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Abstract. In global sensitivity analysis and ensemble-based model calibration it is essential to create a large enough sample of

model simulations with different parameters, which all yield plausible model results. This can be difficult if a-priori plausible

parameter combinations frequently yield non-behavioral model results. In a previous study (Erdal and Cirpka, 2019), we

developed and tested a parameter-sampling scheme based on active subspace decomposition. While in principle this scheme

worked well, it still implied testing a substantial fraction of parameter combinations that ultimately had to be discarded because5

of implausible model results. This technical note presents an improved sampling scheme and illustrates its simplicity and

efficiency by a small test case. The new sampling scheme can be tuned to either outperform the original implementation by

improving the sampling efficiency while maintaining the accuracy of the result, or by improving the accuracy of the result

while maintaining the sampling efficiency.

1 Introduction10

Global sensitivity analysis (e.g., Saltelli et al., 2004, 2008) is an established technique for quantifying the importance of

uncertain parameters of a model. It has also gained popularity within hydrological sciences, with many different methods

to choose from (e.g., Mishra et al., 2009; Song et al., 2015; Pianosi et al., 2016). An increasingly popular global-sensitivity

approach is the method of active subspaces (e.g. Constantine et al., 2014; Constantine and Diaz, 2017). While been designed for

engineering applications (e.g. Constantine et al., 2015a, b; Hu et al., 2016; Glaws et al., 2017; Constantine and Doostan, 2017;15

Hu et al., 2017; Grey and Constantine, 2018; Li et al., 2019), it has recently been used with good performance in hydrology

(e.g., Gilbert et al., 2016; Jefferson et al., 2015, 2017; Teixeira Parente et al., 2019), including a recent study of ourselves (Erdal

and Cirpka, 2019).

A key issue when conducting a global sensitivity analysis, is the requirement of a large enough sample of model simulations

with parameters ranging over the full parameter space. Simulations showing unrealistic behavior (e.g., wells or rivers running20

dry in the model, while they in reality always have water) should be removed from the sample. Already in moderately complex

models this may result in many model trials that must be discarded on the level of a plausibility check. This leads to the

contradictory requirements of sampling the entire space of parameters defined by preset wide margins to capture the entire

distribution while exploring only the part of the parameter space yielding plausible results. One way of easing the computational
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burden, is to make use of a simpler model (i.e. surrogate/proxy/emulator model), discussed, e.g., in the comprehensive reviews25

of Ratto et al. (2012), Razavi et al. (2012), Asher et al. (2015), and Rajabi (2019). A common sampling approach is to use a

two-stage acceptance sampling scheme, in which a candidate parameter set is first tested with the surrogate model, and only if

the surrogate model predicts the parameter set to be behavioral, it is applied in the full model. This idea has been applied to

groundwater modelling by Cui et al. (2011), Laloy et al. (2013), and the authors of the current study (Erdal and Cirpka, 2019).

In the latter study, we used a response surface fitted to the first two active subspaces as the surrogate model in a sampling30

scheme for a subsurface catchment-scale flow model. The scope of the current technical note is to present an improvement of

this scheme and compare it to the original one.

2 Methods

In the following subsections we briefly describe the active-subspace method and the base flow model. More details are given

by Erdal and Cirpka (2019).35

2.1 Active Subspaces

In this section we briefly repeat the basic derivation of active subspaces for a generic function f(x̃), in which x̃ is the vector

of scaled parameters x with a scaling to the range between 0 and 1. An active subspace is defined by the eigenvectors of the

following matrix C, computed from the partial derivatives of f with respect to x̃i, evaluated over the entire parameter space

(Constantine et al., 2014), here shown with its eigen-decomposition and Monte Carlo approximation (Constantine et al., 2016;40

Constantine and Diaz, 2017):

WΛW−1 = C =

∫
∇f(x̃)⊗∇f(x̃)ρ(x̃)dx̃≈ 1

M

M∑
i=1

∇f(x̃i)⊗∇f(x̃i) (1)

in which⊗ denotes the matrix product, ρ is a probability density function, the integration is performed over the entire parameter

space, W is the matrix of eigenvectors, Λ is the diagonal matrix of the corresponding eigenvalues, and M is the number

of samples used. The n-dimensional active subspace is spanned by the eigenvectors with the n highest eigenvalues. In our45

application, we use n= 2 as we could detect very little improvement with higher numbers.

In a global sensitivity analysis using active subspaces, the activity score ai of parameter i is defined by:

ai =

n∑
j=1

λjw
2
i,j . (2)

in which λj is the j-th eigenvalue and wi,j the element relating to parameter i in the j-th eigenvector. In the following, we

consider the square root of the activity score to obtain a quantity that has the same unit as the target variable f . It should be50

noted that there are different global sensitivity methods with different metrics that may give different results (e.g. Razavi and
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Gupta, 2015; Dell’Oca et al., 2017). In principle, nothing speaks against computing another global-sensitivity metric for the

sample selected by our active-subspace based sampling scheme, as long as computing the metric is based on a random sample.

For practical reasons and for a direct comparison with our previous work, we use the activity score in the present study. For

the interested reader, a longer discussion about the current metric in relation to the specific application is given by Erdal and55

Cirpka (2019), and more general discussions have been presented by Saltelli et al. (2008); Song et al. (2015); Pianosi et al.

(2016), among others.

2.2 Model Application

In our application we consider a model of the small Käsbach catchment in south-west Germany. The model has 32 unknown

parameters, including material properties, boundary-condition values, and geometrical parameters of subsurface zones. Origi-60

nally, Erdal and Cirpka (2019) simulated subsurface flow in the domain using the model-software HydroGeoSphere (Aquanty

Inc., 2015), which solves the 3-D Richards-equation, here using the Mualem-van-Genuchten (Van Genuchten, 1980) parame-

terization for unsaturated flow. Figure 1 illustrates the model domain. Details, including the governing equations, are given by

in Erdal and Cirpka (2019).

Figure 1. Illustration of the model domain. Left: shape of the domain and topography; right: example of a geological realization.
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In a related study, we constructed a surrogate model using Gaussian Process Emulation (GPE) from roughly 4,000 parameter65

sets. In the GPE model, the model response f(x̃i) at the scaled parameter location xi is constructed by interpolation from the

existing set of parameter realizations using kriging in parameter space with optimized statistical parameters. The GPE-model

is constructed with the Small Toolbox for Kriging (Bect et al., 2017). In the present work, we use the GPE-model instead of

the full HydroGeoSphere flow model as our virtually true model response. The prime reason for this is that we can perform

pure Monte Carlo sampling of behavioral parameter sets with the GPE model, requiring about 600,000 model evaluations to70

create a set of 3,000 behavioral parameter-sets, which would be unfeasible with the original HydroGeoSphere model. That

is, we use a surrogate model (the GPE model) to judge the performance of other surrogate models (based on active-subspace

decomposition) in creating ensembles of plausible parameter sets. In order to avoid confusion we would like to point out that,

in this paper, the term full-flow model means the GPE-model, while the term surrogate model is, outside of this paragraph,

exclusively used for the surrogate model used to improve the sampling schemes.75

Like in our prior work (Erdal and Cirpka, 2019), the model considers 5 observations that define acceptable behavioral

performance (for locations see Figure 1):

– Limited Flooding: maximum of 2× 10−3 m3/s of water leaving the domain on the top but outside of the streams.

– Division of water: between 25-60% of incoming recharge leaves the domain via the streams.

– Gage C: minimum flow of 5× 10−3 m3/s.80

– Stream A: maximum flow 3× 10−3 m3/s.

– Stream B: minimum flow 5× 10−6 m3/s.

With the aim of keeping this technical note rather concise, we will not discuss individual parameters or their meaning in the

model. To this end, we address all parameters by a parameter index (1-32) instead of a name, and the resulting histograms refer

to the the scaled parameters, ranging from 0 to 1.85

2.3 Sampling Schemes using Active-Subspace Decomposition

The basic idea of using a surrogate-assisted sampling scheme is to use the (very fast) surrogate model to first evaluate a

candidate parameter-set. If the surrogate model predicts the parameter set to be behavioral, it is stage-1 accepted and will be

ran with the full model. If accepted also after running the full model, a parameter-set is stage-2 accepted. Only the stage-2

accepted parameter sets are used in the global sensitivity analysis, whereas the stage-1 accepted ones are used to improve the90

surrogate model. Hence, one of the beauties of the surrogate-assisted sampling is its ability to quickly discharge large quantities

of non-behavioral parameter-set without running the full flow model for each one (i.e. stage-1 rejected samples). Also, as the

surrogate model is only used as a preselection filter, all results and the training of the surrogate model are based exclusively on

full-flow model simulations.

For each observation considered, we need to perform an active-subspace decomposition. In our our previous work (Erdal95

and Cirpka, 2019), a decision on whether to accept or reject a parameter set is made in the following way:
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1. A third-order polynomial surface is fitted in the active subspace spanned by the two major active variables.

2. These polynomial surfaces are used to predict the observations of a candidate parameter-set.

3a If all predicted observations are acceptable, the candidate is stage-1 accepted.

3b If any predicted observation is between the acceptance point and a user-defined outer point, we assign a probability of100

being stage-1 accepted by linear interpolation between 0 (at the outer point) and 1 (at the acceptance point), draw a

random number from a uniform distribution, and stage-1 accept the parameter set if the assigned probability is larger

than the random number.

3c If any predicted observation is outside of the outer point, we reject the sample, draw a new candidate, and return to (2).

4. After adding 100 stage-1 accepted parameter sets, we recalculate the active subspace using all stage-1 accepted parameter105

sets collected to this point. Hence, the surrogate-model is based on all currently available full-flow model simulations.

Two critical points can be seen with this scheme. First, the polynomial surface is fitted through all stage-1 accepted points

across the entire parameter space. However, locally, where we wish to make a prediction, it could still be strongly biased.

Second, the user needs to prescribe the outer-points, which should not only cover our uncertainty about the acceptance point,

but also implicitly addresses the error by using the active-subspace decomposition. As we project 32 dimensions to two,110

the potential for an imperfect decomposition is rather high (that is, two close points in active subspace may have different

behavioral status). As we have no rigorous and yet simple method to address this uncertainty, the choice of the outer point

becomes fairly subjective.

To overcome these these issues, we here suggest a modified sampling scheme, with fewer tuning parameters and less sensi-

tivity to local biases. As with the original scheme, we require one active subspace decomposition per observation and use the115

first two active variables to create the two-dimensional active subspace. As in the original sampling scheme, we start with a

set of 50 candidate parameter sets, sampled using a Latin Hypercube setup, which are per definition directly stage-1 accepted.

Hence we run the full flow model 50 times to initialize the sampling scheme. The actual number is not critical, and should be

chosen with consideration to the number of unknown parameters. The new sampling scheme then proceeds as follows:

1. The candidate parameter set is projected into the active subspace.120

2. The closest neighbors in the active subspace are sought. In this work we use the 5 closest neighbors plus all neighbors

that fall within an ellipse around the candidate point that has a radius of 1% of the total range of each active subspace, in

each of the two dimensions. The number of neighbors selected and the radius of the ellipse are tuning parameters, here

chosen based on a few prior tests. However, we believe they are applicable also for other applications, at the very least

as good starting points.125

3. For each observation, a candidate parameter set is pre-accepted if a certain ratio (P ) of its neighbours are behavioral

(i.e., stage-2 accepted).
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4. The candidate parameter set is stage-1 accepted if it was pre-accepted for all observations, otherwise it is rejected.

5. If rejected, draw a new candidate parameter set and return to (1).

Like before, we recalculate the active subspace after adding 100 stage-1 accepted parameter sets. The two approaches are130

illustrated in Figure 2, although just for a 1-D illustrative example. As can be seen in the figure, the original sampling scheme

suggests that the candidate is behavioral (red dot is above the red line). With the new sampling scheme, on the other hand, it

becomes a matter of the P -value chosen. At P = 0.15 and P = 0.55, the candidate would have been stage-1 accepted (60% of

the green dots are behavioral), while at P = 0.75 the candidate would have been rejected. In this work, we consider the ratios

P = 0.15, P = 0.55 and P = 0.75, and compare the performance of the sampling scheme with that used in the previous study135

(Erdal and Cirpka, 2019).

Figure 2. Illustration of the two active-subspace sampling schemes, shown for a 1-D test. The right plot shows a zoom-in into the left plot.

Blue dots: previously analyzed points; magenta line: fitted polynomial surrogate model; red dot: candidate parameter in active subspace

(x-value) with the assigned polynomial prediction (y-value) of the original sampling scheme; green dots: neighbors considered in the new

scheme, which are chosen exclusively by the active-variable value; red line: Behavioral Limit Line. Here, points above the red line are

considered to have acceptable behavior.

3 Results and Discussion

Figure 3 shows the acceptance ratios (number of stage-2 accepted samples divided by the number of stage-1 accepted samples)

for the original sampling scheme and the new sampling scheme with three different P -values, together with a pure Monte-Carlo

sampler without preselection, applied to the Käsbach GPE-model with 32 parameters. As can be seen, the new scheme with140

P = 0.75 is the fastest, while the original scheme and the new scheme with P = 0.15 show rather comparable behavior with

lower acceptance rates. For comparison, the pure Monte Carlo sampling has an acceptance ratio of ≈0.005. It should be noted
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here that the acceptance-ratio as a statistic only shows the ratio between the runs that are behavioral after running the full-flow

model (stage-2 accepted) versus the number of full-flow model runs (stage-1 accepted). This, however, does not reflect the

number of stage-1 rejected parameter sets, which is not reported in this work, but is by far the largest for the higher P -values.145

Hence, the acceptance-ratio is a measure of computational efficiency rather than a measure of search efficiency (which here is

simple Monte Carlo and, hence, comparably inefficient).

Figure 3. Acceptance ratios of the different sampling schemes, plotted as a function of the number of stage-2 accepted samples.

While high acceptance rates are favorable in light of computational efficiency, we also want to avoid introducing a bias by

the preselection scheme. We evaluate such bias, by considering the marginal parameter distributions of the stage-2 accepted

samples, which should agree with the distribution obtained by the (inefficient) pure Monte-Carlo sampler. Figure 4 shows the150

resulting histograms for the three parameters with the most complex marginal distributions. We quantified the agreement of

the marginal distributions of the sampling schemes with preselection and the pure Monte-Carlo sampling by the Cramér–von

Mises metric ω2:

ω2 =

1∫
0

(
P̂ss(x̃i)− P̂MC(x̃i)

)2
dx̃i (3)

in which P̂ss(x̃i) is the marginal cumulative probability of the scaled parameter x̃i for a tested sampling scheme and P̂MC(x̃i)155

is the same quantity for pure Monte-Carlo sampling. The corresponding values of ω2 are reported in the subplots of Figure 4.
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Figure 4. Histograms of the three parameters with the most complicated posterior marginal distributions. Each row shows a parameter

and each column a sampling scheme. Blue bars: histograms from pure Monte Carlo sampling (i.e. true distribution); brown bars: sampling

schemes with preselection; numbers: Cramér–von Mises metric ω2 for the distance between the two distributions, here shown multiplied

with 1000 for increased readability.

From the histograms in Figure 4 and the values of the Cramér–von Mises metric ω2 it becomes obvious that the fast new

sampling with P = 0.75 results in marginal distributions that significantly differ from those of the unbiased pure Monte-Carlo

scheme. The new scheme with P = 0.55 results in marginal distributions that are comparable to those of the original scheme,

but that have been achieved by a sampling scheme with twice the acceptance rate and thus half the computational effort.160

By contrast, the new scheme with P = 0.15, which caused a computational effort similar to the original scheme, resulted in a

marginal posterior distribution that is very similar to that obtained by pure Monte-Carlo sampling. Hence, we can conclude that

the proposed sampling scheme is superior to the old one: either it has much better sampling accuracy for the same efficiency

(P = 0.15), or it has a much better efficiency with a very comparable accuracy (P = 0.55). While it may seem counter-intuitive

that the highest P-values gets the highest acceptance ratio and the poorest match of the marginal distributions, it is worth noting165

that a higher P-value means that the requirement for stage-1 acceptance is higher. Hence, at high P-values we only sample the

interior of the behavioral parameter space and avoid the boundaries where the behavioral status of a candidate parameter set is

more uncertain. This results in the bias clearly seen in Figure 4.
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Figure 5. Square-root of activity scores of the 10 most influential parameters for the target variable stream flow at gage C resulting from

applying the active-subspace based global sensitivity analysis to the posterior distributions using the different sampling schemes.

Figure 5 shows the square-root of the activity score for a selected target variable, computed by the active-subspace based

global sensitivity analysis and using the different sampling schemes, which confirms the impression of the histograms shown170

in Figure 4. The pure-MC scheme and the new scheme with P = 0.15 show almost identical activity scores, while the score-

patterns increasingly differ with increasing P -values. Similarly, the original sampling scheme differed in the activity scores

compared to the pure-MC scheme. Nonetheless, all sampling schemes correctly identified the two most important parameters

and the correct set of the ten most important parameters. That the order of the parameters within the set of the most important

parameters is not captured by the faster sampling schemes may be an acceptable trade-off between speed and accuracy, de-175

pending on the individual application. Based on the experience gained within this project, a recommended starting P-value for

our presented sampling scheme is P=0.55.

In the current study, we have used Gaussian process emulation (GPE) as a proxy of the full HydroGeoSphere model, putting

the question forward whether a GPE model could not also be used as surrogate model for preselection in an advanced sampling

scheme. This is indeed possible, and we are currently developing such schemes, achieving acceptance ratios between 70-90%.180

Hence, GPE-based sampling schemes can be notably more efficient than the new scheme presented in this work. Nonethe-

less, we see a clear value in using the less efficient active-subspace based sampling schemes. The key word is simplicity.

The full active subspace-sampling scheme is implemented in-house, and the most complicated step is likely the eigenvalue

decomposition, which is a standard tool in any programming environment. Hence, we have full control over the entire selec-

tion procedure. Further, the active-subspace based sampling scheme presented here has a single tuning coefficient P with an185
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easily comprehensible meaning, and the resulting active subspace can easily be visualized for an intuitive understanding of the

method. This is quite different with GPE-based methods which require choosing a covariance function in parameter space with

coefficients that needs to be estimated from the current set of training data. In our application, we have 32 original parameters,

requiring one variance and 32 integral scales as covariance coefficients to be estimated every time the GPE-model is re-trained.

Estimating 33 covariance parameters from O(1000) parameter sets is time consuming, and the integral scales in non-sensitive190

parameter directions are not well constrained by the data at all. Finally, to train a GPE model we need to rely on third-party

codes which remain black boxes to a large extent, and usually involve a rather decent amount of work until they do what they

are supposed to do. Hence, we clearly see a benefit of using the simpler active-subspace based sampling schemes even if they

are computationally less efficient.

4 Conclusions195

In this work we have presented an improved sampling scheme to obtain ensembles of parameter sets that lead to plausible

model results. Like in the preceding study of Erdal and Cirpka (2019), the sampling scheme makes use of an active-subspace

based preselection scheme that reduces the number of full model runs that need to be discarded. In contrast to the preceding

method, we don’t perform a polynomial fit over the entire parameter space anymore, neither do we have to set fuzzy boundaries

of the target variables to define the behavioral status. Instead, the preselection of a parameter set is simply based on the behavior200

of surrounding trial solutions. The new scheme outperforms the preceding one by either achieving a higher accuracy in the

resulting posterior parameter distributions for the same sampling efficiency, or by having a much higher sampling efficiency

for a comparable accuracy. We hence conclude that the new scheme presented here should be used instead of the original one.
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