equation 7) were

computed for observation points used in the parameter identification and averaged in respect of the ensemble count n
::::
their

::::
count

:::
m. This model was unable to correctly reproduce the rating curve over the whole Monte Carlo ensemble of parameters.

The computed water levels did not follow the observed shape of the rating curve and as a result it was not possible to find such

a solution of Equation 1 where identification data points would be enclosed by the confidence intervals (Equation 8). Only620

for n= 1 it was possible to find such κ (Equation 3) where almost all single point observations were enclosed by confidence

intervals (Figure 9). For one extreme value, it was not possible to find a feasible solution at all . The reason is that
:::
The

:::::::::
constraint

::::
given

::::
with

::::::::
Equation

:
8
::::
was

:::::::
fulfilled

::::
only

::
for

::::::
m= 1

:
,
:::
but

:::
not

:::
for

::
all

::::::
points,

::
as

::::::::
indicated

::::
with

:::
the

:::::
single

:::
red

::::
cross

::
in

::::::
Figure

::
9.

::::
This

:::::::
indicates

::::
that

:::
not

::
all

::::::::
observed

::::
water

::::::
levels

::::
were

:::::::
covered

::
by the Monte Carlo sample of computed water levelsdid not cover that

point. With an increasing number of n
::
m, the number of observation points enclosed by the confidence intervals depends on625

the combination of observation points. Some beneficial effects allow to fulfill the constraint
::::
given

::::
with

::::::::
Equation 8, such as an

extreme value of 1 for n= 6
::::::
m= 6 whereas others enclose only a small share of observations. For n=N = 11

:::::::::::
m=M = 11,

there is a single solution, in which about 60% observations were enclosed by confidence intervals. For an identifiable model,

Figure 9 would consist of single horizontal lines between 0.95 and 1, indicating fulfillment of the constraint of Eq.
:::::::
Equation

:
8

for all simulations.630

The Pasche and Mertens models applied to the Ritobacken case study were not identifiable even with relatively large vari-

ability ranges of the parameters (Figure 9
:
). This is

::::
likely

:
explained by the fact that these methods were developed for rigid

unsubmerged
::::::::
emergent

:
vegetation whereas the Ritobacken had immerse

::::::
mostly

:::::
dense

::::::::::
submerged flexible vegetation. The

two-layer approaches appeared to be more flexible and thus more universal.
::::::
PTLM

:::::
could

::
be

:::::::::
identified

:::
for

:::
the

::::
field

:::
site

:::
in

:::::
Spring

:::::
2011

::::
and

::::::
Spring

:::::
2012

:::
but

:::
not

:::
in

:::::::
Autumn

:::::
2011.

:::::
This

:::::
result

::
is

:::::
likely

:::::::::
explained

::
by

::::
the

:::
fact

::::
that

:::
the

::::::::::
assumption

:::
of635

:::::::
BX ≈ h

R:::::::::
noticeably

::::::::::::
overestimates

:::
BX::

in
:::::::::
compound

::::::::
channels

::::
with

::::::::::
unvegetated

::::
main

:::::::
channel

::::
and

::::
high

::::::::
floodplain

::::::::::
vegetation,

::
as

::
in

:::::::
Autumn

::::
2011

::::::::::
conditions.

By applying large parameters variability for the GTLM and PTLM models, it was possible to meet Equation 8 for the flume

case study although these methods were not originally designed for such unsubmerged and rigid
:::::::
emergent

:
vegetation. The

STLM model failed for the Ritobacken Spring 2011 case with sparse, low vegetation with h=9 cm, and for both flume cases.640

For flume experiments, the STLM likely did not work
::::
likely

:
because the assumption that >80% of flow should be conveyed in

the non-vegetated zones was not fulfill
::::::
fulfilled. The rest of the models, including DCM for all cases, were identifiable.

3.3 Widths of confidence intervals and quality of uncertainty estimation

To compare the performance of the applied identifiable discharge prediction methods, we show bar plots of average values

for the ratio
:::::::::
percentage

:
of verification set points enclosed by confidence intervals and their relative widths as a function of645

observation points used in the model identification n
::
m (Figures 10-14). The averaged values correspond to the mean values of

the box-plots in Figures 6-8. Separate bar plots were prepared for the different case studies: Figure 10 – Flume case 1; Figure
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Figure 10. Ratio
::::::::
Percentage of verification set (N −n

:::::
M −m) enclosed by confidence intervals and average width of confidence intervals

for different number of data points for model identification (n
:
m); flume data set, case 1.
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Averaged confidence widths WVerification [%]
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Figure 11. Ratio
::::::::
Percentage of verification set (N −n

:::::
M −m) enclosed by confidence intervals and average width of confidence intervals

for different number of data points for model identification (n
:
m); flume data set, case 2.
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Averaged confidence widths WVerification [%]

100.0 66.7 33.3 0 0.1 0.2
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Figure 12. Ratio
::::::::
Percentage of verification set (N −n

:::::
M −m) enclosed by confidence intervals and average width of confidence intervals

for different number of data points for model identification (n
:
m); results shown for the identifiable models for Ritobacken, Spring 2011.
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Averaged confidence widths WVerification [%]
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Figure 13. Ratio
::::::::
Percentage of verification set (N −n

:::::
M −m) enclosed by confidence intervals and average width of confidence intervals

for different number of data points for model identification (n
:
m); results shown for the identifiable models for Ritobacken, Autumn 2011.
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Averaged confidence widths WVerification [%]
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Figure 14. Ratio
::::::::
Percentage of verification set (N −n

:::::
M −m) enclosed by confidence intervals and average width of confidence intervals

for different number of data points for model identification (n
:
m); results shown for the identifiable models for Ritobacken, Spring 2012.

31



WVer. [%]

100.0 0 0.3
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Figure 15.
::::::::
Percentage

::
of
:::::::::

verification
:::::
points

:::
for

:::::
higher

::::
flows

:::::::
enclosed

:::::
within

:::::::::
confidence

::::::
intervals

:::::::
obtained

::::
with

::::::
models

:::::::
identified

:::
for

:::
five

::::::
(m= 5)

:::::
lower

::::
flows

:::::
(note,

:::
that

:::
only

:::::::
overbank

:::::
flows

::::
were

:::::::::
considered):

:::
(a)

:::::
Flume

:::::::::
experiment,

:::
case

::
1,

:::::::
(M = 9);

:::
(b)

:::::
Flume

:::::::::
experiment,

::::
case

:
2,
:::::::::
(M = 10);

::
(c)

:::::::::
Ritobacken,

:::::
Spring

:::::
2011,

:::::::
)M = 6);

:::
(d)

:::::::::
Ritobacken,

::::::
Autumn

:::::
2011,

::::::::
(M = 12);

::
(e)

:::::::::
Ritobacken,

::::::
Spring

::::
2012,

::::::::
(M = 11).

:
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11 – Flume case 2; Figure 12 – Ritobacken Spring 2011; Figure 13 – Ritobacken Autumn 2011; Figure 14 – Ritobacken Spring

2012.

The values presented in Figures(
:
10-14 ) are averaged over all uncertainty estimates at a

:
given number of observations n

::
m.650

Therefore, for n=N − 1
::::::::::
m=M − 1, where there was always only one verification point, the ratio

::::::::
percentage

:
for verification

points can be any value between 0− 1
::::::::
0− 100%, not only 0 or 1. Averaged

:::::
100%.

:::
An

::::::::
averaged ratio of verification points

enclosed within confidence intervals, together with their relative width W , should be considered as a two criteria measure on

how well the obtained model reproduces the discharge curve. Narrow confidence intervals indicate that the model uncertainty,

estimated using n
:
m

:
observations, is small. The ratio

:::::::::
percentage

:
of observations from the verification set enclosed within these655

intervals informs how the estimated uncertainty is representative for other data sets than these used for identification. A low

ratio
:::
The

::::
low

:::::::::
percentage

:
suggests that the probabilistic term incorrectly predicts the model uncertainty for the verification

set
:
is
:::::::::
incorrectly

:::::::::
predicted. Therefore, narrow confidence intervals for small n numbersresulting in small ratios

::
m

::::::::
numbers,

::::::::
enclosing

:::::
small

::::::
amount

:::
of

::::::::::
observations

:
should be considered as unsuccessful, as the uncertainty analysis appears to be too

optimistic. On the other hand, for larger n
::
m, good ratios might be obtained with very wide confidence intervals, indicating a660

poor model. The best solution is that one, which has the narrowest confidence intervals with satisfactory ratio
::::::::
percentage

:
of

verification set enclosed within it. We interpret the results by analyzing those both criteria together.

::::::
Widths

::
of

::::::::::
confidence

:::::::
intervals

:::
in

::
a

:::::::
function

:::
of

:::
the

:::::::
number

:::
m

::
of

::::::::::
observation

::::::
points

:::::
used

::
in

:::
the

::::::
model

::::::::::::
identification

:::::::
(Figures

::::::
10-14),

::::::
allows

:::
for

:
a
:::::::::
qualitative

:::::::
analysis

:::
of

:::
the

::::::::::
uncertainty,

:::::::
resulting

:::::
from

:::
the

:::::::::
insufficient

::::
data

:::
for

::::::::::
calibration.

:::::
Wide

:::::::::
confidence

::::::::
intervals,

:::
and

:::::
their

::::::
spread

:::
for

:::
the

:::::
small

::::::::::
observation

::::::
number

::::::
m= 1

::::::
should

:::
be

::::::::
attributed

:::
to

:::
the

:::::::
ill-posed

:::::::
inverse665

:::::::
problem.

:::::::::
Additional

::::
data

::::::
points

:::::
allow

::
to

::::::
narrow

:::::::::
confidence

:::::::
intervals

::::
and

::::::
reduce

::::
their

::::::
spread.

::::
The

:::::::
number

::
of

::::::::::
observations

:::
m

:
at
::::::

which
:::
the

::::::
widths

::
of

::::::::::
confidence

:::::::
intervals

:::::::::
stabilizes,

::
in

:::::
some

::::
cases

:::::::::
obtaining

:::::::
minimal

::::::
values,

:::::::
suggests

:::
the

:::::
point

::::::
where

:::
the

:::::
effect

::
of

:::::::
ill-posed

::::::
inverse

:::::::
problem

::::::::
becomes

:::
less

:::::::::
significant

:::::
source

::
of
::::::::::
uncertainty

:::
for

::::::::
computed

:::::
water

:::::
levels.

::
In

:::::
these

:::::::::
qualitative

:::::::
analyses,

:::
its

:::::
effect

:::::
cannot

:::
be

::::::::
excluded,

:::
but

:::::
rather

::::::
should

::
be

::::::::::
considered

:::
less

:::::::::
important.

::::::
General

::::::::::::
investigations

::
of

::::::::
discharge

::::::
models

::
in

::::::
respect

:::
of

::::::::
obtaining

:::::::::
confidence

:::::::
intervals

::::
were

::::::::::::
supplemented

::::
with

:::
the

:::::::
analysis670

::
on

::::
their

:::::::::::
extrapolation

::::::::::
capabilities

:::
for

::::::
higher

:::::
flows.

:::::::
Figures

::
10

:::
-14

:::::::
present

:::::::
averaged

:::::::::
outcomes

:::
for

::::::
models

::::::::
identified

:::::
using

:::
all

:::::::
possible

:::::::::::
combinations

::
of

:::
m

:::::::::::
observations.

::::
This

:::::::
includes

::::
sets

::::
with

::::
only

:::
low

:::
or

::::
high

:::
but

::::
also

:::::
mixed

::::
flow

:::::
rates

:::::
(note,

::::
that

::::
only

:::::::
overbank

:::::
flows

:::
are

:::::::::::
considered).

::
In

::::::
Figure

:
5
::::::
widths

::
of

:::::::::
confidence

::::::::
intervals

:::
and

::::::::::
percentage

::
of

:::
the

:::::::
enclosed

::::::::::
verification

:::
set

:::
are

::::::::
presented

:::
for

::::::
models

::::::::
identified

::::
only

:::
for

:::
the

::::::
lowest

::::::
m= 5

::::
flow

:::::
rates.

:::
The

:::::::
number

::
of

::::::
m= 5

:::::::::::
observations

::::
used

:::
for

:::
the

::::::
model

:::::::::::
identification

:::
was

:::::::
chosen

::::::::
arbitrary,

::::::::
following

:::
the

::::::::::
impressions

::::
that

::::
this

:::
size

::
is
:::::::::

sufficient
::
to

::::::::
minimize

:::
the

::::::::::
uncertainty

:::
due

:::
to675

:::::::::
insufficient

:::::::
number

::
of

::::::::::
observation

::
for

:::
the

::::::
model

:::::::::::
identification

::::::::
(ill-posed

::::::
inverse

::::::::
problem)

::::
and

::
for

:::
all

::::
case

::::::
studies

::::
with

::::::
m= 5

:
a
:::::::::
reasonable

:::::::
number

::::::::
(M −m)

::
of

::::::::::
observations

:::
for

::::::::::
verification

:::
was

::::::::
available.

:

3.3.1 Flume data set, case 1

For the flume data in the case 1 (Figure 10), with rigid-high vegetation in floodplains and also channel banks, the best results

were obtained with the Mertens method. It is characterized with the narrowest confidence intervalsW , having a good predictive680
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performance. Confidence intervals for n > 1
:::::
m> 1 were below 5% and for n > 3

::::::
m> 3 they already enclosed more than 50%

of the verification points. Almost similar performance was found for the DCM method, with slightly wider confidence intervals.

Surprisingly, both methods outperformed the Pasche model that is a very similar approach to the Mertens method, but with

a much more detailed description of the vegetation induced resistance. Estimated confidence intervals width was
:::::
widths

:::::
were

about three times larger than for
:::
the Mertens method and DCM, but enclosing a similar number of verification points. The685

reason could be the susceptibility of the Pasche method to numerical instabilities. Because of vegetation present on the channel

banks, the floodplain region was extended above geometrical channel banks. This introduces discontinuity to the hydraulic

radius in floodplains, as water levels slightly exceed geometrical banks. Probably, this might lead to numerical instability of

implicit formulas used in
::
the

:
Pasche method, but not present in the Mertens method. GTLM

:::
and

::::::
PTLM

:
confidence intervals

were almost the same as for the Paschemethod and much more narrow than for PTLM. The GTLM and PTLM enclose the690

largest ratio of the verification points because of wide
:::::
similar

::
to
:::
the

:::::::
Pasche,

:::
but

:::::::
enclosed

::::
even

:::::
more

::::::::::
observations

::::
than

::::::::
Mertens.

::::::::
However,

:::::::::
confidence

:::::::
intervals

:::
for

:::::::
Mertens

:::
are

::::::
almost

:::::
three

::::
times

::::::::
narrower

::::
and

:::
this

:::::::
method

:::::
should

:::
be

:::::::::
considered

::
as

:::
the

:::::
most

:::::::::
appropriate

::
in

::::
this

::::
case.

:::::
Figure

::::
15a,

:::::::
presents

:::
the

::::::
results

::
for

::::::
models

::::::::
identified

:::::
using

:::
the

::::::
lowest

:::::
m= 5

::::
flow

:::::
rates.

:::
The

:::::::
Mertens

::::::
model

::::
with

:::
the

:::::::
smallest

::::::::
estimated

:::::::::
uncertainty

::::
was

:::::::
capable

:::::::::
explaining

::::
the

:::::
rating

:::::
curve

:::
for

:::
all

::::::::::
verification

::::::
points.

::::::
Other

:::::::
models,

::::::
except

:::
the

::::::
DCM,695

::::::
allowed

::
to

::::::::
enclosed

:::::
whole

::::::::::
verification

:::
set,

:::
but

::::
with

:::::
much

:::::
wider

:
confidence intervals.

3.3.2 Flume data set, case 2

For the flume case 2 (Figure 11), both the Pasche and Mertens methods appear to be the most appropriate
:::::::
effective. Estimated

widths of confidence intervals do not exceed 4-5% for n > 1
:::::
m> 1

:
and fell bellow 2-3

::
1-2% for a sufficient number of observa-

tions (n > 5
:::::
m> 5). The predictive skills of the identified models are high, with around 70% of the verification set enclosed by700

the confidence intervals at n > 4. The two-layer GTLM and PTLM have similar skills than in the flume case 1.
::::::
m> 4. GTLM

has a similar uncertainty performance as DCM while PTLM has slightly worse performance. For all these three models
:::::::
provides

::::::::
noticeably

:::::
much

:::::
more

::::::
narrow

::::::::::
uncertainty

::::::::
estimates.

::::
For

::::::
GTLM

::::
and

:::::
DCM, the final confidence widths for n=N are about

20
::::::
m=M

:::
are

:::::
about

::::
15%

::::
and

::
for

::::::
PTLM

::
5%. Because of their larger extent, the estimated intervals enclose slightly larger num-

ber of verification points than with the Pasche and Mertens methods. The DCM has 8
::::
three

:
times wider confidence intervals705

than for flume case 1. The main difference between the flume cases 1 and 2 was the rough floodplain surface with the grain

sizes of 0.5-1 cm for the case 2 compared to the smooth floodplain of case 1 , indicating that the DCM
:
D
:

was not able to

perform reliably for the combination of rough surface and emergent vegetation.

Figure (11) highlights the specific dependency of DCM, GTLM and PTLM on n
:
m. For a small number of data points for a

model identification at n= 1
::::::
m= 1, confidence widths are high, because of the parameter equifinality effect

:::::::
ill-posed

:::::::
inverse710

:::::::
problem. With additional points, the equifinality effect is reduced, and for n= 2

:::::
m= 2 the confidence interval widths are at

their smallest but with poor predictive skills. With increasing n
::
m the uncertainty estimates are corrected by additional data

points. The same pattern is present but less noticeably for the Pasche and Mertens methods and for the other cases.
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::
As

::
in

::::::
general

::::::
output,

::::::
Pasche

::::
and

:::::::
Mertens

::::::
models

:::::::
provided

:::
the

::::
best

::::::
results,

::::
when

::::::::
identified

:::
for

::::::
m= 5

::::
lower

:::::
flows

::::::
(Figure

:::::
15b).

::::
Their

::::::::::
confidence

:::::::
intervals,

:::::
more

::::::
narrow

:::
for

:::::::
Mertens

::::::
model,

::::::::
enclosed

:::::
100%

::
of

::::::::::
verification

:::
set.

::::::::::::
Performances

::
of

:::
the

::::::::
Manning715

:::::
based

:::::
DCM

:::
are

:::
here

:::::
poor,

::
as

::::::
despite

::::::::
relatively

:::::
wide

:::::::::
confidence

::::::::
intervals,

:
it
::::::::
appeared

:::::::::
impossible

::
to

:::::::
explain

:::
any

::
of

::::::::::
verification

:::::
points.

:::
In

:::::
Figure

:::
5d

:
-f
:::::
rating

::::::
curves

:::
for

:::::::
Pasche,

:::::::
Mertens

:::
and

::::::::
Manning

:::::
based

:::::
DCM

::::
were

:::::::::
presented

:::
for

:::
this

:::::::
specific

:::::::::
calibration

::::
case.

3.3.3 Ritobacken, Spring 2011 case

The Spring 2011 case study refers to flow conditions with poorly developed vegetation 1
::
one

:
year after the floodplain excava-720

tion. These conditions with low vegetation having a mean relative submergence (floodplain water depth divided by vegetation

height) of 3.3 is
:::
are reflected in the computational output (Figures

:::::
Figure

:
12), with process-based methods for vegetation

resistance characterized with a relatively poor fit.

The PTLMhad significantly higher ratios than DCM at n > 2, with GTLM falling between these. Among the two latter

methods, GTLM had only slightly
::
All

:::::
three

:::
two

:::::
layer

::::::
models

::::::::
(GTLM,

::::::
STLM

:::
and

:::::::
PTLM)

::::
have

:::::
very

::::::
similar

::::::::::::
performances,725

:::
but

::::
with

:::::::::
noticeably wider confidence intervals than DCM: 3% vs 2%. For PTLM, with similar share of verification points

enclosed within confidence intervals, widths
::
the

::::::
DCM,

::::
with W were about 6%. At n= 1, GTLM had better performance than

PTLM and DCM, with notably higher ratio of pointsenclosed
::
of

::::
12%

:::
to

:::
3%.

::::
The

:::::::::
percentage

:::
of

:::::::
enclosed

::::::::::
verification

::::::
points

:
at
::::::
m> 2

::
is

:::::
better

:::
for

::::
two

::::
layer

::::::::::
approaches,

::::::::
although

::::::::
difference

::
is

:::::
small

::::::
(single

::::::::::
observation

::::::
point).

:::
The

::::::
picture

::
is
::::::::
different

::
in

::
the

::::
case

:::
of

::
the

::::::
Figure

::::
15c

::::::::
presenting

:::
the

:::::::::::
extrapolation

::::::::::
capabilities

::
of

:::
the

::::::::
methods.

::::::
Widths

::
of

:::::::::
confidence

:::::::
intervals

:::
of

::::::::
two-layer730

::::::
models

:::
are

::::::
similar

::
to

::::::::
averaged

::::::
values

::
at

::::::
m= 5,

:::::
given

::
in

::::::
Figure

:::
12

:::
and

:::::::
enclose

::
all

::::::::::
verification

:::::
point

:::::
(note,

:::
for

::::::
Spring

:::::
2011

:::::::
M = 6).

::::::
DCM’s

::::::
narrow

:::::::::
confidence

::::::::
intervals

::::
were

::::::
unable

::
to

:::::::
enclose

::
the

::::::::::
verification

:::::
points.

3.3.4 Ritobacken, Autumn 2011 and Spring 2012 cases

Ritobacken Autumn 2011 and Spring 2012 case studies reflect flow conditions in a channel of two phases of vegetation

development
:::
the

::::::::
influence

::
of

:::::::
seasonal

:::::::::
differences

::
of
:::::::::
vegetation

:::
on

:::
the

::::
flow

:::::::::
conditions. In Autumn 2011 vegetation was higher735

and denser than
:::::
before

:::
and

:
at the beginning of

::
the

:
growing season in Spring 2012. This can be seen in the performance of

the applied discharge methods. For the fully vegetated conditions of Autumn 2011 (Figure 13), all the 4 identified methods

enclosed over 70% of the observations at n > 5 with N = 12. GTLM appeared the most appropriate method as it had half

narrower
:::::
m> 5

::::
with

::::::::
M = 12.

::::::
STLM

:::
has

:::::::::
narrowest

:
confidence intervals (1-2 %) than the other methods, with only 10 %

lower ratio of enclosed points than DCM and PTLM. PTLM with 4% interval width has, however, better predictive skills with740

10 % more verification points enclosed. For
::::
4%)

:::::
when

::
all

::::
data

::::
was

::::
used

:::
for

::::::
model

:::::::::::
identification.

::::::
STLM

::::
had

:::::::
slightly

:::::
lower

:::::::::
percentage

::
of

::::::::
enclosed

:::::::::
verification

::::::
points,

::::::::::
comparing

::
to

:::::
DCM

::::
with

::::
also

::::
very

:::::::
narrow

:::::::::
confidence

::::::::
intervals

:::
and

::::::
GTLM

:::::
with

::::::::
somewhat

:::::
wider

:::::
ones.

:::
For

:::
the Autumn 2011, good results were obtained also for STLM and DCM Manning, for which widths

for n=N were about 5%, so just slightly higher than for
:
it
::::
was

:::
not

:::::::
possible

::
to

:::::::
identify

:::
the PTLM.

For the Spring 2012 (Figure 14), all methods
:::::
DCM,

::::::
STLM

::::
and

::::::
GTLM

:
have almost equal confidence widths and ratios745

of enclosed verification points
::::
while

::::::
PTLM

:::
has

:::::
very

::::
wide

::::::::::
confidence

:::::::
intervals. The overall measures are similar to those
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from Autumn 2011. At n > 5, STLM had a
::::
The

:::::::::
confidence

::::::
widths

::
for

::::::
DCM,

::::::
GTLM

::::
and

::::::
STLM

:::
are

:::::
about

:::
3%

:::
and

:::
for

::::::
m> 5

:::
and

:::::
more

::::
than

::::
70%

::
of

::::::
points

:::
fall

::::::
within

:::::::::
confidence

::::::::
intervals.

::::::
PTLM

::::
has slightly higher ratio of verification data enclosed

:
,

compared to the other methods. The confidence widths are about 3%and for n > 5 for all methods more than 70% of points

fall within confidence intervals,
:::::::
because

::
of

:::::::
notably

:::::
wider

:::::::::
confidence

:::::::
intervals

::
of
::::::
8-9%.750

::
In

:::
the

:::::::::
calibration

::::
case

::::
with

:::
the

::::::
lowest

::::::
m= 5

::::
flow

:::::
rates,

:::
for

:::::::
Autumn

:::::
2011

::::::
(Figure

:::::
15d),

::
a
::::
high

::::::::::
explanation

::
of

:::
the

::::::
rating

::::
curve

::::
was

:::::::
obtained

::::
with

:::
the

::::::
STLM

:::
and

::::::::
Manning

:::::
DCM.

::::::
Poorer

::::::
results

:::
for

:::::::
Autumn

::::
2011

:::
set

::::
were

:::::::
obtained

:::
for

:::
the

:::::::
GTLM,

::::
with

:::
low

:::::::::
percentage

::
of

::::::::::
verification

:::::
points

::::::::
enclosed.

::::
For

:::::
Spring

:::::
2012

::
all

::::
two

::::
layer

:::::::
models

:::::::
(GTLM,

::::::
PTLM

:::
and

:::::::
STLM)

:::
and

::::
also

:::
the

:::::::
Manning

:::::
DCM

:::::::
allowed

::::::::
obtaining

:
a
::::
very

:::::
good

::::::::::
explanation

::
of

:::
the

:::::
rating

:::::
curve,

:::::
when

::::::::
identified

:::
for

:::
the

::::::
lowest

:::::
m= 5

::::
flow

:::::
rates

::::::
(Figure

:::::
15e).

:::
The

::::::
rating

:::::
curves

:::
of

:::
the

:::::::
GTLM,

::::::
STLM

:::
and

::::::
PTLM

::
in

::::
this

:::::::::
calibration

::::
case

:::
for

::::::
Spring

:::::
2012

::::
were

:::::::::
presented

::
in755

:::::
Figure

:::
5a

:
-c.

3.4 Physical interpretation of identified parameters

The obtained parameter valueswere compared with the measured ones for the two most complex models

:
A
:::::::::
posteriori

:::::::::
parameters

:::::::::::
distributions

::::::::
P (θ/H)

:::
can

::
be

:::::::::
presented

::
in

::
a

::::
form

::
of

::::::::
marginal

::::::::::
Cumulative

::::::::::
Distribution

:::::::::
Functions

::::::
(CDF).

:::
The

:::::
CDF

::
is

::::::
plotted

::::
over

:::
the

:::::::
sampled

:::::::::
parameter

:::::
range,

:::::
given

::
in

:::::
Table

::
1.

::::
The

:::::
shape

::
of

:::
the

::::::::
marignal

::::
CDF

::::::::
indicates

:::
the760

::::::::
likelihood

::
of

:::::
given

:::::::::
parameter

::::::
values.

::::
The

:::::
linear

::::::::::
dependency

::::::
would

:::::
mean

::::
that

::
all

::::::
values

:::
are

:::::::
equally

:::::
likely

::
in

::::::
respect

:::
of

:::
the

::::::::
likelihood

:::::::
function

:::::::::
(Equation

:::
3).

:::
On

:::
the

:::::
other

:::::
hand,

:
a
::::::
strong

::::
CDF

::::::::
skewness

:::::::::::
characterizes

:::::::
regions

::
of

::
a

::::
high

:::::::::
probability

::::
and

:::::
larger

:::::
model

:::::::::
sensitivity

:::
on

:::
the

:::::::::
parameter.

::::
The

:
a
:::::::::

posteriori
:::::::
marginal

::::
CDF

:::
of

:::::::::
parameters

::::
were

:::::::::
presented

:::
for

::::
four

:::::::::
vegetation

::::::::
roughness

:::::::
models:

::::::
Pasche,

::::::::
Mertens,

::::::
GTLM

::::
and

::::::
STLM.

:::::::::
Parameters

:
of Pasche and GTLM, for their most representative cases:

the flume experiment,
::::::
Mertens

::::::
models

:::::::
(Figure

:::
16),

:::::
were

::::
given

:::
for

:::
the

:::::
flume case 2and ,

:::::
where

::::
both

:::::::
models

::::::::
explained

:::
the

:::::
rating765

::::
curve

:::::
very

::::
well.

::::::
GTLM

::::
and

::::::
STLM

:::::::::
parameter

::::::::
estimates

:::::::
(Figures

::::::
17-18)

::::
were

:::::::::
compared

:::
for

:::
the

:
Ritobacken Autumn 2011 ,

respectively. In both
:::
and

::::::
Spring

:::::
2012

::::
sets,

::
as

::::
both

:::::::
models

::::
were

::::::
found

::::
here

::::::::::
appropriate

:::
and

:::::::::::
additionally,

::
it

:::
was

::::::::
possible

::
to

::::::
analyze

:::
the

:::::::
seasonal

:::::::::
vegetative

:::::::::
differences

::
on

:::::::::
parameter

::::::::
estimates

:::
(see

:::::::
Section

:::::
3.3.4).

:::
In

::
all cases, solutions for all observation

points n=N
:::::::
m=M were used.

In the case of the Pasche method applied for controlled flume conditions, all parameter values were known. For GTLM there770

was no data for parameters of vegetation extent (lL/LL, lR/LL, hL and hR) but estimates of the blockage factor BX itself,

which values were used for comparison. To compare modelidentification outputs with observed values, we recalculated values

of extent parameters lL/LL::::::
Figure

::
16

:::
the

::::
CDF

:::
for

::::::
Pasche

::::::::::
parameters

:::
for

:::
the

:::::
flume

::::
case

:
2
::
is

:::::
given

::::
with

:::::
black

::::
lines

::::
and

:::::
green

::::
lines

:::
for

:::::::
Mertens.

:::::::::
Measured

:::::
values

::
of
::::::::::

parameters
:::
are

:::::::
provided

::::
with

::::
blue

:::::
lines.

::::
The

:::::
steep

:::::
shape

::
of

:::
the

::::
CDF

:::
for

:::
the

::::::
Pasche

:::
az

:::::::
indicates

::
a

:::::
strong

::::::
model

::::::::
sensitivity

:::
on

:::
the

:::::::::
parameter

:::
and

::::
that

:::
the

:::::
values

:::::
above

::::::::
∼ 0.3 m

:::
are

:::::::
unlikely.

::::
For

:::
the

:::::::
Mertens

:::::
model,775

lR/LL, hL and hR to BX .

Marginal a posteriori distributions of Pasche model parameters, identified using n=N observation points for flume experiment,

case 2; measured parameters values were provided with blue lines, the best value in the Monte Carlo ensemble with red lines.

Figure 16 shows the cumulative distribution function for marginal a posteriori distribution P (θ/H) of parameters θ
:
a
::::::
similar

:::::
effect,

:::
but

::::
with

::::::::
smoother

:::::
CDF

:
is
:::::::
present

:::
for

::::
both

::
ax::::

and
:::
az .

:::
The

::::::::::
differences

::
in

:::
the

::::
case

::
of

:::::
these

::::::::
particular

:::::::::
parameters

::::::
comes780
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Figure 16.
:::::::
Marginal

:
a
::::::::
posteriori

:::::::::
distributions

::
of

:::::
Pasche

:::::
(black

:::::
lines)

:::
and

::::::
Mertens

:::::
(green

::::
lines)

::::::
models

:::::::::
parameters,

:::::::
identified

::::
using

:::::::
m=M

::::::::
observation

:::::
points

:::
for

::::
flume

:::::::::
experiment,

::::
case

::
2;

:::::::
measured

::::::::
parameters

:::::
values

::::
were

:::::::
provided

::::
with

:::
blue

:::::
lines.
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Figure 17.
:::::::
Marginal

:
a
::::::::

posteriori
:::::::::
distributions

::
of

:::::
GTLM

:::::
model

:::::::::
parameters,

::::::::
identified

::::
using

::::::
m=M

:::::::::
observation

:::::
points

::
in
:::
the

:::::::::
Ritobacken

:::
case

:::::
study;

:::::
black

::::
lines

::::
stand

:::
for

::::::
Autumn

:::::
2011

::
set

:::
and

:::::
green

:::
for

:::::
Spring

:::::
2012;

::::::::
parameters

::::::
values

::::
given

:::
by

::::::::::::::::::::
Västilä and Järvelä (2014)

::
for

:::::
woody

::::::::
vegetation

::::
were

:::::::
provided

:::
with

::::
blue

::::::
vertical

:::
lines
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Figure 18. Marginal a posteriori distributions of GTLM
:::::
STLM model parameters, identified using n=N

::::::
m=M observation points for

::
in

::
the

:
Ritobacken Autumn 2011

:::
case

:::::
study; dashed

::::
black

:
lines – confidence intervals

::::
stand

::
for

:::::::
Autumn

::::
2011

::
set

:
and median of a probabilistic

solution, red line – best simulation in the Monte Carlo ensemble; parameters values given by Västilä and Järvelä (2014) were provided with

a blue
::::
green lines

::
for

:::::
Spring

::::
2012

::::
from

:::
the

::::
more

::::::::
complex

:::::::
structure of the Pasche method. Measured values of parameters are provided with blue lines. Also a best

solution from the Monte Carlo ensemble was given with red dashed lines. It can be noticed, that the
::::::
model,

::::::::
restricting

::::::
values

::
of

::
az ,

::::
due

::
to

::::
lack

::
of

:
a
:::::::::
numerical

:::::::::::
convergence.

:::
For

::::
both

:::::::
Models

::::::
(Figure

:::
16)

:::::::::
bIII/Bfp ::::::

appears
:::
to

::
be

:
a
::::::::
sensitive

:::::::::
parameter,

:::::
while

::
the

::::::::
response

:::
for

::::::::
remaining

::::::::::
parameters

:
is
:::::
more

::::::::
uniform.

:::
The

:
strongest discrepancies between measured and identified values

:
of

::::::::::
parameters

::
of

::::::
Pasche

::::
and

:::::::
Mertens

::::::
models

:::::::
(Figure785

:::
16) are present for the stem diameter dp and longitudinal stem spacing ax. A median

::
(at

:::::
CDF

:::
0.5)

:
of the probabilistic solution

and also the best model fit for dp is close to 0.04 m, while the real diameter was 0.008 m. In the case of ax it is 0.6 m
:::
for

::::::
Pasche

:::
and

::::
0.25

:
m

:::
for

:::::::
Mertens to 0.1 m. This has a clear physical sense, as in terms of the model identification, small stem

diameters dp at dense spacing with small ax were equivalent to larger dp and smaller ax. This finding is supported, by much

smaller discrepancies in other parameters. It should be noted, that the measured parameter values provide a fit close to the best790

one
::
in

:
a
:::::::::::
deterministic

:::::
sense

:
(Kiczko et al., 2017).

In the case of the two layer approaches, there was no direct data on vegetation extent parameters: lL/LL, lR/LL, hL and hR

parameters values, for which only outcomes of the identification are available. As an example, in

::
In Figure 17 results for

::
the

::::::
GTLM

::::::
model

::::::::
identified

:::
for

:::
the

:
Ritobacken Autumn 2011 case

:::::
(black

:::::
lines)

:::
and

::::::
Spring

:::::
2012

:::::
(green

:::::
lines)

:
are provided. It can be seen that

::
in

::::
both

:::::
cases, the identified values of the parameterization for flexible vegetation795

(Equation 11) had a fairly narrow distribution for the reconfiguration (X) and drag coefficient (CDx:
χ) of the foliageand stem,

which fell close to the values observed for willows and other woody species (e.g. Västilä and Järvelä, 2018). Wide ranges

for the vegetation heights h results from interactions with l/L and from the model insensitivity, when vegetation exceed the

water level and there is no free flow zone above. The values in the distribution of the identified
::
In

:::
the

::::
case

:::
of

:::::::::
remaining
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Figure 19.
:::::::
Blockage

:::::
factor

:::
BX:::::::

measured
::
in

:::
the

:::
field

::::
and

::::::::
determined

::
as

::
an

::::::
inverse

::::::
solution

::
of

::::::
GTLM

::
for

:::::::::
Ritobacken

::::::
Autumn

::::
2011

:::
(a)

:::
and

:::::
Spring

::::
2012

::
(b)

::::
case

:::::
study;

::::::
squares

:::::
denote

:::::::
measured

::::::
values,

:::::
dashed

::::
lines

::
–

::::::::
confidence

:::::::
intervals

:::
and

:::::
median

::
of
::

a
:::::::::
probabilistic

:::::::
solution,

:::
red

:::
line

:
–
::::
the

:::
best

::::::::
simulation

::
in

:::
the

:::::
Monte

::::
Carlo

::::::::
ensemble.

:::::::::
parameters

:
it
::::
can

::
be

:::::::
noticed,

:::
that

:::
for

:::
the

:::::::
Autumn

:::::
2011

:::
set,

:::
the

:::::
CDFs

::::
have

:
a
::::::::::
step-shape,

::::::
clearly

::::::::
indicating

:::::
more

:::::
likely

:::::::
regions.800

:::
For

::::::::
example,

:::
the

::::
most

::::::::
probable

::::::
values

::
of

:::
the

::::::
steam

:::::::::::::
reconfiguration

:::::::::
coefficient

:::
χS :::

for
:::::::
Autumn

:::::
2011,

:::
are

:::::
very

::::
close

:::
to

:::
the

:::::::
observed

:::::
ones.

::::
The

::::
same

:::::::
applies

::
to

::::::
CDx,S :::

and
:::::::
CDx,F .

::
In

::
all

:::::
these

:::::
cases,

::::::
CDFs

:::::::
suggests

::::
also

:::::
other

:::::
highly

::::::::
probable

:::::::
regions,

:::::::
different

::::
from

::::::::
expected

:::::
ones,

:::
e.g.

:::
for

:::
χS ::::

also
:::::
values

:::::
close

::
to

:::
0.3,

:::::
were

:::::::::
considered

::
as

::::
very

::::::
likely.

:::
The

::::::
effect,

::::
also

::::
seen

::::::
clearly

::
for

::::::::
AS/AB ,

:::::::
AL/AB ,

:
C∗were notably larger than the experimentally derived

:
,
::::::
CDx,S ,

:::
hL:::

and
:::
hR::

is
:::
an

:::::::
example

::
of

:::::::::
parameter

:::::::::
equifinality.

:::::::::::
Distributions

::::::::
obtained

:::
for

:::
the

::::::
Spring

::::
2012

:::
set

:::
are

:::::
much

:::::
more

:::::::
uniform,

:::::::
without

::::::
values

:::
that

::::
can

::
be

:::::::::
considered

:::
as805

:::::
highly

::::::::
probable.

:

::::::
Similar

::
to

:::
the

:::::::
Pasche

:::::::
method,

:::
not

:::
all

:::::::::::
distributions

:::::
follow

::::
the

:::::::
expected

:::::::
values.

::::
The

::::
CDF

:::
for

:
C∗ value (∼ 0.034− 0.08,

Västilä et al. (2016)), which is compensated by the notably lower identified
:
in
::::::::
Autumn

::::
2011

::::::
shows

::::::
notably

:::::
larger

::::::
values

::::
than

::::::::::::
experimentally

::::::
derived

::::::::::::::::::::::::::::::::::
(C∗ ∼ 0.034− 0.08, Västilä et al., 2016)

:
.
:::
For

::::::
Spring

::::
2012

:::
C∗

::::::
values

:::
are

:::::
much

:::::
closer

::
to

:::
the

::::::::
expected

::::
ones,

:::
but

::
it
::
is

::::
hard

::
to
::::

find
:::
an

::::::::::
explanation

::
of

:::
the

::::::::::
differences

:::::
when

:::::::
Autumn

::::
2011

:::::
case

::
is

:::::::::
considered,

:::::
other

::::
than

:::
the

:::::
effect

:::
of810

:::::::
ill-posed

::::::
inverse

::::::::
problem,

:::::
where

:::::
water

::::::
depths

:::
are

:::::::::
insufficient

:::
for

:::::::::::
identification

::
of

::::
this

:::::::::
parameter.

:::::
Wider

::::::
ranges

:::
for

:::
the

:::::::::
vegetation

::::::
heights

::
h,

::::::
extents

::::
l/L

:::
and

::::::
frontal

::::::::
projected

:::::
areas

::
of

:::::
stems

:::::::
AS/AB::::

and
::::
leafs

:
AL/AB and

CDa compared to
:
in

:::
the

::::::
Spring

::::
2012

:::
set,

::::
may

::
be

:::::::::
associated

::::
with

:::::
lower

:::::::::
vegetation

::::::::
roughness

::
in

:::
that

::::::
period

:::::::::::::::::
(Västilä et al., 2016)

:
.
:::
The

:::::::
solution

::::::::
providing

:
a
:::::
good

:::::::::::
representation

::
of

:::::
water

::::::
depths

:::::
might

::
be

:::::::
obtained

:::
for

:::::::
different

::::::::::::
combinations

::
of

::::
these

::::::::::
parameters,

40



::::
such

::
as

:::
too

::::
small

::
h

::::
with

:::
too

::::
large

::::
l/L.

::::::
Higher

::::::
autumn

::::
flow

:::::::::
resistance,

:::::::
resulting

::
in
::
a
:::::::
different

:::::
shape

::
of

:::
the

:::::
rating

:::::
curve,

::::::::
appeared815

::
to

::
be

:::::
more

::::::::
restrictive

:::
for

::::
these

::::::::::
parameters.

:

:::::::::
Parameters

::
of

:
the measured vegetation densities at Ritobacken (a≈ 10− 25 for the grassy vegetation

:::::
STLM

::::
are

:::::
given

::
in

:::::
Figure

::::
18.

:::
As

::
in

::::
this

::::::::
approach

::::
flow

::
in

:::
the

:::::::::
vegetation

:::::
layer

::
is

:::::::::
neglected,

::
it

:::::::
includes

::::
less

:::::::::
parameters

::::
than

:::::::
GTLM;

:::::
lL/L,

Västilä et al. (2016)). This is another example of the parameter equifinality that can result if all the vegetation properties have

to be identified because of lack of available measurement data.820

The comparison of real and measured values on vegetation extent for the Ritobacken case study was possible for
::::
lR/L,

::::
hL,

::
hR:::::

used
:::
for

:::::::::::::
parametrization

::
of the blockage factor BX . In the presented approach it probabilistic estimates can be calculated

using values of hL :::
The

:::::::
obtained

::::::
CDFs

:::
are

::::
very

:::::::
similar

::
to

:::::
those

:::
for

:::
the

:::::::
GTLM

::::::
(Figure

::::
17).

:::
As

::::::::::
previously,

:::::::::
parameters

:::
of

::
the

::::::::
Autumn

::::
2011

:::
are

::::::
much

:::::
better

:::::::
defined.

:::::
Again

::
a
:::::::::
noticeable

::::
shift

::
in

::::
C∗

:::
can

:::
be

:::::::
observed

:::
for

::::::::
Autumn

:::::
2011.

::::
Such

::
a
:::::
good

::::::::
agreement

::::::::
between

:::::::
obtained

::::::::::
parameters

:::
for

:::::::
GTLM

:::
and

:::::::
STLM,

:::::::
together

:::::
with

::::
very

::::::
similar

::::::::::
uncertainty

::::::::
estimates

::::::::
(Figures825

:::::
13-14)

::::::::
suggests

:::
that

::::
flow

::::::
within

:::::::::
vegetation

:::::
layer

:::
was

:::
not

:::::::::
significant

:::
for

:::
the

:::::
shape

:::
of

:::
the

::::::::
discharge

:::::
curve

:::::
under

:::
the

::::::::
analyzed

:::::::::
conditions.

:::::::::
Otherwise,

:::
the

::::::
shape

::
of

::::::
GTLM

::::::
CDFs

:::::
would

:::
be

:::::::::
noticeably

::::::::
different

::
as

:
a
::::::

result
::
of

::::::::::
interactions

::::
with

::::::::::
parameters

:::::::::::
characterizing

::::
flow

::
in
:::::::::
vegetation

:::::
layer.

:

::::::
Studies

::
of

::::::::::::::::::::::
Västilä and Järvelä (2018)

:::::::
provided

::::::::
estimates

:::
on

:::
the

:::::::
blockage

::::::
factor

::::
BX ,

:::::
which

:::::
allow

::::::::::
comparison

::
to

:::
the

::::::
results

::
of

:::::
model

:::::::::::
identification

:::::::
through

:::::::::
calculating

::::::::::
confidence

:::::::
intervals

:::
for

:::::::
modeled

::::
BX ::

on
:::
the

:::::
basis

::
of

::::::::
identified

:::::::::
parameters

::::::
lL/LL,830

hR::::::
lR/LL, lL/LL and lR/LR. In Figure 19, the measured and the identified blockage factor BX of GTLM is given as a

function of the water depth. It can be noted, that
::
hL::::

and
:::
hR:::

for
:::::::
Autumn

:::::
2011

:::
and

::::::
Spring

:::::
2012

::::::
(Figure

::::
19).

:::
The

:
confidence

intervals for the BX are wide . The
:::
and

:::
the

:
observed values are shifted from the median of a probabilistic solution towards 0.6

quantile.
:::
0.9

:::::::
quantile.

::::
The

:::::::::
noticeable

::::::::::::::
under-estimation

::
of

:::
the

:::
BX:::

by
:::
the

:::::
model

:::::::::::
identification

:::::
likely

::::::::
decreases

:::
the

:::::::::::
performance

::
of

::::::
GTLM

:::
for

:::
the

::::
field

:::::
case,

:::::
since

:::::
under

:::::
partly

::::::::
vegetated

:::::::::
conditions

::::
the

::::::::::::
cross-sectional

:::::::::
vegetative

::::::::
blockage

:::
has

::::
been

::::::
found835

::
the

:::::
most

::::::::
important

:::::::
property

:::
in

::::::::::
determining

:::
the

::::
flow

::::::::
resistance

::::
(e.g.

::::::::::::
(Green, 2005),

::::::::::::::::::::
(Luhar and Nepf, 2013).

:
A large spread of

values for BX , with very small variation of water levels for that solution (Figure 13) , suggest a moderate model sensitivity on

BX:
,
::::::
affected

:::
by

::::::::::
interactions

::::
with

::::
other

::::::::::
parameters.

Blockage factor BX measured in the field and determined as an inverse solution of GTLM for Ritobacken Autumn 2011

case study; squares denote measured values, dashed lines – confidence intervals and median of a probabilistic solution, red line840

– best simulation in the Monte Carlo ensemble.

4 Discussion

The present study is according to our knowledge the first one, where different discharge capacity methods were compared

in the respect of their uncertainty, estimated along with model parameters, using probabilistic formulation of the problem of

the parameter identification. It should be noted that
:::
The

:
noticeable focus was made to ensure that the uncertainty analysis845

was objective and repeatable, which can be seen in the proposed technique for scaling the likelihood function. The novelty of

the proposed approach includes the analysis of obtained confidence widths, together with the ratio
::::::::
percentage

:
of independent
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observations explained by them, with respect of
:
to

:
the number of observations used in the model identification.

:::
The

::::::
results

::::::
confirm

::::::::
previous

:::::::
findings

::
of

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kiczko and Mirosław-Świa̧tek, 2018; Kiczko et al., 2018; Romanowicz and Kiczko, 2016),

::::
that

::
for

::::::::
discharge

::::::::
formulas

:::
the

::::::::::
probabilistic

:::::::
solution

::::::
differs

::::
from

:::
the

:::::::::::
deterministic

::::
one.

::::
This

::
is

::::::
evident

::::
from

::::::
Figure

:
5
:::
for

:::::::::
calculated850

:::::
rating

::::::
curves.

::::
This

:::::::
obvious

:::::::
behavior

::
of

::::::::
nonlinear

:::::::
models

::::::::
highlights

:::
the

:::::
needs

:::
for

::::
such

::::::::::
uncertainty

:::::::
analyses.

:

Our results show that the number of parameters is not
:::::
seems

:::
not

:::
to

:::
be a factor precluding the use of a given method

for predicting the channel discharge
:::::::::::
identifiability

:::
of

::::::::
vegetation

:::::::::
roughness

:::::::
models. It was possible to identify a model with

more than ten parameters (i.e. GTLM
:::::::::::
accompanied

::::
with

::
a

::::::::::::::
parameterization

::
of

::::::::
complex

:::::::::::
reconfiguring

:::::::::
vegetation), almost

as well as three parameter
:::::::::::::
three-parameter

:
ones (DCM). Parameter equifinality influenced

::
In

:::
the

::::
most

::::::
cases,

:::
the

::::::::
ill-posed855

::::::
inverse

:::::::
problem

:::::::
appears

::::::::
affecting

:
the uncertainty estimates only when the number of observation points was very small,

independent of the number of parameters. Widths of confidence intervals stabilized close to the final extent at about three-

four observation points (n > 3
:::::
m> 3, Figures 10-14). Equifinality of parameterswas however present, which is shown by the

discrepancy between the identified and measured values of parameters, as well as their large variation (3.4). This agrees with the

finding of Her and Chaubey (2015), who reported similar effects of the parameter number on the equifinality and uncertainty860

estimates for a horological runoff-model.

Our results clearly demonstrate the influence of the number of observation points on uncertainty. For a small number of

observation points, the uncertainty estimates were for all methods relatively high. Such effect however was not reported in

Her and Chaubey (2015), where different lengths of time series were considered, all with large number of observation points.

Both studies demonstrate however a characteristic stabilization of uncertainty estimates for larger sets of observation points865

(Figure 8). Her and Chaubey (2015) investigated also effect of additional data points, referring to other model derivatives than

the main output, such as information on the flow from sub-basins. For the present study, the analysis could be amended using

e.g. observations of velocities in the channel and floodplains. However, such data were not available for all cases and were thus

not included here.

The results confirm previous findings of (Kiczko and Mirosław-Świa̧tek, 2018; Kiczko et al., 2018; Romanowicz and Kiczko, 2016)870

, that for discharge formulas the probabilistic solution differs form the deterministic one. This is evident from Figure 5 for

calculated rating curves or parameter distributions in Figure 16. This obvious behavior of nonlinear models highlights the

needs for such uncertainty analyses.

The more complex, process-based methods were usually better than the classical DCM, having more narrow confidence

intervals, enclosing larger ratios of observations, when applied to vegetative conditions they were developed for . This important875

methodological finding suggests that it could be possible to choose an appropriate method on the basis of its fit measures and

uncertainty estimates. Thus, results show the advantages of
:::
The

:
process-based methods in the case of parametrization over

simpler ones. Dalledonne et al. (2019) come to similar conclusions, as they obtained the best uncertainty estimates for the

most complex model.

We found that the differences between the one-dimensional methods were notably larger than for the study of Dalledonne et al. (2019)880

focusing on a two dimensional model . Further, the Warmink et al. (2013) study did not consider the choice of the flow

resistance parametrization method as crucial. The presently investigated flume and field cases had a notable portion of the
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cross-section covered by the floodplain vegetation , with Manning’s n ranging at 0.017-0.150m−1/3s. Thus, our results indicate

that the choice of the resistance formula is important for cases where vegetative resistance dominates. On the other hand,

one-dimensional models may be more sensitive to uncertainty related to the identification of the resistance parametersthan885

are two-dimensional models
:::::::
methods

:::::
have

:::::
more

::::::::::
parameters,

::::
than

:::
the

::::::::
required

:::::::
number

::
of

::::::::::::
observations,

::::::::
necessary

:::
for

::::
the

:::::::::::
identification.

::::
This

:::::::
suggests

:::
the

:::::::
ill-posed

::::::::
problem,

:::
but

:::::
might

::
be

:::::::::
explained

:::
with

::
a
:::
low

::::::
model

::::::::
sensitivity

::
to

::::::
groups

::
of

::::::::::
parameters,

::::
seen

::
in

:::
the

:::::::
marginal

:::::
CDF

::
of

:::
the

::
a
::::::::
posteriori

::::::::
parameter

:::::::::::
distributions

:::::::
(Figures

::
16

::::
-18)

:::
and

::
in
::::

the
:::::
result

:::
the

:::::
model

:::
fit

:::::::
depends

::
on

::::
only

:::::::
several

::::::::::
parameters.

:::
The

:::::::::::
observations

:::
are

::::::::
however

::::::::
different

:::
for

:::
the

::::
field

::::
case

:::::
with

:::
the

::::
most

:::::::::
developed

::::::::::
vegetation,

:::::::::
Ritobacken

::
in
::::::::

Autumn
:::::
2011,

:::::
where

::::
the

:::::::::
uncertainty

:::::::::
estimated

:::
for

:::
the

:::::::
GTLM,

::::
with

:::
the

::::::
largest

:::::::
number

:::
of

::::::::::
parameters,

::::
falls890

:::::
below

:::::
levels

::::::::
obtained

:::
for

:::
the

:::::
DCM

:::::
only

:::
for

:::
the

:::
full

:::
set

:::
of

::::::::::
observations

:::::
used

:::
for

:::
the

::::::
model

:::::::::::
identification.

:::
In

:::
this

:::::
case

:::
the

::::::
GTLM

:::
was

:::::
found

::::
very

::::::::
sensitive

::
on

:::::::::
parameters

::::::::::::
characterizing

::::
flow

::
in

:::
the

:::::::::
vegetation

::::
layer

:::::::
(Section

::::
3.4)

:::
and

::
a
:::::::::
noticeably

:::::
larger

::::::
number

::
of

:::::::::::
observations

:::
was

:::::::::
necessary

::
to

::::::
restrict

::::::::
variability

:::
of

:::::::::
parameters.

The
:::
Our

:::::::
findings

::::::::
indicated

::::
that

:::
the

:
performance of a model depends on its adequacy for the given vegetative and flow

conditions. For unsubmerged
:::::::
emergent

:
sparse rigid vegetation, the most reliable method was the Mertens model with mostly895

explicit formulas. Because of a simpler numerical form than in the Pasche method, the Mertens method was less vulnerable to

numerical instabilities, which probably affected the outcomes of the Pasche uncertainty estimation. In the case of dense flexible

:::::
mostly

::::::
grassy

:
vegetation typically observed on natural floodplains (Figure 4), the most reliable performance with respect to

uncertainty estimates was obtained with the
::::::::
simplified two-layer approaches GTLM and PTLM that were performed well for

both dense submerged and emergent vegetation
::::::::
approach

::::::::
(STLM),

:::::
which

:::::::
neglects

:::
the

:::::
flow

::
in

:::
the

:::::::::
vegetation

::::
layer

:
(Figures900

12-14).

The GTLM was in this paper amended with a vegetation parameterization (Eq. 11) that describes the influence of the plant

streamlining and reconfiguration on flow resistance. The GTLM with (Eq. 11) performed particularly well when
:::
The

::::
full

:::
two

:::::
layer

:::::
model

::::::::
(GTLM)

::::
also

:::::::
provided

::
a

:::::::::
reasonable

::::::::::::
representation

::
of

:::
the

:::::
rating

:::::
curve

:::
for

:::::::
flexible

:::::::::
vegetation,

::::::::
although

::::
with

:::::
higher

::::::::
estimated

::::::::::
uncertainty,

::::::::
probably

::::::
because

:::
of

:
a
:::::
larger

:::::::
number

::
of

:::::::::
parameters.

::::
For

::
all

:::::
cases,

::::::
except

:::::::::
Ritobacken

::::::
Spring

:::::
2011905

::::
with

:::
the

::::
least

:::::::::
developed

:::::::::
vegetation,

:::
the

::::
best

::::::::::
performing

:::::::::::
process-based

:::::::
method

::::::::
produced

::::::::
narrower

:::::::::
confidence

::::::::
intervals

::::
than

::
the

::::::
DCM,

:::::
when

:::
the

:::::::
models

::::
were

:::::::::
identified

::::
with

:::
all

::::::::::
observation

::::::
points.

:::::::
Further,

:::
for

:::
the

::::
field

::::::::::
conditions,

:::
the

:::::::::
predictions

:::
of

::
the

:::::::::
validation

::::::
dataset

:::::
were

:::::::
notably

:::::
better

::::
with

:
the vegetation was high (Figure 13), appearing to be

:::::::::::
process-based

:::::::
models

::::::::
compared

::
to

:::::
DCM

:::::
when

:::
the

:::::::
number

::
of

::::
data

:::::
points

::::
used

:::
for

::::::
model

:::::::::::
identification

:::
was

::::
low

::::
(2-4)

:::::
while

:::
the

:::::::::
confidence

::::::::
intervals

::::
were

:::::::::
reasonable

:::
for

:::::::
practical

:::::::::::
applications.910

::
An

:::::::::
important

:::::
aspect

:::::
when

::::::::::
comparing

:::
the

:::::::
different

::::::::
methods

::
is

::::
their

::::::
general

:::::::::::
applicability

:::
for

:::::::
different

:::::::
channel

::::::::::
conditions.

::::::
Despite

:::
the

:::::
larger

:::::::
number

::
of

::::::::::
parameters,

:::
the

::::::::::::
process-based

::::::::
methods

::::
were

::::
less

::::::::
generally

:::::::::
applicable

::::
than

:::
the

::::::::
Manning

:::::
based

:::::
DCM

::::::::
approach,

::::::
which

:::::
could

::
be

::::::::
identified

::::
and

::::
thus

:::::::
applied

::
in

::
all

::::::
cases.

::::::
Pasche

:::
and

::::::::
Mertens

:::::::
methods

:::::
were

::::
only

:::::::::
applicable

::
for

:::
the

::::::
sparse

:::::
rigid

::::::::
emergent

:::::
flume

:::::::::
vegetation,

:::
for

::::::
which

::::
they

:::::
were

:::::::
derived.

:::
By

:::::::
contrast,

:::
the

:::::::::
two-layer

:::::::::
approaches

:::::::
GTML

:::
and

::::::
PTML,

::::::::
although

::
it

:::
was

:::::::
possible

::
to
:::::::
identify

:::::
them,

::::
had

:
a
::::
less

::::::::
favorable

::::::::::
performance

:::::
when

:::::::
applied

::
to

:::
the

:::::
flume

:::::::::
vegetation915

::::::
(Figure

:::
3).

:::::::
Further,

:::
our

:::::::
findings

::::::::
appeared

::
to

:::::::
confirm

:::
that

:::
the

::::
the

:::::
STLM

::
is
:::::

strict
:::::
about

:::
the

::::::::::
assumption

:::
that

::::
less

::::
than

::::
20%

:::
of

::
the

:::::
flow

:
is
:::::::::

conveyed
:::::
within

:::::::::
vegetation

:::::::
(Section

:::::
3.2).

:::
The

::::::
STLM

:::::
could

:::
not

:::
be

::::::::
identified

:::
for

:::
the

:::::
flume

:::::::::
conditions

::::
with

::::::
sparse
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::::::::
vegetation

:::::
likely

::::::::
resulting

::
in
::::::::::

substantial
::::
flow

:::
on

:::
the

:::::::::
floodplain.

::::
The

::::::
results

:::
for the most reliable method for predicting the

discharge capacity during the most critical conditions when the vegetative flow resistanceis high
:::::
DCM

::::
with

:::::::
constant

::::::
values

::
of

:::
the

::::::::
Manning

:::::::::
coefficient

::::
were

:::::
quite

::::
good

::::::
except

:::
for

:::::
flume

::::
case

::
2,
:::::::::

indicating
::::
that

:::
the

::::::::::::
process-based

:::::::
methods

:::
are

::::::::
expected920

::
to

:::::::
perform

:::::
better

:::
and

:::::
more

:::::::
reliably

::::
than

:::::
DCM

:::::
when

::::::
several

:::::::::
important

:::::::
sources

::
of

::::
flow

:::::::::
resistance,

::::
such

:::
as

:::::
rough

:::::::::
floodplain

::::::
surface

:::
and

::::::
sparse

::::::::
emergent

::::::::
vegetation

:::
are

:::::::
present.

:::::
These

:::::::::::::
methodological

:::::::
findings

:::::::
suggest

:::
that

::
it
:::::
could

::
be

::::::::
possible

::
to

::::::
choose

::
an

:::::::::
appropriate

:::::::
method

::
on

:::
the

:::::
basis

::
of

::
its

:::::::::::::
goodness-of-fit

::::::::
measures

:::
and

::::::::::
uncertainty

::::::::
estimates.

:

:::
For

:::::::
practical

:::::::
channel

:::::
design

::
or

:::::
flood

:::::::::
inundation

::::::::
estimation

::::::
cases,

::
the

:::::::::
capability

::
to

:::::
extend

:::
the

:::::
model

:::::::::
calibrated

::::
with

::::::::::
observations

:
at
::::
low

:::::
flows

::
to

::::
high

::::
flows

::
is
:::::::
crucial.

::
Of

:::
the

:::
six

:::::::
models,

::::
none

::::::::
provided

::::
good

:::::::::::
extrapolation

::::::
results

:::::
under

::
all

:::::
tested

::::::
cases.

::::::
GTLM925

:::
was

:::
the

:::::
most

:::::::
reliable

:::::
model

:::
as

::
it

:::::::::
performed

:::::::::
reasonably

:::
in

::::
four

::
of

::::
five

:::::
cases,

::::
and

::::
thus

::::::
across

::
a

::::
wide

:::::
range

:::
of

:::::::::
vegetative

::::::::
conditions

:::::::
(Figure

:::
15). The GTLM parameterized at low flows reliably predicted the water levels during high discharges,

including the
::::::::::
successfully

::::::::
predicted

:::
the

:
more rapid increase in discharge at water levels exceeding vegetation height (Figure

5a). Although Eq.
:
,
:::
but

:::
the

:::::::::::
extrapolation

::::
was

:::
not

:::::::::
successful

::
in

:::::::
Autumn

:::::
2011.

::::
For

:::::::
instance,

:::
the

:::::
DCM

::::
was

::
in

::::
two

::
of

:::
the

::::
five

::::
cases

::::::
unable

::
to

:::::::
reliably

::::::
predict

:::
the

::::
water

:::::
levels

::
at
::::::
higher

:::::::::
discharges

:::::
when

::::::::
optimized

:::::
based

::
on

:::::::::::
observations

::
at

:::::
lower

:::::::::
discharges930

::::::
(Figure

:::
15).

::::
The

::::::::::::
overestimation

::
of

:::::::
channel

::::
flows

:::::::
(Figure

::
5f)

::
is
:
a
::::::
known

::::::
feature

::
of

:::
the

:::::
DCM

::::
with

:::::::
constant

::::::::
Manning

::::::::::
coefficients,

::
as

:
it
::::
does

:::
not

:::::::
account

:::
for

:::
the

::::::::::
momentum

::::::
transfer

:::::::
between

:::
the

:::::
main

:::::::
channel

:::
and

:::::::::
floodplains

::::::::::::
(Myers, 1978)

:
.

:::
The

::::::
GTLM

::::
was

::
in

:::
this

:::::
paper

::::::::
amended

::::
with

::
a
:::::::::
vegetation

::::::::::::::
parameterization

::::::::
(Equation

:::
11)

::::
that

::::::::
describes

:::
the

::::::::
influence

::
of

:::
the

::::
plant

:::::::::::
streamlining

:::
and

:::::::::::::
reconfiguration

:::
on

::::
flow

:::::::::
resistance.

::::::::
Although

::::::::
Equation

:
11 has been developed for woody vegetation,

it was applicable to the predominantly grassed vegetation at the field site. Field surveys indicated that much of the plants935

consisted of a main stem and more flexible leaves, conceptionally similar in structure
::::::::::
conceptually

:::::::
similar

::
in

::::::::
behaviour

:
to

foliated woody vegetation. Eq.
:::::::
Equation

:
11 describes the drag from stem and leaves and allows to set different values for the

flexibility-induced reconfiguration for the stem and foliage.
::
By

::::::
setting

:::
the

:::::::::::::
reconfiguration

:::::::::
parameters

::
to

::
0,

:::
the

::::::
model

:::
can

:::
be

::::
used

::
for

:::::
rigid

:::::::::
vegetation,

:::::
which

::::::
might

::::::
explain

:::
the

::::::::::
applicability

:::
of

:::
the

:::::
model

::
in

:::::
flume

:::::
cases

::::
with

::::
rigid

:::::::::
vegetation.

:

It should be noted that the results for
::::::
Further

::::::::::
justification

::
of

:::
the

::::
wide

:::::::::::
applicability

::
of

:::
the

:::
two

:::::
layer

::::::::
modelling

:::::::
concept

::
is

:::
not940

::::::::::::
straightforward

::::
with

:::
the

:::::::
obtained

::::::
results.

:::::::::::::::::
Shields et al. (2017)

::::::::
suggested

::::
that

::::::::
two-layer

::::::
models

:::::
based

::
on

:::
the

:::::::::::::::::::
Luhar and Nepf (2013)

::::::
concept

:::::
allow

:::
for

:
a
:::::
better

::::::::::::
representation

::
of

:::
the

::::::::
transition

:::::
from

:::
the

:::::::::
submerged

::
to

::::::::
emergent

:::::
flows,

::
in

::::::
which

::::
case the DCM with

constant values of the Manning coefficient were quite good except for flume case 2. In all cases it had worse performance than

the
::::::::::::
cross-sectional

:::::::::
vegetative

:::::::
blockage

::::
and

:::
the

::::
bulk

::::
flow

::::::::
resistance

::::::::
typically

::::
start

::
to

::::::::
decrease.

::::::::
Obtained

::::
CDF

:::
of

:
a
:::::::::
posteriori

:::::::::
parameters

::::::::::
distributions

:::
for

::::::
STLM

::::
and

::::::
GTLM

:::::::
suggest

:::
that

::::
this

:::::
effect

:::::
might

:::
be

:::::::::
important.

:::
For

:::
the

:::::::
Autumn

:::::
2011

:::::
case,

::::
with945

:::
well

:::::::::
developed

::::::::::
vegetation,

:::
the

::::
most

::::::::
probable

:::::::
solution

:::::::
included

:::::::::
moderated

:::::::::
vegetation

::::::
heights

::::
and

:::::
larger

::::::
extents

::::
(hL :::

and
::::
hR,

:::::
Figure

::::
17),

:::::
which

:::::::
ensures

:::
that

::::::::
transition

:::::
from

:::::::::
submerged

::
to

::::::::
emerged

::::::::
vegetation

::
is
:::::::
present.

:::
On

:::
the

:::::
other

:::::
hand,

:::
this

:::::
effect

::::
was

:::
not

:::::::
observed

:::
for

:::::
other

:::::
cases.

:::
Put

:::::::
together,

:::
our

::::::
various

::::::::
analyses

::::
show

:::
the

:::::::::
advantages

::
of

:::
the

:::::
more

:::::::
complex process-based methods, but was applicable in all

these cases. Based on the results, the
:::::::
methods

::::
over

:::
the

:::::::::::::
Manning-based

:::::
DCM.

::::
The

::::::
results

:::::
agree

::::
with

::::::::::::::::::::
Dalledonne et al. (2019)950

:
,
::::
who

:::::::
obtained

:::
the

::::
best

::::::::::
uncertainty

::::::::
estimates

:::
for

:::
the

:::::
more

::::::::
complex

:::::::
models.

:::::::
Besides

:::::
being

:::::::::
applicable

::
to

:::::
flood

:::::
water

:::::
level

:::::::::
estimation,

:::
the

::::::::
described

:
process-based

::::::
models

:::::
allow

:::::::::
predicting

:::
the

::::::::
influence

::
of

::::::::
different

::::::
channel

:::::::::::
management

::::::::
scenarios

:::
on
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::::
water

::::::
levels.

:::
The

:
methods are expected to perform better than DCM when several important sources of flow resistance

::
be

::::::
helpful

::
in

:::::::
planning

::::::::
common

:::::::
practical

:::::::::::
management

::::::::
measures

:::
for

::::::::
vegetated

:::::::::
compound

:::::::
channels, such as rough floodplain surface and

vegetative drag, are present
::::::
cutting

::
of

:::
the

::::::::
floodplain

::::
and

::::
bank

:::::::::
vegetation

::
as

::::
well

::
as

:::::::::::
maintaining

:::
the

::::::
channel

:::::::
through

::::::::
dredging955

::
the

:::::
main

:::::::
channel

::
or

::::::::
lowering

:::
the

:::::::::
floodplain.

::::::::
Improved

:::::::::
reliability

::
of

:::
the

::::::::
discharge

:::::::
capacity

::::::::
estimates

::::
may

::::
help

:::
in

:::::::::
decreasing

::::::::::
unnecessary,

::::::::::::::
environmentally

::::::::
disruptive

:::::::::::
management

:::::::
actions,

:::
and

:::::
allow

::
to

::::
plan

:::::
more

:::::::::
sustainable

:::::::::::
alternatives,

::::
such

::
as

::::::
partial

::::::
cutting.

Despite the larger number of parameters, the process-based methods were less flexible than the Manning based DCM

approach. Pasche and Mertens methods were only suitable for rigid unsubmerged vegetation, for which they were derived.960

The two-layer approaches GTML and PTML, although it was possible to identify them, had a very poor performance when

applied to sparse emergent vegetation(Figure 3). Further, our findings confirmed that the STLM is strict about the assumption

of negligible flow within vegetation (Section 3.2), and it had a more favorable performance during Spring 2012 (Figure 14)

when the deflected height of the bent grasses was low, with an expected lower share of flow within vegetation compared to

Autumn 2011 (Figure 13)
:::
We

:::::
found

::::
that

:::
the

:::::::::
differences

::::::::
between

:::
the

::::::::::::::
one-dimensional

:::::::
methods

:::::
were

::::::
notably

::::::
larger

::::
than

:::
for965

::
the

:::::
study

:::
of

::::::::::::::::::::
Dalledonne et al. (2019)

:::::::
focusing

:::
on

:
a
::::
two

::::::::::
dimensional

::::::
model.

:::::::
Further,

:::
the

:::::::::::::::::::
Warmink et al. (2013)

::::
study

::::
did

:::
not

:::::::
consider

:::
the

::::::
choice

::
of

:::
the

::::
flow

::::::::
resistance

:::::::::::::
parametrization

:::::::
method

::
as

:::::::
crucial.

:::
The

::::::::
presently

::::::::::
investigated

:::::
flume

::::
and

::::
field

:::::
cases

:::
had

::
a

::::::
notable

:::::::
portion

::
of

:::
the

:::::::::::
cross-section

:::::::
covered

:::
by

:::
the

:::::::::
floodplain

::::::::::
vegetation,

::::
with

:::::::::
Manning’s

::
n
:::::::

ranging
::
at
:::::::::::

0.017-0.150

m−1/3
:
.
:::::
Thus,

:::
our

::::::
results

:::::::
indicate

::::
that

:::
the

:::::
choice

:::
of

:::
the

::::::::
resistance

:::::::
formula

::
is

::::::::
important

:::
for

:::::
cases

::::::
where

::::::::
vegetative

:::::::::
resistance

:::::::::
dominates.

:::
On

:::
the

::::
other

:::::
hand,

::::::::::::::
one-dimensional

::::::
models

::::
may

::
be

:::::
more

:::::::
sensitive

::
to

::::::::::
uncertainty

::::::
related

::
to

:::
the

:::::::::::
identification

::
of

:::
the970

::::::::
resistance

:::::::::
parameters

::::
than

:::
are

::::::::::::::
two-dimensional

::::::
models.

The most problematic issue in the proposed approach of identifying vegetation properties of process-based methods through

the formulation of the inverse problem (Figure 1 b)
::::::::
important

:::::
issue

:
is the physical interpretation of obtained parameters .

The identified valuesare different from the physical ones. The most obvious reason is equifinality, as in the case of the stem

diameter and spacing in
:::::::::
parameters

::::::::
obtained

:::
by

:::
the

:::::
model

::::::::::::
identification.

:::
As

::::::::
expected,

:::
on

:::
the

:::::
basis

::
of
::::::::

previous
::::::
studies

:::
of975

::::::::::::::::::::::::::::::::::
Werner et al. (2005); Berends et al. (2019)

:::
the

:::::::
obtained

::::::
values,

:::::::
showed

::
in

:
a
::::
form

:::
of

::::
CDF

::
of

::::::::
marginal

:
a
::::::::
posteriori

::::::::::
distributions

::
in

::::::
Figures

:::
16

:::
-18

::::::
differs

:::::
from

::::::::
measured

:::::
ones.

:::::
This

::::::
results

::::
from

::::
the

::::::::
parameter

:::::::::::
equifinality.

::::
One

::
of

::::
the

::::::
reasons

::::::
might

:::
be

:::::::::
insufficient

::::::::::
observation

::::
sets

::::
used

::
in
::::::

model
::::::::::::
identification.

::::
The

:::::::::
likelihood

::::::::
function,

::::::::::
conditioned

::::
only

:::
on

:::::
water

:::::
levels

::
is
::::

not

::::::
capable

::
to

::::::
restrict

:::::::::
variability

::
of

::::::::::
parameters

::
in

:::::
more

:::::::
complex

:::::::::
vegetation

:::::::::
roughness

::::::
models.

::
It
::::
can

::
be

::::
seen

::
in

:::
the

:::::
shape

:::
of

:::
the

:::::::
marginal

::::
CDF

:::
of

:::::::::
parameters,

::::::::
presented

::
in

:::::::
Figures

::
16

:::
-18,

:::::::::
suggesting

:::::
small

:::::::::
sensitivity

::
of

:::
the

:::::
model

:::
on

::::
given

::::::::::
parameters,

::::::
except980

::::
only

:::
the

:::::::::
Ritobecken

:::::::
Autumn

:::::
2011

::::
case.

:::::
Their

:::::::::
variability

:::
can

:::
be

:::::::
probably

:::::::
reduced

:::
by

::::::::
additional

::::
data

:::::::
sources,

::
as

:::::::::
discussed

::
in

::::::::::
hydrological

::::::
studies

::
of

:::::::::::::::::::::::::::::::::::::::
Her and Chaubey (2015); Her and Seong (2018)

:
.
:::
For

:::::::
channel

:::::
flows

:
it
:::::
could

::
be

:::::::
velocity

:::::::::::::
measurements,

::::
used

:::
e.g

::
by

::::::::::::::::::
Berends et al. (2019)

::
for

::::::
model

:::::::::::
identification.

::
It

::::::
should

::
be

:::::::
however

::::::
noted,

:::
that

:::
in

:::::::
practical

::::::::::
assignments

:::
on

:
a
:::::
flood

::::::
hazard,

::::
such

::::
data

::
is
::::::
rarely

::::::::
available.

::::
The

::::
other

::::::
reason

:::
of

::::::::
parameter

::::::::::
equifinality

::::
and

::::::::
therefore

:::::::::::
discrepancies

::::
with

:::::::::
measured

:::::
values

::
of

::::::::::
parameters

:::
are

::::::::
parameter

:::::::::::
interactions.

:::
The

:::::
shift

::
in

:
a
:::::
given

:::::::::
parameter

::
is

:::::::::::
compensated

::
by

::::::
others,

::::
e.g.

:::
the

::::
large

:::::
stem985

:::::::
diameter

:::
dp,

::::::::
observed

::
for

:
Pasche and Mertens methods (Figure 16). In the case of two-layer approaches, the fit measures reveal

a low sensitivity of GTLM to the blockage factor: BX has large variability, while variation of computed water levels was very
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small. The application of
::::::
models,

::::::
comes

:::::
along

::::
with

:::
too

::::
large

:::::::
spacing

::
of

::::::
plants

::
ax::::

and
:::
az .

::::
Such

:::
an

:::::
effect

::
is

:::::::
probably

:::::::
present

::
in

::
all

:
process-based methods

::::::
models,

::::::::
identified

::
in

:::::
terms

::
of

::
an

:::::::
inverse

:::::::
problem.

:

:::
The

::::::::
inability

::
to

:::::::
specify

:::::::::
parameters

:::
of

::::::::::::
process-based

::::::::
methods

::
by

::::::
model

::::::::::::
identification

::
is

:::
an

::::::::
argument

::::::
against

:::::
such

:::
an990

::::::::
approach,

::::::
already

:::::::::
signalized

:::
by

::::::::::::::::
Werner et al. (2005)

:
.
:::::::::
Moreover,

::::
with

:::::::::
parameters

::::::::
different

::::
form

::::
real

::::::
values,

:::
the

::::
use

::
of

:::::
these

:::::::
complex

:::::::
models,

::::
rises

:::
an

::::::::::
impression

::
of

:::::::::
black-box

:::::::::
modeling,

::
as

:::
the

::::::::::::
identification

::::
goal

::
is

::::
only

:::
to

::::::
obtain

:
a
::::::::::

satisfactory
:::

fit

:::
and

::::::::::
uncertainty

:::::::
estimate.

:::::
With

::::::::
outcomes

::
of

:::
the

:::::::
present

:::::
study,

::
it
::
is

::::
hard

::
to

:::::::
address

:::
this

::::::::
problem

:::::::
directly,

::
as

::
it

:::::
would

:::::::
require

:::::::::
comparing

::::::
process

:::::
based

::::::::
methods

::::
with

:
a
:::::

pure
:::::::::
data-based

::::::
model.

::::::::
However,

:::
the

::::::
overall

::::::::::
impression

::
is

::::
that,

:::
the

:::::::::
application

:::
of

::::::
models with numerous parameters seems to be inseparably connected with the problem of the equifinality. Similar behavior was995

reported
::
A

::::::
similar

:::::::
behavior

::
is

::::::
known

:::
e.g.

:
for the Shiono-Knight model by Knight et al. (2007). The parameter equifinality, as

over-parametrization is a basic assumption of the probabilistic approach in the parameter identification (Beven and Binley, 1992, 2014)

. Overall, the
::
For

::::::::::::::::::
vegetation-roughness

:::::::
models,

::
it
::::
will

:::::
apply

:::
not

::::
only

:::
in

:::
the

:::::
cases,

::::::
where

:::::::::
parameters

::::
are

::::::::
identified

::::::
purely

::
in

:::::
terms

::
of

:::
the

:::::::
inverse

::::
task,

::::
but

::::
also

:::::
when

::::::::
available

::::::::::::
measurements

::
of

:::::::::
vegetation

:::::::::
properties

:::
are

:::::::::
uncertain

:::
and

:::::
have

::
to

:::
be

:::::::::
generalized

::::
over

:::::
larger

:::::
areas

::::::::::::::::::::::::
(Straatsma and Huthoff, 2011)

:
.
::
In

::::
such

:::::
cases

:
it
::::
will

:::::
always

:::
be

::::::::
necessary

::
to

:::
find

::::::
values

:::::::::::
characterizing1000

:::::
rather

::::::::
hydraulic

::::::::
conditions

::::
than

::::
true

::::::::
vegetation

::::::::
features.

:::
The

:::::::::
difference

:
is
::::
that

::::
even

::::
with

:
a
::::
very

::::::::
uncertain

::::
data,

:::
the

:::::::::::
identification

:::::::
problem

:::
will

:::
be

::::::
limited

::
to

::::::::
relatively

::::::
narrow

::::::::
parameter

:::::::
ranges.

:::
The

:
parameter identification is expected to result in more physically realistic values if at least some of the required vegetation

properties or the channel bed roughness can be directly measured and used as the input(see Figure 1a ). .
::::

For
::::::::
instance,

:::
the

::::::::
vegetation

::::::
extents

:::
of

::
the

:::::::::
two-layer

::::::
models

::::::
(Figure

::
2)

:::
are

:::::::::::::
straightforward

::
to

:::::
obtain

::
at
:::
the

:::::
field,

::
or

:::::::::
vegetation

:::
can

::
be

::::::::
assumed

::
to1005

::::
cover

:::
all

::::::
channel

::::::::
perimeter

::::::
above

::
the

:::::::
bankfull

:::::
level.

::::::
Typical

:::::::
heights

::
of

:::::
grassy

:::::::::
floodplain

::::::::
vegetation

::
in

::
a

::::
given

:::::::::::
geographical

::::
area

:::
can

::
be

::::::::
obtained

::::::
through

::::::
remote

:::::::
sensing

:::::::
coupled

::::
with

::::::::::
information

::
on

:::::::
channel

::::::::
geometry,

::::
and

::::
these

::::::
values

::::
may

::
be

:::::::::::
extrapolated

::
to

::::
other

::::
sites

::::::
where

::::
such

::::::::::
information

::
is

:::
not

::::::::
available.

:::::::::::
Process-based

:::::::
models

::::::::
introduce

:::::::
however

:::::::
physical

:::::::::
constrains,

:::::::::
providing,

::
as

:::::::::
mentioned

::::::
before,

:::::
better

::::
basis

:::
for

::::::::::::
extrapolation,

:::
than

::::::
purely

::::
data

::::::
driven

:::::::::
approaches

::::
and

::
in

:::
this

:::::
study

::::::
better

::::
than

:
a
:::::::
simpler

::::::
model.

::
In

:::::
most

::
of

:::::::
analyzed

:::::
here

:::::
cases,

:::::::::
vegetation1010

::::::::
roughness

:::::::
models,

:::::
when

::::::
applied

:::
for

:::::::::
vegetation

:::::::::
conditions

::::
they

:::::
were

::::::::
originally

:::::::::
developed

:::
for,

::::::::
provided

:::::
better

:::::::::
predictions

:::
of

:::::
higher

::::
flow

::::
than

:::
the

::::::::
Manning

:::::
based

:::::
DCM

::::::
(Figure

::::
15).

::::
Also

::::
some

::::::::::
advantages

::
of

:::::
using

:::
the

:::::::::::
process-based

:::::::
models,

::::
even

:::::::
without

:::::::::
knowledge

::
on

:::::::::::
parameters,

:::::
might

:::
be

::::
their

:::::
clear

:::::::
physical

::::::::::::
interpretation,

:::::::::
comparing

:::
for

::::::::
example

::::
with

::::::::
Manning

:::::::::::
coefficients.

::::::::::
Nonphysical

:::::
stem

::::::::
diameters

:::
are

:::::
more

:::::::
obvious

:::
to

::::
large

::::::
values

:::
of

:::
the

::::::::
Manning

::::::::::
coefficient.

::
A

:::::::
modeler

::::::
aware

::
of

:::::::::
parameter

:::::::::
interactions

::::
can

::::::
decide,

::
if

:::
e.g.

:::::
given

:::::::::::
discrepancies

::
in

:::::::::
vegetation

::::::::::::
characteristics

:::
are

::::::::
important

::
in

:::
an

:::::::
analyzed

:::::
case.1015

Discharge formulas analyzed in the study are usually only a part of the one-dimensional model. The uncertainty of such

models depends also on additional elements, like spatial variability of resistance and simplification of the channel geometry. It

should be also noted, that the investigated cases had
:
a
:
fairly regular cross-section and homogeneous vegetation. Therefore, care

should be taken when attempting to generalize the presented findings to all one-dimensional approaches. In complex real-world

cases, it might be beneficial to include several discharge formulas through an ensemble approach, which is also used in other1020

fields, such as climate modeling.
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5 Conclusions

In this study , six methods for estimating the channel discharge capacity were analyzed in terms of their uncertainty, for

two experiments: a flume experiment with rigid submerged vegetation and a field experiment with flexible vegetation under

both emergent and submerged conditions. The outcomes of
::::
This

::::
study

::::::::::
investigated

:::
the

::::::::::
application

::
of

::::::::
advanced

::::::::::::
process-based1025

:::::::
methods

:::
for the study are summarized as follows

::::::::
discharge

:::::::
capacity

:::::::::
estimation

::
of

::::::::
vegetated

:::::::::
compound

::::::::
channels

::
in

::::::::
practical

::::
cases

::::
with

::::::
limited

::::::::::
information

:::
on

:::
the

:::::::::
vegetation

:::::::::
properties.

:::
We

::::::::
compared

:::
five

::::::::::::
process-based

:::::::
methods

::::
with

::
a
::::::::::::::
physically-based

::::::::
vegetation

::::::::::::::
characterization

::
to

:::
the

::::::::::
conventional

:::::::::::::
Manning-based

:::::::
divided

::::::
channel

:::::::
method

:::::::
(DCM),

:::::::
focusing

:::
on

::::
their

::::::::::
uncertainty.

:::
The

:::::::::
developed

::::::::::
probabilistic

::::::::
approach

::::
and

::
the

:::::
used

:::
data

::::::::
covering

:
a
:::::
range

::
of

:::::::::
conditions

:::
on

::::::::
floodplain

:::::::::
vegetation

::::::::::::
submergence,

::::::
density,

:::::::::
flexibility,

:::
and

::::
flow

:::::::::
hydraulics,

:::::::
allowed

::
to

:::::
draw

:::
the

::::::::
following

::::::::::
conclusions:1030

1. The numerical experiments
::::::::::
calculations

:
showed that it is possible to identify parameters of process-based methods

including
::::::
models

::::
with a large number of parameters on the basis of the inverse problem with narrow uncertainty bands .

2. The number of parameters is not a factor determining the applicability of the method. It was possible to obtain similar

uncertainty estimates for models with both a low and a high number of parameters.
:::::::
narrower

::
or

::::::
similar

::::::::::
uncertainty

:::::
bands

::::::::
compared

::
to

:::
the

:::::::::::::
Manning-based

:::::
DCM.

:
1035

3. The uncertainty related to the parameter equifinality is
:::::::
ill-posed

::::::
inverse

::::::::
problem,

:::::::
resulting

:::::
from

:::
the

:::::::::
insufficient

:::::::
number

::
of

:::::::::::
observations,

:
is
:::
in

::
the

:::::
most

::::
cases

:
noticeable only when a small number

::::::::
(< 3− 4) of observations is used in parameter

identification.
::
the

::::::
model

:::::::::::
identification.

:::::::::
However,

::
in

:::
the

:::::
cases

:::::
where

:::
the

::::::
shape

::
of

:::
the

:::::
rating

:::::
curve

::
is
:::::
more

::::::::
sensitive

::
to

:::::
model

::::::::::
parameters,

:::
the

:::::
results

:::::::
suggest

::::
that

:::::::
methods

::::
with

:::::
more

:::::::::
parameters

::::
have

:::::
wider

::::::::::
uncertainty

:::::
bands

:::::
when

::::::::
identified

::::
with

::::
small

:::::::
number

::
of

:::::::::::
observations.

:
1040

4. The parametersobtained through the identification differ
:::
The

:::::
model

:::::::::::
identification

:::::::
resulted

::
in

:::::
some

:::::::::
parameters

::::::::
differing

from their measured physical values, which results from the parameter equifinality. The equifinality does not, however,

affect the uncertainty of a model
:::::
raising

::::::
doubts

:::
on

:::
the

:::::::
physical

:::::::::::
interpretation

::
of

::::::::
obtained

::::::
models.

:

5.
::::::
Despite

::::::
unreal

::::::
values

::
of

::::::::::
parameters,

:::
the

::::::::::::
process-based

:::::::
models

:::
for

:::::::::
vegetation

::::::::
roughness

::::::::
revealed

::::
good

::::::::::::
extrapolation

:::::::::
capabilities

::
to

::::
high

:::::::::
floodplain

:::::
flows,

:::::
when

::::::::
identified

:::::
using

::::
only

:::
low

:::::::::
floodplain

:::::
flows.1045

6. Uncertainty estimates clearly indicate the applicability of a given model to the analyzed case. Unsuitable models, e.g.

those developed for non-submerged vegetation but applied to submerged vegetation, have relatively wide uncertainty

estimates or lack a probabilistic solution.

7. The best results in terms of the lowest uncertainty estimates were obtained with the Mertens method for the unsubmerged
:::::::
emergent,

rigid vegetation case. For the dense flexible vegetation, the generalized
::::::::
simplified two-layer method (GTLM) accompanied1050

with a parameterization describing the streamlining and reconfiguration of plants (Eq. 11)
::::::
STLM)

:::::::::
neglecting

:::
the

::::
flow

::
in

:::
the

:::::::::
vegetation

:::::
layer, had the most reliable performance across different conditions

::::::
seasons, functioning under sub-

merged and emeregent
::::::::
emergent

:::::::::
conditions.

:::
The

::::::::::
generalized

::::::::
two-layer

:::::
model

::::::::
(GTLM),

::
of

:::
the

::::::::::::
process-based

::::::::::
approaches,
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:::::::
amended

::::
with

::
a
:::::::::
vegetation

::::::::::::::
parameterization

:::::::::
describing

:::
the

:::::::::
flexibility

:::
and

:::::::::::::
reconfiguration

:::
of

:::
the

:::::
plants

::::
was

:::
the

:::::
most

:::::::::
universally

:::::::::
applicable

::
to

:::::::
different

:::::::::
vegetative

:
conditions. In most cases, the Manning based

::::::::::::
Manning-based

:
DCM had1055

also satisfactory performance,
:::
but

::::
was

:::
not

::::::
capable

::
to

:::
be

::::::::::
extrapolated

::
to

::::
high

:::::::::
floodplain

::::
flows

:::::
when

:::::::::
calibrated

::::
with

::::
only

:::
low

:::::::::
floodplain

::::
flows.

8. An open issue is the generalizability of the obtained results to spatially distributed one-dimensional models.

9. The proposed approach with the novelty of comparing different models in terms of their uncertainty along with the

quality of the uncertainty estimation might be useful in other similar studies.1060
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Krukowski: flume experiments, measurement data analysis, improving article text.

Competing interests. No competing interests are present.1065

Acknowledgements. The research was partly supported by National Science Centre (Poland), Program Miniatura 1, project no. 2017/01/X/ST10/00987,

by Maa- ja vesitekniikan tuki ry (No 33271) and by Maj and Tor Nessling Foundation (No 201800045).

48



References

Aberle, J. and Järvelä, J.: Flow resistance of emergent rigid and flexible floodplain vegetation, J. Hydraul. Res., 51, 33–45, 2013.

Abril, J. B. and Knight, D. W.: Stage-discharge prediction for rivers in flood applying a depth-averaged model, Journal of Hydraulic Research,1070

42, 616–629, 2004.

Abu-Aly, T. R., Pasternack, G. B., Wyrick, J. R., Barker, R., Massa, D., and Johnson, T.: Effects of LiDAR-derived, spatially distributed

vegetation roughness on two-dimensional hydraulics in a gravel-cobble river at flows of 0.2 to 20 times bankfull, Geomorphology, 206,

468–482, https://doi.org/10.1016/j.geomorph.2013.10.017, 2014.

Antonarakis, A. S., Richards, K. S., Brasington, J., and Bithell, M.: Leafless roughness of complex tree morphology using terrestrial lidar,1075

Water Resources Research, 45, 2009.

Arcement, G. J. and Schneider, V. R.: Guide for selecting Manning’s roughness coefficients for natural channels and flood plains, vol. 2339,

United States Geological Survey Water-Supply Paper 2339, https://doi.org/10.3133/wsp2339, 1989.

Baptist, M. J., Babovic, V., Rodriguez Uthurburu, J., Keijzer, M., Uittenbogaard, R. E., Mynett, A., and Verwey, A.: On inducing equations

for vegetation resistance, Journal of Hydraulic Research, 45, 435–450, 2007.1080

Berends, K. D., Straatsma, M. W., Warmink, J. J., and Hulscher, S.: Uncertainty quantification of flood mitigation predictions and implications

for decision making, Natural Hazards and Earth System Sciences, pp. 1–25, 2018.

Berends, K. D., Ji, U., Penning, W., and Warmink, J. J.: Inverse modelling for vegetation parameters estimation, Human intervention in

rivers: quantifying the uncertainty of hydraulic model predictions, pp. 106–127, https://doi.org/10.3390/1.9789036548823, 2019.

Beven, K. and Binley, A.: The future of distributed models: model calibration and uncertainty prediction, Hydrol. Process, 6, 279–298, 1992.1085

Beven, K. and Binley, A.: GLUE: 20 years on, Hydrological Processes, 28, 5897–5918, https://doi.org/10.1002/hyp.10082, 2014.

Blasone, R.-S., Vrugt, J. A., Madsen, H., Rosbjerg, D., Robinson, B. A., and Zyvoloski, G. A.: Generalized likelihood uncertainty estimation

(GLUE) using adaptive Markov Chain Monte Carlo sampling, Adv. Water Resour., 31, 630–648, 2008.

Budiman, M.: Latin Hypercube Sampling, https://www.mathworks.com/matlabcentral/fileexchange/4352-latin-hypercube-sampling, 2017.

Casas, A., Lane, S. N., Yu, D., and Benito, G.: A method for parameterising roughness and topographic sub-grid scale effects in hydraulic1090

modelling from LiDAR data, Hydrology and Earth System Sciences, 14, 1567–1579, https://doi.org/10.5194/hess-14-1567-2010, 2010.

Chaudhary, H. P., Isaac, N., Tayade, S. B., and Bhosekar, V. V.: Integrated 1D and 2D numerical model simulations for flushing of sediment

from reservoirs, ISH Journal of Hydraulic Engineering, 25, 19–27, https://doi.org/10.1080/09715010.2018.1423580, 2019.

Dalledonne, G. L., Kopmann, R., and Brudy-Zippelius, T.: Uncertainty quantification of floodplain friction in hydrodynamic models, Hy-

drology and Earth System Sciences, 23, 3373–3385, https://doi.org/10.5194/hess-23-3373-2019, https://www.hydrol-earth-syst-sci.net/1095

23/3373/2019/, 2019.

Forzieri, G., Moser, G., Vivoni, E. R., Castelli, F., and Canovaro, F.: Riparian vegetation mapping for hydraulic roughness estimation using

very high resolution remote sensing data fusion, Journal of hydraulic engineering, 136, 855–867, 2010.

Forzieri, G., Castelli, F., and Preti, F.: Advances in remote sensing of hydraulic roughness, International journal of remote sensing, 33,

630–654, 2012.1100

Fread, D.: Flood routing models and the Manning n, in: International Conference for Centennial of Manning’s Formula and Kuichling’s

Rational Formula, pp. 699–708, 1989.

49

https://doi.org/10.1016/j.geomorph.2013.10.017
https://doi.org/10.3133/wsp2339
https://doi.org/10.3390/1.9789036548823
https://doi.org/10.1002/hyp.10082
https://www.mathworks.com/matlabcentral/fileexchange/4352-latin-hypercube-sampling
https://doi.org/10.5194/hess-14-1567-2010
https://doi.org/10.1080/09715010.2018.1423580
https://doi.org/10.5194/hess-23-3373-2019
https://www.hydrol-earth-syst-sci.net/23/3373/2019/
https://www.hydrol-earth-syst-sci.net/23/3373/2019/
https://www.hydrol-earth-syst-sci.net/23/3373/2019/


Freni, G. and Mannina, G.: Bayesian approach for uncertainty quantification in water quality modelling: The influence of prior distribu-

tion, Journal of Hydrology, 392, 31–39, https://doi.org/10.1016/j.jhydrol.2010.07.043, http://www.sciencedirect.com/science/article/pii/

S0022169410004828, 2010.1105

Green, J. C.: Comparison of blockage factors in modelling the resistance of channels containing submerged macrophytes, River Res. Appl.,

21, 671–686, 2005.

Helmiö, T.: Unsteady 1D flow model of compound channel with vegetated floodplains, Journal of Hydrology, 269, 89–99,

https://doi.org/10.1016/S0022-1694(02)00197-X, 2002.

Helmiö, T.: Unsteady 1D flow model of a river with partly vegetated floodplains—application to the Rhine River, Environmental1110

Modelling & Software, 20, 361–375, https://doi.org/10.1016/j.envsoft.2004.02.001, http://www.sciencedirect.com/science/article/pii/

S1364815204000714, 2005.

Her, Y. and Chaubey, I.: Impact of the numbers of observations and calibration parameters on equifinality, model performance, and output

and parameter uncertainty, Hydrological Processes, 29, 4220–4237, https://doi.org/10.1002/hyp.10487, 2015.

Her, Y. and Seong, C.: Responses of hydrological model equifinality, uncertainty, and performance to multi-objective parameter calibration,1115

Journal of Hydroinformatics, 20, 864–885, https://doi.org/10.2166/hydro.2018.108, 2018.

Jalonen, J. and Järvelä, J.: Estimation of drag forces caused by natural woody vegetation of different scales, Journal of Hydrodynamics, 26,

608–623, 2014.

Jalonen, J. and Järvelä, J.: Erratum to Estimation of drag forces caused by natural woody vegetation of different scales (Journal of Hydrody-

namics (2014) 26 (4)), Journal of Hydrodynamics, 27, 319, https://doi.org/10.1016/S1001-6058(15)60487-5, 2015.1120

Jalonen, J., Järvelä, J., Virtanen, J.-P., Vaaja, M., Kurkela, M., and Hyyppä, H.: Determining characteristic vegetation areas by terrestrial

laser scanning for floodplain flow modeling, Water, 7, 420–437, 2015.

Järvelä, J.: Determination of flow resistance caused by non-submerged woody vegetation, International Journal of River Basin Management,

2, 61–70, https://doi.org/10.1080/15715124.2004.9635222, 2004.
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Rowiński, P., Västilä, K., Aberle, J., Järvelä, J., and Kalinowska, M. B.: How vegetation can aid in coping with river management challenges:

A brief review, Ecohydrology & Hydrobiology, 18, 345–354, 2018.

Schwanghart, W.: Recursive Douglas-Peucker Polyline Simplification, https://github.com/wschwanghart/topotoolbox/blob/master/GIStools/

dpsimplify.m, 2010.

Sellin, R. H. J.: A laboratory investigation into the interaction between the flow in the channel of a river and that over its flood plain, La1195

Houille Blanche, 20, 793–802, https://doi.org/10.1371/journal.pone.0116943, 1964.

Shields, J. F. D., Coulton, K. G., and Nepf, H.: Representation of vegetation in two-dimensional hydrodynamic models, Journal of Hydraulic

Engineering, 143, 2517 002, 2017.

Shiono, K. and Knight, D. W.: Turbulent open-channel flows with variable depth across the channel, J. Fluid Mech., 222, 617, 1991.

Soong, T. W. and DePue, P. M.: Variation of Manning’s Coefficient with Channel Stage, Water Resources Center, University of Illinois,1200

U.S.A, 1996.

Stedinger, J. R., Vogel, R. M., Lee, S. U., and Batchelder, R.: Appraisal of the generalized likelihood uncertainty estimation (GLUE) method,

Water resources research, 44, 2008.

Straatsma, M. and Huthoff, F.: Uncertainty in 2D hydrodynamic models from errors in roughness parameterization based on aerial images,

Physics and Chemistry of the Earth, Parts A/B/C, 36, 324–334, https://doi.org/10.1016/j.pce.2011.02.009, http://www.sciencedirect.com/1205

science/article/pii/S1474706511000428, 2011.

Tang, X. and Knight, D. W.: Lateral depth-averaged velocity distributions and bed shear in rectangular compound channels, Journal of

Hydraulic Engineering, 134, 1337–1342, 2008.

Tang, Y., Marshall, L., Sharma, A., and Smith, T.: Tools for investigating the prior distribution in Bayesian hydrology, Jour-

nal of Hydrology, 538, 551–562, https://doi.org/10.1016/J.JHYDROL.2016.04.032, https://www.sciencedirect.com/science/article/pii/1210

S0022169416302232, 2016.

Teng, J., Jakeman, A. J., Vaze, J., Croke, B. F., Dutta, D., and Kim, S.: Flood inundation modelling: A review of methods, recent advances

and uncertainty analysis, https://doi.org/10.1016/j.envsoft.2017.01.006, 2017.

Västilä, K. and Järvelä, J.: Environmentally preferable two-stage drainage channels: considerations for cohesive sediments and conveyance,

International journal of river basin management, 9, 171–180, 2011.1215

52

https://doi.org/10.1002/hyp.10857
https://github.com/wschwanghart/topotoolbox/blob/master/GIStools/dpsimplify.m
https://github.com/wschwanghart/topotoolbox/blob/master/GIStools/dpsimplify.m
https://github.com/wschwanghart/topotoolbox/blob/master/GIStools/dpsimplify.m
https://doi.org/10.1371/journal.pone.0116943
https://doi.org/10.1016/j.pce.2011.02.009
http://www.sciencedirect.com/science/article/pii/S1474706511000428
http://www.sciencedirect.com/science/article/pii/S1474706511000428
http://www.sciencedirect.com/science/article/pii/S1474706511000428
https://doi.org/10.1016/J.JHYDROL.2016.04.032
https://www.sciencedirect.com/science/article/pii/S0022169416302232
https://www.sciencedirect.com/science/article/pii/S0022169416302232
https://www.sciencedirect.com/science/article/pii/S0022169416302232
https://doi.org/10.1016/j.envsoft.2017.01.006


Västilä, K. and Järvelä, J.: Modeling the flow resistance of woody vegetation using physically based properties of the foliage and stem, Water

Resour. Res., 50, 229–245, 2014.

Västilä, K. and Järvelä, J.: Characterizing natural riparian vegetation for modeling of flow and suspended sediment transport, Journal of Soils

and Sediments, 18, 3114–3130, https://doi.org/10.1007/s11368-017-1776-3, 2018.

Västilä, K., Järvelä, J., and Koivusalo, H.: Flow-Vegetation-Sediment Interaction in a Cohesive Compound Channel, J. Hydraul. Eng., 142,1220

4015 034, 2016.

Warmink, J. J., Straatsma, M. W., Huthoff, F., Booij, M. J., and Hulscher, S. J. M. H.: Uncertainty of design water levels due to combined

bed form and vegetation roughness in the D utch R iver W aal, Journal of flood risk management, 6, 302–318, 2013.

Werner, M. G., Hunter, N. M., and Bates, P. D.: Identifiability of distributed floodplain roughness values in flood extent estimation, Journal

of Hydrology, https://doi.org/10.1016/j.jhydrol.2005.03.012, 2005.1225

Wolski, K., Tyminski, T., and Dabek, P. B.: Assessment of the effect of vegetation on the transition of the flood wave using hydraulic 2D

models, in: E3S Web of Conferences, vol. 44, p. 195, EDP Sciences, 2018.

Yen, B. C.: Identification Problem of Open-Channel Friction Parameters - discussion, Journal of Hydraulic Engineering, 125, 552–553, 1999.

Yen, B. C.: Open Channel Flow Resistance, J. Hydraul. Eng., 128, 20–39, 2002.

Yu, K., Chen, Y., Zhu, D., Variano, E. A., and Lin, J.: Development and performance of a 1D–2D coupled shallow water model for large river1230

and lake networks, Journal of Hydraulic Research, 57, 852–865, https://doi.org/10.1080/00221686.2018.1534286, 2019.

Zhang, J., Zhong, Y., and Huai, W.: Transverse distribution of streamwise velocity in open-channel flow with artificial emergent vegetation,

Ecological Engineering, 110, 78–86, 2018.

Zinke, P., Olsen, N. R. B., and Bogen, J.: Three-dimensional numerical modelling of levee depositions in a Scandinavian freshwater delta,

Geomorphology, 129, 320–333, 2011.1235

53

https://doi.org/10.1007/s11368-017-1776-3
https://doi.org/10.1016/j.jhydrol.2005.03.012
https://doi.org/10.1080/00221686.2018.1534286


Appendix A:
::::::::::::
Measurement

::::
data

::::
used

::
in
:::::::::::::
computations

A1
::::::
Flume

:::::::::::
experiments

A2
::::::::::
Ritobacken

::::
field

:::::::::::
experiment
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Table 1.
::::::::
Parameter

:::::::
variability

::::::
ranges

::::::
(uniform

:::::
P (θ)

:::::::::
distribution)

:::
for

::::::::
Ritobacken

:::
and

:::::
flume

:::::::::
experiments,

:::::::
numerals

::
in

::::::::
parameter

::::::
symbols

:::
are

:::
used

::
to

:::::::::
distinguish

:::::::
properties

::
on

:::
left

:::
(1)

:::
and

::::
right

::
(1)

::::::
channel

::::
side.

Ritobacken data Flume data

:::::
Model

:::::::
Parameter

: ::::
mmc :::

Min.
:::::

Value
::::
Max.

::::
Value

: ::::
mmc :::

Min.
:::::

Value
::::
Max.

::::
Value

:

DCM
:::::::::
n1 [m−1/3s]

:
2.5 ·104

::::
0.012

: :::
0.15

:
2.5 ·104

::::
0.012

: :::
0.06

:

::::::::::::
n2, n3 [m−1/3s]

: ::::
0.012

: :::
0.15

: ::::
0.012

: :::
0.12

:

Pasche and

Mertens

::::
dp[m]

:

5 · 104

::::
0.004

: ::::
0.100

:

5 · 104

::::
0.004

: ::::
0.072

:

:::::::::
ax1,ax2 [m]

::::
0.001

: ::
0.9

: :::
0.05

: ::
0.9

:

:::::::::
az1,az2 [m]

::::
0.001

: ::
0.9

: :::
0.05

: ::
0.9

:

:::::
kch[m]

: :::::::
2.5·10−5

:::::::
4.5·10−4

:::::::
2.5·10−5

:::::::
4.5·10−4

:::::::::::
kfp1,kfp2 [m]

::::
0.005

: :::
0.09

: ::::
0.005

: :::
0.09

:

:::::::::
biii/Bfp [−]

: ::::
0.333

: :
1

::::
0.333

: :
1

GTLM

::::::::
Cdx,F [−]

105

:::
0.09

: ::
0.2

:

5 · 104

::::
0.001

: ::
1.5

:

:::::::
Cdx,S [−]

: :::
0.82

: :::
1.03

: ::::
0.001

: ::
1.5

:

:::::
χF [−]

: ::::
-1.21

::::
-0.97

::::
-1.21

::::
-0.97

:::::
χS [−]

: ::::
-0.32

:::
-0.2

::::
-0.32

:::
-0.2

::::::::
Al/Ab [−]

:
0

::
30

:
0

::
30

::::::::
As/Ab [−]

: :
0

::
30

:
0

::
30

:::::
C∗ [−]

: :::
0.01

: :::
0.20

: :::
0.01

: :::
0.20

::::::::::::::
lL/LL, lR/LR [−]

:
0

:
1

:
0

:
1

::::::::
hL,hR [m]

: :
0

:::
2.15

: :
0

::
0.3

:

STLM ::
C∗

: 5 · 104 :::
0.01

: :::
0.20

: 2.5 ·104 :::
0.01

: :::
0.20

::::::::::::::
lL/LL, lR/LR [−]

:
0

:
1

:
0

:
1

::::::::
hL,hR [m]

: :
0

:::
2.15

: :
0

:::
2.15

:

PTLM ::::
CDa 5 · 104 :::

0.01
: :::

100
5 · 104 :::

0.01
: :::

100

::
C∗

: :::
0.01

: :::
0.20

: :::
0.01

: :::
0.20

:

::::
h [m]

: :
0

:::
2.15

: :
0

::
0.3

:

Note, in Flume experiments cross-section was symmetric and the same parameter values were used for following parameters:lL/LL = lR/LR,hL = hR, ax1 = ax2,

az1 = az2
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Table A1.
:::::::
Measured

::::
water

:::::
depth

::
H

:::
and

:::
flow

:::
rate

::
Q

:::
for

::::::::::
quasi-uniform

::::
flow

::::::::
conditions

:
in
:::::
flume

:::::::::
experiments

::::
with

::::::
constant

::::
slope

::::::::::
s= 5 · 10−4

::::::::::::::::::::::::::::::::::::::::
(Koziol, 2010; Kozioł, 2013; Kozioł and Kubrak, 2015)

No.
Case 1 Case 2

:
H
::

(m
:
)

:
Q
::

(m3/s)
: :

H
::

(m
:
)

:
Q
::

(m3/s)
:

:
1

::::
0.170

: ::::
0.018

::::
0.209

: ::::
0.039

:
2

::::
0.177

: ::::
0.019

::::
0.212

: ::::
0.039

:
3

::::
0.183

: ::::
0.021

::::
0.225

: ::::
0.042

:
4

::::
0.195

: ::::
0.023

::::
0.238

: ::::
0.045

:
5

::::
0.211

: ::::
0.026

::::
0.244

: ::::
0.048

:
6

::::
0.225

: ::::
0.030

::::
0.255

: ::::
0.050

:
7

::::
0.243

: ::::
0.035

::::
0.262

: ::::
0.053

:
8

::::
0.270

: ::::
0.041

::::
0.274

: ::::
0.056

:
9

::::
0.289

: ::::
0.046

::::
0.282

: ::::
0.058

::
10

::::
0.284

: ::::
0.059

Table A2.
::::::::::
Cross-section

::
for

:::
the

::::::::
Ritobacken

:::::
brook

::::::::::::::::::::
(Västilä and Järvelä, 2018)

:::::
Station

:
(m)

:::
0.20

: :::
0.35

: :::
0.40

: :::
0.60

: :::
0.80

: :::
1.20

: :::
2.00

: :::
2.20

: :::
2.40

: :::
3.40

: :::
5.00

: :::
6.40

:::
6.60

:::
7.00

:

:::::::
Elevation

:
(m)

:::
1.08

: :::
1.07

: :::
1.15

: :::
1.12

: :::
1.07

: :::
0.93

: :::
0.61

: :::
0.54

: :::
0.50

: :::
0.48

: :::
0.49

: :::
0.47

:::
0.45

:::
0.33

:

:::::
Station

:
(m)

:::
7.20

: :::
7.40

: :::
7.60

: :::
7.80

: :::
8.00

: :::
8.40

: :::
8.60

: :::
8.80

: :::
9.00

: :::
9.60

: :::
9.80

: ::::
10.00

: ::::
10.20

:

:::::::
Elevation

:
(m)

:::
0.20

: :::
0.10

: :::
0.07

: :::
0.01

: :::
0.00

: :::
0.04

: :::
0.20

: :::
0.41

: :::
0.53

: :::
0.78

: :::
0.82

: :::
0.90

:::
0.94

Obtained form field surveys 2010-2012 for 190 m river reach and averaged to obtain a single cross-section; number of measurement points were reduced using the algorithm of

Recursive Douglas-Peucker Polyline Simplification (Schwanghart, 2010), with the tolerance of 0.01 m
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Table A3.
:::
Data

:::
for

::
the

:::::::::
Ritobacken

::::
case

::::
study,

::::
used

::
in

:::::::::
calculations:

:::::
water

::::
depth

:::
H ,

::::
flow

:::
rate

::
Q,

:::::
energy

:::::
grade

::::
slope

::
S,

::::::::
inundated

::::::::
vegetation

:::::
height

:::::::
hv,inud.:::

and
:::::::
Blockage

:::::
factor

:::
BX::::::::::::::::::::

(Västilä and Järvelä, 2018);
:::::
Water

:::::
depths

::
H

::::
were

:::::::
obtained

::
by

:::::::
averaging

::::::::
upstream

:::
and

:::::::::
downstream

:::::
depths.

::::
Case

:::
No.

:
H
::

(m
:
)

:
Q
::

(m3/s)
: :

S
:
(−

:
)

::::::
hv,inud.:

(m)
: :::

BX:
(−

:
)
:

Spring 2011

:
1

::::
0.611

: ::::
0.349

::
9.0

:::::
·10−4

: ::::
0.073

::::
0.189

:

:
2

::::
0.647

: ::::
0.440

::
8.0

:::::
·10−4

: ::::
0.081

::::
0.197

:

:
3

::::
0.694

: ::::
0.565

::
7.0

:::::
·10−4

: ::::
0.086

::::
0.185

:

:
4

::::
0.738

: ::::
0.709

::
7.0

:::::
·10−4

: ::::
0.086

::::
0.166

:

:
5

::::
0.785

: ::::
0.844

::
6.0

:::::
·10−4

: ::::
0.086

::::
0.148

:

:
6

::::
0.841

: ::::
1.022

::
6.0

:::::
·10−4

: ::::
0.086

::::
0.130

:

Autumn 2011

:
1

::::
0.583

: ::::
0.184

::
1.6

:::::
·10−3

: ::::
0.147

::::
0.369

:

:
2

::::
0.640

: ::::
0.244

::
1.6

:::::
·10−3

: ::::
0.204

::::
0.433

:

:
3

::::
0.698

: ::::
0.316

::
1.7

:::::
·10−3

: ::::
0.257

::::
0.472

:

:
4

::::
0.731

: ::::
0.366

::
1.7

:::::
·10−3

: ::::
0.288

::::
0.487

:

:
5

::::
0.776

: ::::
0.459

::
1.8

:::::
·10−3

: ::::
0.326

::::
0.500

:

:
6

::::
0.838

: ::::
0.565

::
1.7

:::::
·10−3

: ::::
0.374

::::
0.527

:

:
7

::::
0.894

: ::::
0.684

::
1.6

:::::
·10−3

: ::::
0.414

::::
0.504

:

:
8

::::
0.928

: ::::
0.788

::
1.7

:::::
·10−3

: ::::
0.438

::::
0.504

:

:
9

::::
0.968

: ::::
0.901

::
1.7

:::::
·10−3

: ::::
0.467

::::
0.502

:

:
10

: ::::
1.021

: ::::
1.053

::
1.7

:::::
·10−3

: ::::
0.505

::::
0.500

:

:
11

: ::::
1.071

: ::::
1.218

::
1.7

:::::
·10−3

: ::::
0.535

::::
0.478

:

:
12

: ::::
1.114

: ::::
1.396

::
1.7

:::::
·10−3

: ::::
0.552

::::
0.476

:

Spring 2012

:
1

::::
0.556

: ::::
0.257

::
1.5

:::::
·10−3

: ::::
0.096

::::
0.271

:

:
2

::::
0.606

: ::::
0.333

::
1.5

:::::
·10−3

: ::::
0.135

::::
0.332

:

:
3

::::
0.629

: ::::
0.402

::
1.5

:::::
·10−3

: ::::
0.153

::::
0.351

:

:
4

::::
0.700

: ::::
0.521

::
1.4

:::::
·10−3

: ::::
0.201

::::
0.379

:

:
5

::::
0.743

: ::::
0.635

::
1.4

:::::
·10−3

: ::::
0.218

::::
0.375

:

:
6

::::
0.796

: ::::
0.735

::
1.2

:::::
·10−3

: ::::
0.233

::::
0.362

:

:
7

::::
0.834

: ::::
0.872

::
1.3

:::::
·10−3

: ::::
0.236

::::
0.342

:

:
8

::::
0.891

: ::::
1.053

::
1.3

:::::
·10−3

: ::::
0.236

::::
0.311

:

:
9

::::
0.944

: ::::
1.218

::
1.3

:::::
·10−3

: ::::
0.236

::::
0.285

:

:
10

: ::::
0.997

: ::::
1.396

::
1.4

:::::
·10−3

: ::::
0.236

::::
0.264

:

:
11

: ::::
1.047

: ::::
1.587

::
1.4

:::::
·10−3

: ::::
0.236

::::
0.246

:
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Appendix B: Box-plots for analyzed methods and cases
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Figure B1. DCM Manning results for the flume case 1, (a) Averaged relative confidence widths W as a function of observation set size n

::
m used for model identification; (b) Ratio

::::::::
Percentage of verification points enclosed by the confidence intervals (1

:::::
100% denotes all points

within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent, cross marks

are for extreme values)

Mertens results for Ritobacken case study, Spring 2011, (a) Averaged relative confidence widths W as a function of1240

observation set size n used for model identification; (b) Ratio of verification points enclosed by the confidence intervals (1

denotes all points within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers

indicate the result extent, cross marks are for extreme values)

Mertens results for Ritobacken case study, Autumn 2011, (a) Averaged relative confidence widths W as a function of

observation set size n used for model identification; (b) Ratio of verification points enclosed by the confidence intervals (11245

denotes all points within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers

indicate the result extent, cross marks are for extreme values)

PTLM results for Ritobacken case study, Autumn 2011, (a) Averaged relative confidence widths W as a function of

observation set size n used for model identification; (b) Ratio of verification points enclosed by the confidence intervals (1

denotes all points within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers1250

indicate the result extent, cross marks are for extreme values)

Mertens results for Ritobacken case study, Spring 2012, (a) Averaged relative confidence widths W as a function of

observation set size n used for model identification; (b) Ratio of verification points enclosed by the confidence intervals (1

denotes all points within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers

indicate the result extent, cross marks are for extreme values)1255
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Figure B2. Pasche results for the flume case 1, (a) Averaged relative confidence widths W as a function of observation set size n
::
m used

for model identification; (b) Ratio
::::::::
Percentage

:
of verification points enclosed by the confidence intervals (1

::::
100%

:
denotes all points within

intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent, cross marks are for

extreme values)
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Figure B3. Mertens results for the flume case 1, (a) Averaged relative confidence widths W as a function of observation set size n
::
m used

for model identification; (b) Ratio
::::::::
Percentage

:
of verification points enclosed by the confidence intervals (1

::::
100%

:
denotes all points within

intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent, cross marks are for

extreme values)
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Figure B4. GTLM results for the flume case 1, (a) Averaged relative confidence widths W as a function of observation set size n
::
m used

for model identification; (b) Ratio
::::::::
Percentage

:
of verification points enclosed by the confidence intervals (1

::::
100%

:
denotes all points within

intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent, cross marks are for

extreme values)
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Figure B5. PTLM results for the flume case 1, (a) Averaged relative confidence widths W as a function of observation set size n
::
m used

for model identification; (b) Ratio
::::::::
Percentage

:
of verification points enclosed by the confidence intervals (1

::::
100%

:
denotes all points within

intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent, cross marks are for

extreme values)
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Figure B6. DCM Manning results for the flume case 1, (a) Averaged relative confidence widths W as a function of observation set size n

::
m used for model identification; (b) Ratio

::::::::
Percentage of verification points enclosed by the confidence intervals (1

:::::
100% denotes all points

within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent, cross marks

are for extreme values)
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Figure B7. Pasche results for the flume case 1, (a) Averaged relative confidence widths W as a function of observation set size n
::
m used

for model identification; (b) Ratio
::::::::
Percentage

:
of verification points enclosed by the confidence intervals (1

::::
100%

:
denotes all points within

intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent, cross marks are for

extreme values)
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Figure B8. Mertens results for the flume case 1, (a) Averaged relative confidence widths W as a function of observation set size n
::
m used

for model identification; (b) Ratio
::::::::
Percentage

:
of verification points enclosed by the confidence intervals (1

::::
100%

:
denotes all points within

intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent, cross marks are for

extreme values)
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Figure B9. GTLM results for the flume case 1, (a) Averaged relative confidence widths W as a function of observation set size n
::
m used

for model identification; (b) Ratio
::::::::
Percentage

:
of verification points enclosed by the confidence intervals (1

::::
100%

:
denotes all points within

intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent, cross marks are for

extreme values)
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Figure B10. PTLM results for the flume case 1, (a) Averaged relative confidence widths W as a function of observation set size n
::
m used

for model identification; (b) Ratio
::::::::
Percentage

:
of verification points enclosed by the confidence intervals (1

::::
100%

:
denotes all points within

intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent, cross marks are for

extreme values)
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Figure B11. Manning DCM results for Ritobacken case study, Spring 2011, (a) Averaged relative confidence widths W as a function of

observation set size n
:
m

:
used for model identification; (b) Ratio

::::::::
Percentage of verification points enclosed by the confidence intervals (1

::::
100%

:
denotes all points within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the

result extent, cross marks are for extreme values)

63



1 2 3 4 5 6

m

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

W

1 2 3 4 5 6

m

(b)

0

20

40

60

80

100

%

Figure B12. GTLM results for Ritobacken case study, Spring 2011, (a) Averaged relative confidence widths W as a function of observation

set size n
::
m used for model identification; (b) Ratio

::::::::
Percentage of verification points enclosed by the confidence intervals (1

:::::
100% denotes

all points within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent,

cross marks are for extreme values)
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Figure B13. STLM results for Ritobacken case study, Spring 2011, (a) Averaged relative confidence widths W as a function of observation

set size n
::
m used for model identification; (b) Ratio

::::::::
Percentage of verification points enclosed by the confidence intervals (1

:::::
100% denotes

all points within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent,

cross marks are for extreme values)
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Figure B14. PTLM results for Ritobacken case study, Spring 2011, (a) Averaged relative confidence widths W as a function of observation

set size n
::
m used for model identification; (b) Ratio

::::::::
Percentage of verification points enclosed by the confidence intervals (1

:::::
100% denotes

all points within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent,

cross marks are for extreme values)
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Figure B15. Manning DCM results for Ritobacken case study, Autumn 2011, (a) Averaged relative confidence widths W as a function of

observation set size n
:
m

:
used for model identification; (b) Ratio

::::::::
Percentage of verification points enclosed by the confidence intervals (1

::::
100%

:
denotes all points within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the

result extent, cross marks are for extreme values)
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Figure B16. GTLM results for Ritobacken case study, Autumn 2011, (a) Averaged relative confidence widthsW as a function of observation

set size n
::
m used for model identification; (b) Ratio

::::::::
Percentage of verification points enclosed by the confidence intervals (1

:::::
100% denotes

all points within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent,

cross marks are for extreme values)
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Figure B17. STLM results for Ritobacken case study, Autumn 2011, (a) Averaged relative confidence widthsW as a function of observation

set size n
::
m used for model identification; (b) Ratio

::::::::
Percentage of verification points enclosed by the confidence intervals (1

:::::
100% denotes

all points within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent,

cross marks are for extreme values)
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Figure B18. Manning DCM results for Ritobacken case study, Spring 2012, (a) Averaged relative confidence widths W as a function of

observation set size n
:
m

:
used for model identification; (b) Ratio

::::::::
Percentage of verification points enclosed by the confidence intervals (1

::::
100%

:
denotes all points within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the

result extent, cross marks are for extreme values)
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Figure B19. GTLM results for Ritobacken case study, Spring 2012, (a) Averaged relative confidence widths W as a function of observation

set size n
::
m used for model identification; (b) Ratio

::::::::
Percentage of verification points enclosed by the confidence intervals (1

:::::
100% denotes

all points within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent,

cross marks are for extreme values)
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Figure B20. STLM results for Ritobacken case study, Spring 2012, (a) Averaged relative confidence widths W as a function of observation

set size n
::
m used for model identification; (b) Ratio

::::::::
Percentage of verification points enclosed by the confidence intervals (1

:::::
100% denotes

all points within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent,

cross marks are for extreme values)
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Figure B21. PTLM results for Ritobacken case study, Spring 2012, (a) Averaged relative confidence widths W as a function of observation

set size n
::
m used for model identification; (b) Ratio

::::::::
Percentage of verification points enclosed by the confidence intervals (1

:::::
100% denotes

all points within intervals, box spans over 25% and 75% quantile, median is given with horizontal line, whiskers indicate the result extent,

cross marks are for extreme values)
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